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ABSTRACT

This paper investigates demodulation of di�eren-
tially phase modulated signals (DPMS) using optimal
HMM �lters. The optimal HMM �lter presented in the
paper is computationally of order N3 per time instant,
whereN is the number of message symbols. Previously,
optimal HMM �lters have been of computational order
N4 per time instant. Also, suboptimal HMM �lters
have be proposed of computation orderN2 per time in-
stant. The approach presented in this paper uses two
coupled HMM �lters and exploits knowledge of their
interdependence to achieve computational gains.

A simulation study is also presented.

1. INTRODUCTION

The capacity of wireless digital communication system
is often limited by fading in the transmission chan-
nel. One common approaches to alleviate this di�culty
is through the use of decision feedback equalisation
(DFE). For example, a DFE approach was used in [2],
via a coupled Kalman �lter (KF) and hidden Markov
model (HMM) �lter, to demodulate quadrature ampli-
tude modulated (QAM) signals. At each time instant
the HMM �lter estimates the message sent and then
the KF uses this estimate to update its estimate of the
channel. The disadvantage of this approach arises if
errors in the estimation of the message sequence occur.
Errors in the estimate for the message signal cause the
channel estimate to diverge from the true channel; the
whole DFE structure then breaks down.

A second common approach to alleviate di�culties
resulting from channel fading is though the use of dif-
ferential phase modulated signals (DPMS). The major
advantage of di�erence signalling is that message in-
formation is encoded in the di�erences between succes-
sive transmitted signals. For this reason tracking of the
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channel is not required and as long as the channel is
slowly time-varying then its e�ect on the symbols can
be largely ignored.

To formulate DPMS into a HMM structure, two �-
nite dimensional indicator vectors are used. One to
represent di�erential message signal being sent at each
time instant and the other to represent actual message
symbol being sent at each time instant. In previous pa-
pers optimal HMM �lters have been developed which
consider the whole state space spanned by the modu-
lation system and these schemes are computationally
of order N4 per time instant, where N is the number
of message symbols. Another approach developed is
to use a suboptimal solution which uses coupled con-
ditional HMM �lters which assume independence be-
tween the two indicator vectors, where there is obvi-
ously dependence [4]. This sub-optimal scheme is com-
putationally of order N2.

The key contribution of this paper is to use coupled
conditional HMM �lters, in the same vein as the sub-
optimal approach, which exploit the interdependence
between the sent message and the di�erential message
to ensure optimality of the �lters.

This paper is organised as follows: In Section 2, we
formulate the HMM, signal model and channel model
for a DPMS system. In Section 3, we introduce our op-
timal HMM �lter. In Section 4, we present a coupled
�lter formulation for the optimal HMM �lter. In Sec-
tion 5, a simulation study is presented. Finally, some
conclusions are presented in Section 6.

2. PROBLEM FORMULATION

In this section we introduce the HMM signal model in
state form and the channel model.

2.1. Signal Model

Two HMM indicator functions are used to represent the
state of the di�erential modulation scheme. Assume
the signals from the message source, fk, space belongs



to a �nite-discrete set. That is, let fk be a real valued
discrete-state discrete time process. Without loss of
generality, fk can be thought to belong to the message
space f1; 2; 3; :::; Ng, whereN is the number of possible
message symbols.

Assumption on the message source

fkis a �rst order Markov process (2.1)

Then the message can be represented by a sequences
of Markov indicator functions, Xf

k 2 fe1; :::; eng where
ei = (0; :::; 0; 1; 0; :::0)0 with 1 in the ith position.

The transition probability matrix of the Markov
process is

A = (aij) � i; j � N (2.2)

where

aij = P (Xf
k+1 = eijX

f
k = ej) (2.3)

so that

E[Xf
k+1jX

f
k ] = AX

f
k (2.4)

where E[:] denotes the expectation operator. We also
denote fFl; l 2 Z

+g the complete �ltration generated
by Xf , that is, for any k 2 Z+; Fk is the complete
�ltration generated by XF

k ; l � k.

Lemma 1 The dynamics of X
f
k are given by the state

equation

X
f
k+1 = AX

f
k +Mk+1 (2.5)

where Mk+1 is a (A;Fk) martingale increment, in that

E[Mk+1jFk] = 0.

The symbol transmitted in a di�erential modulation
scheme is the modulo sum of the message sequence.
If we let �k denote the symbol sent at time k and
Sk = (

Pk

i=1 Ii)modN , denote the modula sum of the
message sequence, then

�k = Z
(Sk)
f (2.6)

where Zf = fZ
(1)
f < :::; Z

(N)
f g are complex number

that denote the signal constellation using in a QAM or
similar transmission scheme.

We also represent the symbol sent by the indication
function, X�

k where X�
k = eSk 2 fe1; : : : ; eNg.

Lemma 2 The indicator function X�
k is given from

X
f
k as follows

X�
k+1 = D(Xf

k+1)X
�
k or (2.7)

X�
k+1 = f(X�

k)X
f
k+1 (2.8)

where D(ei)=S
n0ei the shift operator. Note, S is de-

�ned as

S =

0
BBBBB@

0 0 : : : 0 1
1 0 : : : 0 0
0 1 : : : 0 0
...

...
. . .

...
...

0 0 : : : 1 0

1
CCCCCA

(2.9)

and n = (1; : : : ; N)0.

Proof Proof of (2.7) comes from the de�nition of

DPMS. Proof of (2.8) comes from noting that Xf
k+1

and X�
k are indicator functions and hence non-linear

functions are simply linear functions, see [3]. 2

2.2. Channel Model

The signal �k is transmitted via a channel which can
cause amplitude attenuation and phase shift. The chan-
nel can be represented as a multiplicative disturbance,
ck.

The observation process yk is thus assumed to have
the form

yk = ckmk + wk (2.10)

where mk = ZfX
�
k . We also de�ne Yk

4
= (yo; :::; yk).

We assume wk is complex with real and imaginary parts
that are i.i.d., with zero mean and Gaussian and Yl is
the complete �ltration generated by yk; k � l. As a
consequence,

E[wk+1jFk _ Yk] = 0: (2.11)

In cartesian coordinates, with the output written as

Yk =

�
yRk
yIk

�

we obtain

�
yRk
yIk

�
=

�
mR

k �mI
k

mI
k mR

k

��
cRk
cIk

�
+

�
wR
k

wI
k

�

=

�
(ZR

f )
0X�

k �(ZI
f )

0X�
k

(ZI
f )

0X�
k (ZR

f )
0X�

k

��
cRk
cIk

�

+

�
wR
k

wI
k

�

where the notation ZR
f and ZI

f means the real and
imaginary part of Zf respectfully, and has the same
interpretation for the other signals.



3. OPTIMAL HMM REPRESENTATION

In this section we introduce a new formulation to the
problem of �nding the optimal HMM �lter for DPMSs.
Previously, the optimal HMM �lter was thought to re-
quire order N4 calculations per time instant. The �lter
was constructed as follows.

Let X 0
k denote the space of the modulation scheme.

This space is also represented by the indicator functions
X

f
k andX�

k . The approach taken in the previous formu-
lation of the optimal HMM �lter is obtain X 0

k from the
Kronecker product of these indicator functions. That
is,

X 0
k = X

f
k 
X�

k (3.1)

where 
 is the Kronecker product. X 0
k is known to be

a Markov process and standard HMM �ltering theory
can be applied. However, X 0

k is (N2�1) and hence the
�lter calculations are of order N4.

If instead denote the modulation scheme space by
Xk and formed as follows

Xk = X
f
kX

�0

k (3.2)

then we note that

X
f
k = Xk1N and

X�
k = X 0

k1N (3.3)

where 1N = (1; : : : ; 1)0, an N -vector of ones.

Remarks

1. Xk is a (N �N) matrix while X 0
k is a (N2 � 1)

vector.

2. For vectors, the Kronecker product and outer prod-
uct have the same terms, they are simply stored
di�erently.

3. While the di�erence in de�nition of Xk and X
0
k is

not great, Xk does highlight the structure in the
problem caused by the nature of the modulation
scheme.

Lemma 3 The dynamics of Xk are given by the state

equation

Xk+1 =

NX
i=1

ei(Ai(A)Xk(i; :)
0)0 +Mk+1 (3.4)

where Xk(i; :) represents the ith row of matrix Xk,Mk+1 =
Mk+2e

0
i+j and Ai(A) is some vector related to A.

Proof Express Xk+1 as X
f
k+2X

�0

k+1. Substitute in
(2.7) and (2.5) and from noting that X in a zero matrix
except in one element the result follows. 2

Since from Lemma 3 it is clear that the dynamic of
Xk can be considered as N parallel independent HMMs
we use standard HMM �lter techniques on each of the
rows of X to obtain an estimate of X̂k = E[Xk jYk].
That is,

X̂k+1(i; :)
0 = NkBk+1AiX̂k(i; :)

0 (3.5)

where Nk is a normalising factor for each row, Bk =
diag(bk(e1); : : : ; bk(eN ), and bk(ei) = p[YkjX

�
k = ei].

From X̂k+1 estimates for two indicator function can
be found using property (3.3).

Remarks

1. Lemma 3 simply shown that Xk evolves like N
parallel HMMs. Each row represent a separate
Markov chain.

2. This structure is hidden in the XO
k formulation.

3. This �lter required of the order N3 calculations
per time instant.

4. COUPLED FILTERS FORMULATION

In this section we present a more convenient formula-
tion of our optimal HMM �lter using couple conditional
HMM �lters. In this formulation we do not directly cre-
ate Xk but rather the conditional HMM �lters of Xf

k+1

and X�
k+1, exploiting the interdependence between the

signals.
Let X̂f

k+1 and X̂�
k+1 denote the conditional �ltered

normalised state estimates of Xf
k+1 and X�

k+1 respec-
tively. That is, by de�nition

X̂
f
k+1 = E[Xf

k+1jYk]

X̂�
k+1 = E[X�

k+1jYk] (4.1)

Firstly, consider the intermediate conditional state es-
timate, X̂f

k+1ji, given by

X̂
f

k+1ji = E[Xf
k+1jYk; X

�
k = ei] (4.2)

From Bayes rule it is clear that

X̂
f
k+1 =

NX
i=1

X̂
f

k+1jiX̂
�
k(i) (4.3)

where X̂�
k(i) is the ith element if X̂

�
k . Note that X̂

�
k(i) =

P (X�
k = eijYk).



Lemma 4 The following forward recursion exists to

estimate X̂
f

k+1ji

X̂
f

k+1ji = N
(1)
k Bk+1jiAX̂

f
k (4.4)

where Bkji = diag(bkji(e1); :::; bkji(eN )) with bkji(ej) =

P [ykjX
�
k = ei; X

f
k+1 = ej ] and where N

(1)
k is a normal-

ising factor.

Proof Follows from assumption (2.1). 2

Lemma 5 The conditional �ltered normalised state es-

timates X̂�
k+1 is given by

X̂�
k+1 = N

(2)
k Bk+1

NX
i=1

f(ei)X̂
f

k+1ji (4.5)

where Bkji = diag(bk(e1); :::; bk(eN )) with

bk(ei) = P [ykjX
�
k = ei] and N

(2)
k is a normalising fac-

tor.

Proof Follows from (2.8) 2

Lemma 6 The conditional �ltered normalised state es-

timates X̂
f
k+1 is given by

X̂
f
k+1 = N

(3)
k

NX
i=1

X̂
f

k+1jie
0
iX̂

�
k+1 (4.6)

where N
(3)
k is a normalising factor.

Proof Follows from de�nition of X̂f
k+1 2

Application of these last three lemmas gives a re-
cursive �lter for estimating X̂f

k+1, the signal of interest,
at each time instant.

Remarks

1. This �lter generates the same results as the �lter
given in the previous section.

2. The primary di�erence between the sub-optimal
approach in [4] and here appears in Lemma 5.
The suboptimal approach would update as fol-
lows

X̂�
k+1 = Bk+1X̂

�
k

3. These �lters take O(N3) calculations per time
step to implement, compared with O(N4) for pre-
vious optimal �lters and O(N2) for previous sub-
optimal �lters.

5. SIMULATIONS

To evaluate the performance of our DPMS HMM �l-
ter, we compared it with the performance of the DFE
scheme implemented in [2]. It should be noted that
the DFE scheme requires O(N2) calculations per time
instant and our HMM scheme requires O(N3) calcula-
tions per time instant. Two modulated signals where
generated from the same binary message source A QAM
signal was generated to test the DFE and a DPSK sig-
nal to test our di�erential HMM �lter. Both signals
were subjected to that same channel interference, a
slowly fading white additive noise channel. The schemes
were compared over a range of signal to noise ratios.

In lower signal to noise ratios, our HMM �lter per-
formed better. The primary reason for this begin that
the DFE does not regain tracking after errors, while
the DPMS scheme does. In particular, when the chan-
nel faded to a null, both schemes made errors, however,
the DFE did not regain tracking after the null.

6. CONCLUSION

In this paper we have presented a optimal HMM �l-
ter for demodulation of di�erentially encoded signals.
This optimal �lter is requires O(N3) calcualtions per
time step, where N is the number of message symbols,
compared to previous optimal schemes which were com-
putationally of order N4.

The optimal HMM �lter presented in this paper ex-
ploits more of the structure in the demodulation prob-
lem then previous optimal HMM �lters do. A simula-
tion example was given.
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