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Abstract

If it is costly to obtain and apply information about the value of wealth, consumers
will optimally be inattentive to their wealth for finite intervals of time. We develop a
model with separate costs of observing wealth and of conducting asset transactions. In
general, transactions need not occur even when observations do, and the inattention
span between observations is state dependent. Surprisingly, if the fixed component of
transactions costs is sufficiently small, then eventually a purely time-dependent rule
emerges. Under this time-dependent rule, transactions take place whenever observa-
tions occur, and the inattention span is constant. If the fixed component of transactions
costs is large, the optimal rule remains state-dependent indefinitely.
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A pervasive finding in studies of microeconomic choice is that adjustment to economic

news tends to be sluggish and infrequent. Investors rebalance their portfolios and revisit

their spending behavior at discrete and potentially infrequent points of time. Between these

times, inaction is the rule. If individuals take several months or even years to adjust their

portfolios and their spending plans, the standard predictions of the consumption smoothing

and portfolio choice theories might fail, and the standard intertemporal Euler equation re-

lating asset returns and consumption growth may not hold.1 Similar sorts of inaction also

characterize the financing, investment, and pricing behavior of firms. These observations

have led economists to formulate models that are consistent with infrequent adjustment.2

Formal models of infrequent adjustment are often described as either time dependent or

state dependent. In time-dependent models, adjustment is triggered simply by calendar time.

In state-dependent models, adjustment takes place only when a particular state variable

reaches some trigger value, so the timing of adjustments depends on factors other than, or

in addition to, calendar time alone. A classic example of state-dependent adjustment is the

(S,s) model. The distinction between time-dependent and state-dependent models can have

crucial implications for important economic questions. For instance, monetary policy has

substantial real effects that persist for several quarters if firms change their prices according

to a time-dependent rule. However, if firms adjust their prices according to a state-dependent

rule, then monetary policy may have little or no effect on the real economy. (See e.g. Caplin

and Spulber (1987) and Golosov and Lucas (2007).)

In this paper we develop and analyze an optimizing model that can generate both

time-dependent adjustment and state-dependent adjustment. The economic context is an

infinite-horizon continuous-time model of consumption and portfolio choice that builds on

the framework of Merton (1971). We augment Merton’s model by requiring consumption

to be purchased with the liquid asset and by introducing two sorts of costs – a utility cost

of observing the value of the consumer’s wealth;3 and a resource cost of transferring assets

between a transactions account consisting of liquid assets and an investment portfolio con-

sisting of risky equity and riskless bonds. We model the resource cost of transferring assets

as the sum of two components: (1) a component that is proportional to the amount of assets

transferred; and (2) a component that is a homogeneous linear function of the balances in

1See, for example, Lynch (1996) and Gabaix and Laibson (2002).
2Stokey (2009) presents a comprehensive analysis of issues related to inaction and infrequent adjustment.
3We call this cost the “observation cost,” though it summarizes all costs associated with obtaining and

applying the information necessary to choose consumption and the allocation of assets.
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the transactions account and in the investment portfolio. Since the second component is

independent of the amount of assets transferred, we refer to it as a fixed resource cost of

transferring assets.

Because it is costly to observe the value of wealth, the consumer chooses to observe this

value only at discretely-spaced points in time. At these observation times, the consumer

chooses when next to observe the value of wealth, executes any transfers between the in-

vestment portfolio and the transactions account, chooses the risky share of the investment

portfolio, and chooses the path of consumption until the next observation date. During

intervals of time between consecutive observations, the consumer remains inattentive to the

value of equities in her portfolio and thus follows a consumption path that is unresponsive

to any news about the value of equities.

In the absence of any transactions costs, optimal behavior would be time-dependent as

described in Abel, Eberly, and Panageas (2007). Specifically, the consumer would run down

the transactions balance to zero on each observation date and then would transfer a constant

fraction of the investment portfolio to the transactions account immediately after observing

the value of equities. In addition, the time between consecutive observations would be

constant, so that the optimal policy is a purely time-dependent rule.

In our current framework with transactions costs in addition to observation costs, optimal

behavior is, in general, state dependent. The relevant state of the consumer’s balance sheet

at time t is xt, which is defined as the ratio of the balance in the transactions account to the

contemporaneous value of the investment portfolio. When the transactions account is large

relative to the investment portfolio on observation date tj , so that xtj is high, the consumer

will transfer some of these assets in the transactions account to the investment portfolio.

Alternatively, when the transactions account is small relative to the investment portfolio on

observation date tj , so that xtj is low, the consumer will sell some assets from the investment

portfolio to replenish the transactions account in order to finance consumption until the next

observation date. However, when xtj has an intermediate value on an observation date, the

consumer will not find it worthwhile to pay the costs associated with transferring assets

between the investment portfolio and the transactions account.

Because the timing (and direction) of asset transfers depends on the value of xtj , these

transfers are state dependent. A surprising result of our analysis, however, is that, if the

fixed resource cost of transferring assets is not large, eventually an optimally inattentive

consumer’s asset transfers are purely time dependent, with a constant length of time between

consecutive observations, and a transfer from the investment portfolio to the transactions
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account on every observation date. We demonstrate this finding by showing that eventually

optimal behavior by a consumer facing observation costs leads to a low value of xtj on an

observation date. Once a low value of xtj is realized on an observation date, the consumer

transfers only enough assets to the transactions account to finance consumption until the

next observation date, provided that the fixed resource cost of transferring assets is not too

large. This behavior is optimal because it is costly to transfer assets, and the liquid asset in

the transactions account earns a lower rate of return than the riskless bond in the investment

portfolio. In this case, the consumer plans to hold a zero balance in the transactions account

on the next observation date, so that xtj will equal zero on the next observation date, and

on all subsequent observation dates.

This paper is related to two strands of literature. The first strand is the large literature

on transactions costs. In Baumol (1952) and Tobin (1956), which are the forerunners of the

cash-in-advance model used in macroeconomics, consumers can hold two riskless assets that

pay different rates of return: money, which pays zero interest, and a riskless bond that pays

a positive rate of interest. As in our paper, consumers are willing to hold money, despite

the fact that its rate of return is dominated by the rate of return on riskless bonds, because

goods have to be purchased with money. That is, money offers liquidity services.

A more recent literature on portfolio transactions costs, including Constantinides (1986)

and Davis and Norman (1990), models the cost of transferring assets between stocks and

bonds in the investment portfolio as proportional to the size of the transfers. Here we

also include proportional transactions costs, but these costs apply only to transfers between

the liquid asset in the transactions account on the one hand and the investment portfolio

of stocks and bonds on the other. We do not model the costs of reallocating stocks and

bonds within the investment portfolio. For a retired consumer who finances consumption by

withdrawing assets from a tax-deferred retirement account, the cost of withdrawing assets

from the investment portfolio includes taxes paid at the time of withdrawal. For most

consumers in this situation, the marginal tax rate, which is part of the cost of transferring

assets from the investment portfolio to the transactions account, is likely to be far greater

than any costs associated with reallocating stocks and bonds within the investment portfolio.4

A second strand of the literature analyzes optimally inattentive behavior by consumers or

4Bilias, Georgarakos, and Haliassos (2010) find panel data evidence of substantial inertia in household

asset adjustments, particularly among retirement accounts. Brunnermeier and Nagel (2008) also use panel

data to show that risky asset holdings exhibit substantial inertia, which they determine to be “the dominant

factor in determining changes in asset allocation” (page 715).

3



firms. Two distinct approaches to modeling inattention appear in this strand of literature.

One approach, introduced by Sims (2003), and used by Moscarini (2004), Woodford (2009),

and Mackowiak and Wiederholt (2009), uses the information-theoretic concept of entropy to

model rational inattention as the outcome of the limited ability of people to infer the true

values of decision-relevant variables. In those papers, the decisionmaker generally receives

noisy information and can choose the timing and information content of signals about these

variables. The other approach specifies the cost of observing decision-relevant variables.

In this approach, the decisionmaker optimally conserves on observation costs by observing

these variables only at discretely-spaced points of time. Two considerations led us to

pursue the observation-cost approach rather than the entropy-based approach. The first

consideration is tractability. Existing applications of the entropy-based approach have

not incorporated adjustment costs of any sort, and the non-convex transactions cost we

analyze would be particularly problematic in the entropy-based approach. However, by

pursuing the observation-cost based approach, we develop a tractable framework that easily

accommodates non-convex transactions costs. More importantly, whether the optimal state-

dependent rule evolves to a purely time-dependent rule depends on a comparison of the sizes

of transactions costs and observation costs. This comparison is readily apparent in the

observation-cost based approach, and would appear to be strained, at best, in the entropy-

based approach.

The two closest antecedents to our current paper5 are Duffie and Sun (1990) and Abel,

Eberly, and Panageas (2007).6,7 These papers, as well as the current paper require consump-

tion to be purchased with a liquid asset, such as cash. In addition, because these papers

5Reis (2006) develops and analyzes a model of optimal inattention for a consumer with constant absolute

risk aversion who faces a cost of observing additive income, such as labor income. In that model, the

consumer can hold only a single riskless asset so there is no asset allocation problem.
6Gabaix and Laibson (2002) is very similar to Abel, Eberly, and Panageas (2007). An important difference,

however, is that (unlike our formulation in Abel, Eberly, and Panageas (2007) and in the current paper)

the formulation of the observation cost in Gabaix and Laibson does not preserve homogeneity of the value

function. Therefore, Gabaix and Laibson compute an approximate solution.
7Huang and Liu (2007) apply the concept of rational inattention to study the optimal portfolio decision of

an investor who can obtain costly noisy signals about a state variable governing the expected growth rate of

stock prices. Huang and Liu do not include any costs of trading assets and they allow continuous observation

of stock prices so that the investor continuously trades assets within the investment portfolio. However, our

modeling of transfer costs and infrequent observation of stock prices leads to infrequent transfers of assets.

Finally, and more importantly, Huang and Liu impose a time-dependent rule for what they call “periodic

news” because they assume a constant interval of time between the acquisition of periodic news. Thus they

cannot address the distinction between state-dependent and time-dependent behavior.
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include an observation cost, the consumer will not continuously observe the value of the stock

market. In Abel, Eberly, and Panageas (2007),8 which includes explicit observation costs,

the consumer transfers assets from the investment portfolio to the transactions account on

every observation date, because, in contrast to the current paper, there are no transactions

costs incurred after the consumer incurs the observation cost. In Duffie and Sun (1990),

the transactions dates and observation dates are perfectly synchronized by the assumption

that “the agent observes his or her current wealth only when making a transaction” (p. 35).

In both of these papers the synchronization of observations and transactions follows directly

from the assumptions underlying the respective framework, but it is endogenous in our model.

Existing models of infrequent adjustment — including both transactions cost models and

inattention models — are not capable of addressing the larger question of whether optimal

behavior is time dependent or state dependent. Specifically, models that include transac-

tions costs (such as Constantinides (1986), Davis and Norman (1990)9), but no inattention,

will generate infrequent adjustment that is state dependent. On the other hand, models of

inattention based on observation frictions (such as Moscarini (2004), Reis (2006), Huang and

Liu (2007), and Abel, Eberly, and Panageas (2007)) generate optimal behavior that is time

dependent. By including separate10 costs for transactions and observations in our model,

we can determine endogenously whether the optimal timing of adjustment is time depen-

dent or state dependent, as well as whether observations and transactions are synchronized.

8In Abel, Eberly, and Panageas (2007), the observation cost reduces the value of wealth and thus, indi-

rectly, reduces utility. In the current paper, the observation cost directly reduces utility without reducing

wealth. The major results of the paper do not depend on whether observation costs are utility costs or re-

source costs, and we have adopted a utility cost because it seems to capture the effort and hassle of gathering

and interpreting relevant information.
9Vayanos (1998) and Lo, Mamaysky, and Wang (2004) present generalizations to general equilibrium

setups featuring constant absolute risk aversion and normally distributed dividends.
10We emphasize that the observation costs and transactions costs are separate, so that in principle, costly

observations can occur at times without transactions, and costly transactions can occur at times without

observation. In contrast, as we have mentioned, Duffie and Sun (1990) assume that transactions and

observations are synchronized. Similarly, in the context of a pricing problem, Woodford (2009) assumes that

“the menu cost is also the fixed cost of obtaining new (complete) information about the state of the economy.”

(p.104) Furthermore, the setup in Woodford (2009) precludes a study of the distinction between time- and

state-dependent adjustment since “The assumption that memory is (at least) as costly as information about

current conditions external to the firm implies that under an optimal policy, the timing of price reviews is

(stochastically) state-dependent, but not time-dependent, just as in full-information menu-cost models.... If,

instead, memory were costless, the optimal hazard under a stationary optimal plan would also depend on

the number of periods n since the last price review” (p.106)
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Perhaps surprisingly, we show that if transactions costs are relatively small, the optimal rule

evolves endogenously to a purely time-dependent rule, characterized by a constant interval

of time between observations and a transaction on every observation date. Although this

pure time-dependent rule is reached with probability one, the optimal behavior starts out as

state dependent. While the ultimate emergence of a time-dependent rule occurs for sure if

the transactions costs are sufficiently small, we also show that optimal behavior will remain

state dependent, and transactions and observations will not be synchronized, if transactions

costs are large.

A recent paper by Alvarez, Guiso, and Lippi (2010) analyzes data on Italian investors

and finds that the median investor observes the value of her portfolio about once per month,

which is consistent with the calculations we report in Section 4 using small observation

costs. Alvarez, Guiso, and Lippi also find that investors typically observe the values of their

portfolios about three times as frequently as they transact. This finding is consistent with

our model, if, as pointed out above, transactions costs are large relative to observation costs,

as assumed in Alvarez, Guiso, and Lippi.

Section 1 sets up the consumer’s decision problem. Section 2 characterizes the optimal

trigger and return values for the state variable xt. In addition, this section contains a detailed

discussion of a typical indifference curve of the value function to illustrate various aspects of

optimal adjustment behavior. The dynamic evolution of xt is analyzed in Section 3, which

also characterizes the long-run situation that is eventually attained if the fixed component of

transactions costs is sufficiently small. In addition, Section 4 presents a numerical illustration

of the constant length of time between consecutive observations in the long run, followed by

a discussion of the Euler equation in Section 4. Section 5 concludes. The online Appendix

contains proofs of all lemmas and propositions.

1 Consumer’s Decision Problem

Consider an infinitely-lived consumer who does not earn any labor income but has wealth

that consists of risky equity, riskless bonds, and a riskless liquid asset. Risky equity and

riskless bonds are held in an investment portfolio, and the consumer is not permitted to take

either a leveraged or a negative position in equity. Consumption must be purchased with

the liquid asset, which the consumer holds in a transactions account.
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1.1 Asset Returns

Equity is a non-dividend-paying stock with a price Pt that evolves according to a geometric

Brownian motion
dPt

Pt
= µdt+ σdz, (1)

where µ > 0 is the mean rate of return and σ is the instantaneous standard deviation. The

riskless bond in the investment portfolio has a constant rate of return rf < µ. The total

value of the investment portfolio, consisting of equity and riskless bonds, is St at time t. At

time t, the consumer holds Xt in the liquid asset in the transactions account, which pays

a riskless rate of return rL, where rL < rf because the liquid asset provides transactions

services not provided by the bond in the investment portfolio.

Suppose the consumer observes the value of the investment portfolio at time tj and next

observes its value at time tj+1 = tj + τj . Upon observing the values of Stj and Xtj ,
11

the consumer may transfer assets between the investment portfolio and the transactions

account (at a cost described below) so that at time t+j the value of the investment portfolio

is St+j . The consumer chooses to hold a fraction φj of St+j in risky equity and a fraction

1 − φj in riskless bonds and does not rebalance the investment portfolio before the next

observation.12 Since the consumer cannot take a negative position or a leveraged position in

equity, 0 ≤ φj ≤ 1. When the consumer next observes the value of the investment portfolio,

at time tj+1 = tj + τj , its value is

Stj+1
= R (tj , τj)St+j (2)

where

R (tj , τj) ≡ φj
Ptj+1

Ptj
+ (1 − φj) e

rf τj . (3)

1.2 Costs of Transferring Assets

The consumer can transfer assets between the investment portfolio and the transactions

account by incurring a resource cost that is proportional to the size of the transfer and

11Because the transactions account does not include any risky assets, the consumer continuously knows

the value of Xt.
12The consumer does not observe any new information between time t+j and time tj+1 and hence cannot

adjust consumption or the holdings of assets at any time before tj+1in response to news that arrives during

this interval of inattention. Proposition 4 addresses the case in which the consumer can nonetheless decide

at time t+j to transfer funds between between the investment portfolio and the transactions account at some

time(s) before tj+1.
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a “fixed” resource cost that is independent of the size of the transfer. Specifically, if the

consumer sells −ys ≥ 0 dollars of assets from the investment portfolio, there is a proportional

transfer cost of −ψsy
s dollars, where 0 ≤ ψs < 1, so that a sale of −ys dollars from the

investment portfolio is accompanied by an increase in X of − (1 − ψs) y
s dollars. For

transfers in the other direction, an increase of yb ≥ 0 dollars in the investment portfolio

is accompanied by a decrease in X of (1 + ψb) y
b dollars, where ψb ≥ 0. Assume that

ψs+ψb > 0 so that at least one of the proportional transfer cost parameters is positive. One

interpretation of ψs and ψb is that they represent brokerage fees. Another interpretation

arises if the investment portfolio is a tax-deferred account such as a 401k account. In this

case, the consumer must pay a tax on withdrawals from the investment portfolio, and ψs

would include the consumer’s income tax rate, which would be substantially higher than a

brokerage fee.13

The fixed resource cost is independent of the size of the asset transfer but is a homo-

geneous linear function of Xt and St. Specifically, the fixed resource cost is θXXt + θSSt,

where 0 ≤ θX < θX < 1, with θX as defined in equation (27), and 0 ≤ θS < 1 − ψs.
14 This

formulation of the fixed resource cost scales the cost to the components of wealth; techni-

cally, it preserves the homogeneity of the value function in X and S. Assume that θXX is

paid from the transactions account and θSS is paid from the investment portfolio.15 If the

consumer buys yb (tj) ≥ 0 dollars of assets in the investment portfolio or sells −ys (tj) ≥ 0

dollars of assets from the investment portfolio, then

Xt+j
=
[
1 −

(
1{yb(tj)>0} + 1{ys(tj)<0}

)
θX

]
Xtj − (1 + ψb) y

b (tj) − (1 − ψs) y
s (tj) (4)

13This interpretation of ψs as a tax rate is most plausible if the consumer only withdraws money from the

investment portfolio and never transfers assets into the investment portfolio. As we will see in Section 3, the

long run is characterized by precisely this situation, if the fixed component of the transfer cost is sufficiently

small.
14We assume that θX is small enough so that if X > 0 and S = 0, the consumer will not be deterred from

transferring at least some assets from the transactions account to the investment portfolio. We assume that

ψs + θS < 1 to prevent assets from becoming “trapped” in the investment portfolio if the consumer were to

try to sell assets from the investment portfolio at a time when X = 0. If, instead, ψs + θS were greater

than or equal to one, then an attempt to sell a dollar of assets from the investment portfolio would cost at

least one dollar and the consumer would not receive any liquid assets as a result of this transaction.
15Duffie and Sun (1990) assume that on each observation date the consumer pays a portfolio management

fee that is proportional to total wealth. In their model, optimal behavior implies that X = 0 on each

observation date, so the fixed transaction cost θXX + θSS is simply θSS; hence, they do not need to

explicitly specify the value of θX .
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and

St+j
=
[
1 −

(
1{yb(tj)>0} + 1{ys(tj)<0}

)
θS

]
Stj + yb (tj) + ys (tj) , (5)

where 1{yb(tj)>0} is an indicator function that equals 1 if yb (tj) > 0 and equals 0 otherwise,

and 1{ys(tj)<0} is an indicator function that equals 1 if ys (tj) < 0 and equals 0 otherwise.

1.3 The Utility Function

Suppose that the consumer observes the value of the investment portfolio only at discretely-

spaced points in time t0, t1, t2, .... At observation date tj , after observing the value of the

investment portfolio, lifetime utility is

Etj

{∫ ∞

tj

1

1 − α
c1−αt e−ρ(t−tj)dt−

∞∑

i=j

A (ti, τi) e
−ρ(ti+τi−tj)

}
, (6)

where ct is consumption at time t, 0 < α 6= 1 measures risk aversion, the rate of time

preference, ρ > 0, is large enough so that

e−ρτjEtj
{
[R (tj,τj)]

1−α}
< 1, (7)

and A (ti, τi) is the utility cost of observing the investment portfolio at time ti + τi, given

that the preceding observation was at date ti.

We scale the utility cost of an observation to be a stationary fraction of the consumer’s

utility from consumption over the interval of time between observations. This property

prevents the observation cost from asymptotically becoming prohibitively large or vanishingly

small when measured in consumption-equivalent units.16 In particular,

A (ti, τi) = κb̃ (τi)

∫ ti+τi

ti

c1−αt e−ρ(t−ti)dt, (8)

where b̃ (τi) > 0 for τi > 0, and κ > 0. We want A (ti, τi) to capture the notion that it is

costly to increase the frequency of observation. We also want this function to be well-behaved

for arbitrarily short or long inattention intervals. Therefore, we also require, for any path

ct > 0, ti < t ≤ ti + τi, and
∫ ti+τi
ti

c1−αt e−ρ(t−ti)dt < ∞, that A (ti, τi) has the following three

properties

16This property is reminiscent of the specification in King, Plosser, and Rebelo (1988) in which the disutility

of labor is a stationary fraction of the utility from consumption, with the implication that hours of labor

can be stationary even though consumption is nonstationary.
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0 < lim
τi→0

A (ti, τi) <∞ (9a)

lim
τi→∞

e−ρτiA (ti, τi) = 0 (9b)

e−ρτiA (ti, τi) + e−ρ(τi+τi+1)A (ti+1, τi+1) > e−ρ(τi+τi+1)A (ti, τi + τi+1) . (9c)

Equation (9a) states that as the interval of time between consecutive observations vanishes,

the utility cost per observation approaches a finite positive value. Therefore, the cost of

continuous observation is infinite, and hence it is not optimal to observe the value of the

investment portfolio continuously. Equation (9b) states that as the length of time until

the next observation grows without bound, the discounted value of the utility cost of that

observation goes to zero; equivalently, the observation cost does not grow faster than the rate

of time preference. Finally, the left hand side of equation (9c) is the discounted (to time ti)

utility cost of observing the investment portfolio twice during the interval (ti, ti + τi + τi+1]:

once at time ti + τi and once at time ti + τi + τi+1. The right hand side of equation (9c)

is the discounted (to time ti) utility cost of observing the investment portfolio only once

during this interval, at the end of the interval. The inequality in (9c) states that for a given

interval of time, two observations are more costly than one observation. The properties of

the observation cost in equations (9a), (9b), and (9c) imply restrictions on the function b̃ (τi).

Rather than work directly with the function b̃ (τi), it will be more convenient to work with

the function b (τi) defined as

b (τ) ≡ e−ρτ b̃ (τ) . (10)

Multiplying both sides of equation (8) by e−ρτi and using the definition of b (τ) from equation

(10) yields

e−ρτiA (ti, τi) = κb (τi)

∫ ti+τi

ti

c1−αt e−ρ(t−ti)dt. (11)

The following Lemma presents some necessary properties of b(τ).

Lemma 1 Suppose that A (ti, τi) satisfies equation (11) and has the properties in equations

(9a), (9b), and (9c). Then

1. b (τ) is non-increasing.

2. 0 < limτ→0 τb (τ) <∞, which implies limτ→0 b (τ) = ∞ and limτ→0
τb′(τ)
b(τ)

= −1.

3. limτ→∞ b (τ) = 0, if limτ→∞

∫ ti+τ
ti

c1−αt e−ρ(t−ti)dt > 0 is finite.

10



Finally, we adopt the normalization b (1) = 1. As an illustration of the function b (τ),

suppose that A (ti, τi) is proportional to the average rate at which (discounted) utility from

consumption is accrued over the interval (ti, ti + τi]. Thus, b̃ (τi) in equation (8) is propor-

tional to 1
τi

, and normalizing b (τ) ≡ e−ρτ b̃ (τ) so that b (1) = 1, we have

b (τ) = e−ρ(τ−1) 1

τ
. (12)

It is straightforward to verify that b (τ) in equation (12) satisfies conditions (1) to (3) in

Lemma 1. In the numerical example in Section 4, we use the specification of b (τ) in

equation (12), but everywhere else in the paper we allow any b (τ) > 0 that satisfies the

properties in statements (1) to (3) in Lemma 1.

Substitute the discounted observation cost from equation (11) into the lifetime utility

function in equation (6) to obtain

1

1 − α
Etj

{
∞∑

i=j

e−ρ(ti−tj) [1 − (1 − α)κb (τi)]

∫ ti+τi

ti

c1−αt e−ρ(t−ti)dt

}
. (13)

Since the consumer will not observe any new information between times tj and tj+1, she

can, at time tj , plan the entire path of consumption from time t+j to time tj+1. Let C (tj, τj)

be the present value, discounted at rate rL, of the (deterministic) flow of consumption over

the interval of time from t+j until the next observation date, tj+1 ≡ tj + τj . Specifically,

C (tj, τj) =

∫ tj+1

t+
j

cse
−rL(s−tj)ds, (14)

where the path of consumption cs, t
+
j ≤ s ≤ tj+1, is chosen to maximize the discounted value

of utility over the interval from t+j to tj+1. Let

U (C (tj, τj)) = max
{cs}

tj+1

s=t
+
j

∫ tj+1

t+j

1

1 − α
c1−αs e−ρ(s−tj)ds, (15)

subject to a given value of C (tj , τj) in equation (14). It is straightforward to show that17

U (C (tj , τj)) =
1

1 − α
[h (τj)]

α [C (tj , τj)]
1−α

, (16)

17During the interval of time from t+j to tj+1 the (deterministic) Euler equation implies that optimal values

of consumption satisfy

cs = e−
ρ−rL

α (s−t+j )ct+j
, for t+j ≤ s ≤ tj+1. (*)

Substituting cs from equation (*) into equation (14) in the text yields

C (tj , τj) = h (τj) ct+j
, (**)

11



where

h (τj) ≡

∫ τj

0

e−χsds =
1 − e−χτj

χ
(17)

and we assume that

χ ≡
ρ− (1 − α) rL

α
> 0. (18)

Since consumption during the interval of time from t+j to tj+1 is financed from the trans-

actions account, which earns an instantaneous riskless rate of return rL, we have

Xtj+1
= erLτj

(
Xt+j

− C (tj , τj)
)

. (19)

Use equation (16) and the expression for lifetime utility in (13) to obtain the value

function18 at observation date tj , immediately after observing the value of the investment

portfolio at date tj,

V
(
Xtj , Stj

)
= max

C(tj ,τj),yb(tj),ys(tj),φj ,τj

[1 − (1 − α)κb (τj)]U (C (tj , τj)) (20)

+ e−ρτjEtj

{
V
(
erLτj

(
Xt+j

− C (tj, τj)
)
, R (tj,τj)St+j

)}
,

where the maximization in equation (20) is subject to equations (4) and (5) and the inequality

constraints C (tj , τj) ≤ Xt+j
, 0 ≤ φj ≤ 1, yb (tj) ≥ 0, and ys (tj) ≤ 0.

The value function in equation (20) is homogeneous of degree 1 − α in Xtj and Stj , and

consequently it can be written as

V
(
Xtj , Stj

)
=

1

1 − α
S1−α
tj

v
(
xtj
)
, (21)

where 1
1−α

v
(
xtj
)

is strictly increasing in xt and

xt ≡
Xt

St
(22)

where h (τj) is defined in equation (17) in the text. Equations (*) and (**) imply that

cs = [h (τj)]
−1
e−

ρ−rL
α (s−t+j )C (tj , τj) , for t+j ≤ s ≤ tj+1. (***)

Substituting equation (***) into equation (15), and using the definition of h (τj) in equation (17) yields

U (C (tj , τj)) = 1
1−α [h (τj)]

α [C (tj , τj)]
1−α, which, along with equation (**), implies that U ′ (C (tj , τj)) =

c−α
t
+
j

.

18If α > 1, then [1 − (1 − α) κb (τi)] > 0 for all τ > 0; as we show in the online Appendix, optimality

implies that τ will be large enough so that [1 − (1 − α) κb (τi)] is positive even when α < 1. Equation (16)

gives the maximized value of 1
1−α

∫ ti+1

ti
c1−αt e−ρ(t−ti)dt in equation (13) subject to equation (14). Since

[1 − (1 − α) κb (τi)] > 0, we can substitute equation (16) into the continuous-time optimization problem in

equation (13) to obtain the discrete-time problem in equation (20).

12



is the ratio of the transactions account to the investment portfolio. The optimal length of

time between consecutive observation dates tj and tj+1, τj , is a function of xtj .

2 Trigger and Return Values of x

The value of xtj ≡
Xtj

Stj

on an observation date tj determines whether, in which direction,

and what amounts of assets the consumer transfers between the investment portfolio and

the transactions account. There are two trigger values of x, ω1 and ω2, that determine

whether the consumer transfers assets, and there are two return values of x, π1 and π2, that

characterize the optimal value of xt+j
immediately after a transfer.

To define and characterize the trigger values, ω1 and ω2, first define the restricted value

function Ṽ
(
Xtj , Stj

)
at observation date tj as the maximized expected value of utility over

the infinite future, subject to the restriction that the consumer does not transfer any assets

between the transactions account and the investment portfolio at time tj (but optimally

transfers assets between the transactions account and the investment portfolio at all future

observation dates). Formally,

Ṽ
(
Xtj , Stj

)
= max

C(tj ,τj),φj ,τj
[1 − (1 − α)κb (τj)]U (C (tj , τj)) (23)

+ e−ρτjEtj
{
V
(
erLτj

(
Xtj − C (tj, τj)

)
, R (tj,τj)Stj

)}
,

subject to C (tj , τj) ≤ Xtj and 0 ≤ φj ≤ 1. For the remainder of this section, we will suppress

the time subscripts, with the understanding that the results apply at any observation date.

Like the value function, the restricted value function is homogeneous of degree 1 − α and

can be written as

Ṽ (X,S) =
1

1 − α
S1−αṽ (x) , (24)

where 1
1−α

ṽ (x) is strictly increasing in x. On any observation date, Ṽ (X,S) ≤ V (X,S),

with equality only if the optimal values of yb and ys are both zero.

Define

ω1 ≡ inf x > 0 : ṽ (x) = v (x) (25)

and

ω2 ≡ sup x > 0 : ṽ (x) = v (x) . (26)

The proposition below shows that ω1 and ω2 are trigger values for x in the sense that if x

is less than ω1 on an observation date, the consumer will transfer assets to the transactions

13



account, and if x exceeds ω2 on an observation date, the consumer will transfer assets to the

investment portfolio. To ensure that ω2 is finite, we assume that κ and θX are small enough

that a consumer who holds all of her wealth in the transactions account on an observation

date will not be deterred from transferring some assets from the transactions account to the

investment portfolio. Specifically, we assume

θX < θX ≡

[
(1 − θS)

1 − ψs

1 + ψb

χ

rf − rL + χ

] χ

rf−rL rf − rL

rf − rL + χ
< 1 (27)

and

κ < κ ≡

(
θX

θX

)− rf−rL

χ
(1−α)

− 1

(1 − α) b
(
T̂
)(

exp
(
χT̂
)
− 1
) , (28)

where T̂ ≡ − 1
χ

ln
[(

1 + χ

rf−rL

)
θX

]
> 0. We also define

π1 ≡ sup

{
x ≥ 0 : ∀z ∈

(
0, xS

1−ψs

]
, (1) V (xS, S) ≥ V (xS − (1 − ψs) z, S + z)

and (2) V (xS, S) > Ṽ (xS − (1 − ψs) z, S + z)

}

(29)

and

π2 ≡ inf

{
x ≥ 0 : ∀z ∈ (0, S] , (1) V (xS, S) ≥ V (xS + (1 + ψb) z, S − z)

and (2) V (xS, S) > Ṽ (xS + (1 + ψb) z, S − z)

}
. (30)

The proposition below shows that π1 and π2 are return values for x. Specifically, if x ≤ ω1,

the consumer will transfer enough assets from the investment portfolio to the transactions

account to increase x to π1. Alternatively, if x ≥ ω2, the consumer will use the transactions

account to buy enough assets in the investment portfolio to decrease x to π2.

Proposition 1 Assume that κ < κ and θX < θX . Then

1. 0 < ω1 ≤ π1 ≤ π2 ≤ ω2 <∞.

2. If xtj < ω1, then (a) ys(tj) < 0, (b) xt+j = π1, (c) m
(
xtj
)
≡

VS(Xtj
,Stj)

VX(Xtj
,Stj)

= (1 − ψs)
1−θS

1−θX
,

(d) v
(
xtj
)

=
[

(1−θX)xtj
+(1−θS)(1−ψs)

(1−θX)ω1+(1−θS)(1−ψs)

]1−α
v (ω1)

3. v (ω1) =
[

(1−θX)ω1+(1−θS)(1−ψs)
π1+1−ψs

]1−α
v (π1)

14



4. If xtj > ω2, then (a) yb(tj) > 0, (b) xt+j
= π2, (c) m

(
xtj
)
≡

VS(Xtj
,Stj)

VX(Xtj
,Stj)

= (1 + ψb)
1−θS

1−θX
,

(d) v
(
xtj
)

=
[

(1−θX)xtj
+(1−θS)(1+ψb)

(1−θX)ω2+(1−θS)(1+ψb)

]1−α
v (ω2)

5. v (ω2) =
[

(1−θX)ω2+(1−θS)(1+ψb)
π2+1+ψb

]1−α
v (π2)

Proposition 1 is proved in the online Appendix. Here we use the indifference curves in

Figure 1 to illustrate this proposition and the definitions of the trigger and return points.

For simplicity, Figure 1 is drawn for the case in which θX = θS. The indifference curve of the

value function V (X,S) passes through points A, B, C, D, E, and F , and the indifference

curve of the restricted value function Ṽ (X,S) passes through points K, B, C, D, E, and J .

In Regions II, III, and IV, the two indifference curves are identical, reflecting the fact that

V (X,S) = Ṽ (X,S). Therefore, Regions II, III, and IV represent the “inaction region”

in which the consumer can attain V (X,S) without transferring any assets between the

investment portfolio and the transactions account.

The consumer will transfer assets if V (X,S) > Ṽ (X,S), which is the case in Regions I

and V. For instance, in Region I, the indifference curve of the restricted value function passes

through point B and lies above the indifference curve of the value function that also passes

through point B, thereby implying that V (X,S) > Ṽ (X,S) in this region.19 In order to

attain the maximized value of expected lifetime utility, the consumer must transfer assets

between the investment portfolio and the transactions account. As shown in statement

2a of Proposition 1, ys < 0 so the consumer sells assets from the investment portfolio to

increase the amount of liquid assets in the transactions account. Similarly, according to

statement 4a, if the consumer is in Region V on an observation date, the optimal policy is

to use some of the liquid assets in the transactions account to purchase additional assets in

the investment portfolio.

Now consider the return value π1. We proceed in two steps. First, assume that the

consumer has already paid the fixed transfer cost θ2 (X + S), where θ2 is the common value of

θX = θS, and that the consumer is choosing the size of the asset transfer from the investment

portfolio to the transactions account. In the second step, we consider the impact of the

fixed transfer cost, θ2 (X + S), on the optimal transfer.

19To see that V (X,S) > Ṽ (X,S) in Region I, use the fact that V (X,S) is strictly increasing in X and

S to obtain V K > V A = V B = Ṽ B = Ṽ K , where V i is the value of V (X,S) at point i and Ṽ j is the value

of Ṽ (X,S) at point j in the figure.
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Figure 1: Indifference Curve of the Value Function When θX = θS.

Suppose that, after paying the fixed cost θ2 (X + S), the consumer is located somewhere

to the right of point C along the dashed line through point C with slope − (1 − ψs). For

instance, suppose that the consumer is at point A′. Having already paid the fixed cost,

the consumer can move instantaneously to any point up and to the left of point A′ along

the dashed line with slope − (1 − ψs) by reducing S by −ys > 0 dollars and increasing

X by (1 − ψs) (−ys) dollars. The consumer will sell assets from the investment portfolio,

until (X,S) reaches point C, where the dashed line with slope − (1 − ψs) is tangent to the

indifference curve, which is essentially a smooth-pasting condition. At point C, the ratio of

X to S, i.e., x, is equal to π1, as indicated by the line through points O, C, and G, which

has slope equal to π1.

Now consider the impact of the fixed cost θ2 (X + S) on the optimal transfer of assets.

If θ2 > 0, the consumer cannot move from point A′ to point C. To see the impact of θ2 > 0,

consider the line through points G, B, and A, which is parallel to the line through points C,

B′, and A′, and hence has slope − (1 − ψs). Point G lies on the half-line through the origin
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with slope π1 and is located so that the length of OC is 1− θ2 times the length of OG. The

properties of similar triangles imply that the length of OB′ is 1− θ2 times the length of OB

and that the length of OA′ is 1 − θ2 times the length of OA.

Now suppose that the consumer starts at point A and transfers −ys > 0 dollars from the

investment portfolio, thereby incurring a cost of θ2 (X + S) − ψsy
s dollars. The fixed cost

of θ2 (X + S) dollars reduces both X and S by the fraction θ2 and can be represented by

the movement from point A to point A′; the transfer of −ys > 0 dollars from the investment

portfolio can be represented by a movement from point A′ upward and leftward along the

dashed line through points C, B′, and A′. The consumer will be willing to move from A to

point C only if doing so increases (or at least does not lower) the value of the value function.

That is, the gain in value from moving to an improved allocation between X and S, with

x = π1, must outweigh the fixed cost θ2 (X + S) represented by the movement downward

and leftward from the line through points G, B, and A to the line through points C, B′, and

A′. For a large change in the ratio x, such as the change in moving from point A to point C,

the net gain in value is positive. For a small change in x, the change is not worthwhile. At

point B, the gain from the improved allocation between X and S is exactly offset by the cost

of moving from the line through points G, B, and A to the line through points C, B′, and

A′. Formally, this equality of gain and benefit is represented by statement 3 in Proposition

1, which is essentially a value-matching condition.

For points along the segment GB, the change in the value of x is small enough that the

improved allocation between X and S is outweighed by the fixed cost θ2 (X + S). Therefore,

the consumer will not transfer assets from any points along this segment. The fact that the

consumer will not move from points along segment GB to point C is illustrated by the fact

that these points lie above the indifference curve of the value function that passes through

point C. Alternatively, for points below and to the right of point B along the line through

points A and B, the improved asset allocation made possible by moving to point C, and the

associated increase in value, are large enough to compensate for the fixed transfer cost, and

the consumer will move from any of these points to C (statements 2a and 2b). Since the

consumer ends up at the same point, namely point C, from any point below and to the right

of point B, all of these points have the same value. Thus, all of these points lie on the same

indifference curve (statement 2d), so that indifference curve has slope equal to − (1 − ψs)

below and to the right of point B, which is statement 2c in Proposition 1.20

20If we relax the assumption that θX = θS , then statement 2c of Proposition 1 implies that the slope of

the linear portion of the indifference curve through points B and A is − (1 − ψs)
1−θS

1−θX
while the slope of the

17



We have used Figure 1 to illustrate the trigger point ω1 and the return point π1 when the

consumer chooses to transfer assets from investment portfolio to the transactions account.

A similar set of arguments can explain the trigger point ω2 and the return point π2 when

the consumer chooses to transfer assets from the transactions account to the investment

portfolio.

We conclude this section with the following corollary to Proposition 1.

Corollary 1 ω1 ≤ xt+j
≤ ω2.

The value of xt immediately following any observation date tj (and following any optimal

asset transfers at that date) is confined to the closed interval [ω1, ω2]. This result will be

useful when we analyze the dynamic behavior of asset holdings in the next section.

3 Dynamic Behavior

We have shown that the direction of the optimal transfer on an observation date depends on

the value of xtj . In this section, we examine the dynamic behavior of the stochastic process

for xtj . If the value of Xtj is positive on an observation date, then, depending on the

outcome of the stochastic process for S, the value of xtj could be in any of the five regions

in Figure 1. However, the stochastic process for xtj will eventually be absorbed at xtj = 0

provided that θS is sufficiently small.

Proposition 2 There exists θS > 0, such that for any non-negative θS < θS, if xtj < ω1 on

observation date tj, then xtk = 0 on all subsequent observation dates tk > tj.

The proof of Proposition 2 is in the online Appendix. Here we provide an intuitive

argument. First, consider the case in which θX = θS = 0. If xtj < ω1 on observation

date tj, the optimal transfer is from the investment portfolio to the transactions account so

that xt+j increases to π1. Since each additional dollar that is transferred from the investment

dashed line through points C, B′, and A′ remains − (1 − ψs). The horizontal intercept of the indifference

curve, S, is 1
1−θS

≥ 1 times as large as S, the horizontal intercept of the dashed line through points C,

B′, and A′ because starting from (X,S) =
(
0, S

)
the fixed transaction cost moves the allocation (X,S) to

(
0, (1 − θS)S

)
=
(
0, S

)
. Therefore, even if θX > θS , so that the linear portion of the indifference curve

slopes downward more steeply than the dashed line, the linear portion of the indifference curve will not cross

the dashed line for any non-negative values of X . Also, statement 4c of Proposition 1 implies that the

slope of the indifference curve through points E and F is − (1 + ψb)
1−θS

1−θX
. The vertical intercept of the

indifference curve is 1
1−θX

≥ 1 times as large as the vertical intercept of the dashed line through point D

and thus the indifference curve does not cross this dashed line for non-negative values of S.
18



portfolio to the transactions account incurs a transactions cost ψs, and since the transactions

account earns a lower riskless rate of return than the riskless rate of return on bonds in the

investment portfolio, the consumer would never transfer more assets from the investment

portfolio than are needed to finance consumption until the next observation date. Thus,

the consumer will arrive at the next observation date with zero liquid assets, so that xtj+1

will be zero. Since xtj+1
= 0 < ω1, the process will repeat itself ad infinitum with xtk = 0

on every observation date tk > tj .

If at least one of θX and θS is positive, then we need to consider the possibility that the

consumer would want to arrive at the next observation date with enough liquid assets in

the transactions account to avoid transferring assets from the investment portfolio and thus

avoid paying the fixed transactions cost at that date. As the proof of Proposition 2 shows, if

θS is small enough, the consumer will still optimally choose to arrive at the next observation

date with a zero balance in the transactions account, even though this action necessitates

payment of the fixed transaction cost at the next observation date.21 Alternatively, if θS is

large, the consumer may choose to arrive at observation dates with a positive balance in the

transactions account; holding a positive transactions balance gives the consumer the option

to avoid paying a transaction cost if ω1 < xtj+1
< ω2 on observation date tj+1 and this option

becomes valuable when the fixed cost of transactions is large.

The following lemma together with Proposition 2 allows us to prove that the stochastic

process for xtj is eventually absorbed at zero, if θS is sufficiently small.

Lemma 2 Eventually, xtj < ω1 on an observation date.

The proof of Lemma 2 is in the online Appendix. Here we provide an intuitive argument.

Because the expected rate of return on equity, µ, exceeds the riskless rate of return, rf , on

bonds in the investment portfolio, the optimal share of equity, φj, is positive. Therefore,

during any given inattention interval, there is a chance that R (tj,τj) will be sufficiently

high that xtj+1
=

e
rLτj

(
X

t
+
j

−C(tj ,τj)

)

R(tj,τj)S
t
+
j

will be less than ω1. After sufficiently many spells of

inattention, eventually this event will occur.

Proposition 3 There exists θS > 0, such that for any non-negative θS < θS, eventually the

stochastic process for xtj is absorbed at zero and the time between consecutive observations

is constant.

21Of course, a positive value of θX will not induce the consumer to try to avoid the fixed transactions cost

on the next observation date because θXX will be zero under the policy described here.
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Proposition 3 implies that, in the long run, optimal asset holdings have a Baumol-Tobin

flavor, if θS ≥ 0 is sufficiently small. Specifically, the consumer will arrive at each ob-

servation date having just exhausted the liquid assets in the transactions account and will

liquidate just enough assets from the investment portfolio to finance consumption until the

next observation date. Observations and transfers are perfectly synchronized and a con-

stant amount of time elapses between asset transfers.22 We will refer to this situation as

the long run. Proposition 3 is robust to a change in an important assumption that we have

maintained to this point. Specifically, we have assumed that transfers between the invest-

ment portfolio and the transactions account can occur only on observation dates. For the

remainder of this section only, we consider the impact of allowing “automatic” transactions

between observation dates.23 The essence of inattention is that between observation dates,

the consumer does not observe the realization of random returns and does not change con-

sumption in response to events since the most recent observation. Because the consumer

would not know in advance the proceeds of any automatic transfer that depends on the stock

price at the time of the transaction, she could not make any adjustments to her plans at

that time. Accordingly, there would be no reason for the consumer to transfer assets from

stocks to the transactions account, which is dominated in rate of return by the investment

portfolio. In general, any optimal transfer from the investment portfolio to the transactions

account between observation dates must be known as of the most recent observation date.

Specifically, the consumer may consider asset transfers at times between observation dates

tj and tj+1 as long as (1) the amounts are known as of time tj, and (2) Xt ≥ 0 and St ≥ 0

for all t. As an example, an automatic transfer could specify that the consumer transfer a

given amount from the bond holdings in the investment portfolio to the transactions account

at time tj + 1
2
τj.

Proposition 4 Define a plan of automatic transfers as
{
yb (t) ≥ 0 and ys (t) ≤ 0 for t ∈ (tj , tj+1) :

(1) yb (t) and ys (t) are Ftj -measurable, and

(2) Xt ≥ 0 and St ≥ 0 for any path of Pt.

}

Assume that θX > 0. Suppose that we allow automatic transfers between observation dates.

Then there exists θS > 0, such that for any non-negative θS < θS, eventually the stochastic

process for xtj is absorbed at zero and the time between consecutive observations is constant.

22The model in Duffie and Sun (1990) shares this property because it assumes that the consumer starts

with xt = 0.
23In a price-setting framework, Bonomo, Carvalho, and Garcia (2010) analyze “uninformed adjustments,”

which are price adjustments that occur between observation dates. These uninformed adjustments are

analogous to our “automatic” transactions in the consumer’s allocation of assets.
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4 Long-Run Behavior

Table 1 presents the optimal time between consecutive observation dates in the long run

for the case in which θX = θS = θ2, there are no automatic transfers, and the parameter

values are given in the table’s caption. For these numerical exercises, we specify b (τ) as

in equation (12), so that the utility cost A (ti, τi) is proportional to the average discounted

utility of consumption accrued over the inattention interval. This formulation allows us to

present both the observation cost and the fixed component of the transactions cost in terms

of dollars.24 For all the numerical calculations we assume that the consumer has $1 million

in the investment portfolio on an observation date. The observation cost in Column (1)

is the dollar equivalent of the reduction in utility associated with the observation cost. In

the baseline case, the observation cost is $2.30 per observation. Column (2) reports the

optimal time between consecutive observations when θ2 = 0 so that fixed cost parameters

θX and θS are both zero. The time between observations is measured in years, so in the

baseline case, the optimal time between observations is slightly longer than one month.

Column (3) reports θ∗2, which is the largest value of θX = θS = θ2 such that the time

between consecutive observations eventually becomes constant. For values of θX = θS = θ2

larger than θ∗2, the optimal rule remains state dependent indefinitely and the frequency of

observations will exceed the frequency of transactions indefinitely. The values reported

in column (3) are actually θ∗2 × 106 so that, for instance, in the baseline case, the fixed

transactions cost is $6.60 for a millionaire. Finally, column (4) reports the time between

consecutive observations when θ2 = θ∗2.

Table 1 allows us to draw two broad conclusions. First, even tiny observation costs can

24In order to obtain the equivalent dollar cost, we use the fact that the utility cost of an observation is

A (tj , τj) = κeρ × 1
τj

∫ tj+τj

tj
c1−αt e−ρ(t−tj)dt = (1 − α)κeρ 1

τj
U (C (tj , τj)). In the long run, C (tj , τj) = Xt

+
j
,

so the utility cost of an observation is (1 − α)κeρ 1
τj
U
(
Xt

+
J

)
. We want to compute the reduction in the

transactions balance at time t+j that would cause the same loss in utility over the interval (tj , tj + τj ] as

would the observation cost. Writing the reduction in the transactions balance as λXt
+
j
, we find the value

of λ such that U
(
Xt

+
j

)
− U

(
(1 − λ)Xt

+
j

)
= (1 − α) κeρ 1

τj
U
(
Xt

+
i

)
. Since U () is homogeneous of degree

1 − α, we have 1 − (1 − λ)
1−α

= (1 − α)κeρ 1
τj

, which implies λ = 1 −
[
1 − (1 − α) κ

τj
eρ
] 1

1−α

. On any

observation date in the long run, Xtj = 0, so that Xt
+
j

= π1St+j
. Equations (4) and (5), using the fact that

Xtj = 0 and yb (tj) = 0, imply St+j
= 1−ψs

1−ψs+π1
(1 − θS)Stj so that we have Xt

+
j

= π1
1−ψs

1−ψs+π1
(1 − θS)Stj .

Therefore, for a consumer who has wealth of 106 dollars on an observation date, the observation cost is

λπ1
1−ψs

1−ψs+π1
(1 − θS) 106 dollars. (Although the length of the optimal inattention interval is invariant to ψs,

the dollar-equivalent observation cost depends on ψs. For this calculation, we have set ψs = 0.01.)
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(1) (2) (3) (4)
Observation cost τ ∗, θ2 = 0 θ∗2 × 106 τ ∗, θ2 = θ∗2

(dollar equivalent) (years) (dollar equivalent) (years)
Baseline 2.3 0.097 6.5 0.190
κ = 0.001 23.1 0.309 63.6 0.593
ρ = 0.02 2.6 0.098 7.8 0.198
α = 3 2.4 0.092 5.9 0.174
rL = 0 2.3 0.080 11.3 0.194
rf = 0.03 2.8 0.084 27.3 0.281
µ = 0.07 2.7 0.089 6.1 0.161
σ = 0.2 2.1 0.097 8.1 0.218

Table 1: θ∗2 is the largest value of θ2 = θX = θS that leads to constant optimal inattention spans.

Baseline Parameters: α = 4, ρ = 0.01, rL = 0.01, rf = 0.02, µ = 0.06, σ = 0.16, κ = 0.0001.

lead to substantial inattention intervals. Column (2) shows that even when the fixed costs of

transacting are zero (θX = θS = 0), a consumer who owns one million dollars, and incurs an

observation cost equivalent to about two dollars, will observe her portfolio at approximately

a monthly frequency, which is the empirical frequency reported by Alvarez, Guiso, and Lippi

(2010). Second, fixed transaction costs can significantly magnify the effect of observation

costs to produce even larger inattention spans. The inattention spans in column (4) are about

twice as large as the inattention spans in column (2). Intuitively, when fixed transaction

costs are not too large compared to the observation costs, the consumer will find it optimal

to transact on every observation date, in order to avoid “wasting” observation costs without

using the obtained information to undertake a transaction. Because of this synchronization,

the optimal inattention interval is determined as if fixed transaction costs and observation

costs are bundled together, effectively magnifying the impact of the observation cost. For

instance, with an observation cost of $2.30, the optimal time between observations can be

more than two months, if θ2 = θ∗2.

The calculations reported in Table 1 are invariant to the proportional transaction cost

parameters ψb and ψs. The irrelevance of ψb results from the fact that in the long run the

consumer does not ever transfer any assets from the transactions account to the investment

portfolio and thus never incurs any cost ψby
b. On any observation date in the long run, all of

the consumer’s wealth is in the investment portfolio. In order to consume any of this wealth

the consumer effectively must pay a tax at rate ψs to transfer the wealth to the transactions

account. Thus ψs is a pure consumption tax and hence reduces the path of consumption
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by a fraction ψs while leaving the timing of transfers unchanged. This result is formalized

in Proposition 6 in the online Appendix.

Proposition 3 implies that in the long run the consumer will transfer assets in the same

direction (from the investment portfolio to the transactions account) on every observation

date. Therefore, if the consumer is sufficiently risk averse25 so that optimal φj is interior to

[0, 1], then an Euler equation, described in the following proposition, holds in the long run.26

Proposition 5 There exists θS > 0, such that if θS < θS, and α >
µ−rf
σ2 , then in the long

run Etj

{
c−α
t+j+1

(
Ptj+1

Ptj

− erf τj
)}

= 0.

The Euler equation in Proposition 5, which is proved in the online Appendix, resembles

a standard Euler equation, but it is important to note that here the Euler equation applies

only to intervals of time that begin and end on observation dates. This implication of the

model is consistent with the evidence reported in Jagannathan and Wang (2007), where

they find that the consumption Euler equation is empirically more successful on dates and

at frequencies where decisions are likely to be made.

5 Concluding Remarks

Rules governing infrequent adjustment are typically categorized as time dependent or state

dependent. Time-dependent rules depend only on calendar time and can optimally result

from costs of gathering and processing information. State-dependent rules depend on the

value of some state variable, typically reaching some trigger threshold, and can be the op-

timal response to a transactions cost. Our model combines costly information and costly

transactions. In general, on any observation date, the consumer chooses the length of time

until the next date at which to gather information and re-optimize, but that length of time

may be state dependent. Moreover, conditional on the information observed at that future

date, the agent’s action (or lack thereof) may also be state dependent. Thus, in general, the

model has elements of both state- and time-dependent rules.

25It is worth noting that “sufficiently risk-averse” need not require a very high value of α. For instance,

if the expected equity premium is µ − rf = 0.04 and and the standard deviation of the rate of return on

equity is σ = 0.16, then any value of α greater than 1.5625 will be sufficiently risk averse.
26Eberly (1994) shows that a version of the consumption Euler equation also holds in a model with a fixed

cost of adjusting the stock of durables, by considering consumption at consecutive adjustment dates.
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If the fixed component of the transactions cost is sufficiently small, the optimal behavior

converges to a rule that is purely time dependent. Once the consumer arrives at an obser-

vation date with a sufficiently small balance in the transactions account, she will optimally

choose to arrive at all subsequent observation dates with zero liquid assets in the transactions

account. In our model, this behavior results from the facts that (1) the consumer can save

on costs by synchronizing observation and transactions dates and (2) the consumer would

prefer to hold as little as possible of her wealth in the liquid asset because the return on the

transactions account is dominated by the return on the investment account.

The endogenous emergence of a purely time-dependent rule is a novel feature of our

model. However, there are forces that could prevent this situation from arising, even within

the model. As we have pointed out, if the fixed component of the transactions cost is

large, the consumer may choose to arrive at observation dates with a positive balance in the

transactions account. And if the consumer arrives at an observation date with a positive

amount of liquid assets, then the state variable xt could potentially take on any positive value,

so that a purely time-dependent rule would not be optimal, even in the long run. Outside

the model, one might consider allowing for the arrival of labor income in the transactions

account or the occurrence of attention-grabbing events that occur when the consumer is not

at a planned observation date.27

We offer a more general view of time dependence by thinking of the distribution of the

length of inattention intervals. With sufficiently small transactions costs, the long run

is characterized by a constant length of inattention intervals and thus the distribution is

degenerate. More generally, even if the model is configured or amended so that pure time

dependence does not eventually emerge, the value of xtj will frequently be below the lower

trigger value. Whenever xtj is lower than the lower trigger value, the length of time until

the next observation date will be the same regardless of the value of xtj . Therefore, the

distribution of inattention intervals will have a mass at that length of time.28 This mass

point in the distribution of inattention intervals can be viewed as a generalization of the

eventual emergence of a purely time-dependent rule that we have analyzed in this paper.

27Recent work by Yu (2008) has documented that investors appear to react to news that the stock market

has reached a new peak.
28A similar argument applies to the inattention interval associated with optimal behavior for xtj above

the upper trigger value.
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A Online Appendix

Proof of Lemma 1. Since e−ρτiA (ti, τi) = κb (τi)
∫ ti+τi
ti

c1−αt e−ρ(t−ti)dt, we have

lim
τi→0

τib (τi) = lim
τi→0

e−ρτiA (ti, τi)
κ
τi

∫ ti+τi
ti

c1−αt e−ρ(t−ti)dt
. (A.1)

Equation (9a) implies that the numerator on the right hand side of equation (A.1) has a positive

finite limit as τi → 0. The limit of the denominator is limτi→0
κ
τi

∫ ti+τi
ti

c1−αt e−ρ(t−ti)dt = c1−α
t+i

,

which is positive and finite since we are confining attention to cases with positive (and finite) con-

sumption. Therefore, statement 2 holds.29 Statement 3 follows from the fact that e−ρτiA (ti, τi) =

κb (τi)
∫ ti+τi
ti

c1−αt e−ρ(t−ti)dt and equation (9b) along with the assumptions that κ > 0 and ct > 0.

Equation (11) and κ > 0 can be used to rewrite equation (9c) as

b (τi)

∫ ti+τi

ti

c1−αt e−ρ(t−ti)dt+ e−ρτib (τi+1)

∫ ti+1+τi+1

ti+1

c1−αt e−ρ(t−ti+1)dt

> b (τi + τi+1)

∫ ti+τi+τi+1

ti

c1−αt e−ρ(t−ti)dt. (A.2)

To see the implications of equation (A.2) for b (τi), we first state the following lemma.

Lemma 3 Suppose q1b (z1)+ q2b (z2) > (q1 + q2) b (z1 + z2) for all positive qi and zi, i = 1, 2, and

that b (z) > 0 for all z > 0. Then b (z) is non-increasing.

Proof of Lemma 3. The assumption that q1b (z1) + q2b (z2) > (q1 + q2) b (z1 + z2) for all

positive qi and zi, i = 1, 2, implies that q1 [b (z1) − b (z1 + z2)] + q2 [b (z2) − b (z1 + z2)] > 0 for all

positive qi and zi, i = 1, 2. Suppose that, contrary to what is to be proved, for some positive

z1 and z2, b (z1) < b (z1 + z2). Then for any q1 > −q2
b(z2)−b(z1+z2)
b(z1)−b(z1+z2)

, q1 [b (z1) − b (z1 + z2)] +

q2 [b (z2) − b (z1 + z2)] < 0, which is a contradiction. Therefore, b (z1) ≥ b (z1 + z2) for any positive

z1 and z2.

Applying Lemma 3 to equation (A.2) while setting z1 = τi, z2 = τi+1, q1 =
∫ ti+τi
ti

c1−αt e−ρ(t−ti)dt,

and q2=e
−ρτi

∫ ti+1+τi+1

ti+1
c1−αt e−ρ(t−ti)dt, , implies that b (τ) is non-increasing, which is statement 1

in Lemma 1.

Proof of Proposition 1. We start by proving the following Lemma.

29Let γ = limτ→0 τb (τ) = limτ→0
τ
1

b(τ)

, which, by L’Hopital’s Rule, implies γ = 1

limτ→0 −
b′(τ)

b[(τ)]2

, or

limτ→0
b′(τ)

b[(τ)]2
= −γ−1. Then limτ→0

τb′(τ)
b(τ) = limτ→0

τb(τ)b′(τ)

[b(τ)]2
= [limτ→0 τb (τ)]

[
limτ→0

b′(τ)

[b(τ)]2

]
=

γ
(
−γ−1

)
= −1.
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Lemma 4 Optimal behavior requires ysyb = 0. If the optimal asset transfer increases x, then

ys < 0. If the optimal transfer decreases x, then yb > 0.

Proof of Lemma 4. To prove that ysyb = 0, suppose ysyb 6= 0, which implies that ys < 0

and yb > 0. Now consider reducing yb by ε and increasing ys by ε, which will have no effect on

the value of S relative to the original transfer but will increase X by (ψs + ψb) ε relative to the

original transfer by reducing the amount of proportional transactions cost incurred. Therefore, it

could not have been optimal for ysyb 6= 0. Hence, ysyb = 0.

The value function V (X,S) is strictly increasing in X and S, so an optimal transfer will never

decrease both X and S. Therefore, if the optimal transfer increases x ≡ X
S

, then the optimal

transfer cannot decrease X and must decrease S, which implies that yb = 0 and ys < 0. Similarly,

if the optimal transfer decreases x ≡ X
S

, then the optimal transfer cannot decrease S and must

decrease X, which implies that ys = 0 and yb > 0.

Proof of statement 2a. Suppose that x < ω1. The definition of ω1 in equation (25)

implies that v (x) 6= ṽ (x). The optimal asset transfer will change the value of x to some value z

for which v (z) = ṽ (z). The definition of ω1 implies that such a z cannot be less than ω1, so the

optimal transfer increases x. Lemma 4 implies that ys < 0.

Proof of statement 2b. Suppose that on an observation date, normalized to be t = 0,

X0 < ω1S0. Statement 2a implies that optimal ys < 0. Let ys be the optimal value of ys.

Therefore,

V ((1 − θX)X0 − (1 − ψs) ys, (1 − θS)S0 + ys) = Ṽ ((1 − θX)X0 − (1 − ψs) ys, (1 − θS)S0 + ys)

(A.3)

and

V ((1 − θX)X0 − (1 − ψs) ys, (1 − θS)S0 + ys) (A.4)

≥ V ((1 − θX)X0 − (1 − ψs) (ys − ζ) , (1 − θS)S0 + ys − ζ) ,

for ζ ∈ [0, (1 − θS)S0 + ys].

Define ys∗ as the value of ys that will lead to x0+ = π1. Use equations (4) and (5) with yb = 0

and ys = ys∗ < 0 to obtain X0+ = (1 − θX)X0 − (1 − ψs) y
s∗ and S0+ = (1 − θS)S0 + ys∗, which

can be rearranged to obtain

[x0+ + 1 − ψs]
S0+

S0
= (1 − θX)x0 + (1 − ψs) (1 − θS) . (A.5)

Set x0+ = π1 in equation (A.5) and rearrange to obtain

ys∗ = S0+ − (1 − θS)S0 =

[
(1 − θX) x0 − (1 − θS)π1

π1 + 1 − ψs

]
S0.
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From this point onward, the proof proceeds by contradiction. Assume ys > ys∗ so that the

magnitude of the transfer ys is smaller than the transfer needed to increase x0+ to π1. Since ys is

optimal, equations (A.3) and (A.4) imply that

(A.6)

Ṽ ((1 − θX)X0 − (1 − ψs) ys, (1 − θS)S0 + ys) = V ((1 − θX)X0 − (1 − ψs) ys, (1 − θS)S0 + ys)

≥ V ((1 − θX)X0 − (1 − ψs) y
s∗, (1 − θS)S0 + ys∗)

But the definition of π1 implies that

Ṽ ((1 − θX)X0 − (1 − ψs) ys, (1 − θS)S0 + ys) < V ((1 − θX)X0 − (1 − ψs) y
s∗, (1 − θS)S0 + ys∗) ,

which contradicts equation (A.6).

Proof of statement 2c. Consider the point (X0, S0) with x0 ≡ X0

S0
= ω1 and define D as the

set of (X,S) for which x < ω1 and from which the consumer can instantaneously move to (X0, S0)

by transferring assets from the investment portfolio to the transactions account. Specifically,

D ≡

{
(X,S) with X < ω1S :

∃ys < 0 for which (1 − θX)X − (1 − ψs) y
s = X0 and (1 − θS)S + ys = S0

}
. (A.7)

Define F as the set of (X,S) for which x ≥ ω1 and to which the consumer can instantaneously

move from any point in D by transferring assets from the investment portfolio to the transactions

account. Specifically,

F ≡

{
(X,S) with X ≥ ω1S :

∃ys < 0 for which X = X0 − (1 − ψs) y
s and S = S0 + ys ≥ 0

}
. (A.8)

Consider two arbitrary points (X1, S1) and (X2, S2) in set D. Since x1 < ω1 and x2 < ω1, the

optimal value of ys will be strictly negative starting from either point. Moreover, ys must be large

enough in absolute value so that the post-transfer value of (X,S) satisfies x ≡ X
S

≥ ω1 because

it is always optimal to transfer assets from the investment portfolio to the transactions account

from any point in set D. Therefore, the post-transfer value of (X,S) will be an element of set F .

Thus, regardless of whether the consumer starts from point (X1, S1) or (X2, S2), the consumer’s

choice of asset transfer can be described as choosing (X+, S+) ∈ F to maximize the value function.

Therefore, V (X1, S1) = V (X2, S2), so all of the points in set D lie on the same indifference curve

of V (X,S). The slope of this indifference curve is dX
dS

= dX
dys

dys

dS
= − (1 − ψs)

1−θS

1−θX
, which proves

statement 2c.
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Proof of statement 2d. We have shown that if x < ω1, then m (x) = (1 − ψs)
1−θS

1−θX
. The

expression for V
(
Xtj , Stj

)
in equation (21) can be used to rewrite the marginal rate of substitution,

m
(
xtj
)
≡

VS(Xtj
,Stj)

VX(Xtj
,Stj)

, as m
(
xtj
)

=
(1−α)v(xtj)
v′(xtj)

− xtj , so that

(1 − α) v (x)

v′ (x)
− x = (1 − ψs)

1 − θS
1 − θX

, for 0 ≤ x < ω1, (A.9)

which implies

v (x) =

[
(1 − θX) x+ (1 − θS) (1 − ψs)

(1 − θX)ω1 + (1 − θS) (1 − ψs)

]1−α

v (ω1) , for 0 ≤ x ≤ ω1. (A.10)

Proof of statement 1. We start by proving the following Lemma.

Lemma 5 For sufficiently small x > 0, 1
1−α ṽ (x) < 1

1−αv (x) for all x ∈ (0, x).

Proof of Lemma 5. Substitute the expression for U (C (tj, τj)) from equation (16) into the

restricted value function in equation (23) to obtain

Ṽ
(
Xtj , Stj

)
= max

C(tj ,τj),φj ,τj
[1 − (1 − α)κb (τj)]

1

1 − α
[h (τj)]

α [C (tj, τj)]
1−α (A.11)

+ e−ρτjEtj
{
V
(
erLτj

(
Xtj −C (tj , τj)

)
, R (tj,τj)Stj

)}
.

Equation (**) in footnote 17 states that C (tj, τj) = h (τj) ct+j
, so that

[1 − (1 − α)κb (τj)]
1

1 − α
[h (τj)]

α [C (tj , τj)]
1−α =

1

1 − α
[1 − (1 − α)κb (τj)]h (τj) c

1−α
t+j

. (A.12)

Substitute equation (A.12) into equation (A.11) to obtain

Ṽ
(
Xtj , Stj

)
= max

C(tj ,τj),φj,τj

1

1 − α
[1 − (1 − α)κb (τj)]h (τj) c

1−α

t
+
j

+e−ρτjEtj
{
V
(
erLτj

(
Xtj − C (tj , τj)

)
, R (tj,τj)Stj

)}
.

(A.13)

Because the choice of C (tj, τj) must satisfy the constraint Xtj −C (tj, τj) ≥ 0, the partial derivative

with respect to C (tj , τj) of the maximand on the right hand side of (A.11) must be non-negative.

Therefore, differentiation of this maximand with respect to C (tj, τj) yields

[1 − (1 − α)κb (τj)] [h (τj)]
α [C (tj, τj)]

−α−e−(ρ−rL)τjEtj
{
VX
(
erLτj

(
Xtj − C (tj, τj)

)
, R (tj,τj)Stj

)}
≥ 0.

(A.14)

Since VX () > 0, [h (τj)]
α [C (tj, τj)]

−α > 0, and e−(ρ−rL)τj > 0, equation (A.14) implies that

1 − (1 − α)κb (τj) > 0, (A.15)

where τ∗j is the value of τj that maximizes the restricted value function. Equation (A.15) implies

that we can confine attention to value of τj that are greater than τ ≡ inf {τ > 0 : κ (1 − α) b (τ) < 1}.
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If α > 1, then 1 − κ (1 − α) b (τj) > 0 for any positive value of τj so τ = 0. However, if α < 1,

Lemma 3 implies τ > 0.

Now we consider the cases in which α < 1 and α > 1 separately.

Case I: α < 1. When α < 1, τ∗ > τ > 0. Since C (tj, τj) = h (τj) ct+j
,

ct+j
=
C
(
tj, τ

∗
j

)

h
(
τ∗j

) <
Xtj

h (τ)
, (A.16)

where the inequality follows from the constraint C
(
tj , τ

∗
j

)
≤ Xtj and the facts that h (τj) is strictly

increasing in τj and τ∗j > τ . Equation (A.16) implies limXtj
→0 ct+j

= 0. Therefore, taking the

limits of both sides of equation (A.13) as Xtj → 0, and using the facts that 0 ≤ C
(
tj, τ

∗
j

)
≤ Xtj

and τ∗j > τ > 0 implies

lim
Xtj

→0
Ṽ
(
Xtj , Stj

)
= lim

Xtj
→0

e−ρτjEtj
{
V
(
0, R (tj,τj)Stj

)}
= lim

Xtj
→0

e−ρτ
∗

j Etj

{[
R
(
tj,τ

∗
j

)]1−α} 1

1 − α
S1−α
tj

v (0)

(A.17)

Use equation (7) and the fact that τ∗ > τ to obtain

lim
Xtj

→0
Ṽ
(
Xtj , Stj

)
<

1

1 − α
S1−α
tj

v (0) = V
(
0, Stj

)
. (A.18)

Case II: α > 1. In the case with α > 1, ct+j
does not go to zero as Xtj approaches 0, because

the instantaneous flow of utility would be unboundedly negative. Thus, c ≡ limXtj
→0 ct+j

> 0.

Since Xtj ≥ C (tj , τj) = h (τj) ct+j
and limτj→0 h (τj) = 0, limXtj

→0 τj = 0 (which is consistent with

equation (A.15) because τ = 0 when α > 1). We now that show that c <∞, i.e., the consumption

flow ct+j
approaches a finite limit. To see this, define Ψ (τj) as

Ψ (τj) ≡
h′ (τj)

h (τj)

(
−

(1 − α)κb (τj)

1 − (1 − α)κb (τj)

b′ (τj)h (τj)

b (τj)h′ (τj)
+ α

)
, (A.19)

and note that the first-order condition of (A.11) with respect to τj can be expressed as30

Ψ (τj)
1

1 − α
[1 − (1 − α)κb (τj)] [h (τj)]

α
[C (tj , τj)]

1−α
= −

d

dτj

[
e−ρτjEtj

{
V
(
erLτj

(
Xtj − C (tj, τj)

)
, R (tj,τj)Stj

)}]
.

(A.20)

30Let ∆ be the partial derivative of the first term on the right hand side of equation (A.11) with respect

to τj , holding C (tj , τj) fixed. Therefore,

∆ =
h′ (τj)

h (τj)

(
−

(1 − α) κb (τj)

[1 − (1 − α)κb (τj)]

b′ (τj)h (τj)

b (τj)h′ (τj)
+ α

)

×
1

1 − α
[1 − (1 − α)κb (τj)] [h (τj)]

α [C (tj , τj)]
1−α
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As Xtj → 0, equation (21) implies that the right hand side of (A.20) approaches

− 1
1−αv(0)S

1−α
tj

d
dτj

[
e−ρτjEtj

{
[R (tj,τj)]

1−α
}]

, which is finite. Hence, the left hand side of (A.20)

must also approach a finite limit. Now suppose (counterfactually) that limXtj
→0 ct+j

= ∞, and

re-write the left hand side of (A.20) as
{
h (τj)Ψ (τj)

1
1−α

}
×

{
[1 − (1 − α)κb (τj)]

[
C(tj ,τj)
h(τj)

]−α}
×

(
C(tj ,τj)
h(τj)

)
. By equations (A.19) and (17), limXtj

→0

{
h (τj)Ψ (τj)

1
1−α

}
= limτj→0

{
h (τj) Ψ (τj)

1
1−α

}

= limτj→0 h
′ (τj)

(
−

(1−α)κb(τj)
[1−(1−α)κb(τj)]

b′(τj)h(τj)
b(τj)h′(τj)

+ α
)

1
1−α . Use the facts that limτ→0 b (τ) = ∞ and

limτ→0
τb′(τ)
b(τ) = −1 (from statement 2 of Lemma 1) along with limτ→0 h

′ (τ) = 1 and limτ→0
h(τ)
τh′(τ) =

1 (from the definition of h (τ) in equation (17)) to obtain limXtj
→0

{
h (τj)Ψ (τj)

1
1−α

}
= −1.

Equation (A.14) implies that limXtj
→0

{
[1 − (1 − α)κb (τj)]

[
C(tj ,τj)
h(τj)

]−α}
> 0, and the (counter-

factual) assumption that limXtj
→0 ct+j

= ∞ implies that limXtj
→0

C(tj ,τj)
h(τj)

= ∞ by since C (tj, τj) =

h (τj) ct+j
. Hence, the left hand side of (A.20) approaches −∞, so that equation (A.20) cannot hold.

Therefore, limXtj
→0 ct+j

= c <∞.

Now, taking the limits of both sides of equation (A.13) as Xtj → 0, and using the facts31 that

0 ≤ C (tj, τj) ≤ Xtj , limτj→0R (tj,τj) = 1, and limτj→0 b (τj)h (τj) = limτj→0 τjb (τj) implies

lim
Xtj

→0
Ṽ
(
Xtj , Stj

)
= −

(
lim
τj→0

τjb (τj)

)
c1−α + V

(
0, Stj

)
< V

(
0, Stj

)
,

where the inequality follows from the facts that limτj→0 τjb (τj) > 0 (from statement 2 in Lemma

1) and c > 0.

Proof of ω1 > 0. Since Lemma 5 implies that limxtj
→0

1
1−α ṽ

(
xtj
)
< 1

1−αv (0), ∃ x > 0 s.t.

1
1−α ṽ (x) < 1

1−αv (0) ≤ 1
1−αv (x) ∀x ∈ [0, x]. Therefore, ω1 ≥ x > 0.

Proof of π2 ≥ π1. To prove that π2 ≥ π1, suppose the contrary, i.e., that π1 > π2,

and consider three points (XA, SA), (XB , SB), and (XC , SC), where XA = π1SA, (XB , SB) =

(π1SA − (1 − ψs) z
∗, SA + z∗) where z∗ ≡ π1−π2

π2+1−ψs
SA, which implies XB = π2SB, (XC , SC) =

(π2SB + (1 + ψb) z
∗∗, SB − z∗∗) where z∗∗ ≡ π1−π2

π1+1+ψb
SB , which implies XC = π1SC . The definition

of π1 implies that V (XA, SA) ≥ V (XB , SB) and the definition of π2 implies that V (XB , SB) ≥

Now use the definition of Ψ (τj) in equation (A.19) to obtain

∆ = Ψ (τj)
1

1 − α
[1 − (1 − α) κb (τj)] [h (τj)]

α
[C (tj , τj)]

1−α
.

31limτj→0 b (τj)h (τj) =
(
limτj→0 τjb (τj)

) (
limτj→0

h(τj)
τjh′(τj)

)
limτj→0 h

′ (τj). Since h (τj) = 1−e−χτj

χ
,

h′ (τj) = e−χτj . Therefore, limτj→0
h(τj)
τjh′(τj)

= 1−e−χτj

χτje
−χτj

and L’Hopital’s Rule implies limτj→0
h(τj)
τjh′(τj)

= 1.

Also limτj→0 h
′ (τj) = 1. Therefore, limτj→0 b (τj)h (τj) = limτj→0 τjb (τj) .]
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V (XC , SC) so that V (XA, SA) ≥ V (XC , SC). But SC = SB−z
∗∗ = SB−

π1−π2

π1+1+ψb
SB = π2+1+ψb

π1+1+ψb
SB

= π2+1+ψb

π1+1+ψb

π1+1−ψs

π2+1−ψs
SA =

(
(π1−π2)(ψs+ψb)

(π1+1+ψb)(π2+1−ψs) + 1
)
SA > SA, since ψs + ψb > 0. Therefore, since

XC = π1SC and XA = π1SA, we have XC > XA. Hence, since V (X,S) is strictly increasing

in X and S, we have V (XC , SC) > V (XA, SA), which contradicts the earlier statement that

V (XA, SA) ≥ V (XC , SC).

Proof of ω1 ≤ π1. We will prove this statement using a geometric argument to show that

ω1 > π1 leads to a contradiction. We consider three cases: θS < θX , θS > θX , and θS = θX .

Suppose that ω1 > π1 and consider the case in which θS < θX , so that in Figure 2(a) the line

through points B, C, and E, which has slope − (1 − ψs)
1−θS

1−θX
, is steeper than the line through

points C and D, which has slope − (1 − ψs). Statement 2c of Proposition 1 implies that for

values of x ≡ X
S

less than ω1, indifference curves of the value function are straight lines with slope

− (1 − ψs)
1−θS

1−θX
. Therefore, V (B) = V (C) = V (E), where the notation V (J) indicates the

value of the value function evaluated at point J . The definition of π1 implies that V (C) ≥ V (D).

Therefore, V (E) ≥ V (D), which contradicts strict monotonicity of the value function since both

X and S are larger at point D than at point E. Therefore, ω1 ≤ π1 if θS < θX .

Suppose that ω1 > π1 and consider the case in which θS > θX , so that in Figure 2(b) the

line through points D and E, which has slope − (1 − ψs)
1−θS

1−θX
, is less steep than the line through

points C and E, which has slope − (1 − ψs). Statement 2c of Proposition 1 implies that the line

from point D through point E is an indifference curve and all points on this indifference curve are

preferred to all points below and to the left of the indifference curve for which x < ω1. In particular,

point E is preferred to all points below point E along the line through points E and C. Since the

value of x at point E is higher than π1, the fact that the value function evaluated at point E is

greater than the value function, and hence greater than the restricted value function, evaluated at

all points below point E with slope − (1 − ψs) contradicts the definition of π1. Therefore, ω1 ≤ π1

if θS > θX .

Suppose that ω1 > π1 and consider the case in which θS = θX , so that in Figure 2(c) the slope

of the line through points C and E is − (1 − ψs)
1−θS

1−θX
= − (1 − ψs). Statement 2c of Proposition

1 implies that for values of x ≡ X
S
< ω1, indifference curves of the value function are straight lines

with slope − (1 − ψs)
1−θS

1−θX
so points E and C are on the same indifference curve. Indeed, point E

yields the same value of the value function as all points below point E on the line through points

E and C. That is, for any point J below point E along the line through points E and C with

X ≥ 0, V (E) = V (J). Since x < ω1 at point J , the definition of ω1 implies that V (J) > Ṽ (J).

Therefore, V (E) = V (J) > Ṽ (J). Since x > π1 at point E, the facts that for arbitrary point J

we have V (E) = V (J) and V (E) > Ṽ (J) contradict the definition of π1. Therefore, ω1 ≤ π1 if

7
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Figure 2: Proof of ω1 ≤ π1

θS = θX .

Putting together the cases in which θS < θX , θS > θX , and θS = θX , we have proved that

ω1 ≤ π1.

Proof of ω2≥ π2. Use a set of arguments similar to the proof that ω1 ≤ π1.

Proof of ω2<∞. We will prove that ω2 is finite by showing that if the investment portfolio

has zero value on an observation date, the consumer will use some of the liquid assets in the trans-

actions account to buy assets for the investment portfolio. We use proof by contradiction. That

is, suppose that time 0 is an observation date, and that at this observation date, the transactions

account has a balance X0 > 0 and the investment portfolio has a zero balance so that S0 = 0 and

x0 is infinite. Suppose that whenever the investment portfolio has zero value on an observation
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date, the consumer does not transfer any assets to the investment portfolio. Then the consumer

will simply consume from the transactions account over the infinite future, never incurring any

observation costs or transactions costs. In this case, with the values of the variables denoted with

asterisks, c∗0+ = X0

h(∞) = χX0, c
∗
t = exp

(
−ρ−rL

α
t
)
c∗0+ = χX∗

t , so X∗
t = exp

(
−ρ−rL

α
t
)
X0. Equation

(16) implies that lifetime utility is

U∗ =
1

1 − α
[h (∞)]αX1−α

0 =
1

1 − α
χ−αX1−α

0 . (A.21)

Now consider an alternative feasible path that sets ct = c∗t for 0 < t ≤ T and at time 0+

transfers to the investment portfolio any liquid assets in the transactions account that will not be

needed to finance consumption until time T . Under this alternative policy, the present value of

consumption up to date T is h (T ) c∗0+ = h (T )χX0, so

X0+ = h (T )χX0. (A.22)

The consumer uses (1 − θX − χh (T ))X0 liquid assets to purchase assets in the investment port-

folio. After paying the transactions cost,

S0+ =
1 − θX − χh (T )

1 + ψb
X0. (A.23)

Suppose that the consumer invests the investment portfolio entirely in the riskless bond. At

time T , the transactions account has a zero balance, and the investment portfolio is worth ST =

exp (rfT ) 1−θX−χh(T )
1+ψb

X0. The consumer transfers the entire investment portfolio to the transactions

account, so that after paying the transactions costs, the balance in the transactions account is

XT+ = (1 − θS)
1 − ψs
1 + ψb

exp (rfT ) [1 − θX − χh (T )]X0. (A.24)

Define P ≡
X

T+

X∗

T
as the ratio of the transactions account balance at time T+ under this alternative

policy to the transactions account balance under the initial policy. Use equation (A.24) and

X∗
T = exp

(
−ρ−rL

α
T
)
X0, along with χ ≡ ρ−(1−α)rL

α
, to obtain

P ≡
XT+

X∗
T

= (1 − θS)
1 − ψs
1 + ψb

F (T ) , (A.25)

where

F (T ) ≡ exp [(rf − rL)T ] [1 − θX exp (χT )] . (A.26)

Equation (A.25) and X∗
T = exp

(
−ρ−rL

α
T
)
X0 implies

XT+ = (1 − θS)
1 − ψs
1 + ψb

F (T ) exp

(
−
ρ− rL
α

T

)
X0 (A.27)

9



Now choose T to maximize F (T ). Differentiate F (T ) and set the derivative equal to zero to obtain

exp
(
−χT̂

)
=

(
1 +

χ

rf − rL

)
θX < 1, (A.28)

where T̂ is the optimal value of T and the inequality follows from the assumption that θX < θX

and the fact that χ
rf−rL

> 0.32 Use equation (A.28) to evaluate F
(
T̂
)

to obtain

F
(
T̂
)

=

(
1 +

χ

rf − rL

)−1−
rf−rL

χ χ

rf − rL
θ
−

rf−rL

χ

X . (A.29)

Use equation (A.28) and the definition of h (T ) to obtain

χh
(
T̂
)

= 1 −

(
1 +

χ

rf − rL

)
θX . (A.30)

The present value of lifetime utility under the alternative plan is

U =
[
1 − (1 − α)κb

(
T̂
)] 1

1 − α

[
h
(
T̂
)]α

[X0+ ]1−α + exp
(
−ρT̂

) 1

1 − α
[h (∞)]α

[
X
T̂+

]1−α
.

(A.31)

Substitute equations (A.22) and (A.27) into equation (A.31) and use the fact that h (∞) = 1
χ

to obtain

U =
[
1 − (1 − α)κb

(
T̂
)] 1

1 − α
h
(
T̂
)

[χX0]
1−α (A.32)

+ exp
(
−ρT̂

) 1

1 − α
χ−α

[
(1 − θS)

1 − ψs
1 + ψb

F
(
T̂
)

exp

(
−
ρ− rL
α

T̂

)
X0

]1−α

.

Now divide the utility under the alternative plan in equation (A.32) by utility under the initial

plan in equation (A.21) and use the definition of χ and the fact that χh (T ) = 1 − exp (−χT ) to

obtain

U

U∗
=
[
1 − (1 − α)κb

(
T̂
)] [

1 − exp
(
−χT̂

)]
+ exp

(
−χT̂

)[
(1 − θS)

1 − ψs
1 + ψb

F
(
T̂
)]1−α

, (A.33)

and then rearrange to obtain

U

U∗
= 1 +

([
(1 − θS)

1 − ψs
1 + ψb

F
(
T̂
)]1−α

−
[
1 + (1 − α)κb

(
T̂
)(

exp
(
χT̂
)
− 1
)])

exp
(
−χT̂

)
.

(A.34)

32From equation (27), θX ≡
[
(1 − θS) 1−ψs

1+ψb

χ
rf−rL+χ

] χ
rf−rL rf−rL

rf−rL+χ , which implies
(
1 + χ

rf−rL

)
θX =

[
(1 − θS) 1−ψs

1+ψb

χ
rf−rL+χ

] χ
rf−rL < 1 because (1 − θS) 1−ψs

1+ψb
< 1, χ

rf−rL
> 0, and hence χ

rf−rL+χ < 1.
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If α < 1, utility under the alternative plan, U , will exceed U∗ if U
U∗ > 1; if α > 1, utility

under the alternative plan, U , will exceed U∗ if U
U∗ < 1. A sufficient condition for U to exceed U∗,

regardless of whether α is less than or greater than one, is33

[
(1 − θS)

1 − ψs
1 + ψb

]
F
(
T̂
)
>
[
1 + (1 − α)κb

(
T̂
)(

exp
(
χT̂
)
− 1
)] 1

1−α
. (A.35)

Multiply both sides of equation (A.29) by (1 − θS) 1−ψs

1+ψb
to obtain

[
(1 − θS)

1 − ψs
1 + ψb

]
F
(
T̂
)

=

[
(1 − θS)

1 − ψs
1 + ψb

χ

rf − rL + χ

](
rf − rL

rf − rL + χ

) rf−rL

χ

θ
−

rf−rL

χ

X (A.36)

Use the definition of θX in equation (27) and the assumption that θX < θX to write equation

(A.36) as
[
(1 − θS)

1 − ψs
1 + ψb

]
F
(
T̂
)

=

(
θX

θX

)−
rf−rL

χ

> 1. (A.37)

Substitute equation (A.37) into equation (A.35) to obtain the following sufficient condition for U

to exceed U∗

(
θX

θX

)−
rf−rL

χ

>
[
1 + (1 − α)κb

(
T̂
)(

exp
(
χT̂
)
− 1
)] 1

1−α
(A.38)

Regardless of whether α is larger or smaller than one, the condition in equation (A.38) is satisfied

if θX < θX and κ < κ, where

κ ≡

(
θX

θX

)− rf−rL

χ
(1−α)

− 1

(1 − α) b
(
T̂
)(

exp
(
χT̂
)
− 1
) . (A.39)

Since θX < θX and κ < κ, the original plan, in which the consumer does not buy any assets in the

investment portfolio, is not optimal.

The proof of statement 1 is now complete.

Proof of statement 3. Suppose that on observation date tj the consumer has
(
Xtj , Stj

)
=(

ω1Stj , Stj
)

so that xtj = ω1. The proof of statement 2b implies that if the consumer sells assets

from the investment portfolio, he will choose
(
Xt+

j
, St+

j

)
=
(
π1St+

j
, St+

j

)
so that xt+

j
= π1 ≥ ω1.

33If α > 1, then κ must be less than κ̂ ≡ 1
α−1

1

b(T̂)(exp(χT̂ )−1)
so that the right hand side of equation

(A.35) is defined. Since we assume that κ < κ in equation (28) and κ̂ =

[
1 −

(
θX

θX

)
−

rf −rL

χ
(1−α)

]
−1

κ > κ,

we have κ < κ̂.
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Applying equation (A.5) at observation date tj rather than time 0, and setting x0 = ω1 and

x0+ = π1 implies that
S
t+j

Stj
=

(1 − θX)ω1 + (1 − θS) (1 − ψs)

π1 + 1 − ψs
. (A.40)

The value-matching condition states that the consumer is indifferent between the initial allocation

with xtj = ω1 and the new allocation with xt+j
= π1 so that

V
(
ω1Stj , Stj

)
= V

(
π1St+j

, S
t+j

)
. (A.41)

Use equation (21), which is based on the homogeneity of the value function, to obtain

S1−α
tj

v (ω1) = S1−α
t+j

v (π1) . (A.42)

Divide both sides of equation (A.42) by S1−α
tj

and use equation (A.40) to obtain

v (ω1) =

[
(1 − θX)ω1 + (1 − θS) (1 − ψs)

π1 + 1 − ψs

]1−α

v (π1) . (A.43)

Observe from equation (A.43) that if θX = θS = 0, then ω1 = π1. In this case, π1 is both a trigger

value and a return value. That is, if xtj < π1 on observation date tj, the consumer will sell assets

from the investment portfolio to make xt+j
= π1.

Proof of statements 4 and 5. The proof of statement 4 follows the proof of statement 2,

and the proof of statement 5 follows the proof of statement 3.

The proof of Proposition 1 is now complete.

To prepare for the proof of Proposition 2, we state and prove the following Lemma.

Lemma 6 If C (tj , τt) ≤ Xtj , then, for sufficiently small θS ≥ 0, ys (tj) = 0.

Proof of Lemma 6. Consider some path for Xt, St, y
s(t), and yb(t), t ∈ [tj,tj+1], and let

X0
t , S

0
t , y

s,0(t), and yb,0(t) denote the values of these variables along this path. Suppose that

C (tj, τt) ≤ X0
tj

and (contrary to what is to be proved) that ys,0 (tj) < 0. Consider a deviation

from ys,0 (tj) < 0 that reduces −ys (tj) to zero so that X
t+j

falls by −ys,0 (tj) (1 − ψs)− θXX
0
tj

and

S
t+j

increases by −ys,0 (tj)+ θSS
0
tj

. Suppose that the consumer invests the additional assets in the

investment portfolio in the riskless bond, which pays a rate of return rf . Thus, at the next ob-

servation date tj+1, the transaction account will have fallen by
[
−ys,0 (tj) (1 − ψs) − θXX

0
tj

]
erLτj

and the investment portfolio will have increased by
[
−ys,0 (tj) + θSS

0
tj

]
erf τj , relative to the orig-

inal path. The deviation at time tj+1 depends on the direction of the transfer along the original

path at time tj+1. (1) If ys,0 (tj+1) < 0, increase −ys (tj+1) by (1 − θS)
[
−ys,0 (tj) + θSS

0
tj

]
erf τj ,

which makes the value of the investment portfolio under the deviation equal to the value under
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the original path. Compared to the original path, the transactions account at time t+j+1 changes

by ξ ≡ − (1 − θX)
[
−ys,0 (tj) (1 − ψs) − θXX

0
tj

]
erLτj + (1 − ψs) (1 − θS)

[
−ys,0 (tj) + θSS

0
tj

]
erf τj .

limθS→0 ξ = (1 − θX) θXX
0
tj
erLτj + (erf τj − (1 − θX) erLτj ) (1 − ψs)

[
−ys,0 (tj)

]
> 0. (2) If the con-

sumer would not have transferred assets in either direction between the investment portfolio and the

transactions account at time tj+1, set ys (tj+1) equal to − (1 − θS)
[
−ys,0 (tj) + θSS

0
tj

]
erf τj−θSS

0
tj+1

(which is negative for θS sufficiently close to zero), so that the value of the investment portfolio

under the deviation equals the value under the original path. Compared to the original path, the

transactions account at time t+j+1 changes by ξ ≡ −
[
−ys,0 (tj) (1 − ψs) − θXX

0
tj

]
erLτj − θXX

0
tj+1

+

(1 − ψs)
(
(1 − θS)

[
−ys,0 (tj) + θSS

0
tj

]
erf τj + θSS

0
tj+1

)
. limθS→0 ξ = [erf τj − erLτj ] (1 − ψs)

[
−ys,0 (tj)

]
+

θXX
0
tj
erLτj − θXX

0
tj+1

. Since ys (tj) = 0 under the deviation, Xtj+1
=
[
X0
tj
− C (tj,τj)

]
erLτj ,

which implies that limθS→0 ξ = [erf τj − erLτj ] (1 − ψs)
[
−ys,0 (tj)

]
+ θXC (tj,τj) e

rLτj > 0. (3)

If yb,0 (tj+1) > 0, the deviation depends on whether (1 − θS)
[
−ys,0 (tj) + θSS

0
tj

]
erf τj is larger

or smaller than yb,0 (tj+1). (3a) If (1 − θS)
[
−ys,0 (tj) + θSS

0
tj

]
erf τj is greater than yb,0 (tj+1),

set ys (tj+1) = − (1 − θS)
[
−ys,0 (tj) + θSS

0
tj

]
erfτj + yb,0 (tj+1) and set yb (tj+1) = 0, so that the

value of the investment portfolio at time t+j+1 is the same for the deviation and for the origi-

nal path. Compared to the original path, the transactions account at time t+j+1 changes by ξ ≡

− (1 − θX)
[
−ys,0 (tj) (1 − ψs) − θXX

0
tj

]
erLτj+(1 − ψs)

(
(1 − θS)

[
−ys,0 (tj) + θSS

0
tj

]
erfτj − yb,0 (tj+1)

)
+

(1 + ψb) y
b,0 (tj+1). limθS→0 ξ = [erf τj − (1 − θX) erLτj ] (1 − ψs)

[
−ys,0 (tj)

]
+(ψs + ψb) y

b,0 (tj+1)+

(1 − θX) θXX
0
tj
erLτj > 0. (3b) If (1 − θS)

[
−ys,0 (tj) + θSS

0
tj

]
erf τj is less than yb,0 (tj+1), set

yb (tj+1) = yb,0 (tj+1) − (1 − θS)
[
−ys,0 (tj) + θSS

0
tj

]
erf τj and set ys (tj+1) = 0 so that the value

of the investment portfolio at time t+j+1 is the same for the deviation and for the original path.

Compared to the original path, the transactions account at time t+j+1 changes by

ξ ≡ − (1 − θX)
[
−ys,0 (tj) (1 − ψs) − θXX

0
tj

]
erLτj + (1 + ψb) (1 − θS)

[
−ys,0 (tj) + θSS

0
tj

]
erf τj .

limθS→0 ξ = [(1 + ψb) e
rf τj − (1 − ψs) e

rLτj ] (1 − θX)
[
−ys,0 (tj)

]
+ (1 − θX) θXX

0
tj
erLτj > 0.

(3c) If (1 − θS)
[
−ys,0 (tj) + θSS

0
tj

]
erf τj equals yb,0 (tj+1), set yb (tj+1) = ys (tj+1) = 0 so that

the value of the investment portfolio at time t+j+1 is θSS
0
tj+1

higher for the deviation than for the

original path. Compared to the original path, the transactions account at time t+j+1 changes by

ξ ≡ −
[
−ys,0 (tj) (1 − ψs) − θXX

0
tj

]
erLτj + θXX

0
tj+1

+ (1 + ψb) y
b,0 (tj+1) . Since

(1 − θS)
[
−ys,0 (tj) + θSS

0
tj

]
erf τj = yb,0 (tj+1) ,

we have limθS→0 −y
s,0 (tj) e

rf τj = yb,0 (tj+1) so that limθS→0 ξ = (ψb + ψs) y
b,0 (tj+1)+θXX

0
tj
erLτj +

θXX
0
tj+1

> 0. Therefore, the deviation dominates the original path in all cases, so ys,0 (tj) < 0

cannot be optimal.

13



Proof of Proposition 2. Consider some path for Xt, St, y
s(t), and yb(t), t ∈ [tj,tj+1],

and let X0
t , S

0
t , y

s,0(t), and yb,0(t) denote the values of these variables along this path. Sup-

pose that xtj < ω1 and (contrary to what is to be proved) X0
tj+1 > 0. Since θ1 > 0, the

consumer will not continuously observe the value of the investment portfolio. That is, τj > 0.

If xtj < ω1 on an observation date tj , then Proposition 1 implies that optimal ys (tj) < 0.

Since X0
t+
j

= X0
tj
− (1 − ψs) y

s,0 (tj) − θXX
0
tj

, we have −ys,0 (tj) = 1
1−ψs

[
X0
t+
j

−X0
tj

+ θXX
0
tj

]
=

1
1−ψs

[
X0
t+j

−C (tj , τj) + C (tj, τj) −X0
tj

+ θXX
0
tj

]
. Then use the fact that e−rLτjX0

tj+1 = X0
t+j

−

C (tj, τj) and Lemma 6 (which implies that since ys,0 (tj) < 0, C (tj , τt) > X0
tj

) to deduce that

−ys,0 (tj) = 1
1−ψs

[
e−rLτjX0

tj+1
+
(
C (tj , τj) −X0

tj

)
+ θXX

0
tj

]
> 1

1−ψs
e−rLτjX0

tj+1 > 0. We will

show that there exists a deviation from this choice that will increase the consumer’s expected

lifetime utility, and hence X0
tj+1

> 0 cannot be optimal.

Consider a deviation in which the consumer reduces ys (tj) by
X0

t
+
j

−C(tj ,τj)

1−ψs
=

e
−rLτjX0

tj+1

1−ψs
and

invests this amount in the riskless bond in the investment portfolio. With this deviation, the

value of the investment portfolio at time tj+1 will exceed its value under the original policy by
X0

tj+1

1−ψs
e(rf−rL)τj and the transactions account will have a zero balance at time tj+1.

The deviation from the original path at time tj+1 depends on the whether, and in which

direction, the consumer would transfer assets between the transactions account and the investment

portfolio under the original path at that time. First, consider the case in which the consumer

transfers assets from the investment portfolio to the transactions account at time tj+1. In this

case, the consumer can increase −ys
(
ttj+1

)
by (1 − θS)

X0
tj+1

1−ψs
e(rf−rL)τj , which leaves the value

of the investment portfolio at time t+j+1 equal to its value on the original path. Compared to

the original path, this deviation will increase the balance in the transactions account at time

t+j+1 by − (1 − θX)X0
tj+1

+ (1 − θS)X0
tj+1

e(rf−rL)τj =
[
(1 − θS) e(rf−rL)τj − (1 − θX)

]
X0
tj+1

, which

is positive for sufficiently small θS ≥ 0. Therefore, the deviation dominates the original path in

this case when θS is sufficiently small.

Second, consider the case in which the consumer would not make any transfers between the in-

vestment portfolio and the transactions account at time tj+1 under the original policy. In this case,

the consumer sets −ys (tj+1) = (1 − θS)
X0

tj+1

1−ψs
e(rf−rL)τj − θSS

0
tj+1

, which is positive for sufficiently

small θS ≥ 0. With this transfer, the value of assets in the investment portfolio at time t+j+1 will

be the same under the deviation as under the original path. Compared to the original path, this

deviation will increase the balance in the transactions account at time t+j+1 by − (1 − θX)X0
tj+1

+

(1 − θS)X0
tj+1

e(rf−rL)τj−(1 − ψs) θSS
0
tj+1

=
[
(1 − θS) e(rf−rL)τj − (1 − θX)

]
X0
tj+1

−(1 − ψs) θSS
0
tj+1

,
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which is positive for sufficiently small θS ≥ 0. Therefore, the deviation dominates the original path

in this case when θS is sufficiently small.

Third, consider the case in which the consumer transfers assets from the transactions account to

the investment portfolio at time tj+1. If yb,0 (tj+1) ≥ (1 − θS)
X0

tj+1

1−ψs
e(rf−rL)τj , the deviation reduces

yb (tj+1) by (1 − θS)
X0

tj+1

1−ψs
e(rf−rL)τj and sets ys (tj+1) = 0, which will leave the value of the invest-

ment portfolio at time t+j+1 under the deviation equal to its value on the original path. Compared to

the original path, this deviation will increase the balance in the transactions account at time t+j+1 by

− (1 − θX)X0
tj+1

+ (1 + ψb) (1 − θS)
X0

tj+1

1−ψs
e(rf−rL)τj =

[
(1 − θS) 1+ψb

1−ψs
e(rf−rL)τj − (1 − θX)

]
X0
tj+1

,

which is positive for sufficiently small θS ≥ 0. Therefore, the deviation dominates the orig-

inal path in this case when θS is sufficiently small. If yb,0 (tj+1) ≤ (1 − θS)
X0

tj+1

1−ψs
e(rf−rL)τj ,

the deviation sets yb (tj+1) = 0 and sets −ys (tj+1) = (1 − θS)
X0

tj+1

1−ψs
e(rf−rL)τj − yb,0 (tj+1) ≥ 0,

which will leave the value of the investment portfolio at time t+j+1 under the deviation equal

to its value on the original path. Compared to the original path, this deviation will increase

the balance in the transactions account at time t+j+1 by − (1 − θX)X0
tj+1

+ (1 + ψb) y
b,0 (tj+1) +

(1 − ψs)

[
(1 − θS)

X0
tj+1

1−ψs
e(rf−rL)τj − yb,0 (tj+1)

]
=
[
(1 − θS) e(rf−rL)τj − (1 − θX)

]
X0
tj+1

+(ψb + ψs) y
b,0 (tj+1),

which is positive for sufficiently small θS ≥ 0. Therefore, the deviation dominates the original path

in this case when θS is sufficiently small.

We have shown that if xtj < ω1, then optimal Xtj+1
= 0. Therefore, xtj+1

= 0 < ω1, which

implies xtj+2
= 0 and so on, ad infinitum.

To prepare for the proof of Proposition 4, we state and prove the following three Lemmas.

Lemma 7 If ys (tj) < 0 immediately after observation date tj, then yb (t) = 0 for all t ∈ (tj , tj+1).

Proof of Lemma 7. Consider some path for Xt, St, y
s(t), and yb(t), t ∈ [tj,tj+1], and

let X0
t , S

0
t , y

s,0(t), and yb,0(t) denote the values of these variables along this path. Suppose that

ys (tj) < 0 and (contrary to what is to be proved) that yb (t) > 0 for some t ∈ (tj, tj+1). Define

t ≡ min
{
t ∈ (tj, tj+1) : yb (t) > 0

}
as the first time during the inattention interval at which yb > 0,

and define t̂ ≡ max
{
t ∈
[
t+j , t

)
: ys (t) < 0

}
as the last time before t at which ys (t) < 0. We will

examine different deviations for the three cases in which −ys,0
(
t̂
)

is respectively, less than, greater

than, or equal to e−rL(t−t̂)yb,0
(
t
)
.

If −ys,0
(
t̂
)
< e−rf(t−t̂)yb,0

(
t
)
, the deviation sets −ys

(
t̂
)

= 0 which reduces the value of the

transactions account at time t̂+ by (1 − ψs)
[
−ys,0

(
t̂
)]
−θXX

0
t̂

and increases the value of the invest-

ment portfolio at time t̂+ by
[
−ys,0

(
t̂
)]

+θXS
0
t̂
. Suppose that the consumer invests the additional

assets in the investment portfolio in the riskless bond, which pays a rate of return rf . At time
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t, the deviation reduces yb
(
t
)

by (1 − θx)
([

−ys,0
(
t̂
)]

+ θXS
0
t̂

)
erf(t−t̂), which makes the value of

the investment portfolio at time t
+

under the deviation equal to its value along the original path.

Compared to the original path, the deviation increases the value of the transactions account at time

t
+

by (1 − θX)
(
− (1 − ψs)

[
−ys,0

(
t̂
)]

+ θXX
0
t̂

)
erL(t−t̂)+(1 + ψb) (1 − θx)

([
−ys,0

(
t̂
)]

+ θXS
0
t̂

)
erf(t−t̂) =

(1 − θX)
[
−ys,0

(
t̂
)] [

(1 + ψb) e
rf(t−t̂) − (1 − ψs) e

rL(t−t̂)
]
+(1 − θX) θXX

0
t̂
erL(t−t̂)+(1 + ψb) (1 − θx) θXS

0
t̂
erf(t−t̂) >

0. If −ys,0
(
t̂
)
> e−rf(t−t̂)yb,0

(
t
)
, the deviation reduces −ys

(
t̂
)

by e−rf(t−t̂)yb,0
(
t
)
, which reduces

the value of the transactions account at time t̂+ by (1 − ψs)
[
e−rf(t−t̂)yb,0

(
t
)]

and increases the

value of the investment portfolio at time t̂+ by e−rf(t−t̂)yb,0
(
t
)
. Again suppose that the con-

sumer invests the additional assets in the investment portfolio in the riskless bond, which pays

a rate of return rf . At time t
+
, the deviation sets yb

(
t
)

= 0, which increases the value of the

investment portfolio at time t
+

by θSS
0
t

under the deviation relative to its value along the orig-

inal path. Compared to the original path, the deviation increases the value of the transactions

account at time t
+

increases by − (1 − ψs)
[
e−rf(t−t̂)yb,0

(
t
)]
erL(t−t̂) + (1 + ψb) y

b,0
(
t
)

+ θXX
0
t

=
[
(1 + ψb) − (1 − ψs) e

−(rf−rL)(t−t̂)
]
yb,0

(
t
)

+ θXX
0
t
> 0.

If −ys,0
(
t̂
)

= e−rf(t−t̂)yb,0
(
t
)
, the deviation sets ys,0

(
t̂
)

= yb,0
(
t
)

= 0, which reduces the value

of the transactions account at time t̂+ by −ys,0
(
t̂
)
(1 − ψs) − θXX

0
t̂

and increases the value of the

investment portfolio at time t̂+ by ys,0
(
t̂
)

+ θsS
0
t̂
. Again, suppose that the consumer invests the

additional assets in the investment portfolio in the riskless bond, which pays a rate of return rf .

Compared to the original path, the deviation increases the value of the investment portfolio at time

t
+

by
[
ys,0

(
t̂
)

+ θsS
0
t̂

]
erf(t−t̂)−yb,0

(
t
)
+θSS

0
t
+ = θsS

0
t̂
erf(t−t̂)+θSS

0
t
+ > 0 and increases the value of

the transactions account at time t
+

by
[
ys,0

(
t̂
)
(1 − ψs) + θXX

0
t̂

]
erL(t−t̂)+(1 + ψb) y

b,0
(
t
)
+θXX

0
t
+

=
[
(1 + ψb) − e−(rf−rL)(t−t̂) (1 − ψs)

]
yb,0

(
t
)
+θXX

0
t̂
erL(t−t̂)+θXX

0
t
+ > 0. Therefore, the original

path could not be optimal and we have proved that optimal yb (t) = 0 for all t ∈ (tj, tj+1) .

Lemma 8 Suppose that θX > 0. If ys (tj) < 0 immediately after observation date tj, then, for

any non-negative θS < θS, where θS > 0 is sufficiently small, ys (t)Xt = 0 for all t ∈ (tj , tj+1).

Proof of Lemma 8. Consider some path for Xt, St, y
s(t), and yb(t), t ∈ [tj,tj+1], and let X0

t ,

S0
t , y

s,0(t), and yb,0(t) denote the values of these variables along this path. Suppose that ys (tj) < 0

and (contrary to what is to be proved) that ys (t)Xt < 0 for some t ∈ (tj, tj+1). Define t to be the

largest such t in that interval, i.e., t ≡ max {t ∈ (tj , tj+1) : ys (t)Xt < 0}. Consider the following

deviation: Eliminate the transfer at time t and instead transfer assets from the investment portfolio

to the transactions account at time t̂ > t where t̂ ≡ min
[
tj+1, t :

∫ t
t
cue

−rL(u−t)du = X0
t

]
.34 This

34Lemma 7 and the definition of t̂ imply that there will no transfers between the investment portfolio and
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deviation increases S
t
+ by −ys,0

(
t
)
+θSS

0
t

and reduces X
t
+ by − (1 − ψs) y

s,0
(
t
)
−θXX

0
t
. Suppose

that the consumer invests the additional assets in the investment portfolio in the riskless bond,

which pays a rate of return rf . Therefore, the deviation increases St̂ by
[
−ys,0

(
t
)

+ θSS
0
t

]
erf(t̂−t)

and reduces Xt̂ by
[
− (1 − ψs) y

s,0
(
t
)
− θXX

0
t

]
erL(t̂−t).

If the consumer were not going to transfer any assets at time t̂ along the original path, then

set −ys
(
t̂
)

= (1 − θS)
[
−ys,0

(
t
)

+ θSS
0
t

]
erf(t̂−t) − θSS

0
t̂
, which will make the value of St̂+ the

same under the deviation as on the original path. This deviation will allow the consumer to

maintain an unchanged path of consumption through time t̂, and will increase the consumer’s

balance in the transactions account at time t̂+ by ξ1 ≡
[
(1 − ψs) y

s,0
(
t
)

+ θXX
0
t

]
erL(t̂−t) − θXX

0
t̂

+

(1 − ψs)
[
(1 − θS)

[
−ys,0

(
t
)

+ θSS
0
t

]
erf(t̂−t) − θSS

0
t̂

]
. limθS→0 ξ1 = (1 − ψs)

[
−ys,0

(
t
)] [

erf(t̂−t) − erL(t̂−t)
]
+

θX

[
X0
t
erL(t̂−t) −X0

t̂

]
≥ 0 because X0

t
erL(t̂−t) −X0

t̂
=
∫ t̂
t
cue

rL(t̂−u)du ≥ 0. If the consumer were go-

ing to transfer any assets from the investment portfolio to the transactions account at time t̂

along the original path, then set −ys
(
t̂
)

= (1 − θS)
[
−ys,0

(
t
)

+ θSS
0
t

]
erf(t̂−t), which will make

the value of St̂+ the same under the deviation as on the original path. This deviation will al-

low the consumer to maintain an unchanged path of consumption through time t̂, while leaving

the balance in the investment portfolio unchanged at that time, and will increase the consumer’s

balance in the transactions account at time t̂+ by ξ2 ≡ (1 − θX)
[
(1 − ψs) y

s,0
(
t
)

+ θXX
0
t

]
erL(t̂−t) +

(1 − ψs) (1 − θS)
[
−ys,0

(
t
)

+ θSS
0
t

]
erf(t̂−t). limθS→0 ξ2 = (1 − ψs)

[
−ys,0

(
t
)] [

erf(t̂−t) − (1 − θX) erL(t̂−t)
]
+

(1 − θX) θXX
0
t
erL(t̂−t) > 0. Finally, if the consumer were going to transfer any assets from the trans-

actions account to the investment portfolio at time t̂ along the original path (which is possible if t̂ =

tj+1 and the stock market falls so sharply in value that xtj+1
> ω2), then consider three cases: (1) if

yb,0
(
t̂
)
> (1 − θS)

[
−ys,0

(
t
)

+ θSS
0
t

]
erf(t̂−t), reduce yb,0

(
t̂
)

by (1 − θS)
[
−ys,0

(
t
)

+ θSS
0
t

]
erf(t̂−t)

and set ys
(
t̂
)

= 0, which will leave the value of the investment portfolio at time t̂+ under the devi-

ation equal to its value under the original policy. Compared to the original policy the deviation will

increase the value of the transactions account at time t̂+ by ξ3 ≡ (1 − θX)
[
(1 − ψs) y

s,0
(
t
)

+ θXX
0
t

]
erL(t̂−t)+

(1 + ψb) (1 − θS)
[
−ys,0

(
t
)

+ θSS
0
t

]
erf(t̂−t). limθS→0 ξ3 =

[
−ys,0

(
t
)] [

(1 + ψb) e
rf(t̂−t) − (1 − θX) (1 − ψs) e

rL(t̂−t)
]
+

θX (1 − θX)X0
t
erL(t̂−t) > 0. (2) if yb,0

(
t̂
)
< (1 − θS)

[
−ys,0

(
t
)

+ θSS
0
t

]
erf(t̂−t), set yb

(
t̂
)

= 0 and

set −ys
(
t̂
)

= (1 − θS)
[
−ys,0

(
t
)

+ θSS
0
t

]
erf(t̂−t) − yb,0

(
t̂
)
, which will leave the value of the in-

vestment portfolio at time t̂+ under the deviation equal to its value under the original policy.

Compared to the original policy the deviation will increase the value of the transactions account

the transactions account between t and t̂.
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at time t̂+ by

ξ4 ≡ (1 − θX)
[
(1 − ψs) y

s,0
(
t
)

+ θXX
0
t

]
erL(t̂−t) + (1 + ψb) y

b,0
(
t̂
)

+ (1 − ψs)
[
(1 − θS)

[
−ys,0

(
t
)

+ θSS
0
t

]
erf(t̂−t) − yb,0

(
t̂
)]

= (1 − θX)
[
(1 − ψs) y

s,0
(
t
)

+ θXX
0
t

]
erL(t̂−t)

+ (1 − ψs) (1 − θS)
[
−ys,0

(
t
)

+ θSS
0
t

]
erf(t̂−t) + (ψb + ψs) y

b,0
(
t̂
)
.

Accordingly,

lim
θS→0

ξ4 = (1 − ψs)
[
−ys,0

(
t
)] [

erf(t̂−t) − (1 − θX) erL(t̂−t)
]

+ θX (1 − θX)X0
t
erL(t̂−t) + (ψb + ψs) y

b,0
(
t̂
)
> 0.

(3) yb,0
(
t̂
)

= (1 − θS)
[
−ys,0

(
t
)

+ θSS
0
t

]
erf(t̂−t), set ys

(
t̂
)

= yb
(
t̂
)

= 0, which will leave the

value of investment portfolio at time t̂+ under the deviation equal to its value under the original

policy. Compared to the original policy the deviation will increase the value of the transac-

tions account by at time t̂+ ξ5 ≡
[
(1 − ψs) y

s,0
(
t
)

+ θXX
0
t

]
erL(t̂−t) + θXX

0
t̂

+ (1 + ψb) y
b,0
(
t̂
)

=
[
(1 − ψs) y

s,0
(
t
)

+ θXX
0
t

]
erL(t̂−t)+θXX

0
t̂
+(1 + ψb) (1 − θS)

[
−ys,0

(
t
)

+ θSS
0
t

]
erf(t̂−t). limθS→0 ξ5 =

[
−ys,0

(
t
)] [

(1 + ψb) e
rf(t̂−t) − (1 − ψs) e

rL(t̂−t)
]

+ θXX
0
t
erL(t̂−t) + θXX

0
t̂
> 0.

The final step is to show that the deviation dominates the original path both in the case in

which t̂ < tj+1 and in the case in which t̂ = tj+1. First, consider the case in which t̂ < tj+1 so that

t̂ = t̃ where t̃ is such that
∫ t̃
t
cue

−rL(u−t)du = X0
t
. For any value of X0

t
> 0, t̃− t > 0, even in the

limit as θS approaches zero. Therefore, limθS→0 ξ1 > 0 and since limθS→0 ξi > 0 for i = 2, 3, 4, 5,

we have shown that the deviation dominates the original path when t̂ < tj+1. Finally, consider the

case in which t̂ = tj+1. In this case, there is a positive probability that the consumer will transfer

assets in one direction or the other between the investment portfolio and the transactions account

and will benefit because limθS→0 ξi > 0 for i = 2, 3, 4, 5. Therefore, the original path cannot be

optimal and we have shown that there is no t ∈ (tj, tj+1) for which ys
(
t
)
Xt < 0. Therefore,

ys
(
t
)
Xt = 0 for all t ∈ (tj, tj+1).

Lemma 9 Suppose that θX > 0. If ys (tj) < 0 and t̂ ≡ max
{
t ∈
[
t+j , tj+1

)
: ys (t) < 0

}
> t+j ,

then for any non-negative θS < θS, where θS > 0 is sufficiently small, optimal Xtj+1
= 0.

Proof of Lemma 9. Since ys (tj) < 0, Lemma 8 implies Xt̂ = 0. Lemma 7 and the

definition of t̂ imply yb (t) = ys (t) = 0 for all t ∈
(
t̂, tj+1

)
. Therefore, − (1 − ψs) y

s
(
t̂
)

=
∫ tj+1

t̂
cue

−rL(u−t̂)du+ e−rL(tj+1−t̂)Xtj+1
, which implies −ys

(
t̂
)
≥ 1

1−ψs
e−rL(tj+1−t̂)Xtj+1

.

Consider some path for Xt, St, y
s(t), and yb(t), t ∈ [tj,tj+1], and let X0

t , S
0
t , y

s,0(t), and yb,0(t)

denote the values of these variables along this path. Suppose that (contrary to what is to be
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proved) X0
tj+1

> 0. We will show that there exists a deviation from this choice that will increase the

consumer’s expected lifetime utility, and hence Xtj+1
> 0 cannot be optimal. Specifically, consider

a deviation in which the consumer reduces ys
(
t̂
)

by 1
1−ψs

e−rL(tj+1−t̂)X0
tj+1

and invests this amount

in the riskless bond in the investment portfolio. With this deviation, the value of the investment

portfolio at time tj+1 will exceed its value under the original policy by
X0

tj+1

1−ψs
e(rf−rL)(tj+1−t̂) and

the transactions account will have a zero balance at time tj+1.

The deviation from the original path at time tj+1 depends on whether, and in which direction,

the consumer would transfer assets between the transactions account and the investment portfolio

under the original path at that time. First, consider the case in which the consumer transfers assets

from the investment portfolio to the transactions account at time tj+1. In this case, the consumer

can increase −ys
(
ttj+1

)
by (1 − θS)

X0
tj+1

1−ψs
e(rf−rL)(tj+1−t̂), which leaves the value of the investment

portfolio at time t+j+1 equal to its value on the original path. Compared to the original path, this

deviation will increase the balance in the transactions account at time t+j+1 by − (1 − θX)X0
tj+1

+

(1 − θS)X0
tj+1

e(rf−rL)(tj+1−t̂) =
[
(1 − θS) e(rf−rL)(tj+1−t̂) − (1 − θX)

]
X0
tj+1

, which is positive for

sufficiently small θS ≥ 0. Therefore, in this case, the deviation dominates the original path when

θS is sufficiently small.

Second, consider the case in which the consumer would not make any transfers between the in-

vestment portfolio and the transactions account at time tj+1 under the original policy. In this case,

the consumer sets −ys (tj+1) = (1 − θS)
X0

tj+1

1−ψs
e(rf−rL)(tj+1−t̂) − θSS

0
tj+1

, which is positive for suffi-

ciently small θS ≥ 0. With this transfer, the value of assets in the investment portfolio at time t+j+1

will be the same under the deviation as under the original path. Compared to the original path,

this deviation will increase the balance in the transactions account at time t+j+1 by − (1 − θX)X0
tj+1

+

(1 − θS)X0
tj+1

e(rf−rL)(tj+1−t̂)−(1 − ψs) θSS
0
tj+1

=
[
(1 − θS) e(rf−rL)(tj+1−t̂) − (1 − θX)

]
X0
tj+1

−(1 − ψs) θSS
0
tj+1

,

which is positive for sufficiently small θS ≥ 0. Therefore, the deviation dominates the original path in

this case when θS is sufficiently small.

Third, consider the case in which the consumer transfers assets from the transactions account

to the investment portfolio at time tj+1. If yb,0 (tj+1) ≥ (1 − θS)
X0

tj+1

1−ψs
e(rf−rL)(tj+1−t̂), the con-

sumer can reduce yb (tj+1) by (1 − θS)
X0

tj+1

1−ψs
e(rf−rL)(tj+1−t̂) and set ys (tj+1) = 0, which will leave

the value of the investment portfolio at time t+j+1 under the deviation equal to its value on the

original path. Compared to the original path, this deviation will increase the balance in the

transactions account at time t+j+1 by − (1 − θX)X0
tj+1

+ (1 + ψb) (1 − θS)
X0

tj+1

1−ψs
e(rf−rL)(tj+1−t̂) =[

(1 − θS) 1+ψb

1−ψs
e(rf−rL)(tj+1−t̂) − (1 − θX)

]
X0
tj+1

, which is positive for sufficiently small θS ≥ 0.

Therefore, the deviation dominates the original path in this case when θS is sufficiently small. If
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yb,0 (tj+1) ≤ (1 − θS)
X0

tj+1

1−ψs
e(rf−rL)(tj+1−t̂), the consumer can set yb (tj+1) = 0 and set −ys (tj+1) =

(1 − θS)
X0

tj+1

1−ψs
e(rf−rL)(tj+1−t̂) − yb,0 (tj+1) ≥ 0, which will leave the value of the investment port-

folio at time t+j+1 under the deviation equal to its value on the original path. Compared to the

original path, this deviation will increase the balance in the transactions account at time t+j+1

by − (1 − θX)X0
tj+1

+ (1 + ψb) y
b,0 (tj+1) + (1 − ψs)

[
(1 − θS)

X0
tj+1

1−ψs
e(rf−rL)(tj+1−t̂) − yb,0 (tj+1)

]
=

[
(1 − θS) e(rf−rL)(tj+1−t̂) − (1 − θX)

]
X0
tj+1

+ (ψb + ψs) y
b,0 (tj+1), which is positive for sufficiently

small θS ≥ 0. Therefore, the deviation dominates the original path in this case when θS is

sufficiently small. Therefore, we have shown that optimal Xtj+1
= 0.

Proof of Lemma 2. Lemma 10 states that the optimal value of φj is positive. Since

τj > 0 as a consequence of the observation cost, there exists some δ > 0 such that between any two

consecutive observation dates, tj and tj+1 = tj + τj, Pr
{
e−rLτjR (tj,τj) >

ω2

ω1

}
≥ δ. Therefore,

since xtj+1
≡

Xtj+1

Stj+1

= e
rLτj

R(tj,τj)

X
t
+
j

−C(tj ,τj)

S
t
+
j

< e
rLτj

R(tj,τj)

X
t
+
j

S
t
+
j

=
x

t
+
j

e
−rLτjR(tj,τj)

≤ ω2

e
−rLτjR(tj,τj)

(where the

final inequality follows from Corollary 1), Pr
{
xtj+1

< ω1

}
≥ δ. Let tk ≥ tj be the first observation

date at which xtk < ω1. Then by Williams35 (1991), p. 233, Pr {tk <∞} = 1 and E {tk} < ∞.

Proof of Proposition 3. Lemma 2 states that eventually xtj < ω1 on an observation date.

Proposition 2 implies that when this event occurs, xtj+1
= 0 on the next observation date and on

all subsequent observation dates, provided that θS ≥ 0 is sufficiently small. Since the optimal

value of τj is simply a function of xtj , τj will be constant when xtj becomes constant.

Proof of Proposition 4. Lemma 2 implies that eventually xtj < ω1 on an observation date.

Therefore, Proposition 1 implies that ys (tj) < 0. Lemma 7 implies that yb (t) = 0 for all t in the

inattention interval (tj , tj+1). Therefore, any automatic transfers during this interval will be from

the investment portfolio to the transactions account at some time t̂ after t+j . Therefore, Lemma

9 implies if automatic transfers take place between observation dates, then Xt+1 = 0 and hence

xtj+1
= 0 < ω1. Therefore, xtj+2

= 0 and so on, ad infinitum. Since the optimal value of τj is

simply a function of xtj , τj will be constant when xtj becomes constant. We conclude the proof

by noting that if automatic transfers do not take place between observation dates, Proposition 3

implies that eventually xtj is absorbed at zero and the time between consecutive observations is

constant.

Proposition 6 Define V
(
0, Stj ;ψs

)
as the value function, for a given value of the transactions

35D. Williams (1991): “Probability Theory with Martingales,” Cambridge Mathematical Textbooks, Cam-

bridge University Press.
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cost parameter ψs, on observation date tj when
(
Xtj , Stj

)
=
(
0, Stj

)
, and define π1 (ψs) as the

optimal return value of x
t+j

for xtj < ω1. Suppose that θS is sufficiently small that for any

admissible value of ψs, if xtj < ω1 on observation date tj, then on all subsequent observation dates

xtj+1
= 0.

1. V
(
0, Stj ;ψs

)
= (1 − ψs)

1−α V
(
0, Stj ; 0

)

2. the optimal observation dates tk = tj + (k − j) τ∗, for k ≥ j, are invariant to ψs

3. π1 (ψs) = (1 − ψs) π1 (0) .

Proof of Proposition 6. Suppose that ψs = 0 and let {S∗
t }
t=∞
t=tj

be the path of the St under

the optimal policy starting from observation date tj when the consumer observes Xtj = 0 and

Stj = S∗
tj

. Let τ∗ be the constant optimal interval of time between consecutive observations so that

observation date tk = tj + (k − j) τ∗, for k ≥ j. For any observation date tk ≥ tj, the transactions

account balance will be Xtk = 0, and immediately after each observation date the transactions

account balance will be Xt+
k

= X∗
t+
k

≡ π1 (0)S∗
t+
k

. Since 0 = X∗
tk+1

= erLτ
∗

(
X∗
t+
k

− C (tk, τ
∗)
)
, we

have C (tk, τ
∗) = X∗

t+
k

.

Now let ψs take an arbitrary admissible value and suppose that the consumer continues to

observe the value of the investment portfolio on dates tk = tj +(k − j) τ∗, for k ≥ j, and maintains

the same path of St, i.e., that St = S∗
t for t ≥ tj. Since the consumer will make the same transfers

out of the investment portfolio as in the initial case with ψs = 0, a feasible path of the transaction

account balance immediately after each observation date would be X
t+
k

= (1 − ψs)X
∗
t+
k

, which

supports a feasible path of consumption of C (tk, τ
∗) = (1 − ψs)X

∗
t+
k

. Therefore, V
(
0, Stj ;ψs

)
≥

(1 − ψs)
1−α V

(
0, Stj ; 0

)
.

A similar argument starting with an arbitrary admissible value of ψs less than one implies

V
(
0, Stj ; 0

)
≥
(

1
1−ψs

)1−α
V
(
0, Stj ;ψs

)
. Therefore, V

(
0, Stj ;ψs

)
≥ (1 − ψs)

1−α V
(
0, Stj ; 0

)
≥

V
(
0, Stj ;ψs

)
, which implies V

(
0, Stj ;ψs

)
= (1 − ψs)

1−α V
(
0, Stj ; 0

)
(statement 1). We showed

that by maintaining the same observation dates when ψs is positive as when ψs = 0 allows a path

of consumption that achieves V
(
0, Stj ;ψs

)
≥ (1 − ψs)

1−α V
(
0, Stj ; 0

)
= V

(
0, Stj ;ψs

)
. Similarly,

by maintaining the same observation dates when ψs = 0 as when ψs is positive allows a path

of consumption that achieves V
(
0, Stj ; 0

)
≥
(

1
1−ψs

)1−α
V
(
0, Stj ;ψs

)
= V

(
0, Stj ; 0

)
. Therefore,

we have proven statement 2. For any observation date tk ≥ tj , xt+
k

= π1 (ψs). Therefore,

π1 (ψs) =
X

t
+

k

S
t
+

k

=
(1−ψs)X∗

t
+

k

S∗

t
+

k

= (1 − ψs) π1 (0), which proves statement 3.

Proof of Proposition 5. At each observation date tj the consumer chooses the share

φj of the investment portfolio to allocate to equity to maximize Etj
{
V
(
Xtj+1

, Stj+1

)}
subject to
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the constraints 0 ≤ φj ≤ 1. Using equations (2) and (3), we can write the Lagrangian for this

constrained maximization as

Lj=Etj

{
V

(
Xtj+1

, φj
Ptj+1

Ptj
St+j

+ (1 − φj) e
rf τjSt+j

)}
+ δjSt+j

φj + ξjSt+j
(1 − φj) (A.44)

where δjSt+j
≥ 0 is the Lagrange multiplier on the constraint φj ≥ 0 and ξjSt+j

≥ 0 is the Lagrange

multiplier on the constraint φj ≤ 1. Differentiating the Lagrangian in equation (A.44) with respect

to φj , setting the derivative equal to zero, and then dividing both sides by St+j
yields

Etj

{
VS
(
Xtj+1

, Stj+1

)(Ptj+1

Ptj
− erf τj

)}
= ξj − δj . (A.45)

Next, we prove the following lemma.

Lemma 10 φj > 0 and δj = 0.

Proof of Lemma 10. We will proceed by contradiction. Suppose that φj = 0, which

implies that ξj = 0 and that Stj+1
is known at time tj. Therefore, equation (A.45) can be

written as VS
(
Xtj+1

, Stj+1

)
Etj

{(
Ptj+1

Ptj
− erf τj

)}
= −δj ≤ 0, which is a contradiction because

VS
(
Xtj+1

, Stj+1

)
> 0 and, by assumption, the expected equity premium, Etj

{(
Ptj+1

Ptj
− erf τj

)}
, is

positive. Therefore, φj must be positive, which implies δj = 0.

To replace the marginal valuation of the investment portfolio, VS
(
Xtj+1

, Stj+1

)
, by a function

of the marginal utility of consumption, first use the definition of the marginal rate of substitution

m
(
xtj+1

)
to obtain

VS
(
Xtj+1

, Stj+1

)
= m

(
xtj+1

)
VX
(
Xtj+1

, Stj+1

)
. (A.46)

Then use the envelope theorem to obtain

VX
(
Xtj+1

, Stj+1

)
=
[
1 −

(
1{yb(tj+1)>0} + 1{ys(tj+1)<0}

)
θX

]
(1 − (1 − α)κb (τj+1))U

′ (C (tj+1, τj+1))

(A.47)

which implies that VX
(
Xtj+1

, Stj+1

)
, the increase in expected lifetime utility made possible by a

one-dollar increase in Xtj+1
, equals the increase in utility that would accompany an increase of

1−
(
1{yb(tj+1)>0} + 1{ys(tj+1)<0}

)
θX dollars in C (tj+1, τj+1). That is, if consumer transfers assets

between the investment portfolio and the transactions account at time tj+1, a one-dollar increase

in Xtj+1
would allow C (tj+1, τj+1) to increase by 1 − θX dollars; otherwise, C (tj+1, τj+1) can

increase by one dollar. Differentiate equation (16) with respect to C (tj, τj) and use equation (**)

in footnote 17 to obtain

U ′ (C (tj , τj)) = c−α
t+j

. (A.48)
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Substitute equation (A.47) into equation (A.46) and use equation (A.48) to obtain

VS
(
Xtj+1

, Stj+1

)
= m

(
xtj+1

) [
1 −

(
1{yb(tj+1)>0} + 1{ys(tj+1)<0}

)
θX

]
(1 − (1 − α)κb (τj+1)) c

−α
t+j+1

.

(A.49)

Substituting the right hand side of equation (A.49) for VS
(
Xtj+1

, Stj+1

)
in equation (A.45) and

using Lemma 10 to set δj = 0 yields

Etj

{
m
(
xtj+1

) [
1 −

(
1{yb(tj+1)>0} + 1{ys(tj+1)<0}

)
θX

]
(1 − (1 − α)κb (τj+1)) c

−α
t+j+1

(
Ptj+1

Ptj
− erf τj

)}
= ξj.

(A.50)

In standard models without observation costs and transfer costs, and without the constraints 0 ≤

φj ≤ 1, the corresponding Euler equation, which is widely used in financial economics, is

Et

{
c−αs

(
Ps
Pt

− erf (s−t)

)}
= 0 for s > t. (A.51)

In general, the Euler equation in the presence of observation costs and transactions costs in

equation (A.50) differs from the standard Euler equation in equation (A.51) in three ways: (1)

the Euler equation in equation (A.50) contains the Lagrange multiplier on the constraint φj ≤

1 but this Lagrange multiplier does not appear in the standard Euler equation; (2) the Euler

equation in equation (A.50) contains the marginal rate of substitution m
(
xtj+1

)
, which is a random

variable, but this marginal rate of substitution is absent (or implicitly equal to a constant) in

the standard Euler equation;36 (3) the Euler equation in equation (A.50) contains the term 1 −(
1{yb(tj+1)>0} + 1{ys(tj+1)<0}

)
θX , which reflects the additional fixed transfer cost associated with

having an additional dollar in the transactions account; (4) the Euler equation in equation (A.50)

contains the term 1 − (1 − α)κb (τj+1), which reflects the utility cost of the next observation; and

(5) in the presence of observation costs, the Euler equation holds only for rates of return between

observation dates, whereas the Euler equation in the standard case holds for rates of return between

any arbitrary pair of dates because all dates are observation dates in the standard case. We show

that in the long run in an interesting special case, the first four of these differences disappear.

Before showing this result, we prove the following lemma.

Lemma 11 Suppose that θS is sufficiently small, in the sense described in the proof of Proposition

2. If xtj ≤ ω1, then (i) φj < 1 if α >
µ−rf
σ2 and (ii) φj = 1 if α ≤

µ−rf
σ2 .

36If assets could be transferred without any resource costs (i.e., if θX = θS = ψs = ψb = 0), then

m
(
xtj
)

= 1 at all observation dates, and hence can be eliminated from equation (A.50).
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Proof of Lemma 11. Proposition 2 implies that if xtj ≤ π1, then xtj+1
= 0. The optimal

value of φj, 0 ≤ φj ≤ 1, maximizes Etj
{
V
(
Xtj+1

, Stj+1

)}
= 1

1−αEtj

{
S1−α
tj+1

v (0)
}

, which is equiv-

alent to maximizing ϕ (φj;α) ≡ 1
1−αEtj

{[
φj

Ptj+τj

Ptj
+ (1 − φj) e

rf τj

]1−α}
. Define α∗ such that

arg maxφj
ϕ (φj ;α

∗) = 1 and note that ϕ′ (1;α∗) = 0.

Differentiating the definition of ϕ (φj ;α) with respect to φj and setting φj = 1 yields

ϕ′ (1;α) = Etj

{(
Ptj+τj
Ptj

)1−α
}

− erf τjEtj

{(
Ptj+τj
Ptj

)−α
}
.

Use the fact that
Ptj+τj

Ptj
is lognormal to obtain

ϕ′ (1;α) = exp

[
(1 − α)

(
µ−

1

2
ασ2

)
τj

]
− erf τj exp

[
−α

(
µ+

1

2
(−α− 1)σ2

)
τj

]
.

Further rearrangement yields

ϕ′ (1;α) = exp

[(
−αµ+ rf −

1

2
α (1 − α) σ2

)
τj

]
×
[
exp ((µ− rf ) τj) − exp

(
ασ2τj

)]
,

which implies that

ϕ′ (1;α) ⋚ 0 as α R α∗ ≡ (µ− rf ) /σ
2.

Differentiate ϕ (φj ;α) twice with respect to φj to obtain

ϕ′′ (φj;α) = −αEtj

{(
φj
Ptj+τj

Ptj
+ (1 − φj) e

rf τj

)−α−1(Ptj+τj
Ptj

− erf τj
)2
}
< 0,

which implies that ϕ (φj ;α) is concave. If α > α∗, then ϕ′ (1;α) < 0, so the concavity of ϕ (φj ;α)

implies that the optimal value of φj is less than one and the Lagrange multiplier on the constraint

φj ≤ 1 is ξj = 0. If α ≤ α∗, then ϕ′ (1;α) ≥ 0, so the concavity of ϕ (φj ;α) implies that the

optimal value of φj equals one. If α < α∗, the Lagrange multiplier on the constraint φj ≤ 1 is

ξj > 0.

Suppose that θS is sufficiently small so that in the long run, the stochastic process for xtj

is absorbed at zero. Lemma 11 implies that if the coefficient of relative risk aversion α ex-

ceeds
µ−rf
σ2 , then in the long run the constraint φj ≤ 1 does not bind, and hence ξj = 0. In

this case, the first of the five differences between the Euler equation in equation (A.50) and the

standard Euler equation disappears. In addition, in the long run xtj = 0 on each observation

date tj so (1) m
(
xtj
)

= (1 − ψs)
1−θS

1−θX
on each observation date, (2) the consumer sells assets

from the investment portfolio on each observation date so 1 −

(
1{

yb
tj+1

>0
} + 1{

ys
tj+1

<0
}
)
θX =

1− θX on each observation date, and (3) the time between consecutive observations is constant so

1 − (1 − α)κb (τj+1) is constant. Using the fact that ξj = 0 and dividing both sides of equation

(A.50) by (1 − ψs) (1 − θS) (1 − (1 − α)κb (τj+1)), proves proposition 5.
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