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Abstract: Most of the hydraulic structures are founded on permeable foundation. There is, however, no 
procedure to fix the basic barrage parameters, which are depth of sheet piles/cutoffs and the length and thickness 
of floor, in a cost-effective manner. Changes in hydrological and climatic factors may alter the design seepage 
head of the hydraulic structures. The variation in seepage head affects the downstream sheet pile depth, overall 
length of impervious floor, and thickness of impervious floor. The exit gradient, which is considered the most 
appropriate criterion to ensure safety against piping on permeable foundations, exhibits non linear variation in 
floor length with variation in depth of downstream sheet pile. These facts complicate the problem and increase 
the non linearity of the problem. However, an optimization problem may be formulated to obtain the optimum 
structural dimensions that minimize the cost as well as satisfy the exit gradient criteria. The optimization 
problem for determining an optimal section for the weirs or barrages normally consists of minimizing the 
construction cost, earth work, cost of sheet piling, length of impervious floor etc. The subsurface seepage flow is 
embedded as constraint in the optimization formulation. Uncertainty in design, and hence cost from uncertain 
seepage head are quantified using fuzzy numbers. Results show that an uncertainty of 15 percent in seepage will 
result in 22 percent of uncertainty in design represented by overall design cost. The limited evaluation show 
potential applicability of the proposed method. 
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1. Introduction 
Hydraulic structures such as weirs and barrages are costly water resources projects. A safe 
and optimal design of hydraulic structures is always being a challenge to water resource 
researchers. The hydraulic structure such as barrages on alluvial soils is subjected to 
subsurface seepage. The seepage head causing the seepage vary with variation in flows. 
Design of hydraulic structures should also insure safety against seepage induced failure of the 
hydraulic structures.  
 
The variation in seepage head affects the downstream sheet pile depth, overall length of 
impervious floor, and thickness of impervious floor. The exit gradient, which is considered 
the most appropriate criterion to ensure safety against seepage induced piping (Khosla, et al., 
1936; Asawa, 2005) on permeable foundations, exhibits non l inear variation in floor length 
with variation in depth of down stream sheet pile. These facts complicate the problem and 
increase the non linearity of the problem. However, an optimization problem may be 
formulated to obtain the optimum structural dimensions that minimize the cost as well as 
satisfy the safe exit gradient criteria.   

The optimization problem for determining an optimal section for the weirs or barrages 
consists of minimizing the construction cost, earth work, cost of sheet piling, and length of 
impervious floor (Garg et al., 2002; Singh, 2007). Earlier work (Garg et al., 2002) discussed 
the optimal design of barrage profile for single deterministic value of seepage head. This 
study first solve the of nonlinear optimization formulation problem (NLOP) using genetic 
algorithm (GA) which gives optimal dimensions of the barrage profile that minimizes unit 
cost of concrete work, and earthwork and searches the barrage dimension satisfying the exit 
gradient criteria. The work is then extended to characterize uncertainty in design due to 
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uncertainty in measured value of seepage head, an important hydrogeologic parameter. 
Uncertainty in design, and hence cost from uncertain head value are quantified using fuzzy 
numbers 

2. Subsurface flow  
The general seepage equation under a barrage profile may be written as: 
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This is well known Laplace equation for seepage of water through porous media. This 
equation implicitly assumes that (i) the soil is homogeneous and isotropic; (ii) the voids are 
completely filled with water; (iii) no consolidation or expansion of soil takes place; and (iv) 
flow is steady and obeys Darcy’s law.  

For 2-dimensional flow, the seepage equation (1) may be written as: 
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The need to provide adequate resistance to seepage flow represented by equation (1) both 
under and around a hydraulic structure may be an important determinant of its geometry 
(Skutch, 1997).The boundary between hydraulic structural surface and foundation soil 
represents a potential plane of failure.  

Stability under a given hydraulic head could in theory be achieved by an almost limitless 
combination of vertical and horizontal contact surfaces below the structure provided that the 
total length of the resultant seepage path were adequately long for that head (Skutch, 1997; 
Leliavsky, 1979). In practical terms, the designer must decide on an appropriate balance 
between the length of the horizontal and vertical elements. Present work utilized Khosla's 
Method of independent variables (Asawa, 2005) to simulate the subsurface behavior in the 
optimization formulation. Method of independent variables is based on Schwarz-Christoffel 
transformation to solve the Laplace equation (1) which represents seepage through the 
subsurface media under a hydraulic structure. A composite structure is split up into a number 
of simple standard forms each of which has a known solution. The uplift pressures at key 
points corresponding to each elementary form are calculated on the assumption that each form 
exists independently. Finally, corrections are to be applied for thickness of floor, and 
interference effects of piles on each others.  

3. Optimal design methodology 
Minimize  C (L, d1, dd) = c1(f1) + c2(f2) + c3(f3) + c4(f4) + c5(f5) 
 (4) 
 

Subject to 
λπdd

HSEG ≥     (5) 

Ll ≤ L ≤ u          (6) 

d1
l ≤ d1 ≤d1

u     (7) 
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dd
l ≤ dd ≤dd

u    
 (8) 

L, d1, dd ≥ 0      (9) 

where C (L, d1, dd)  is objective function represents total cost of barrage per unit width 
(Rs/m), and is function of floor length (L), upstream sheet pile depth (d1) and downstream 
sheet pile depth (dd); f1 is total volume of concrete in the floor per unit width for a given 
barrage profile and c1 is cost of concrete floor (Rs/m3); f2 is the depth of upstream sheet pile 
below the concrete floor and c2 is the cost of upstream sheet pile including driving (Rs/m2); f3 
is the depth of downstream sheet pile below the concrete floor and c3 is the cost of 
downstream sheet pile including driving (Rs/m2); f4 is the volume of soil excavated per unit 
width for laying concrete floor and c4 is cost of excavation including dewatering (Rs/m3); f5 
is the volume of soil required in filling per unit width and c5 is cost of earth filling (Rs/m3); 
SEG is safe exit gradient for a given soil formation on which the hydraulic structure is 
constructed and is function of downstream depth and the length of the floor; 

dd
L=++= ααλ ];11[

2
1 2 ; L is total length of the floor; H is the seepage head ; d1 is the 

upstream sheet pile depth; d2 is downstream sheet pile depth; Ll, d1
l, and dd

l is lower bound 
on L, d1 and dd respectively;  Lu, d1 u, dd u  are upper bound on L, d1 and dd respectively. The 
constraint equation (5) may be written as follows after substituting the value ofλ : 
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In the optimization formulation, for a give barrage profile and seepage head H, f1 is computed 
by estimating thickness at different key locations of the floor using Khosla’s method of 
independent variables and hence nonlinear function of length of floor (L), upstream sheet pile 
depth (d1) and downstream sheet pile depth (d2). Similarly f4, and f5 is nonlinear. The 
constraint represented by equation (10) is also nonlinear function of length of the floor and 
downstream sheet pile depth (d2). Thus both objective function and constraint are nonlinear; 
make the problem in the category of nonlinear optimization program (NLOP) formulation, 
which are inherently complex. Characterization of functional parameters is available in 
literature (Singh, 2007; Garg et al., 2002). 

3.1. Characterizing model functional parameters  
For a given geometry of a barrage and seepage head H, the optimization model functional 
parameters f1, f2, f3, f4 and f5 are characterized for the barrage profile shown in Fig. 1.  

 
Fig. 1. Schematic of barrage parameters utilized in performance evaluation 
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Intermediate sheet-piles are not effective in reducing the uplift pressures and only add to the 
cost of in reducing the uplift pressures and only add to the cost of the barrage (Garg et al., 
2002). In present work, no intermediate sheet piles are considered. 

3.2. Optimization procedure using genetic algorithm 
GA was originally proposed by Holland (Holland, 1975) and further developed by Goldberg 
(Goldberg, 1989). It is based on the principles of genetics and natural selection.GA’s are 
applicable to a variety of optimization problems that are not well suited for standard 
optimization algorithms, including problems in which the objective function is discontinuous, 
non-differentiable, stochastic, or highly nonlinear (Haestad 2003). The GA search starts from 
a population of many points, rather than starting from just one point. This parallelism means 
that the search will not become trapped on local optima (Singh and Datta, 2006). 

The optimization model represented by equations (4)-(10) and the functional parameters 
embedded in the optimization model are solved using Genetic Algorithm on M ATLAB 
platform. The basic steps employed in solution are available in Singh, 2007. Table 1 shows 
physical parameters obtained by conventional methods for Fig. 2. 
 

Table 1.  Physical parameters values of barrage profile 
Physical 
parameters 

Values (meters) 

*L  

H 
*d1 
*d2 

105.37 

7.12 

5.45 

5.9 

* Decision variables to be optimized 

4. Uncertainty characterization in the optimization model 
Real-world problems, especially those that involve natural systems, such as soil and water, are 
complex and composed of many non-deterministic components having non-linear coupling.  
In dealing with such systems, one has to face a high degree of uncertainty and tolerate 
imprecision. There is a high degree of local soil variability, and imprecision in the 
determination of soil parameters and hydrological parameters like seepage head. Statistical 
techniques have been traditionally used to deal with parametric variation in model inputs, but 
these require substantial hydrogeologic explorations data for estimates of probability 
distributions. In the presence of limited, inaccurate or imprecise information, simulation with 
fuzzy numbers represents an alternative tool to handle parametric uncertainty. Fuzzy sets offer 
an alternate and simple way to address uncertainties even for limited exploration data sets. In 
the present work, the optimal design is first obtained assuming a deterministic value of 
hydrogelogic parameter, safe exit gradient, in optimization model. Uncertainty in safe exit 
gradient is then characterized using fuzzy numbers. The fuzzified NLOF is then solved using 
GA. 

Uncertainty in general comes in two forms: aleatory (stochastic, random natural variability or 
noncognitive) and epistemic (cognitive or subjective) (Hofer et al., 2002). Recently, 
Srinivasan et al. (2007) identified these uncertainties in hydrogeological applications.  
Aleatory uncertainty refers to uncertainty that cannot be reduced by more exhaustive 
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measurements or by a better model. Epistemic uncertainty, on t he other hand, refers to 
uncertainty that can be reduced (Ross et al., 2009).  

One of the milestones in the evolution of these new uncertainty theories is the seminal paper 
by Lofti A. Zadeh (1965). He proposed a new mathematical tool in his paper and called this 
new mathematical tool “fuzzy sets.” He proposed the concept of fuzzy algorithms in 1968 
(Zadeh, 1968), and together with Bellman, proposed a new approach for decision-making in 
fuzzy environments in 1970 (Bellman & Zadeh, 1970). Fuzzy set theory has been recently 
applied in various fields for uncertainty quantification (Cho et al., 2002; Hanss, 2002; Kentel 
& Aral, 2004; Mauris et al., 2001). 

The transformation method presented by Hanss, (2002) uses a fuzzy alpha-cut (FAC) 
approach based on i nterval arithmetic. The uncertain response reconstructed from a set of 
deterministic responses, combining the extrema of each interval in every possible way unlike 
the FAC technique where only a particular level of membership (α -level) values (Hanss & 
Willner, 1999) for uncertain parameters are used for simulation.  

Fuzzy modeling of uncertainty for hydrogeologic parameters such as exit gradient and 
seepage head is based on Z adeh’s extension principle (Zadeh, 1968) and transformation 
method (TM) (Hanss, 2002). In present study only seepage head is considered to be 
imprecise. Input seepage head as imprecise parameter, is represented by fuzzy numbers. The 
resulting output i.e. minimum cost obtained by the optimization model is also fuzzy numbers 
characterized by their membership functions. The reduced TM (Hanss, 2002) is used in the 
present study. The measure of uncertainty used is the ratio of the 0.1-level support to the 
value of which the membership function is equal to 1 (Abebe et al., 2000). 

5. Results and discussion 
Earlier (mid 19th century), weirs and barrages have been designed and constructed in India on 
the basis of experience using the technology available at that period of time. Some of them 
were based on Bligh’s creep theory, which proved to be unsafe and uneconomical. 
Comparison of the parameters of these structures with the proposed approach is, thus, not 
justified. Therefore, a typical barrage profile, a spillway portion of a barrage, is chosen for 
illustrating the proposed approach as shown in Fig. 2. The barrage profile shown in Fig. 2 and 
parameters values given Table 1 is solved employing the methodology presented in this work. 
The optimized values of parameters for a deterministic seepage head value of 7.12m are 
shown in Table 2. During the process of optimization, the process of going into new generation 
continues until the fitness of the population converged i.e. average fitness of population almost 
matches with the best fitness. This criterion proves the solution to be optimized. The optimized 
values of parameters for a deterministic seepage head value of 7.12m are shown in Table 2. 

Table 2. Optimized parameters for safe exit gradient equal to 1/8 and minimum thickness of floor as 
1m 
 

 

 

 

 

Physical parameters Values 

L 

d1 

d2 

61 

3.1 

9.2 
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It also resulted in a smaller floor length and overall lower cost. It has shown a savings in the 
barrage cost ranging from 16.73 percent. 

For characterization of uncertainty, seepage head is assumed to vary from 6.0m to 8.19m with 
central value of 7.12m i.e. almost 15 percent in triangular fuzzy numbers representation. The 
result of variation in cost is corresponding different degree of membership for seepage head 
shown in Fig.2. The measure of uncertainty is found to be 22 percent. Since, left and right 
spread from central value of exit gradient is almost 15 percent, it can be concluded that 
uncertainty in seepage head reflects comparatively more uncertainty) more than 15 percent) in 
cost.  

 

6. Conclusions 
The present work also demonstrates the fuzzy based framework for uncertainty 
characterization in optimal cost for imprecise hydrologic parameter such as seepage head. The 
uncertainty in cost is found not to be directly proportional to uncertainty in seepage head. The 
GA based optimization approach is equally valid for optimal design of other major hydraulic 
structures. 
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