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Abstract
In non-linear electrical impedance tomography the goodness of fit of the trial
images is assessed by the well-established statistical χ2 criterion applied to the
measured and predicted datasets. Further selection from the range of images
that fit the data is effected by imposing an explicit constraint on the form of
the image, such as the minimization of the image gradients. In particular, the
logarithm of the image gradients is chosen so that conductive and resistive
deviations are treated in the same way. In this paper we introduce the idea
of adaptive mesh refinement to the 2D problem so that the local scale of the
mesh is always matched to the scale of the image structures. This improves
the reconstruction resolution so that the image constraint adopted dominates
and is not perturbed by the mesh discretization. The avoidance of unnecessary
mesh elements optimizes the speed of reconstruction without degrading the
resulting images. Starting with a mesh scale length of the order of the electrode
separation it is shown that, for data obtained at presently achievable signal-to-
noise ratios of 60 to 80 dB, one or two refinement stages are sufficient to
generate high quality images.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Over the past three decades, much research has been carried out in the area of direct and inverse
electric field problems (Geselowitz 1971, Webster 1990). Electrical impedance tomography
(EIT) which measures the internal electrical property distribution has become a very active
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research topic for medical applications. Some advantages of EIT over other imaging methods
such as MRI or x-ray imaging are that it is very cost-effective, fast and portable but a key
advantage is the close correlation of conductivity changes with the physiological function.

The finite element mesh is the accepted method of image representation in contemporary
EIT. The speed of reconstruction and the resolution are competing factors in the choice of finite
elements; large elements reduce computational time at the expense of resolution. However,
resolution can be regained where it is necessary by adaptively adjusting the size of the elements
as the image is reconstructed.

In this paper, we apply adaptive mesh refinement to non-linear EIT reconstruction and
give examples of how this improves the image resolution while keeping the computational
costs down. But first, we review the essential processes for generating well-characterized
images in EIT; the χ2-statistic for goodness of fit is applied in conjunction with an explicit
smoothness constraint on the image.

2. Review of imaging process

The problem of reconstructing a scalar conductivity distribution σ within a body B consists of
solving the non-linear equation

∇ · σ∇U = 0 (1)

for σ . Here, U denotes the potential at a point within B resulting from a current injection normal
to the surface of B. We denote the measured potentials at surface electrodes as V observed =
U (electrodes) and the electrode potentials based on the computed conductivity distribution σ

as V predicted.
A conductivity distribution satisfying the equality of observed and predicted voltages is

our target solution. However, all physical measurement processes have an inherent limitation
in accuracy caused by the random noise generated in the signal source. The irreducible random
noise contribution δV to the signal V observed introduces statistical uncertainty in the imaging
process. The goodness of fit is then measured by the χ2-statistic, defined as

χ2 =
M∑
i

(
V

predicted
i − V observed

i

δVi

)2

. (2)

The criterion for an adequate fit is χ2 ≈ M, where M is the number of independent
measurements. Values of χ2 � M would suggest significant statistical disagreement between
V predicted and V observed while χ2 � M would introduce artefacts into σ solely to fit the noise
in the data. Even when an aqeduate fit is achieved a wide variety of solutions is possible.
Because of the inherently limited spatial resolution of EIT, the values of V predicted are unaffected
by small spatial scale fluctuations in conductivity, even of large amplitude. Hence solutions
containing these still fit the data according to χ2 and a means to restrict the range of solutions
needs to be found.

One possible method to accomplish this is to construct an explicit measure of image
quality, such as smoothness. Blott et al (1998a) chose a logarithmic function as the image
constraint. It treats deviations in conductivity or resistivity in the same way and uses the local
conductivity gradient as a definition of smoothness:

	 =
∫

image
|∇ log σ |2 dxdy. (3)

We construct the following functional which we minimize with respect to the
conductivityσ :

� = χ2 + λ	. (4)
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Figure 1. The modified iterative reconstruction algorithm incorporating material gradient
estimation and auto-adaptive mesh refinement techniques. max refstep defines the maximal
number of refinement steps allowed.

The parameter λ is used as a weighting factor to balance between the contribution of χ2 and
the image smoothness function. λ is adjusted until χ2 equals M or cannot be reduced further.
In the latter case, the noise level has been misjudged or systematic errors are present. One
avoidable systematic error is discretizing the image space using a mesh that is too coarse so
that the values of V predicted are not sufficiently accurate.

3. Adaptive mesh refinement

For the computational reconstruction the domain under investigation has to be discretized into
small elements. We employ triangular finite elements with linear base functions and constant
conductivity. If the pre-selected mesh is too coarse, the image resolution will be very poor.
However, if the discretization is very fine, the search space for solutions is large and leads to a
very slow reconstruction which may not even converge. We overcome this problem by using
adaptive meshing. In the case of the forward problem—computing the potential distribution
given the conductivities and injected current—we have shown (Molinari et al 2001) that the
finite element mesh need only be fine in regions where high current density gradients are
present. These regions were identified by an error estimator constructed from current density
residuals across inter-element boundaries.

Applying the same mesh refinement technique to the inverse problem—reconstruction
of conductivity knowing only electrode voltages—is now based on the conductivity gradient
between the elements to obtain fine resolutions where tissue or organ boundaries are present.

Figure 1 shows the modification made to a standard iterative Newton–Raphson algorithm
to include the mesh refinement procedure. We used the software package Matlab to implement
the non-linear iteration algorithm and finite element technique. An initial relatively coarse
mesh is used to reconstruct an approximate conductivity distribution. When the χ2 = M
target is achieved or when subsequent iterations change the result by less than 5%, the mesh



124 M Molinari et al

is automatically refined in regions with high conductivity gradients. In order to apply (3) to a
finite element representation of σ (x, y) we need an approximation to 	 . We use∑

edges

| log(σi) − log(σj )|2lij (5)

where lij is the length of the edge separating elements i and j. For deciding on whether to
refine the mesh, we use the quantity | log(σi) − log(σj )|.

As a first approach, we refine elements whose average conductivity differences with
its adjacent elements are larger than 40% of the maximal occurring difference in the mesh.
This refinement criterion certainly needs adjustment as central elements exhibit a smoother
transition than those closer to the boundary. In the test cases, this choice has always produced
good results.

The selected elements are then refined by inserting vertices on the centres of all three
edges. A local re-triangulation according to the Delaunay criterion (1934) is carried out
and subsequent Laplacian mesh smoothing (Freitag 1997) ensures the use of near-equilateral
elements (this is termed a ‘high quality’ mesh, see Molinari et al in this issue). This procedure
is confined locally and is hence very fast. It is auto-adaptive in the sense that it does not
require user interaction once the parameter λ is chosen. Also, it is self-consistent in the sense
that it does not require any prior information or knowledge about boundaries or approximate
material distributions.

4. Simulation results

We have applied our algorithm (figure 1) to the reconstruction of data from several test
structures. In this section we introduce a measure of image error, then present the
reconstruction parameters and simulation results before investigating the effect of differing
noise levels on the images.

4.1. Image comparison

To compare the reconstructed images with the simulated conductivity distributions we need
a distance function as an indicator of reconstruction error. A direct method for comparing
two images is to take the norm of the difference of conductivities at sample points across
the image. Since we are comparing images reconstructed on triangular pixels, the simplest
method to use would be to compare the material at the centre points of the finite elements.
However, we are adapting and thus changing the underlying mesh including triangle sizes,
shapes and positions so that this method is not applicable. In fact, some papers (e.g. Tang et al
2001) compare images on differing meshes using this method which could result in erroneous
conclusions about the reconstruction accuracy achieved.

A better way of comparing images—which is also applicable to elements with higher
order internal variation in conductivity—is to resample the image on a square grid which
allows for comparison across a range of images. We define the distance D between two
conductivity images, σ 1 and σ 2, by the application of the Frobenius norm as

D = 1

np

√√√√ np∑
i=1

(σ1(i) − σ2(i))2. (6)

Here, np denotes the number of total sampling points across the image. We choose to use
a grid with np = 10 000. This corresponds to an image resolution of 1% along each dimension.
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Figure 2. (a) Simulated conductivity distribution with σ = 5 S m−1 for lower T-shape and σ =
0.2 S m−1 for upper T-shape. (b) Reconstruction at a SNR of 80 dB without mesh refinement,
(c) after one refinement step, (d) after two refinement steps. The axes show the logarithmic
conductivity corresponding to the cuts indicated in the image. The image is scanned from left to
right and bottom to top at the slices indicated by letters a to f.

The norm D corresponds directly to the error of a reconstructed image σ 1 = σ recon if it
is compared to the original simulated material distribution σ 2 = σ sim. We will employ this
quantity to obtain the absolute average error E per pixel

E = D(σrecon, σsim). (7)

4.2. Reconstruction parameters

As an example we show the reconstruction of two T-shaped objects contained in a cylindrical
area. The base conductivity of the cylinder is 1 S m−1 and the conductivities of the objects
are 5 S m−1 and 0.2 S m−1 respectively for lower and upper T. We investigate the resolution
at the centre as well as throughout the image by taking cuts through the object as indicated in
figure 2(a) which shows the original conductivity distribution. The scale of the axes is
logarithmic so that the conductivity values of the two objects are log (5) and log (0.2) =
−log (5) respectively, with the background conductivity set to log (1) = 0. This example tests
for image resolution at the centre and also for the symmetry in treatment of conductivity and
resistivity deviations.

We use the following measurement protocol: N electrodes driven with neighbouring
current injection patterns result in N (N − 3)/2 independent potential measurements. We
apply N = 16 equally spaced point-size electrodes around the boundary of the circular object
and obtain 104 independent measurements. The simulation of the measurements was carried
out on a high-density unstructured finite element mesh consisting of 11 815 elements to obtain
an accurate approximation to continuous matter; the computation of the measurements required
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Figure 3. (a) Simulated conductivity distribution with σ = 5 S m−1 for lower T-shape and σ =
0.2 S m−1 for upper T-shape. (b) Reconstruction at a SNR of 60 dB without mesh refinement,
(c) after one refinement step, (d) after two refinement steps. The axes show the logarithmic
conductivity corresponding to the cuts indicated in the image.

14.1 s. We assume the hardware measurement of signal-to-noise ratio (SNR) to be in the range
of 60 to 80 dB, which can be achieved with today’s measurement systems.

4.3. Results

Initial mesh elements are chosen with a scale to match the electrode spacing. Figure 2(b) shows
the reconstruction on the initial coarse mesh with 304 elements after the χ2 � M condition has
been reached; this required four iteration steps. Applying one adaptive refinement step and
iterating again results in the image in figure 2(c). We see clearly how the resolution even in
the centre of the image has improved drastically. If we repeat this procedure again (figure 2d),
further improvement is achieved; however, it is not as large as before if we compare the average
pixel error E.

Table 1 lists mesh sizes, error and reconstruction times at a noise level of 80 dB. The
reconstructions were carried out in Matlab on a 900 MHz AMD-Athlon Processor with 1 GB
RAM running the SuSE Linux 7.1 operating system.

The relatively large reconstruction time originates in the fact that the Newton–Raphson
algorithm inverts a matrix of the size of the number of elements squared and in the computation
of the smoothness constraint for each iteration. The inversion of the matrix could be avoided
by the application of the so-called adjoint method (Arridge and Schweiger 1998) which does
not require the explicit computation of the Jacobian in the reconstruction process.

4.4. Reconstructions at different noise level

We reconstructed the same test objects under the assumptions of a higher noise level
corresponding to a signal-to-noise ratio of 60 dB (figure 3). The results are similar to those
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Figure 4. (a) Simulated conductivity distribution. (b) Initial mesh used for reconstruction.
(c) Resulting mesh after three refinement steps during reconstruction. Reconstructions shown are
at SNR’s of (d) 60 dB, (e) 80 dB and (f) 170 dB.

Table 1. Reconstruction parameters before and after application of the adaptive reconstruction
algorithm at a SNR of 80 dB.

Initial mesh After 1st refinement After 2nd refinement

Elements 304 533 1222
Nodes 201 316 663
Error E 0.008 0.005 0.004

Refinement (s) n.a. 1.10 2.22
Time/iteration (s) 0.59 1.26 5.31
Iterations required 4 4 4 (±1)
Total time for
reconstruction (s) 2.36 8.50 31.96

shown in table 1; however, the error does not decrease as fast with increasing number of mesh
refinements.

A third refinement results in no further improvements which means that the error is no
longer sensitive to the discretization. This leads to the conclusion that the error is determined
wholly by the smoothness constraint which in turn depends on the signal-to-noise ratio of the
measurement system.

Figure 4(d)–(f ) shows the image resolution achievable at SNR levels of 60, 80 and an
impossibly high 170 dB. The results suggest that further improvements are possible for higher
signal-to-noise ratios until machine accuracy is reached.
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5. Discussion and conclusions

In this paper we have focused on the issue of unavoidable random noise as the ultimate factor
governing the optimum quality of image attainable in EIT. We have shown that the application
of adaptive mesh refinement allows for the effective operation of an explicit image constraint.
The choice of constraint to generate optimal images will depend to some extent on the nature
of the interpretations sought by the user. Here we have chosen to select the smoothest images
consistent with fitting the data. The results demonstrate clearly that the degree of detail which
may be imaged depends on the level of random noise in the data. With presently available
systems, the level of signal-to-noise achievable with a few seconds of data is in the range of
60–80 dB. At these levels we have found that one or two refinement stages are sufficient to
prevent the mesh discretization from affecting the image.

We have not considered the effect of systematic errors which may, in principle, be
discoverable. The positions of the electrodes are measurable, but small movements during
measurement may be unavoidable and their effect may need to be attenuated (Blott et al 1998b).
Systematic effects may appear as distortions in the images where account may be taken of
them, or they may appear as an inability to minimize χ2 during the reconstruction process. In
which case they may have to be included in the estimate of noise used to constructχ2.

However, we have demonstrated that it is not necessary to uniformly refine the mesh to
improve the solution quality, only to locally adapt where the reconstruction algorithm indicates
large gradients in conductivity. This has a clear benefit in the computation time required whilst
not sacrificing essential accuracy. The advantages of tuning the element density adaptively at
solution time are even greater in 3D EIT (Molinari et al 2002).
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