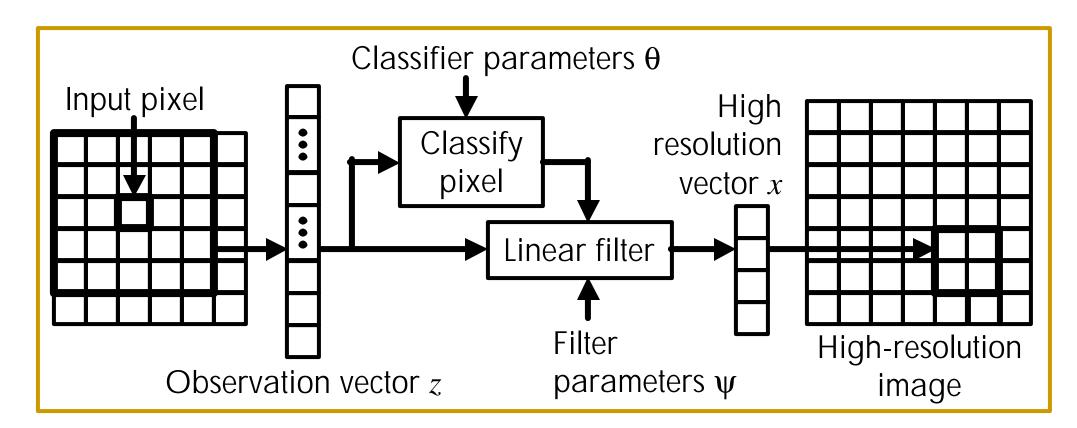
Optimal image scaling using pixel classification

C. Brian Atkins Hewlett-Packard Laboratories 1501 Page Mill Rd., M/S 4U-6 Palo Alto, CA 94304 cbatkins@hpl.hp.com

Overview: Resolution Synthesis

- Goal: MMSE estimate of high-resolution image, given low-resolution image
- Image scaling scheme: for each pixel,



- Stochastic model: assume pixels fall into classes
 - Edges of various orientations
 - Smooth gradients of various orientations
 - Flat regions
- Pixel classification \bullet
 - Uses feature vector y extracted from the observation vector z
 - Specified in an unsupervised clustering
- Analysis breaks model into two parts: \bullet
 - Classification: class membership in a Gaussian mixture model
 - Optimal prediction filters for each component in the classifier
- Estimate model parameters beforehand by training
 - An instance of the Expectation-Maximization (EM) algorithm
 - High-quality results even with images outside the training set

Prior work

- Regression tree (Atkins, Bouman and Allebach '99)
- Edge-directed methods (Allebach and Wong '96, Jensen and Anastassiou '95)
- B-spline class (Unser, Aldroubi and Eden '91, '95; Hou and Andrews '78)
- Maximum *a posteriori* estimation (Schultz and Stevenson '94)

Results for 4X image scaling

Pixel replication

Photoshop bicubic interpolation

Resolution Synthesis

Charles A. Bouman and Jan P. Allebach Purdue University 1285 Electrical Engineering Building W. Lafayette, IN 47907 {bouman,allebach}@purdue.edu

Optimal image scaling

- Pixel class: an unobservable discrete random variable J taking values in {1, ..., M}
 - Assume any information about pixel class is contained in a feature vector *Y* extracted from the observation vector *Z*
 - Formally, Y is a function of Z and $p_{J|Y}(j|y) = p_{J|Z,X}(j|z,x)$
 - This is a strong assumption, but it simplifies the analysis and enables better results
 - Assume distribution of Y is a Gaussian mixture

$$p_{Y}(y | \boldsymbol{q}) = \sum_{j=1}^{M} \frac{\boldsymbol{p}_{j}}{(2\boldsymbol{p}\boldsymbol{s}^{2})^{d/2}} \exp(\frac{-1}{2\boldsymbol{s}^{2}} \|\boldsymbol{y} - \boldsymbol{m}_{j}\|^{2})$$

where *d* is the dimension of *y*; we refer to $\boldsymbol{q} = \{\boldsymbol{m}_i, \boldsymbol{p}_i\}_{i=1}^{M}, \boldsymbol{s}$ as the "classifier parameters"

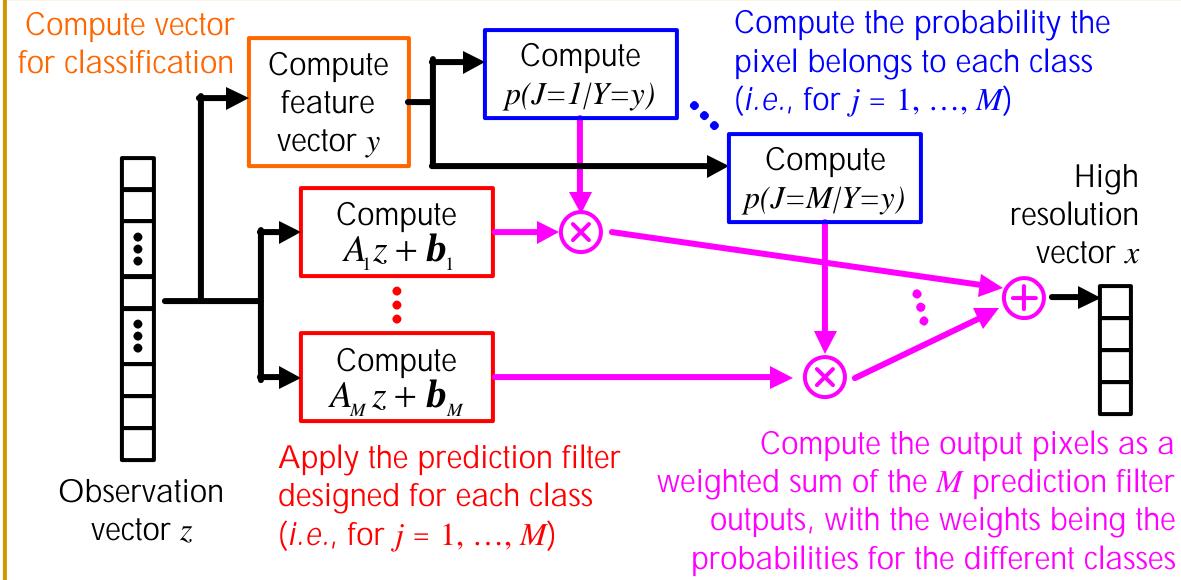
Assume distribution of X given Z and J is Gaussian with $\mathbf{E}[X \mid J, Z] = A_{I}Z + \boldsymbol{b}_{I}$

we refer to $\mathbf{y} = \{A_j, \mathbf{b}_j\}_{i=1}^{M}$ as the "filter parameters"

• Using the above assumptions, the MMSE estimate of X given Z is computed as

$$\hat{X} = \mathbf{E}[X | Z] = \sum_{j=1}^{M} \mathbf{E}[X | Z, J = j] p_{J|Z}(j | Z) = \sum_{j=1}^{M} (A_{j}Z + \boldsymbol{b}_{j}) p_{J|Y}(j | Z)$$
$$= \sum_{j=1}^{M} (A_{j}Z + \boldsymbol{b}_{j}) \frac{\exp(\frac{-1}{2\boldsymbol{s}^{2}} \|y - \boldsymbol{m}_{j}\|^{2}) \boldsymbol{p}_{j}}{\sum_{l=1}^{M} \exp(\frac{-1}{2\boldsymbol{s}^{2}} \|y - \boldsymbol{m}_{l}\|^{2}) \boldsymbol{p}_{l}}$$

• Detailed view of image scaling procedure:



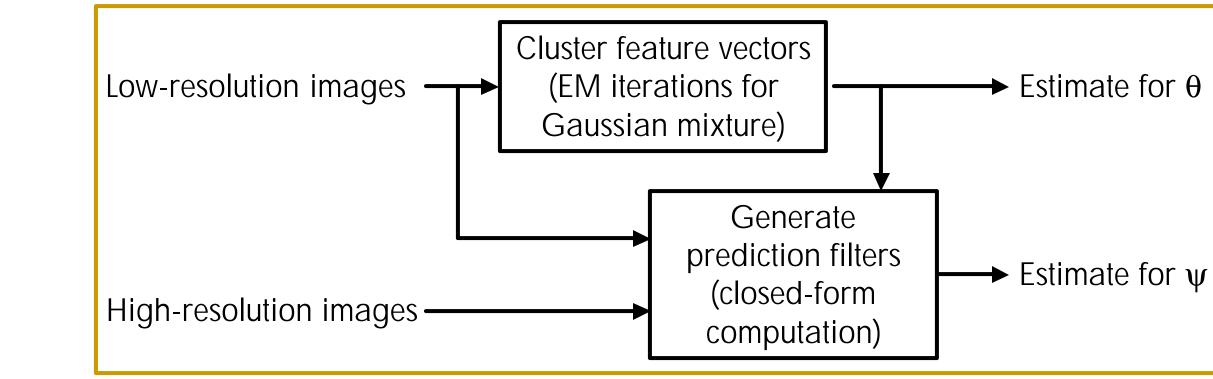
Pixel replication

Photoshop bicubic interpolation

Resolution Synthesis

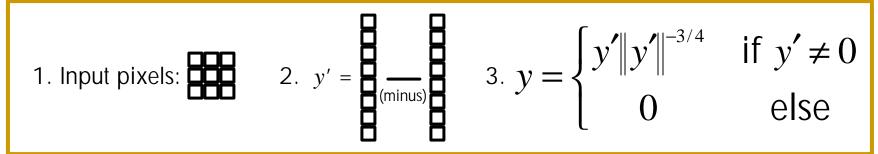
Estimating the predictor parameters

- Goal: estimate parameters θ and ψ from sample image pairs
 - To create a sample image pair, start with a high-resolution image, then block average by the desired scaling factor to create the corresponding low-resolution image
 - For built-in sharpening, can sharpen the high-resolution image
- Approach: maximum likelihood (ML)
 - Direct ML estimation is difficult since data is incomplete
 - Can only observe realizations of (Z,X)
 - The complete data would be (J,Z,X)
 - Solution: Expectation-Maximization (EM) algorithm
- Under our assumptions this can be achieved in a two-stage estimation



Feature vector used for pixel classification

- Formally a function of the observation vector
- Choice of feature vector significantly affects which classes are defined, and ultimately the overall results
- We use an 8-dimensional feature vector:
 - First, define vector y': subtract input pixel from 8 nearest neighbors
 - Feature vector y is computed by modifying the length of y'



Per-pixel RMSE computed from a random selection of monochrome images, with pixel values in [0,255], with gamma correction removed

image	RS	Photoshop bicubic	bilinear	Pixel replication
0	6.726	7.406	8.005	8.421
1	17.096	18.878	20.382	20.837
2	7.847	8.663	9.542	10.147
3	10.752	11.501	12.099	12.584
4	12.336	12.955	13.574	13.874

High vector x

