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Abstract

In this short paper we prove a Hoeffding-like inequality for the survival function of a 
sum of symmetric independent r.v. taking values in a segment [—6, 6] of the reals. The 
symmetric case is relevant to the auditing practice and is a handy case study for further 
investigations.
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1 Motivation

Large companies are by law obliged to publish annually a financial statement. This statement 
is subsequently examined and judged by an independent accountancy firm. An integral con­
trol (=audit) of every single (monetary) item in the statement is quite expensive and therefore 
usually omitted. Instead the external accountant (= auditor) will submit part of the company 
to a qualitative investigation. When too many (little) irregularities are met with or when the 
auditor seeks further quantitative support for his final judgement he can and often will resort 
to taking a representative sample of the relevant stated items. The auditor may then be in­
terested in a confidence upper bound for a certain parameter. These bounds are based on the 
choice of a statistic e.g. the mean-estimator of the errors in the population (being the items 
in the statement). A (1 -  a)-confidence upper bound can be constructed from the survival 
function of an appropriate statistic, cf [8 , 9]. The quality of the confidence upper bound 
depends on the choice of the statistic and on the sharpness of the tail upper bound of the 
statistic. In this paper we construct a tail upper bound for the minimum variance unbiased 
linear estimator of the mean, under a symmetry assumption.

Until recently, the best known bounds for the tail probability of the sum of bounded i.i.d. 
random variables were the Hoeffding bounds, cf. [16]. These bounds have as a downside 
that they tend to be rather conservative. Different strategies can be used to circumvent this
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aspect. One way is to choose a more appropriate function replacing the indicator function in 
the "Bernstein trick”, cf.[5, 6] and see equation (2). Another approach is to consider a smaller 
class of laws, e.g. symmetric ones.

2 Notation and presentation

We begin by introducing some notation that will be used throughout the paper. For a fixed n  G 
N* and b G (0, œ ) ,  let X 1, ..., X n be i.i.d. random variables with a symmetric distribution 
and with E ( X 2) =  a 2, suchthat - b  < X i  < b. We sometimes write for convenience^ sake
S  =  X i +  ... +  Xn .

The symmetry is understood to be w.r.t. the vertical axis. Therfore the mean of such variables 
is zero. In section 3 we briefly illustrate that this is just a matter of translation.

Definition 2.1 A  law v  on a a-algebra F  is said to be symmetric i f

v  (A) =  v  (—A) forevery A  g F.

Let t  G [0, b]. We will present a function H  such that the following inequality is sharp.

P { X i +  ... +  X n  > n t} < H(t ) .  (1)

The way we go about constructing this upper bound starts fairly the same as in [16]. Let us 
recapitulate a little. For the first nifty move let h >  0 and observe

P {X i +  ... +  X n  > n t }  =  E 1{s-n t> 0} < Eeh(S nt).

The inequality is known as the "Bernstein trick”. The last expression can be expanded, yield­
ing the following.

P { X 1 + ... + X n > n t}  < { e - h t EehXl } n . (2)

Eventually we want to minimize over h, but first we bring our symmetry property into play. 
Let us take a closer look at the expression at hand:

b

t « .  =  X , (X). <3)
-b

The device is to fold the symmetric distribution P Xl together over the interval [0,b], taking 
extra care of a possible mass at 0 such that this weight is counted only once. More explicitly 
we have to every symmetric law n  supported in — b, b] a law v  with support in [0 , b] (and vice 
versa) such that:

v ( A ) =  f i(—A  U A) (A GB([0,b])).
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This operation preserves the second moment. Implementing this in formula (3) and at the 
same time adjusting the integrand to the symmetry gives

b b

/ ehx i e-hx  f  ehx i e-hx
------ ------- dPX l (x ) = J -------2------ dv(x).  (4)

-b  0

We want to evaluate the best possible upper bound (after having established that it makes any 
sense at all) in this setting.

b

sup{ / cosh(hx )dv(x)} . (5)
vEV J

0

where V  is the collection of probability measures on [0, b] with 2nd moment equal to a  2 . It
2

will be shown that the maximizing measure is given by folding together the measure ,, | 
(1 -  I fp- ¿6 • At the same time we will find that the supremum is equal to

cosh(6/i) -  1 _2 , 1 ^
p  a  +  L (6) 

So apparently we shall arrive at the following situation.

P {XÌ +  . . .+ X »  > n t}  < +  . (7)

Finally, we verify that the right hand side takes its minimum value w.r.t. h at h 0, which is 
given by

h0 = h0( t , a 2,b) =  ~ log
b2 — a 2 t  b + t  f  b2 — a 2 t

. (8)a 2 b — t  b — t  a 2 b — t

Substituting this value in the right hand side of (7), we get the main result of this paper.

Theorem 2.1 Let b > 0 and X 1, . . , X n be i.i.d. random variables with a symmetric distri­
bution, V a r ( X 1) = a 2 and such that X i < b for i G {1 , . . . ,n} .  Then for t  G [0,b] we 
have

/  2 l 2 2 2  ̂ n
P{Xi +  ... +  X n > n t }  < +  ^ V ( t ) ^

where V( t )  is short for

b — t  ( j b + t  (  b2 — a 2 t  \  2 b2 — a 2 t
b i t  b — t  a 2 b — t  a 2 b — t

We observe that after we used the "Bernstein trick” no further (strict) inequalities were met 
with and thus no losses were made. Therefore, improvement on the presented bound H  can 
only be found in adjusting the premises of the Theorem or in alternatives for the "Bernstein 
trick”. In this sense our bound is optimal.

2
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3 Discussion of the Result

The merit of the symmetry condition is that it models a real-life situation in auditing. Namely, 
the case when it is equally likely that an item contains an overstatement error of a certain size 
as that it contains an understatement error of the same size. This can easily be inferred from 
the definition of symmetry we use.

The symmetry can obviously be understood to be taken w.r.t. the mean. For n  G N * and 
b > 0, let Y 1, ..., Yn be i.i.d. random variables s.t. \Yi — ¡ i \ < b ,  E(Yi ) = j  and V(Yi )  = a 2. 
We can take X i = Yi — j  and apply the Theorem in order to find:

/  2 Z-,2 2 2
P m  +  ... +  y „  >  n( t  +  /x)} <  + ^ V ( t ) ^

where t  g [0, b] and V(t )  is the same function as in Theorem 2.1.

Let‘s take a closer look at the upper bound. We have constructed it setting some parameters 
fixed. We obtained for n  G N * ,b  > 0 , t  G [0,b] and a 2 > 0 the following upper bound.

/  2 l 2 2 2
H n ( t , a 2,b ) =  +  % p V { t Ÿ - ¥

We will present some nice and important properties of the bound H.

A useful fact is the scaling property w.r.t the variable b. Let n  G N * , b  > 0 , t  G [0,b] and 
a 2 > 0 we have: 2

H n ( t , a 2 ,b) = H n { \ ^ A ) .

Hence, we may just as well take b = 1. This scaling property is particularly useful when we 
want to explore behavioural aspects of this bound e.g. by means of computer simulations.

Another observation is that H n is an increasing function of the variance a 2 . Let us denote
the right hand side of (7) as F ( h , a 2). Keeping b and t  fixed and suppressing them in the
notation, we observe that for fixed h the function a 2 ^  F ( h , a 2) is increasing. Furthermore,
we have min F  (h, a 2) = F  (h0(a2), a 2). 

h>0
So, whenever a 1 < a 2 we obtain the claim by a simple computation.

min F  ( h , af )  < F  (h0 (a2) , a 2) 
h>0

< F  (h0(a2) , a 2)
=  min F  (h, an).

h>0 2

In a similar way it can be shown that Hn  is decreasing in the variable t. These monotonicity 
properties are useful when we want to apply the results of [8, 9] to obtain the corresponding 
confidence upper bound.

We obviously have that the bound improves when the sample is enlarged.

Hn(t ,  a 2, b) > Hn+1(t, a 2, b).
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Some technical observations are also of interest. The function t  ^  H n (t, a 2, b) can best 
be extended to a function R ^  R by defining it zero beyond t  = b and equal to one for
t  < 0. One can easily compute that H (0, a 2,b) = 1 and t  ^  H n (t, a 2, b) is at t  = b jump

2
discontinuous, making a jump down of size 'jjr ■

It is appropriate to mention that W. Hoeffding in his celebrated paper [16] uses, after having 
applied the Bernstein trick, quite a different strategy to obtain his upper bounds. The compar­
ison of his bound and ours is somewhat tedious. Of course as both bounds are optimal ours 
tends to be less conservative, because we consider a smaller class of probability laws. The 
heuristic that a supremum taken over fewer elements is smaller, seems valid.

4 The formal proofs and some explanations

We are going to evaluate the before mentioned least upper bound in this setting. Consider

b

sup{ / cosh(hx)dv(x)}  (9)
vEV J0

where V  (= V  (a2)) consists of all probability measures with second moment equal to a 2 and 
supported in [0, b]. Hereto we introduce an auxiliary function

cosh(xh) 1
7  : x i—>------^ ----- . (10)x 2

A quick glance at the power series of cosh reveals that this function 7  is strictly increasing on 
[0, b], so we have 7 (0) < 7 (x) < 7 (b). Rewriting the second inequality renders for x  e  [0,b]

cosh(bh) 1 2 
cosh(x/i) < 1 H---------- 7.---- x  . (11)b2

Note that equality only occurs for x  e  {0, b}.
Let v  e  V  and use (11) to obtain the following.

ƒ cosh(hx)dv{x)  < 1 +  cosh^ fe)—- a 2

b  2 2 
ƒ  cosh(x /i)d((l -  fr)(5o +  f T ¿
0

We conclude that the supremum exists and find its value.

b

s u p í [  cosh( h x ) d v ( x ) }  =  1  H---------^-7̂ ------a 2. ( 1 2 )
vEV J b2

0

Furthermore, a maximizing measure is given by (1 -  f^)¿o +  f r ¿ 6- We demonstrate that 
there is only one such measure. Let v e e  V  be a maximizing element.
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Observe that by (11) we have o . \ x  i—> 1 +  cosh(̂ fe) 1x 2 _  js nonnegative on [0, b].
b

From (12) we get ƒ a (x )d v e =  0. Therefore we must have that a  is zero v e-a.s. Using this
0

together with the remark made following (11), we infer

supp(ve) ^ { x  e  [0 , b] | a(x)  = 0  } =  {0 , b}.

Thus //, =  (1 — p) ¿o +  pSb and by the 2nd moment condition: /> j j .

After having exhibited the computational side to the supremum at hand we now turn to the 
upper bound H.  Some straightforward calculations will yield its asserted form.

We introduce the following shorthand notation.

a m  = + 1) . us»

2
We keep p  =  fj- • The derivative w.r.t. h is given by the following equation.

H t {h) = (p(b — t )e2bh — 2t(l  -  p )ebh - p(b + t )) . (14)

After a small computation we find that H t (h) = 0  only if

=  — + ( — — Y .  (15)
p b — t )  b — t  V p  b — t )

Since the exponentional function with a real argument only takes positive values, we must 
have:

<l6)
The last step is to conclude that H t assumes its minimal value at h 0, cf. equation (8). Hereby 
we arrive at the conclusion of the Theorem.

The expression V  (t) is reciprocal to the argument of the logarithm in h 0. We introduced V  (t) 
merely for notational convenience.
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