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0. ABSTRACT

This paper studies the properties of maximum likelihood estimates of cointegrated
systems. Alternative formulations of such models are considered including a new triangular
system error correction mechanism. It is shown that full system maximum likelihood
brings the problem of inference within the family that is covered by the locally asymptotic-
ally mixed normal asymptotic theory provided that all unit roots in the system have been
eliminated by specification and data transformation. This result has far reaching conse-
quences. It means that cointegrating coefficient estimates are symmetrically distributed
and median unbiased asymptotically, that an optimal asymptotic theory of inference
applies and that hypothesis tests may be conducted using standard asymptotic chi—squared
tests. In short, this solves problems of specification and inference in cointegrated systems
that have recently troubled many investigators.

Methodological issues are also addressed and these provide the major focus of the
paper. Our results favor the use of full system estimation in error correction mechanisms
or subsystem methods that are asymptotically equivalent. They also point to disadvan-
tages in the use of unrestricted VAR’s that are formulated in levels and in certain single
equation approaches to the estimation of error correction mechanisms. Unrestricted VAR’s
implicitly estimate unit roots that are present in the system and the relevant asymptotic
theory for the VAR estimates of the cointegrating subspace inevitably involves unit root
asymptotics. Single equation error correction mechanisms generally suffer from similar dis-
advantages through the neglect of additional equations in the system. Both examples point
to the importance of the proper use of information in the estimation of cointegrated sys-
tems. In classical estimation theory the neglect of information typically results in a loss of
statistical efficiency. In cointegrated systems deeper consequences occur. Single equation
and VAR approaches sacrifice asymptotic median unbiasedness as well as optimality and
they run into inferential difficulties through the presence of nuisance parameters in the
limit distributions. The advantages of the use of fully specified systems techniques are
shown to be all the more compelling in the light of these alternatives.

Key words: Cointegration; Error correction mechanisms; LAMN family; Maximum likeli-
hood; SUR systems; Unit roots.



1. INTRODUCTION

Cointegration systems have recently been attracting the attention of both macro-
economists and econometricians. The field is unusually active with theoretical and
empirical research going forward together. It has proved particularly interesting that well
defined links exist between cointegrated systems, vector autoregressions (VAR’s) and error
correction models (ECM’s). These links have served to bring different econometric
methodologies closer together. But there is still little agreement amongst researchers about
how best to proceed in empirical research. Is it appropriate to continue to use unrestricted
VAR’s in estimation and if so what theory of inference applies? Is it better to estimate a
model in ECM format rather than as an unrestricted VAR? If so, can one improve further
on the ECM methodology?

This paper attempts to address some of the questions above. Qur approach is to
compare the properties of full information estimation of ECM systems with alternatives
such as unrestricted VAR’s and direct estimation of cointegrating regressions. The critical
differences between these procedures have not come to light in the existing literature. But
it turns out that they are easily understood. In some cases, such as unrestricted VAR esti-
mation, unit roots are implicitly or explicitly estimated along with other parameters. In
other cases such as properly formulated ECM’s they are not. This difference, which is
rather obvious from the formulation of the two systems once it is pointed out, has a critical
effect on the relevant asymptotic behavior of the likelihood function. In the former case
one cannot avoid a unit root theory in the characterization of the likelihood. This puts us
in the class of models which I have described elsewhere in Phillips (1989) as a limiting
Gaussian functional (LGF) family. In the latter case, however, the problem turns out to
belong to the locally asymptotically mixed normal (LAMN) family. The distinction is crit-
ical because in the latter case an optimal theory of inference exists (see Jeganathan (1980,

1982, 1988), Basawa and Scott (1983, 1984), Davies (1986) and LeCam (1986)). Whereas



in the former this is not so. Moreover, in the LAMN case, conventional asymptotic theory
which relies on tabulations of the chi-squared distribution forms a valid asymptotic basis
of inference. In the LGF case this is again not so and tabulations of nonstandard distribu-
tions are required as well as elimination of surplus nuisance parameters.

The present paper is related to a recent study by Johansen (1988). Johansen consid-
ers a nonstationary Gaussian VAR with some unit roots. He obtains the limit distribution
of the maximum likelihood estimator (MLE) of the cointegrating vectors and the limit dis-
tributions of likelihood ratio tests of the dimension of the cointegrating space and of linear
hypotheses about the coefficients. We also deal with full system maximum likelihood (ML)
estimation of cointegrated systems and derive an asymptotic theory for our estimators and
tests. But we distinguish between those cases where information about the presence of unit
roots is used in estimation and those where it is not. This enables us to compare structural
equation methods like FIML (which impose no unit roots) and full system ML estimation
of ECM models (which impose a certain number of unit roots by virtue of their construc-
tion). These comparisons are facilitated by the use of a triangular system ECM
representation which is quite different from the Engle—Granger (1987) representation that
is employed by Johansen. Our system is linear in the parameters that define the cointe-
gration space, whereas in the Engle—Granger representation the same parameters appear
non linearly. This simplification means that explicit formulae for the estimators are
usually available in our set up and the limit distribution theory is easy to derive. More
general parametric and nonparametric models for the errors are also easily accommodated
in our approach and, as we shall see, involve few complications over the simple case of iid
errors. Finally, the triangular structure provides important insights concerning the special
conditions under which different estimators are related, in particular when systems esti-
madtors are equivalent or asymptotically equivalent to certain subsystem estimators. This
helps to furnish a link between the models and methods that we discuss here and the single

equation ECM models that are common in empirical research.



The paper is organized as follows. All of our results are given in Section 2. This
section sets up and motivates the triangular system ECM representation referred to above.
A prototypical model with iid errors is used to demonstrate the properties of full system
estimation of the ECM under a Gaussian likelihood. Theorem 1 gives the asymptotic dis-
tribution of the MLE of the cointegrating matrix and the parameters on which it depends,
in this simple environment. The remainder, and the bulk, of Section 2 is organized as a
series of remarks on this theorem. These serve {0 relate the results to other approaches like
structural equation methods, unrestricted VAR’s, nonlinear least squares, and subsystem
and single equation approaches. We also show how the simplifying structure of the proto-
typical model and the conclusions of Theorem 1 continue to apply in the general context of
a cointegrated system with linear process errors. Links witﬁ simultaneous equation
methods and empirical ECM methodology are also explored. Many of the remarks empha-
size heuristics and these are intended to help in understanding the similarities and the
differences between conventional structural equation econometric theory and cointegrated
systems theory. Some conclusions and recommendations for empirical research that emerge
from the study are given in Section 3. Proofs are given in the Appendix.

A word on notation. We use vec(A) to stack the rows of a matrix A into a
column vector, A* to represent the complex conjugate transpose of A, P A to represent
the orthogonal projection operator onto the range space of A, ||A|| to sigrify the matrix
norm (tr(A'A))I/ 2 , [x] to denote the smallest integer < x and (x)in to represent the
collection (xt X, _ys +-+ ). We use the symbol "2 " to signify weak convergence, the
symbol " = " to signify equality in distribution and the inequality " > 0 " to signify posi-
tive definite when applied to matrices. Stochastic processes such as the Brownian motion
W(r) on [0,1] are frequently written as W to achieve notational economy. Similarly, we
write integrals with respect to Lebesgue measure such as [ (l)W(s)ds more simply as f (l]W .
Vector Brownian motion with covariance matrix 0 is written " BM(Q) . We use P(-)

to signify the probability measure of its argument, E to denote wide sense conditional



expectation and I(1) to signify a time series that is integrated of order one. Finally, all

limits given in the paper are taken as the sample size T 4w .

2. COINTEGRATED MODELS, THE TRIANGULAR SYSTEM ECM
REPRESENTATION, ESTIMATION AND INFERENCE

Let y, be an n—vector I(1) process and u, be an n—vector stationary time series.
We partition these vectors into subvectors of dimension n, and n, with n = n; + 1

and assume that the generating mechanism for ¥y is the cointegrated system
(1) Y1t = Bygg T uyy
(2) Aygy = lg; -

Here B is an n; xn, matrix of coefficients and (1) may be thought of as a stochastic
version of the linear long run equilibrium relationship Vi = B-‘fzt , with u,, represent-
ing stationary deviations from equilibrum.

The ECM system arising from (1) and (2) can be written in triangular system

format as follows:

(3) Ay, =-EAy, ; +v,

where

Equation (3) is a very convenient representation of the ECM and has several advantages
over the autoregressive ECM representation that is used in Engle and Granger (1987) and
Johansen (1988). First, the block triangular format of (3) ensures that generalized least
squares (GLS) procedures are asymptotically equivalent to ful! maximum likelihood esti-

mates. This is already a well known result of simultaneous equations theory in stationary



models with iid errors (e.g. Lahiri and Schmidt (1978)). When v, in (3) is stationary

t
rather than iid its serial covariance properties need to be attended to. This can be
achieved by parametric maximum likelihood, by semiparametric corrections (see Phillips
and Hansen (1989)) or by generalized least squares in the frequency domain (see Phillips
(1988c)). The latter method is especially appealing since finite Fourier transforms preserve
the triangular structure of (3) and enable us to deal with rather general stationary errors

u, on the original system. Second, the cointegrating coefficient matrix A and submatrix

t
B appear linearly as the coefficients of y, , in (8). This is a great advantage because it
simplifies estimation and makes the asymptotic theory much easier to follow. Third, all
short—run dynamic behavior is absorbed in the residual v, of (3). Again this simplifies
the theory because questions of optimal inference about the long—run coefficients B are
formally the same when vy is a general stationary process as they are when v, is iid. We
shall discuss this more fully in Remarks (j)}—({) below, which deal with models with station-
ary time series errors and show how an approximate pseudo—model with iid errors may be
constructed when vy is a stationary linear process.

For the reasons just given let us now assume that (3) is a prototypical system whose
error vector v, = iid N(0,22) with 2> 0. The normality theory is, as usual, needed for
the optimality theory but it is not necessary for the development of the asymptotics. The

Gaussian log likelihood of (3) is
T ‘-1
(4) L(B,0) = ~(T/2)a| | - (1/2)E1(Ay, + EAy,_,) 07} (Ay, + BAy, ).

Partition 0 conformably with y and define £, =0, - 0,0 550, - Then
L(B,?) may be written as the sum of the conditional log likelihood

T -1 ’
() —T/2)&| nll.gl - (1/2)21 (ylt —Byy 4 — 912922AY2t)

_ 1
071,907y — Bygy g — 0y9f998Y0)



and the marginal likelihood
(6) —{(T/2)t| R0, | — (1/2)EL Ays 051A
22 15239250t -

Of course, the latter does not depend on the matrix B because of the triangular structure
of (3). Moreover, provided B is unrestricted it is apparent from (5) that the maximum
likelihood estimate of B is equivalent to the ordinary least squares (OLS) estimate from

the linear model

(7) Y1t = BYgy1 ¥ CO¥ + V1.
where C = 91295% and vy o0 =V — ﬂlzﬂgév% . Partitioned regression on (7) now
yields in an obvious notation the formula
; -1 2 -1
®) T(B-B) = (T7V4,Q Yp) [T 2¥5Q,,Y,

where Y, is the matrix of observations of y,, , . If there are restrictions on B, which
lead, let us say to the form vec B = Ja for some p—vector « and known matrix J of
rank p, then optimal estimation reguires the use of a consistent estimate 911-2 of the
error covariance matrix in (7). Such an estimate may be obtained by a preliminary unre-

stricted least squares regression on (7). We then have
A 0 ’ -1 A0 ’ ’
a=[J (911.2 8 YSQAY ] I (911.2 ® Y2QA)VEC(Y1)] :

To extract the relevant asymptotics we use the fact that the innovations v, in (3)

satisfy the invariance principle
~1/24[T1] _
(9) T AL S(r) = BM(Q) .

This will certainly be true when v, is 1id(0,2) or a strictly stationary and ergodic

sequence of martingale differences with conditional variance matrix §© —see Billingsley



(1968, Theorem 23.1). It also holds for much more general stationary processes, as discuss-
ed for example in Phillips and Durlauf (1986). We partition the limit process S conform-
: P ’ ’ — -1
ably with Q as S’ =(S{,S3) and define the component process 5; o =5; —{1;4{l9,5,
= BM(Qll-z) , which is independent of S, . Using arguments analogous to those devel-

oped in Phillips (1986, 1987) we obtain the following asymptotics:

THEOREM 1.

, 1
(10) T(B-B) 4 ( fédsl_zsé)[f})%sé] = IgsoN(O0, 0. ® G)AP(C)

where G = (f (1]8285)_1 and P is its associated probability measure. When vec B = Ja

for some p—vector a and matriz J of rank p we have

. P TS DRI b RS | 1
(11) T(d—a) » [J @7 e joszsz).]] pro7t e nlds; e,

= 1o [o, [J'(Qﬁ.z e G)J]_l] dP(G) .

REMARK (a). The mixture representation of the limit distribution given in (10) is a
simple consequence of the independence of the Brownian motions 81.2 and 52 . The
mixing variate may be a matrix as in {10) or a scalar as in the following representation

established in Phillips (1989, Theorem 3.2}:

-1
-1 1
Ig>0N(O: 8011.2 ® 922)dP(g) , B=¢ [fowzwé] €

where W, = BM(I ) and e is any unit vector (with unity in one coordinate position and

zeroes elsewhere).

REMARK (b). The asymptotics of Theorem 1 fall within the LAMN theory for the likeli-
hood ratio as developed by Jeganathan (1980, 1982), LeCam (1986) and Davies (1986).
This theory tells us that the likelihood ratio may be locally approximated by a quadratic in

which the Hessian has a random limit. This leads to a random information matrix in the



limit and mixed normal asymptotics. It is worth showing the details in the present case.
Let (Hg, Hyp) be matrices of deviations for the parameter matrices (B,Q2). Set
hp = vec(Hg) , by = Dt vec(Hp) and h’ = (hy, hy) where Dt = (D'D)_lD’ is the
Moore Penrose inverse of the duplication matrix D . We expand the likelihood ratio that
is based on (4) to the second order as follows:

An(h) = L(B + TlH,, 0 + T-/%8,) - 1(B,Q)

T — B’ 0 !
—1n1/2 -1 -1+, ~1
= [(1/2)u{n T2, - )07 tH ) - e{EG(TlYs V)0 E}]
15 o1 -1 2y, o,
+ (1/2)[—(1/2)tr(ﬂ Ho0 UH) - tr{0 B (T 24 Y, HE }] +o,(1)

(12) =h'wy—(1/2)b’Qph +o.(1)

—1sT ,
where Mvv =T “Erv,v! X2 = [y20, RER) Y2T_1] )

14V
wip| |[-E0o e nrlslv, ey,
wr = = -1, o1 1/2 ’
Wor (1/2)D(2 " e Q " )vec{T (MW—Q)}
(E07lBe T2y, 0
Qp= 1 -1
0 1/2)p (@ e YD
Now
(13) (WT’ QT) * (w,Q)
where
| 1
LA (E'Q" e )fyds e S,
w = =
wy | [(1/2)D (a7t & 07V)N(0, 2P (0 & )

and



’ —~1 1 ’
E'QE e /15,85 0

0= 0 /2D (@ e 1)D

The approximation (12) and the limit behavior given in (13) ensure that the log likelihood
ratio belongs to the LAMN family of Jeganathan (1980).

Note that if we let ¥, denote the o—field generated by {S(r):r<t} and

t
var(- |7,) signifies the conditional variance relative to 7, then we have
(14) rvar(E- 0 las e S, |7,) = E‘Q7IE @ 115, (£)S,(t)"dt
0 2°¢/ 072V'/72 ’

This follows because the increments in a Brownian motion are independent of its past his-

o=l Aoy _ o1
tory. But note that E-Q"S=Q ] 2(S ~ 0,9f5585) = ] 58 9 = BM(Ql1 o) and

this process is independent of S, . The random matrix (14) is the leading submatrix of
Q. It is also a finite dimensional element of the quadratic variation process of
ol
1697].548;.5 S
bracketed process

9 Thus, in the notation of Metivier (1982) we have the square

-1 ;
eS] "QIIZQIOSS

[fo 11.295

With this interpretation, the leading submatrix of Q is a natural candidate as a random
variance for the limit process Wy -

In addition we have
var(w,) = (1/4)D" (0 e 7)[2P (R @ Q))(O 0 a~1p = (1/2)p (@ e )

corresponding to the lower diagonal submatrix of Q .
Finally, the inverse of Q is the information matrix

1g g1
a1 _ | 1.2 UgSo8y) 0

Q Is
0 opt (e QD
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The leading submatrix of Q_1 is random and signifies random information in the limit for
the maximum likelihood estimates of the cointegrating matrix B . This corresponds with
the normal mixture given in {10). The lower diagonal submatrix gives the asymptotic var-
iance matrix of the maximum likelihood estimates of the non redundant elements of . If

~

Q is the corresponding element of {2 we have
JT(2-0) = N(0, 2P(R @ Q) .

This final result refers to the model (3) with error vector A iid(0,82) . In the general

. Q) is the long—run variance of vy and kernel methods are usually

employed in its estimation to deal with the fact that 1 depends on the entire serial covar-

case of stationary v

iance structure of v, . This naturally affects the asymptotics for estimates of {2 . But the
discussion above continues to apply in this case for the estimation of B .

The sense in which the estimator B is optimal under Gaussian assumptions is quite
precise, just as in traditional ML estimation with a non random information matrix. A
theory of optimality for inference from stochastic processes that is suitable in the present
context has been developed by Sweeting (1983) and is discussed by Prakasa Rao (1987).
We shall rely on their treatment here. We first observe that from the proof of Theorem 1
it is apparent that convergence to the limit distribution in (10) is uniform in B since the

weak convergence results that are used there are independent of and hence uniform in B .

n,xn
If Rp denotes the limit probability measure in (10), X is the class of sets in R 12

that are convex and symmetric about the origin and M € X then

P(T(B-B) € M) - Pg(M)

" Tty xDy

where . " signifies uniform convergence on compact subsets of R . Nowlet T

be a class of estimators BT of B for which

T(By —B) 2. "B



11

n,xn
where B is a limit variate with probability measure QB on R! 2 and " *u " signi-

n,xn
fies uniform weak convergence (with respect to B€eR 172 ). Under Gaussian
assumptions the MLE B is optimal asymptotically in the class 7 in the sense that for

any alternative estimate By whose limit variate is 75 we have the inequality

Qp(M) ¢ Rg(M)

Iy Dy
VMeHd and VBe R

. This implies that the MLE is efficient in the usual sense of
having an asymptotic maximum concentration probability for all estimators in the class

7. When v, is not Gaussian Theorem 1 still holds provided partial sums of vy satisfy

t
the invariance principle (9). But the Gaussian estimator B is no longer optimal. In this
event the possibility of adaptive estimation exists. It has been explored recently in a deep

and extensive study by Jeganathan (1988).

REMARK (c) Note that the coefficient matrix E in (3) is known and the ECM is just
another algebraic representation of the original cointegrated system (1) and (2). The MLE
B may therefore be obtained by applying ML directly to this original system rather than
(3). ML estimation requires full specification of the model that generates u, and the sys-
tem must be estimated as specified with the n, unit roots eliminated as they arein (3). If
the unit roots are estimated, either explicitly or implicitly, then the asymptotic distribu-
tion of the maximum likelihood estimator of B is different from that of B and, with one
important exception that will be discussed below, no longer belongs to the LAMN family.

To see this it is simplest to write (1) and (2) in simultaneous equations format as

0

It is also convenient for the purposes of this demonstration to continue to assume serially

independent errors and to set u, = iid(0,%) . Then (15) is a conventional simultaneous
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system with predetermined variables y,, . Note that (15), like (3), is in triangular
format and the second block is in reduced form. Assuming that there are no restrictions on
II or %, the full information maximum likelihood estimator (FIML) of B in (15) is
simply the subsystem limited information maximum likelihood {LIML) estimator of B
from the first n, equations. We shall derive the asymptotic distribution of this estimator.

As in the stationary simultaneous equations case, subsystem LIML is asymptotically
equivalent to subsystem three stage least squares (3SLS)—the proof of this statement
follows the same lines as the proof given by Sargan (1988, Theorem 5, p. 120) for the usual
stationary case with some minor changes to the standardization factors for sample moment
matrices. Furthermore, when there are no restrictions on the matrix B, subsystem 3SLS
is equivalent to equation by equation two stage least squares (2SLS). The 2SLS estimator
of B can be written quite simply as the matrix quotient Bl = YiP_le(YéP__lY2)_1
where P_, is the orthogonal projector onto the range of Y, . The asymptotic distribu-

tion theory for this estimator is straightforward and leads directly to the following result.

THEOREM 2. If B is the FIML estimator of B in the simuligneous system (15) then

. -1
T(B-B) » (A/}dSSy) [jéSZSé]

(16) =(/ édsl-zsé){f észsé] + 5,550 (l}dszsé)[f észsé] -
The FIML estimator of B in (15} is asymptotically equivalent to that of the MLE in (3) iff
Y19 =0 ie iff Yo 18 strictly ezogenous in the first block of (15).

Note that, in general, the limit distribution (16) is a linear combination of the "unit
root" distribution given by (f édS2Sé) [ / ésté] - and the compound normal distribution
(f {l)dsl_zsé) [] [1}8285] - . This limit distribution falls within the LAMN family iff
Yio=0 ie iff Yo 18 strictly exogenous in (15). The presence of the "unit root" com-

ponent in the limit distribution is the consequence of the fact that FIML applied to (15)
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(or equivalently subsystem LIML, 3SLS or 2SLS) involves the (implicit) estimation of the
reduced form and, thereby, the unit roots that occur in the model. This inevitably means a
breakdown in the LAMN theory, evidenced here by the form of (16). Only in the special

case where Yoi is exogenous does the LAMN theory apply.

REMARK (d) It is of interest to observe that the special case above in which %;, =0 is
precisely the case when FIML and subsystem LIML reduce to ordinary least squares (OLS)
on the first n; equations of (15). This is explained by the fact that when %,, =0 (15)
becomes a triangular system in which the covariance matrix I is block diagonal. The
stated reduction of FIML to OLS is then well known from traditional econometric theory
when n, = 1. When n, > 1 the reduction continues to apply provided the matrix B is
unrestricted. Note that the equivalence of LIML and OLS on the first block of (15) means
that the unit roots in the second block of (15) are not estimated either implicitly or explic-

itly and therefore the LAMN theory goes through.

REMARK (e) When X;5#0, subsystem LIML and OLS on the first block of (15) are

not equivalent. In this event the OLS estimator B* has the following asymptotics:

-1
T(B* - B) » (A[1dSS3 + 3,,) [;észsé]

which differ from (16) by the additional bias term )312 in the numerator of the matrix
quotient. Thus, in the general case, the use of simultaneous equations methods like LIML
would seem to reduce the second order bias effects that occur with OLS but not to elim-
inate them entirely.

Theorem 1 shows that maximum likelihood estimation eliminates all bias effects
asymptotically. This is of particular interest when we compare the asymptotic distribu-
tions of the MLE B and the FIML estimator B in (15). Note that the usual effect in
asymptotic statistical theory from employing more information is greater statistical

efficiency. Here the extra information is the knowledge that the submatrix of the reduced
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form coefficient matrix II =1 in (15). Use of this information is all that distinguishes B
from B . The effect on the asymptotic distribution of the use of this information is dra-
matic. All second order bias effects are removed, the asymptotic distribution becomes
symmetric about B, it belongs to the LAMN family and an optimal theory of inference
applies. None of these advantages apply if the information is not used, except when

212 =0 and y,, is strictly exogenous.

REMARK (f) The comments just made apply equally well in time series models to the
comparison between unrestricted VAR estimation and maximum likelihood estimation of
the full system ECM. In the former case unit roots are implicitly estimated unless, of
course, the system is formulated in differences, which is not the approach followed in most
empirical implementations of VAR’s. It follows that the asymptotic theory for VAR based
estimates of cointegrating vectors involves "unit root" type asymptotics, as in the case of
the conventional FIML estimator discussed in Remark (c) above. These asymptotics have
been studied elsewhere (see Park and Phillips (1988, 1989) and Phillips (1988a)) and we
will not go into details here. It is sufficient to remark that the VAR estimates of the
cointegrating subspace (i.e. the space spanned by the rows of A )} involve nuisance
parameters asymptotically and the relevant asymptotic theory is LGF, in the terminology
of Phillips (1989), not LAMN. This means that nonstandard limit distributions are needed
for inference, tabulations of these distributions need to allow for nuisance parameters,
which have to be estimated, and no optimal asymptotic theory of inference is applicable.
None of these drawbacks applies to full system ECM estimation by maximum likelihood

and it would seem that the latier is preferable for empirical applications.

REMARK (g) As discussed in (e), knowledge of the presence of the N, unit roots in (2)
has major statistical effects. The methodological aspects of this information are also inter-
esting. From the form of the conditional Gaussian likelihood (5) we observed earlier that
the MLE of B is just OLS on the linear model (7). By adding and subtracting Bu,, to
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the right side of (7) it is easy to see that this model may be written in the equivalent form

(7 Y1t = BYgy + DAYy + 8y o

a4 o 1
D =10,059 ~ B =3 %

~-%, .51

Uy.gp = Uy — Byo¥ogugy = Uy — (0

12955 = Blgy = V1.5 -

Of course (7)’ is just the original equation (1) with the error corrected for its conditional
mean given Ay2y = u,, - Note that (7)’ is specified in levels (unlike the ECM) but it
involves differences as additional regressors (whereas the ECM has levels as additional
regressors). In the present case, the role of the difference Ay2t in (7)’ as an additional
regressor is simply to adjust the conditional mean and thereby remove the second order
asymptotic bias effects that are present when OLS is applied directly to (1).

It should now be clear that what is important in estimation and inference in cointe-
grated systems, at least as far as ensuring the applicability of the LAMN theory, is not the
precise form of the specification but the information concerning the presence of unit To0ts
that is employed in estimation. If unit roots are known to be present, then our results
argue strongly that they should be directly incorporated in model specification. It is
perhaps one of the central advantages of the ECM formulation that it does this in a con-

structive way as part of the overall specification.

REMARK (h) The above remark should not be construed to mean that ECM formulations
as they are presently used in econometric research automatically embody the advantages of
the LAMN asymptotic theory. Virtually all ECM empirical work is conducted on a single
equation basis and this is generally insufficient for the LAMN theory to apply. Our own
analysis, and Theorem 1 in particular, is based on full system maximum likelihood estima-

tion of (3). Since (3) is block triangular it is tempting to focus attention on the first block
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of (3). However, neglect of the second block of equations in estimation involves more than
a loss of efficiency, as we have seen. In most cases single equation estimation leads to a
second order asymptotic bias of the type discussed earlier and complicates inference
through the presence of nuisance parameters.

When the error vector u, =iid N(0,%) (or v, =iid N(0,2) ) there is a simple way
of incorporating the information that is necessary for efficient estimation into the first
block of (3). In this case we have seen that full system maximum likelihood is equivalent
to OLS on the regression equation (7)—i.e. the first block of {3) augmented by the
TEgIessor U, = Ay2t . Thus, subsystem estimation is optimal on the augmented equation
(7) or (7)*. When the error vector u, is serially dependent the situation is more complex
because there are feedbacks among the errors and the minimal information set for efficient
estimation depends on the serial covariance structure of the errors. This issue, together
with the link between ECM formulations and optimal estimation of cointegrated systems,
is explored in Phillips (1988d). It is shown there that typical ECM specifications that
include the present and past history of Ayzt in the regressor set lead to optimal estima-
tion by OLS when u, = Ay2 is strongly ezogenous in the sense of Engle et ol (1983). In
addition to weak exogeneity (viz. that the marginal distribution of (uz),f carries no irfor-
mation about the cointegrating coefficient matrix B ) this requires that Uy does not
Granger cause u, (see Definition 2.6 of Engle et al. (1983)). When this applies we have

the equivalence of the wide sense conditional expectations

(17) Bluy, |(ug)t,) = Blug, 1 (y)?, ()2, ) -

Obviously (17) is true when u, =iid(0,%) . But when (17) does not hold and Ay, is not
strongly exogenous for B, it is necessary to augment the regression further by the inclu-
sion of leads as well as lags of Ay2 . Clearly, such augmentation reduces the advantages of

working with single equation ECM formulations. Ar alternative semiparametric single
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equation (or subsystem) method that avoids this problem is developed in Phillips and
Hansen (1989).

We observe that the nonlinear least squares (NLS) procedure studied by Stock
(1987) falls into the single equation category just described. This procedure involves a
single equation NLS applied to an autoregressive version of the first equation of (3). In
general, this approach has the same disadvantages of bias and nuisance parameter depen-
dencies that have been discussed above. In fact, the simulation evidence reported in Stock
(1987) indicates that the bias in the NLS cointegrating coefficient estimates can be sub-
stantial even in large samples. Stock’s experimental study is based on the following two
variable system (formulated with Stock’s notation for the parameters)

N

(18) (1 —pL)Ay, = — @y tE, @ = (1, -8

T2

where ¢, = iid N(0, 12) . Stock reports large biases in the estimation of § when 7,40
and p is small. On the other hand, a careful study of Stock’s simulation results shows
that the bias in the estimation of 0§ seems negligible when Ty = 0 and, in this case, the
sampling distribution of the estimate is nearly symmetric about the true coefficient. Inter-
estingly, Ty =0 is a special case in which the asymptotic distribution of the NLS estimate
of @ is the same as that of full system maximum likelihood and in this special case the
LAMN theory applies.

It is easy to see why this is true. Since var(et) =] and p is scalar it is clear that
when 7, =0 thereis no information about @ in the second equation of (18). Moreover,
with the autoregressive operator in (18) being diagonal there is no feedback from ¢, to

Ay, . Thus, full system maximum likelihood estimation of § in (18) is asymptotically

g -
equivalent to NLS on the first equation when Vg = 0, thereby explaining the good simu-
lation performance of NLS in this case. In general, this asymptotic equivalence does not

hold. In order to bring the NLS procedure within the realm of the LAMN theory and to
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remove the second order asymptotic bias, it is generally necessary to do systems
estimation. For Stock’s procedure this amounts to seemingly unrelated systems NLS.

This example provides another illustration of the far reaching effects of prior infor-
mation in regressions with nonstationary series. In a stationary time series or classical
estimation context the neglect of information typically results in a loss of statistical effi-
ciency. Thus, the use of single equation least squares instead of systems seemingly
unrelated regression (SUR) techniques involves efficiency considerations alone in the class-
ical regression setting. In the present context, deeper asymptotic issues come into play.
The Stock example (18) shows that single equation approaches sacrifice asymptotic median
unbiagedness as well as optimality and they run into major inferential difficulties through
the presence of nuisance parameters in the limit distributions. The advantages of systems
methods or SUR procedures are well known in classical regression. In the present context

the advantages seem to be even more compelling.

REMARK (i) When Theorem 1 applies statistical testing may be conducted in the usual
fashion as for asymptotic chi—squared criteria. This is a direct consequence of the mixed
normal limit theory. For example, suppose we wish to test the hypotheses HO th(B) =10
where h(-) is a q—vector of twice continuously differentiable functions of the elements of
B and H = 6h(B)/dvec B has full rank q. Then the Wald statistic for Hy is
My = h(B)'(E‘n‘qlﬁf)‘lh(fa) where H = H(B) and V= E0Ee Y;Y,. When B
satisfies Theorem 1 and Q is any consistent estimator of ! we have My 2 Xfl' This
theory continues to apply when the model has serially dependent errors but then
2 =22f_ (0) is the long—run rather than the short—run covariance matrix and it must be
estimated accordingly. The same result also holds for LR and LM tests of HO in the
present context. Indeed, as in the classical setting, these tests are asymptotically equiv-
alent with the same asymptotic x(zl distribution as the Wald test MT under the null. A
closely related result has been given by Johansen (1988), who considers a Gaussian VAR
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with cointegrated variates. Johansen proves that the likelihood ratio test of a linear
hypothesis about the cointegrating vector is asymptotically distributed as chi—squared.
For the reasons given here his theory applies also to more general hypotheses about the

cointegrating coefficients and to other tests.

REMARK (j) Theorem 1 and the discussion contained in the preceding remarks refer to

the prototypical model (3) with v, = iid(0,22) . The time series case where v_ is station-

t
ary would seem prima facie to be much more complex. Surprisingly, this is not the case.
All of the above ideas and results, especially our remarks concerning systems estimation
and prior information about unit roots, continue to apply. What is required for the con-
tinued validity of Theorem 1 is the use of full systems estimation on (3) or at least an
asymptotically equivalent subsystem procedure. If vy is driven by a parametric scheme
such as a vector ARMA model, then full system estimation by MLE involves the simultan-
eous estimation of the parameters of the stationary ARMA system and the coefficient
matrix B of the long—run equilibrium relationship. Obviously this involves the construc-
tion of the likelihood function for general ARMA systems. An alternative approach that is
developed in Phillips (1988c) is to deal with the time series properties of v, non-
parametrically by the use of systems spectral regression procedures on (3). The latter
approach turns out to be most convenient because a discrete Fourier transform (dft) of (3)
retains the basic form of this equation, including its triangular structure and the linearity
of the coefficients. Moreover, for Fourier frequencies Wy = 27j/T that converge to zero as
T-wo, the dft’s of v, are approximately distributed as iid N{(0,Q) with Q = 2«f(0),
where f(w) is the spectral density of v, . Thus, for frequencies in the neighborhood of the
origin, the dft of (3) is just a frequency domain version of our prototypical model. Spectral
regression methods on (3) therefore have the same asymptotic properties for general
stationary errors v, as those of the MLE in Theorem 1 for v, =iid N(0,22) . All that is

needed in adjusting the results is to replace the contemporaneous (or short—run) covariance



20

matrix Q by the long—run covariance matrix £ . Since this approach is explored in detail
in the cited paper (1988c) and in related work (1988e) by the author on continuous time
systems estimation we shall say no more about it here.

It is worthwhile to look further at the parametric likelihood approach. Suppose, for

example, that vy in (3) is generated by the parametric linear process
(19) e E?=Ocj(8)et—j

where ¢, =iid(0, 2 (6)), Cy=1 and the coefficient matrices C j(-) depend on a

q—vector of parameters # and satisfy the summability condition
(20) 2 _oi'2Ic o) <=

for all # in a prescribed parameter space © . The model (19) includes AR models of the
type considered by Johansen (1988), general ARMA systems and many other parametric

linear time series models. For observable processes v, , estimation of # in (19) has been

§
extensively studied in the stationary time series literature. In particular, Dunsmuir and
Hannan (1976) and Dunsmuir (1979) establish strong laws and central limit theorems for
Gaussian estimates of 6 in (19) under quite general conditions using frequency domain
approximations to the Gaussian likelihood—the so—called Whittle likelihood. This
approach may also be applied in the context of the ECM (3) with linear process errors as in

(19). In this case the Whittle likelihood that is to be minimized is given by
(21) Ly(B.6) = &[T (6)] + T“lzju{f(wj; 0)—1I(wj)} , —T/2 < j<[T/2)
In this formula

f(w6) = (1/20)D(e"; OB (D, O, Dizif) = FC ()2’

is the spectral density matrix of v, , I(w) = w(w)w(w)* is the periodogram at frequency
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we (-m7], wlw)= (21rT)_1/2E},1E‘(Ayt + EAyt__.l)eitw is a dft and W= 27j/T are the
fundamental Fourier frequencies for —T/2 < j < [T/2].

Now le¢ B and # be the full system MLE’s obtained by minimizing (21).
Assuming that the regularity conditions used by Dunsmuir (1979) are satisfied we now

have the following simple extension of Theorem 1 to the general time series case.

THEOREM 1. If 2 = 2x(0) > 0

) —1
(22) T(B-B) » (148, .55) /05,54

_ - _ -1
where S =BM(Q), S; 5 =BM(Q;; 5), Q;.0=0y; — 02,0000, and S and 4 are

partitioned conformably with Yy -

REMARK (k) There is another, conceptually simpler way of looking at the time series
case. The idea is to find an approximate pseudo—model that leads to the same asymptotics
as Theorem 1’/ but avoids the complications of explicit time series modeling. This is
possible because the I(1) character of Yy is determined by partial sums of the errors that
enter the ECM (3) period by period and these may be approximated by a suitable martin-
gale. Thus, back substitution in (3) and initialization at y,=0 gives rise to the

representation

| t
(23) v, =—ES{Ay, + 5 v,

The partial sum process Engfj

in (23) can be replaced by the martingale Y, = Eivj
with an error that can be neglected in the asymptotics. When v, is generated by (19) and
(20) we may use V, = ()3‘3’=OC j)ft as the approximating martingale difference sequence,
just as we do in the martingale approach to central limit theory for a linear process (e-g.
see Hall and Heyde (1980), Corollary 5.2, p. 135). Since ¢

Vv, =iid(0,2) with Q:(L‘g’:OCj)Ee(E";:lCi)=2wf(0), as in Theorem 1. The

=1id(0,2,) we have
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approximating pseudo—model for (3) is obtained simply by replacing v, with V, giving
(3)” Ay, =-EAy, , +V,.

The Gaussian likelihood for (3)’ is identical with that of our earlier prototypical model
(viz. (4)) upon replacement of the short run covariance matrix 2 with 2. The asymp-
totic behavior of the full system MLE B may now be obtained by working from the

pseudo inodel (3)” with iid errors V, , just as in Theorem 1.

Remark ({) The simple heuristics of the last remark point to another interesting feature of
optimal estimates of B . Such estimates rely only on consistent estimates of the covari-
ance matrix—here the long run covariance matrix 2. It is not necessary for optimal
- estimation of B that 2 be jointly estimated. This is true even when 2 is restricted as
it may be, for instance, in the linear process case where 2 = (f) . Interestingly, even in
the prototypical model where v, =iid(0,2) and Q= 200 with Q, a known matrix
there is no information loss asymptotically for the estimation of B in estimating the full
matrix . Thus, if @, is known the coefficient matrix C = 91295% in (7) is also

known and may be used in estimating the contracted system

" -— —_
(7) Yat = BY¥oyg + V1.9 Yat = V14 — CAVgy

rather than (7), where C is estimated. However, least squares on (7)" has the same
asymptotic distribution as the estimate of B derived from (7) and is the same as that
given in Theorem 1. Thus, in contrast to conventional simultaneous equations theory
where there are efficiency gains in coefficient estimation from restrictions on the covariance
matrix, there are no such gains in cointegrated systems estimation. The situation is analo-
gous to SUR systems, where the regressors are exogenous and the information matrix is
block diagonal. In cointegrated systems the regressors are not exogenous but they may be

treated as such when  (or ) as appropriate) is consistently estimated. The pseudo-
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model (3)’ where Yi1 and Vt are independent helps to explain this in the general time

series case.

3. CONCLUSIONS

This paper started with two main objectives. The first was to study the asymptotic
properties of maximum likelihood estimates of cointegrated systems. It has been shown
that full system estimation by maximum likelihood brings the problem within the family
that is covered by the LAMN theory of inference, provided all unit roots have been elimin-
ated by specification and data transformation. This condition is crucial. If maximum
likelihood does involve the estimation of unit roots, then the likelihood no longer belongs to
the LAMN family. Instead it involves unit root asymptotics in terms of Gaussian func-
tionals. These asymptotics import a bias and asymmetry into the cointegrating coefficient
estimates and they carry nuisance parameter dependencies into the limit theory which
inhibit inference.

The second and more important objective of the paper was to address the general
question of how best to proceed in empirical research with cointegrated systems.
Fortunately, the answer seems unambiguous. Full system estimation by maximum likeli-
hood or asymptotically equivalent subsystem techniques that incorporate all prior
knowledge about the presence of unit roots are most desirable. This approach ensures that
coefficient estimates are symmetrically distributed and median unbiased, that an optimal
theory of inference applies under Gaussian assumptions and that hypothesis tests may be
conducted using standard asymptotic chi—squared tests. These are major advantages. The
simplest approach in practice is to perform systems estimation of a fully specified ECM.
Single equation estimation of an ECM is generally not sufficient unless the variables in the
regressor set are strongly exogenous for the cointegrating coefficients. In stationary time

series regression single equation estimation usually leads to a loss of statistical efficiency, as
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in the seemingly unrelated regression context. But in cointegrated systems the use of
single equation techniques imports bias, nuisance parameter dependencies and loses opti-
mality. As a result the arguments for the use of systems methods in cointegrated systems
seem more compelling than they are in a classical regression context.

We remark that in the cases where the system falls within the VAR framework
unrestricted estimation of the VAR in levels does not bring the likelihood within the
LAMN family. This is because in an unrestricted estimation in levels, unit roots are
implicitly estimated in the regression. In comsequence, the use of VAR’s for inferential
purposes about the cointegrating subspace suffers drawbacks relative to systems ECM esti-
mation. However, as we stressed in Remark (g), the formulation of the model is less
important than the information that it incorporates. If unit roots are known to be present,
then our results indicate that it is best to incorporate them directly in the model speci-
fication. This can be done in VAR’s, just as it is done constructively in ECM’s. It might
even be argued that suitably chosen Bayesian priors in VAR's go some way towards

achieving the same end.
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APPENDIX

Proof of Theorem 1. Continuing the partitioned regression notation in (8) we have

-1

—2+, _ m—2v, —2m—1+,, o -1
TY3Q7Yy =T "Y3Y, =T (T _Y,2AY2)[T AY2AY2] (TAY;Y,)

1
* 198955
and

-1
_1 ’ _— _1 ’ -1 ’ —1 s _1 ’
TV; ,QuY, = T V) Y, —(T V1_2AY2)[T AY2AY2] (T7lAY5Y,)

3 f(l,dsl_zsé

with both limits following by conventional weak convergence arguments (see Phillips
(1988a, 1988b) for the required theory). Since joint weak convergence applies and
) > both (10) and (11) follow directly.

11-2 'p “11.2

Proof of Theorem 2. Since B and B‘t are asymptotically equivalent we need only

-1
consider T(BT - B) = (T71U;P_ Y2)[ "2YéP_1Y2] . But

2., o r2uv =2y, 2
T2Y4p_, Y, = (T ngg)['r _\:Yz] (T Y5Y,) % 135,85,

5
and
luip LY, = AT VoY) [T 2vsy 1 2yv.) + Aldss;
P Yo = Yo)|T 7Y3Y, Y5Yy) # AfgdSS; .
Now note that
AS 5, I
5, = =pM| 11 12
Sy R

Decompose Sa = AS as follows
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_ 1
S, =5,.9 + 5193558

12%9959

where S o =BM(E;, ,) and is independent of S,. Notice that Iy, o=12y,
1 , 1 o 1

—Z Y058y = ARA’ — ()5 — Bflgy)lo(fg) ~ 099B7) = 07y —05{looflyy = 0y 4.

Thus S, o285, o2 BM(fl;; o) and the stated result follows.
Proof of Theorem 1°. The first order conditions for B from the Whittle likelihood take
the form

’ ‘n_l “-— . -*= QY ."_1 . -*
EjE f(wj, ¢) "E(B B)w2(wj)w2(wj) SJE f(wJ, 9) wv(wj)w2(wj)

where w_() and wo( ) are the dft’s of v, and y,, ,, respectively. Under the regular-
ity conditions in Dunsmuir (1979), ¢ and B are consistent. Then, using the same lines of

argument as those in the proof of Theorem 3.1 of {1988c) we find that
—2 ’ m—1 ) ; -1 ’
T EjE f(wj, 6) 'Ee wz(wj)wz(wj)* 3 E'Q lEe jOS S5=0]08 jOS S
and
—12 Eef(wy, ) 1y Jwwy(w)* » E- o7 ydsss .

Thus
. 1,1 1 -1 1 1 -1
T(8-B) » 0y (B0 1185 [158,85) = U§aSy.589)[155,84)

since B/Q'S = BM(E'Q™"E) = BM(Q]] ) and S, , =0, ,E‘07'S=BM(Q;, ,).
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