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ABSTRACT

Fluorescence tomography has become increasingly popular for de-
tecting molecular targets for imaging gene expression and other cel-
lular processes in vivo in small animal studies. In this imaging
modality, multiple sets of data are acquired by illuminating the an-
imal surface with different excitation patterns, each of which pro-
duces a distinct spatial pattern of fluorescence. This work addresses
one of the most intriguing, yet unsolved, problems of fluorescence
tomography, which is to determine how to optimally illuminate the
animal surface so as to maximize the information content in the ac-
quired data. The key idea of this work is to parameterize the il-
lumination pattern and to maximize the information content in the
data by improving the conditioning of the Fisher information ma-
trix. We formulate our problem as a constrained optimization prob-
lem. We compare the performance of different geometric illumi-
nation schemes with those generated by this optimization approach
using the Digimouse atlas.

Index Terms— Fluorescence tomography, optimal illumination,
spatial patterns, near-infrared, molecular imaging

1. INTRODUCTION

Optical procedures have been effectively and popularly employed for
imaging molecular targets inside tissues for many years. The exten-
sion of these methods to 3D imaging [1] is confounded by the high
degrees of absorption and scattering of photons propagating through
tissue. Yet recent years have seen exciting breakthroughs in probe
development, mathematical modeling, and instrumentation [2] that
have collectively established diffuse optical tomography (DOT), flu-
orescence molecular tomography (FMT), and bioluminescence to-
mography (BLT) as promising imaging techniques for a wide range
of applications, including preclinical oncological studies in small an-
imals and clinical usage for mammography.

The focus of this paper is on optimal illumination schemes for
FMT. The use of multiple spatial patterns for illumination in FMT
allows us an extra degree of freedom which could be exploited to sig-
nificantly improve the conditioning of the forward model matrix. To-
day’s fluorescence imaging setups commonly use laser sources with
focusing or diffuser lenses to generate point or distributed patch pat-
terns [3, 4]. However the prospect of using digital light projectors,
which give us very precise control over the spatial intensity distribu-
tion, makes it feasible for us to generate spatial illumination patterns
of our choice. This paper seeks to formalize these concepts and com-
pute the set of illumination patterns that maximize the information
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content in the data by improving the conditioning of the Fisher in-
formation matrix. We first establish a framework for evaluating the
performance of different spatial patterns for illumination. We then
formulate our problem as a constrained optimization problem that
minimizes a cost function derived from the Fisher information ma-
trix and computes the parameterized set of optimal spatial patterns.

A description of the FMT problem can be found in section 2.
Section 3 establishes the metrics used for assessing and comparing
illumination patterns. In section 4, these metrics are used to com-
pare some standard patterns commonly used in practice. Section 5
describes the optimization problem that generates the optimal set of
patterns. In section 6, the optimal result is presented and its perfor-
mance is assessed. Finally, a discussion of the results is presented in
section 7.

2. THE FLUORESCENCE TOMOGRAPHIC PROBLEM

The FMT technique seeks to compute the 3D distribution of a photon
source inside an animal volume from the photon density detected on
the surface of the animal. For highly scattering media, the FMT for-
ward problem can be modeled by applying a diffusion approximation
to the radiative transport equation [5]. For n4 detector nodes on the
animal surface and n, point sources distributed inside the volume,
the excitation forward model at a wavelength A., and the emission
forward model at a wavelength Ac,, can be expressed as matrices
A°® € R™ ™ and A°™ € R™*™s respectively. The forward
matrix for the " illumination pattern can be obtained by diagonally
scaling the emission forward matrix by the excitation intensities at
each internal point:

A, =A""Di". (@)
Here D" € R™*"s is a diagonal matrix that scales the surface
response due to each internal point source by the excitation strength
at that point generated by the k™ illumination pattern, wy, € R"<,
and is given by:

Di” = diag, (d!) , @)
where d¥ is the i component of vector d* computed from:
A wy, =d". 3)

The complete forward model is obtained by concatenating the indi-
vidual forward model matrices for a set of p different illumination
patterns:

A= ALA,..A T )
Thus, for a given set, b, of fluorescence data corresponding to dif-
ferent illumination patterns, we can determine the source distribution
by solving the linear system of equations:

Ax =b. ©)



This inverse problem is highly ill-posed owing to the ill-conditioned
nature of the system matrix, A. However, we can exploit the de-
pendence of the system matrix on the parameterized illumination
patterns, wy, to improve its conditioning.

3. METRICS FOR COMPARING PATTERNS

As a figure-of-merit for comparing illumination patterns, we will
first look at the singular value distribution which throws light on the
conditioning of the forward problem. Although the condition num-
ber is a good indicator, the quality of the actual reconstruction results
depends on the singular vectors as well. So this metric, although in-
formative, is not sufficient. Therefore, we also look at bias-variance
curves which allow us to examine the behavior of the inverse prob-
lem.

Bias-variance trade-off is an established approach for assessing
estimators [6]. We would like to examine the reconstruction results
for each possible point source location inside the animal volume.
The estimated 3D source distribution obtained using the regularized
pseudoinverse, with a regularization parameter «, is given by:

%= (A'A+al) ' A'D. (6)

Given the singular value decomposition A = UXV’ of the system
matrix, we can compute the bias and covariance of the estimator as
follows:

Bias[%] = E[&] — x = —aV(al + X%) " 'V'x (7)

Cov[X] = 02 VE (ol + %) 7°V'. ®)

We assume an additive white Gaussian noise model with covariance
o21. Using these equations, the bias norm and the variance can be
computed for each possible point source location inside the volume
for different degrees of regularization. Our approach is to average
each of these two quantities over all possible source locations and
plot them against each other for different values of the regularization
parameter to obtain a single bias-variance curve characterizing the
system generated by a certain set of illumination patterns.

4. COMPARISON OF STANDARD PATTERNS

We looked at some standard patterns that are commonly used in
FMT. In practice, the most feasible illumination patterns (in terms
of ease of implementation) are laser dots, lines, and distributed
patches. We ran simulation experiments on the Digimouse atlas [7]
to compare these patterns using the described metrics. The finite el-
ement method (FEM) with volume tessellation was used to solve the
diffusion equation [8] to generate forward models A“* and A°™.
The tessellated atlas volume consisted of 306,773 tetrahedrons and
58,244 nodes, and optical properties were assigned organ-wise based
on published results [9]. The excitation and emission wavelengths
were assumed to be 650 nm and 730 nm respectively.

Four different illumination schemes were compared as shown
in Fig. 1. Each of the schemes used three patterns (p = 3). The
number of patterns was fixed to ensure similar data acquisition times
for all the cases. Power was normalized for each pattern so that the
integrated illumination intensity remained constant to ensure a fair
comparison.

The singular value distributions for the four cases are compared
in Fig. 2(a). The singular values were normalized by setting the
largest singular value to 1. The condition number for the scheme
that projects distributed patch patterns on the top of the mouse was

Fig. 1. Comparison of four illumination patterns for the Digimouse
atlas. Each consists of three sets of spatial patterns, differentiated by
colors: red, blue, and green.

the smallest. Fig. 2(b) shows the plot of the average standard devi-
ation against the average bias norm. For low variance, line illumi-
nation on the top gave the smallest bias, whereas, for high variance,
distributed patch patterns on the top performed best. This second
observation is in agreement with our conclusion from the singular
value decomposition.

5. THE OPTIMIZATION PROBLEM

There are infinitely many spatial patterns that could be compared us-
ing the framework above. We now develop an optimization frame-
work that attempts to find the best illumination pattern with respect
to an appropriate metric. Our approach is to use the Fisher infor-
mation matrix, which provides a measure of information content in
the data and has been widely used as the basis for establishing per-
formance bounds in estimation theory through the Cramer-Rao in-
equality [10].

5.1. Formulation

We assume an additive white Gaussian noise model with unit vari-
ance without loss of generality. The Fisher information matrix for
this system is given by:

F =) D{*(A“") A“"Dj". ©)
k

We can rewrite this matrix as a function of the parameterized illumi-
nation patterns:

F = (A“")A°™) o (A WW'(A“"). (10)

Here o denotes Hadamard (entrywise) matrix multiplication, and the
set of illumination patterns is denoted by W = [w1 wa...w,| where
W € R"4*P, For the system matrix, A = UXV’, to have a perfect
condition number of 1, the singular value matrix, 3, should equal the
identity matrix times a constant scaling factor. Since F is a function
of W, we absorb the effects of this factor into W and obtain:

F=A'A=VZ*V =VvV' =1 (11)

Thus, our objective is to make F' approach the identity matrix. This
must be done using only a fixed number of patterns. Also, we must
ensure nonnegativity of the optimal result. We use as our cost func-
tion the Frobenius norm of the difference between the Fisher infor-
mation matrix and the identity matrix and minimize it under a non-
negativity constraint. Thus the optimal result can be obtained from:

Wopt :arg\rlxvli%HFfIHiﬂ. (12)

This is a constrained optimization problem and needs to be solved
iteratively.
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Fig. 2. Performance comparison of four illumination schemes as revealed by (a) their singular value distributions and (b) bias vs. variance

curves.

5.2. Dimensionality reduction

The problem described in (12) tends to yield solutions representing
illumination patterns that are not smooth and are of a distributed
nature. Further, for a large number of surface nodes, solving this
problem is computationally quite intensive. To take care of these
issues, we introduce a set of m basis functions representing spatially
smooth patterns on the atlas surface. The transformation from the
basis function domain to the spatial illumination domain is given by:

W =LY, 13)

where L € R™4*™ and Y € R™*P. The Fisher information matrix
in terms of this transformation may be expressed as:

F = ((AE’I‘IL)/AEM) ° (AezLYY/L/(Aez)/) (14)

In the new domain, the nonnegativity constraint in (12) is trans-
formed to a general linear inequality constraint. The modified op-
timization problem in this domain is given by:

Yop[:argg‘r}iglOHF—IHQF. (15)

The optimal set of patterns can be obtained from:

Wopt - LYopl- (16)

5.3. Implementation

The forward problem is first solved as described in Section 4 to pre-
compute A°” and A°™. For dimensionality reduction, we define
basis functions on the atlas treating it as a smooth 3D manifold. We
use eigenfunctions (corresponding to the m = 20 smallest eigen-
values) of the Laplace-Beltrami operator as our basis functions [11].
The choice of an orthonormal basis allow us to encode information
efficiently. However, choosing as orthonormal basis (as opposed to
a nonnegative one) converts the simple nonnegativity constraint to a
more general linear inequality constraint.

The fourth-order cost function in (15) is minimized using the
gradient projection algorithm with an Armijo line search. The linear
inequality constraint is enforced within the gradient projection rou-
tine by orthogonal projection onto the constraint space. The MAT-
LAB inbuilt function finincon is used to solve the secondary con-
strained optimization problem for orthogonal projection at each iter-
ation.

We limit the number of patterns to three to maintain parity with
our studies on standard patterns. Owing to the nonconvexity of our
cost function, we may end up with a local minimum which is highly

dependent on the initialization. For initialization and comparison,
we use a set of reference patterns representing uniform illumination
from three different radial directions separated by 120°. As for the
standard patterns, the excitation and emission wavelengths were as-
sumed to be 650 nm and 730 nm respectively.

6. RESULTS

We obtained a set of three optimal spatial illumination patterns for
the Digimouse atlas using the formulation in (15) and (16). The
reference set of patterns was normalized to match the intensity of
the optimal set. Top and bottom views of the mouse atlas with the
optimal set of patterns displayed on it are shown in Fig. 3. Owing
the use of spatially smooth basis functions, the optimal patterns look
smooth.

The performance of the optimal scheme was compared with that
of the three-view uniform illumination scheme by plotting singular
values and bias-variance curves (Fig. 4). Both comparisons high-
light merits of the optimal illumination scheme over uniform illumi-
nation. A comparative look at the bias-variance curves in Figs. 2(b)
and 4(b) indicates that the uniform and optimal illumination schemes
(which are more distributed in nature) significantly outperform the
localized standard patterns tested in Section 4.

7. DISCUSSION

We have developed an optimization framework for generating op-
timal spatial illumination patterns for FMT. The problem of opti-
mal illumination has been formulated as a constrained optimiza-
tion problem which tunes the Fisher information matrix to maxi-
mize the information content in the data. The dimensionality of
the optimization variable was reduced using a set of geometrical
basis functions defined on the 3D mouse manifold. Spatial pat-
terns for optimally illuminating the mouse atlas were computed us-
ing this method. These have been shown to perform better than a
uniform illumination scheme on the basis of condition number and
bias-variance curves. However, owing to the fourth-order cost func-
tion used, the optimal result obtained represents a local optimum and
is highly dependent on initialization.

The obtained patterns look smooth and are geometrically intu-
itive, in the sense that together the three patterns seem to illuminate
almost all parts of the mouse surface. Our results here assume only
three illumination patterns in each set. Typical FMT experimental
setups use a larger number (say > 10) of illumination patterns. Cur-
rently the most computationally intensive step in the iterative proce-
dure is solving the secondary constrained optimization problem for
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Fig. 3. Optimal set of illumination patterns displayed on the Digimouse atlas. From left to right, we have: (a) top and bottom views of the
first pattern, (b) top and bottom views of the second pattern, and (c) top and bottom views of the third pattern.
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Fig. 4. Performance comparison of optimal illumination with uniform illumination as revealed by (a) the singular value distributions and (b)

bias vs. variance analysis.

orthogonal projection. Solving this problem at each iteration may
be expensive when a large number of patterns are used. One way
to tackle this issue is to use a nonnegative basis function set (e.g.
B-splines). In this case, the simple nonnegativity constraint in (12)
would be preserved, ensuring speedier implementation. This might
allow us to compute larger sets of illumination patterns.

It must be noted that our framework assumes knowledge of
mouse surface topography and internal optical properties, and the
forward problem must be solved prior to the optimization proce-
dure. It might not be practical to repeat the optimization procedure
for each animal in between the surface profiling and fluorescence
data acquisition steps of an experiment. A feasible solution to this
might be to use the atlas as a surrogate and to warp the optimal
patterns onto the surface of each animal.
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