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Abstract

A Sender randomly draws a �prospect�characterized by its pro�tability to the Sender

and its relevance to a Receiver. The Receiver observes only a signal provided by the Sender,

and accepts the prospect if his Bayesian inference about the prospect�s relevance exceeds his

opportunity cost. The Sender�s pro�ts are typically maximized by partial information disclo-

sure, whereby the Receiver is induced to accept less relevant but more pro�table prospects

(�switches�) by pooling them with more relevant but less pro�table ones (�baits�). Ex-

tensions include maximizing a weighted sum of Sender pro�ts and Receiver surplus, and

allowing the Sender to use monetary incentives.
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I. Introduction

An Internet advertising platform can provide some information to users about the rel-

evance of its ads. This information can be signaled by such features as the ads�positions

on the web page, their font size, color, �ashing, etc. Suppose that users have rational ex-

pectations and are sophisticated enough to interpret these signals. Then user welfare would

be maximized by communicating the ads�relevance to them, thus allowing fully informed

decisions about which ads to click.

The platform, however, may care not just about user welfare, but also about its own

pro�ts. Suppose that each potential ad is characterized by its value to consumers and its

per-click pro�ts to the platform, and the two are not always aligned. Then the platform

would increase its pro�ts by inducing users to click on more pro�table ads.

While the platform would not be able to fool rational users systematically to induce them

to click more on less relevant ads, a similar e¤ect could be achieved by withholding some

information from them, pooling the less relevant but more pro�table ads with those that are

more relevant and less pro�table.

Similar information disclosure problems arise in other economic settings. For example, a

bond rating agency chooses what information to disclose to investors about bond issuers, who

also make payments to the agency for the rating. Likewise, a school chooses what information

to disclose to prospective employers about the ability of its students, who also pay tuition

to the school. In these cases, the pro�t-maximizing disclosure rule may be partially but not

fully revealing.

This paper characterizes the optimal disclosure rule in a simple stylized version of such

settings. Our basic model has two agents - the �Sender�and the �Receiver.�The Sender

(who can be alternatively interpreted as an advertising platform, rating agency, or school)

has a probability distribution over �prospects�(ads, bonds, or students, respectively). Each

prospect is characterized by its pro�tability to the Sender and its value to the Receiver (user,

investor, or employer), which are not observed by the Receiver. First, the Sender commits

to an information disclosure rule about the prospects. Next, a prospect is drawn at random,

and a signal about it is shown to the Receiver according to the rule. The Receiver then

makes a rational inference about the prospect�s value from the disclosed signal, and chooses

whether to accept the prospect (click on the ad, invest in the bond, hire the student) or to

reject it.

The problem of designing the optimal disclosure rule turns out to be amenable to elegant
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analysis under the special assumption that the Receiver�s private reservation value (or op-

portunity cost of accepting a prospect) is drawn from a uniform distribution, with support

normalized to the interval [0,1]. In this case, the probability of the Receiver accepting a

prospect simply equals his expectation of its value. For convenience, we also assume that

the distribution from which prospects are drawn is �nite-valued, and that the Sender can

randomize in sending signals.1 Under these assumptions, we characterize the optimal rule.

In particular, we establish that this rule must have the following properties:

� It is potentially optimal to pool two prospects (i.e. send the same signal for each of
them with a positive probability) when they are �non-ordered�(i.e. one has a higher

pro�t and lower value than the other). When two prospects are �ordered� (i.e. one

dominates the other in both pro�t and value), it is never optimal to pool them.

� When we describe each signal shown to the Receiver by the prospect�s expected pro�t
and expected value conditional on the signal, the set of such signals must be ordered,

i.e., for any two signals, one must dominate the other in both value and pro�t.

� Any set of prospects that are pooled with each other (i.e. result in the same signal)
with a positive probability, must lie on a straight line in the pro�t-value space. For

the �generic�case in which no three prospects are on the same line, this implies that

any signal can pool at most two prospects.

� Two line segments connecting pooled prospects cannot intersect in the pro�t-value
space.

� When one prospect is higher than another in both value and pro�t, it can only be
pooled into a higher signal than the other.

� In the �generic�case, the set of prospects can be partitioned into three subsets: �bait�
prospects, �switch�prospects, and �isolated�prospects, so that any possible pooling

involves one �bait� prospect and one �switch�prospect, with the �switch�prospect

having a higher pro�t and a lower value than the �bait�prospect it is pooled with.

Each �bait� or �switch�prospect is pooled with other prospects with probability 1,

whereas each �isolated�prospect is never pooled.

1We believe that such randomization would become unnecessary with a continuous, convex-support dis-
tribution of prospects, but the full analysis of such a case is considerably more challenging.
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While these results tell us a great deal about the optimal disclosure mechanism, they do

not fully describe it: they still leave many ways to choose the pooling partners of a given

prospect and the probabilities with which this prospect is pooled with its partners. For-

tunately, the Sender�s expected pro�t-maximization problem for these pooling probabilities

turns out to have a concave objective function and linear constraints (i.e. that the proba-

bilities add up to 1). Its solution can then be characterized by �rst-order conditions, which

we derive.

In the general analysis we take the pro�tability of each prospect to the Sender as given.

Yet we can apply this analysis to scenarios in which the Sender is an intermediary between the

Receiver and an independent Advertiser who owns the prospect. The Sender�s mechanism-

design problem then includes the design of payments that the Advertiser is charged for the

signal about his prospect that is shown to the Receiver. For example, an online advertising

platform charges advertisers di¤erent payments for di¤erent signals (such as ad placement).

In the extreme case where the Sender has full information about the Advertiser�s pro�ts,

the Sender can charge him payments that extract these pro�ts fully, in which case the

disclosure design problem becomes the same as if the Sender owned the prospects. But

we also consider the more interesting case in which the Advertiser has private information

about the prospects�pro�tability to him. For example, online advertisers may have private

information about their per-click pro�ts, and so any mechanism designed by the platform

will leave advertisers with some information rents. By subtracting these rents from the total

pro�ts, we can calculate the pro�ts collected by the platform as the Advertiser�s �virtual

pro�ts,�which is the part of his pro�ts that can be appropriated by the platform.

We consider an application in which the Advertiser�s private information is his per-click

pro�t �. In addition, there is a signal � of the Advertiser�s relevance for the Receiver that

is observed both by the Sender and the Advertiser. The prospect�s value for the Receiver

is given by a function v(�; �), which allows for the Advertiser�s private information to a¤ect

this value. The Sender (e.g. an advertising platform) o¤ers a mechanism to the Advertiser,

which without loss can be a direct revelation mechanism: the Advertiser reports his pro�ts

� (e.g. through his bid per click), which together with the relevance parameter � determines

the probability distribution over the signals revealed to the Receiver about the prospect, as

well as the Advertiser�s payment to the Sender. Through an example, we argue that this

model may help account for some simple stylized features of Internet advertising.

We also consider a few extensions of the model. First, we study the more general problem

5



of �nding Pareto-optimal disclosure rules that maximize a weighted sum of Sender pro�ts

and Receiver surplus, rather than maximizing Sender pro�ts alone. This problem is relevant,

for example, if the Sender faces competition from other platforms to attract consumers. In

this case, we would expect the Sender to place a positive weight on consumer surplus in order

to expand her market share, with a larger weight representing more intense competition. We

show that this problem is mathematically equivalent to the original problem, upon a linear

change of coordinates. As the Pareto weight on consumer surplus increases (e.g. platforms

become closer competitors), the optimal rule eventually becomes fully revealing.2

Second, as noted above, we have assumed that the Receiver has a uniformly distributed

private reservation value. This is a very special distributional assumption (although similar

assumptions have proven necessary to obtain tractable results in other communication mod-

els, such as Crawford and Sobel, 1982, and Athey and Ellison, 2008). When the reservation

value is drawn from a nonlinear c.d.f. G, the desirability to pool any two prospects inevitably

depends on the speci�c shape of this function, and therefore much less can be said in general.

We show, however, that some of our basic characterizations extend to this case.

Finally, we allow the Sender to o¤er monetary transfers (subsidies or taxes) conditional

on the Receiver accepting the prospect. For example, the Sender could be a seller who sets

the price of her product in addition to disclosing information. We �nd that given the optimal

choice of transfers, it becomes optimal to have a fully-revealing disclosure rule (regardless

of how the Receiver�s reservation value is distributed). In this case, the Receiver can be

induced to accept low-relevance/high-pro�t prospects using direct monetary incentives, and

the original motivation for pooling them with high-relevance/low-pro�t prospects disappears.

II. Related Literature

There exists a large literature on communicating information in Sender-Receiver games:

using costly signals such as education (Spence, 1973) or advertising (Nelson, 1974, Kihlstrom

2We do not consider two-sided competition, in which intermediary platforms compete for advertisers as
well as for consumers. In such a setting, the impact of competition on information disclosure is likely to
depend on the market arrangement. For example, the literature on two-sided competition (e.g. Armstrong,
2006, Caillaud and Jullien, 2003, and Rochet and Tirole, 2003) shows that if advertisers �multi-home�(i.e.
purchase ads on multiple platforms simultaneously) it is possible that competition only favors consumers.
In contrast, if advertisers �single-home�(such as students attending a single college), their pro�ts normally
increase with competition, potentially at the expense of consumers. While this literature abstracts from
information disclosure, its �ndings suggest that market con�gurations that bene�t consumers will increase
transparency, whereas con�gurations favoring advertisers (who potentially bene�t from concealing informa-
tion) may have the opposite e¤ect. (See also Hagiu and Jullien, 2010, for a related discussion in the context
of consumer search.)
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and Riordan, 1984), disclosure of veri�able information (see Milgrom, 2008, for a survey),

or cheap talk (Crawford and Sobel, 1982). Our approach is distinct from this literature in

two key respects: (1) our Sender is able to commit to a disclosure rule (thus, formally, we

consider the Stackelberg equilibrium rather than the Nash equilibrium of the game), and

(2) our Sender has two-dimensional rather than one-dimensional private information. These

di¤erences fundamentally alter the disclosure outcomes.

We believe that commitment to an information disclosure rule is a sensible assumption

in the applications discussed in the introduction. We can view the Sender as a �long-run�

player facing a sequence of �short-run�Receivers. In such a repeated game, a patient long-

run player will be able to develop the reputation for playing his Stackelberg strategy, provided

that enough information is revealed concerning history of play (Fudenberg and Levine, 1989).

While an Internet advertising platform may be tempted in the short run to fool users into

clicking more on pro�table ads by overstating their relevance, pursuing this strategy would

be detrimental to the platform�s long-run pro�ts.3

There exists a substantial literature on the optimal disclosure policy for a monopolistic

seller-auctioneer (e.g. Milgrom and Weber, 1982, Lewis and Sappington, 1994, Ottaviani

and Prat, 2001, Ganuza, 2004, Johnson and Myatt, 2006, Bergemann and Pesendorfer,

2007, Es½o and Szentes, 2007, Board, 2009, Ganuza and Penalva, 2010). In this literature,

the seller�s decision of disclosing information is determined by a trade-o¤ between its impact

over total surplus and its impact over the buyers�information rents. Because of this trade-

o¤, full disclosure is not always optimal. The insights of our basic model are driven by

di¤erent forces, since the Sender cannot extract any Receiver rents using prices. On the

other hand, when the Sender uses optimal signal-contingent prices, full disclosure becomes

optimal despite the fact that the Sender cannot extract all information rents. This result

is related to the �ndings of Ottaviani and Prat (2001) and Es½o and Szentes (2007), as we

discuss in Section VIII.C.

Pooling information about two prospects may be interpreted as �bundling� them to-

gether, as it forces the Receiver to accept both of them or none. Under this interpretation,

our model is related to the literature on bundling (e.g. Stigler, 1968, Adams and Yellen,

1976, McAfee, McMillan, and Whinston, 1989). One di¤erence from this literature is again

the Sender�s inability to extract surplus using prices. Another di¤erence is that we assume

3If the Sender lacked commitment power, she would be unable to credibly separate any two prospects
(with positive pro�ts) unless they happened to deliver exactly the same value for the Receiver, since the
Sender would rather pretend to have the more valuable prospect leading to a higher probability of acceptance.
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that the Receiver has no private information about the relative value of di¤erent prospects.

In contrast, this literature has shown bundling to be optimal when the buyer has su¢ cient

private information about his relative value for di¤erent goods (i.e., his values for di¤erent

goods are not too positively correlated).

Another related literature is that on certi�cation intermediaries, starting with Lizzeri

(1999). In Lizzeri�s basic model, the certi�cation intermediary is able to capture the whole

surplus by revealing either no information, or just enough information for consumers to make

e¢ cient choices. The key features distinguishing our model from this literature are the two-

dimensional space of prospects and lack of price �exibility, which lead to partial information

disclosure and partial pooling in speci�c directions. Adding price �exibility to our model (as

considered in Section VIII.C) could make it more appropriate for some applications.

Our model is also related to Rayo (2010), who examines the optimal mechanism for

selling conspicuous goods whose main purpose is assumed to be signaling of wealth. This is

parallel to our model once we interpret the seller as the Sender, consumers as prospects, and

conspicuous goods as signals. The main di¤erence from our model is again in the dimension

of the type space: the type in Rayo�s model is one-dimensional and prospects/consumers who

have a higher value are also the ones for whom signaling a higher type is more pro�table.

Kamenica and Gentzkow (2009) and Ostrovsky and Schwarz (2008) consider games in

which a Sender with commitment power in�uences a rational Receiver through her choice

of information disclosure. Kamenica and Gentzkow �nd general conditions under which

such in�uence is desirable for the Sender, while Ostrovsky and Schwarz study the impact

of disclosure over unraveling in matching markets. In contrast to these papers, we o¤er a

detailed characterization of the optimal rule for the case in which the Sender�s information

is two-dimensional, and the Receiver�s opportunity cost is private information.

Athey and Ellison (2008) and Hagiu and Jullien (2010) consider an intermediary plat-

form�s placement of sellers (or their ads) when consumers search among sellers sequentially

and face a search cost.4 While these papers do not consider general information disclosure

mechanisms, the placement of a seller conveys information about his value to consumers.

Athey and Ellison focus on one-dimensional seller types, so that the more pro�table sellers

also have higher quality, and show that the platform optimally orders sellers according to

their quality. Hagiu and Jullien instead consider two sellers and allow the higher-value seller

4See also Armstrong, Vickers, and Zhou (2009) for a related search model in which a platform can credibly
communicate that a product is high quality by making it prominent.
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to be potentially less pro�table to the platform. They show that the intermediary might gain

from �diverting� search, i.e., forcing consumers to visit the low-value seller before gaining

access to the high-value one. This strategy is related to the pooling strategy in our model

in the sense that the high-value seller is used as bait to increase demand for the low-value

seller (although our pooling strategy is more elaborate as we consider an arbitrary num-

ber of prospects). Hagiu and Jullien also study how the placement of sellers a¤ects their

equilibrium choice of prices, which we do not consider.

III. Setup

We begin with two players: the Sender and the Receiver. The Sender is endowed with

a prospect, which is randomly drawn from a �nite set P = f1; : : : ; Ng. The probability of
prospect i being realized is denoted by pi > 0, with

P
i2P pi = 1. Each prospect i 2 P

is characterized by its payo¤s (�i; vi) 2 R2, where �i is the prospect�s pro�tability to the
Sender and vi is its value to the Receiver.

The realized prospect is not directly observed by the Receiver. Instead, the Receiver is

shown a signal about this prospect, according to an information disclosure rule:5

De�nition 1 A �disclosure rule� h�; Si consists of a �nite set S of signals and a mapping
� : P ! �(S) that assigns to each prospect i a probability distribution � (i) 2 �(S) over
signals.6

For example, at one extreme, the full separation rule is implemented by taking the signal

space S = P and the disclosure rule �s (i) = 1 if s = i and �s (i) = 0 otherwise. At the other

extreme, the full pooling rule is implemented by letting S be a singleton.

After observing the signal s, the Receiver, who has knowledge of the disclosure rule,

decides whether to �accept�(a = 1) or �not accept�(a = 0) the prospect. Whenever the

Receiver accepts the prospect, he forgoes an outside option worth r, which is a random

variable independent of i drawn from a c.d.f. G over [0; 1]. Thus, the Sender and Receiver

obtain payo¤s, respectively, equal to a� and a (v � r) :
5In principle, the Sender may be able to �exclude� a prospect (e.g. by not showing it to the Receiver

at all). For expositional simplicity we do not consider this possibility for the time being. Our analysis will
thus apply conditional on the probability distribution of the prospects that are not excluded. (When all
prospects have nonnegative pro�ts, the Sender will indeed �nd it optimal not to exclude any of them.) We
explicitly introduce optimal exclusion decisions in Section V below.

6The restriction to a �nite set of signals is without loss of generality in this setting.
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We assume that the Sender commits to a disclosure rule before the prospect is realized.

Thus, the timing is as follows:

1. The Sender chooses a disclosure rule h�; Si, which is observed by the Receiver.

2. A prospect i 2 P is drawn.

3. A signal s 2 S is drawn from distribution � (i) and shown to the Receiver.

4. The Receiver privately observes r, and accepts or rejects the prospect.

Example 1 A search engine (the Sender) shows a consumer (the Receiver) an online ad-

vertisement with a link. Based on the characteristics of this advertisement (s), and his own

opportunity cost (r), the consumer decides whether or not to click on the link. The online

advertisement, for instance, may describe a product sold by a separate �rm, in which case

the search engine�s payo¤ (�) may correspond to a fee paid by such �rm. We consider this

possibility in greater detail in Section VII.

Conditional on observing signal s; the Receiver optimally accepts the prospect if and only

if his expected value conditional on this signal, E[vj s], is greater than or equal to r. Thus,
the probability that a = 1 (the Receiver�s �acceptance rate�) is given by prob fr � E[vj s]g =
G(E[vj s]):
In what follows, we normalize the values of v to lie in the interval [0; 1] and we assume that

r is uniformly distributed over this interval. Under the uniform distribution, the acceptance

rate becomes G(E[vj s]) = E[vj s]; which is linear in the posterior value E[vj s]: As a result,
the ex-ante probability of acceptance E (G(E[vj s])) (with the �rst expectation taken over
signals) is independent of the disclosure rule:

E (G(E[vj s])) = E (E[vj s]) = E[v];

where E[v] is the ex-ante expected value of the prospect. Thus, while the disclosure rule can
change the probability with which a given prospect is accepted (e.g. a low-value prospect is

accepted more often when pooled with a high-value prospect), it cannot change the average

probability of acceptance across prospects.7

7When G is nonlinear, the disclosure rule may impact the ex-ante acceptance rate (for example,
E (G(E[vj s])) = E [G(v)] under full separation, and E (G(E[vj s])) = G (E [v]) under full pooling), which
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The expected surplus obtained by the Receiver, given signal s, is:Z 1

0

max fE[vj s]� r; 0g dr = 1

2
E[vj s]2:

As for the Sender, conditional on signal s having been sent and accepted, her expected pro�t

is E[�j s]. Hence her expected pro�t from sending this signal is E[�j s] � E[vj s]. Taking
an ex-ante expectation over signals, the Receiver and Sender�s expected payo¤s for a given

disclosure rule are, respectively:

UR = E
�
1

2
E[vj s]2

�
; (1)

US = E (E[�j s] � E[vj s]) : (2)

Observe that for the purpose of computing the parties�payo¤s, a disclosure rule h�; Si
is characterized by the total probability qs =

P
i2P pi�s (i) that each signal s 2 S is sent, as

well as the parties�posterior expected payo¤s conditional on each signal:

E[vj s] = 1

qs

X
i2P

pi�s (i) vi, E[�j s] =
1

qs

X
i2P

pi�s (i)�i:

Thus, showing the Receiver a signal s is equivalent to showing him a single fully-disclosed

prospect with payo¤s (E[�j s];E[vj s]). This observation will prove useful in analyzing opti-
mal disclosure rules.

Note, in particular, that if we have two di¤erent signals with the same expected payo¤s

(E[�j s];E[vj s]), they can be merged into one signal with their combined probability. Thus,
we can restrict attention without loss to disclosure rules that are non-redundant, i.e., where

di¤erent signals have di¤erent expected payo¤s (E[�j s];E[vj s]), and all signals are sent
with positive probabilities. We will also view di¤erent disclosure rules that coincide up to

a relabeling of signals as equivalent. We can then say, for example, that there is a unique

(non-redundant) full-separation rule and a unique (non-redundant) full-pooling rule.

Consider the e¤ect of information disclosure on the two parties�payo¤s. As far as the

Receiver is concerned, it is clear that the more information is disclosed to him, the higher his

gives the Sender an additional motive to reveal or conceal information depending on the curvature of G. In
Section VIII.B we show that this additional motive may heavily a¤ect the desirability of pooling prospects,
and therefore much less can be said in general about the optimal rule (although some basic characterizations
do extend to this case).
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expected payo¤. Thus, the Receiver�s expected payo¤ is maximized by the full-separation

rule, which gives him a payo¤ of E[1
2
v2]. One way to see this is using Jensen�s inequality.

Namely, for any disclosure rule,

E
�
1

2
E[vj s]2

�
� E

�
1

2
E[v2

�� s]� = E[1
2
v2]:

At the other extreme, under full pooling, the Receiver�s expected payo¤ is only 1
2
E[v]2.

Again by Jensen�s inequality, this is the smallest possible payo¤ among all disclosure rules:

1

2
E[v]2 =

1

2
[E(E[vj s])]2 � 1

2
E
�
E[vj s]2

�
:

We now turn to the problem of choosing the disclosure rule to maximize the Sender�s

expected payo¤, which proves to be substantially more complicated and which in general is

not solved by either full separation or full pooling.

IV. Characterizing Pro�t-Maximizing Disclosure

The goal is to �nd a disclosure rule that maximizes the expected product of the two

coordinates E[�j s] and E[vj s]:
E (E[�j s] � E[vj s]) : (3)

We begin with a simple exercise that will form a key building block for the analysis. The

Sender�s expected gain from pooling two prospects i and j into one signal (while disclosing

information about the other prospects as before) is given by:

(pi + pj)E[�kjk 2 fi; jg] � E[vkjk 2 fi; jg]� pi�ivi � pj�jvj (4)

= (pi + pj) �
pi�i + pj�j
pi + pj

� pivi + pjvj
pi + pj

� pi�ivi � pj�jvj

= � pipj
pi + pj

(�i � �j)(vi � vj):

Thus, we see that the pro�tability of pooling two prospects depends on how their payo¤s

are ordered:

De�nition 2 Two prospects i; j are ordered if either (�i; vi) � (�j; vj) or (�j; vj) � (�i; vi).
The two prospects are unordered if (�i;�vi) � (�j;�vj) or (�j;�vj) � (�i;�vi). The
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two prospects are strictly ordered if they are ordered and not unordered; they are strictly

unordered if they are unordered and not ordered.

Examination of (4) immediately yields:

Lemma 1 Pooling two prospects yields (strictly) higher pro�ts for the Sender than separating

them if the prospects are (strictly) unordered, and yields (strictly) lower pro�ts if the prospects

are (strictly) ordered.

Intuition for this result is that pooling two prospects preserves the expected acceptance

rate but shifts it from the more valuable to the less valuable prospect. When the more

valuable prospect is also more pro�table (the �ordered�case), this shift reduces the Sender�s

expected pro�ts. When instead the more valuable prospect is less pro�table (the �unordered�

case), this shift raises the Sender�s expected pro�ts.

The simple observation in Lemma 1 has far-reaching implications for the optimal disclo-

sure rule with any number of prospects. The simplest one is:

Lemma 2 In a pro�t-maximizing disclosure rule, the set of the signals�payo¤s

f(E[�js];E[vjs]) : s 2 Sg

is ordered (i.e. any two of its elements are ordered).

Proof. If there were two signals s1; s2 2 S sent with positive probabilities such that

(E[�js1];E[vjs1]) and (E[�js2];E[vjs2]) are not ordered, then by Lemma 1 the expected pro�ts
would be increased by pooling these two signals into one.

Further characterization of the optimal rule requires the following concept:

De�nition 3 The pool of signal s 2 S is the set Ps of prospects for which this signal is sent
with positive probability, i.e.,

Ps = fi 2 P : �s (i) > 0g :

The following two Lemmas signi�cantly narrow down the type of pooling that can arise

in an optimal rule. Lemma 3 tells us that multiple prospects can only share a given signal

if all their payo¤s lie on the same straight line:
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Lemma 3 In a pro�t-maximizing disclosure rule, for any given signal s 2 S, the payo¤s
of the prospects in the pool of s, f(�i; vi) : i 2 Psg, lie on a straight line with a nonpositive
slope.8

Proof. Suppose in negation that the payo¤s do not lie on a straight line. Then the convex

hull of f(�i; vi) : i 2 Psg, which we denote by H, has a nonempty interior, which contains
E[(�; v)js]. Therefore, H contains E[(�; v)js]� (�; �) for small enough � > 0; i.e., there exists
� 2 �(Ps) such that

E[(�; v)js]� (�; �) =
P
i2Ps

�i � (�i; vi):

Now replace the original signal s with two new signals s1; s2 and consider the new dis-

closure rule �̂ that for each i 2 Ps has pi�̂s1 (i) = "�i and pi�̂s2 (i) = pi�s (i) � "�i, where
" > 0 is chosen small enough so that pi�̂s2 (i) > 0 for all i 2 Ps. (Let �̂t (i) = �t (i) for all i
and all t 2 Sn fsg.) By construction, we obtain

E[(�; v)js1] = E[(�; v)js]� (�; �) and
"

qs
� E[(�; v)js1] +

qs � "
qs

� E[(�; v)js2] = E[(�; v)js];

where qs is the total mass of signal s: This in turn implies

E[(�; v)js2] = E[(�; v)js] +
"

qs � "
(�; �) :

Thus, the points E[(�; v)js1] and E[(�; v)js2] are strictly ordered, and by Lemma 1 the
expected pro�t from separating signals s1 and s2 is strictly higher than the expected pro�t

from pooling them into one signal s. This contradicts the optimality of the original disclosure

rule. Finally, that the straight line containing Ps has a nonpositive slope also follows from

Lemma 1.

We illustrate our characterizations using �gures in which prospects and signals are rep-

resented by balls (with the size of each ball proportional to the mass of the corresponding

prospect or signal). Lemma 3 is illustrated in Figure 1. If a given signal pools prospects

8Note that it is important for this Lemma, unlike the previous results, that randomized disclosure rules
be allowed. By virtue of this Lemma, allowing for randomization actually simpli�es the characterization
of optimal disclosure, contrary to what one might expect a priori. We expect that randomization becomes
super�uous when the prospects are drawn from a continuous distribution on a convex set; however, analysis
of such a case requires di¤erent techniques and is not undertaken here.

14



with payo¤s that do not lie on the same line (black balls), then the posterior payo¤s of this

signal (white ball) would belong to the interior of the convex hull of the prospects�payo¤s.

But this would allow the Sender to split the original signal into two signals (patterned balls)

with posterior payo¤s that are ordered relative to each other, and since the Sender�s payo¤

increases when separating ordered prospects (Lemma 1), this alternative strictly dominates

the original policy.

Let the pooling segment of signal s denote the convex hull of the payo¤s of the prospects

in the pool of s: (From Lemma 3, a pooling segment is contained in a straight line and

therefore is a line segment.)

Lemma 4 In a pro�t-maximizing disclosure rule �, if the pooling segments of two signals

do not lie on the same line, they can only intersect if they share an end point.

Proof. Suppose we have prospects a1; a2; b1; b2 and signals s1; s2 such that: a1; b1 2 Ps1 ;
a2; b2 2 Ps2. Suppose, in negation, that the pooling segments of s1 and s2 do not lie on the
same line, and yet they intersect at point x; which lies in the interior of at least one of the

pooling segments. For j = 1; 2; let �j 2 [0; 1] be such that �j
�
�aj ; vaj

�
+(1��j)

�
�bj ; vbj

�
= x:

Since �j 2 (0; 1) for some j; we may assume without loss that �1 2 (0; 1):
Now consider a new disclosure rule b� that is identical to � with the following exception:

for all j 6= k = 1; 2;

pajb�sj(aj) = paj�sj(aj)� "�j; pbjb�sj(bj) = pbj�sj(bj)� "(1� �j);
pakb�sj(ak) = pak�sj(ak) + "�k; pbkb�sj(bk) = pbk�sj(bk) + "(1� �k);

where " > 0 is chosen small enough so that pajb�sj(aj) and pbjb�sj(bj) are positive.
By construction, b� and � place the same total probability on every signal. In addition,

the posterior payo¤s for the a¤ected signals sj are identical under both rules:

Eb�[(�; v)jsj] = 1

qsj

X
i2P

pib�sj(i) (�i; vi)
=
1

qsj

X
i2P

pi�sj(i) (�i; vi)�
"

qsj

�
�j
�
�aj ; vaj

�
+ (1� �j)

�
�bj ; vbj

�	
+
"

qsj
f�k (�ak ; vak) + (1� �k) (�bk ; vbk)g = E�[(�; v)jsj];
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where qsj =
X

i2P
pi�sj(i) =

X
i2P
pib�sj(i) and the last equality above follows from the

fact that both expressions in braces are equal to x:

As a result, b� delivers the same payo¤ for the Sender as �; and is therefore optimal.
Nevertheless, since �1 2 (0; 1); the pool of signal s2 now contains all four prospects, which
is a contradiction to Lemma 3.

This result is illustrated in Figure 2. Suppose prospects a1 and b1 are pooled into signal

s1; prospects a2 and b2 are pooled into signal s2, and the corresponding pooling segments

intersect at an interior point x. Since the posterior payo¤s of the corresponding signals

lie in the interior of the convex hull of the four prospects, the Sender could have instead

constructed each of the two signals using a positive mass from each of the four prospects,

without a¤ecting the signals�position or total mass.9 Notice that this change would not

a¤ect the Sender�s pro�t. However, since the payo¤s of the four prospects do not lie on a

straight line, we have contradicted Lemma 3.

A consequence of Lemmas 2-4 is that the optimal disclosure rule is monotonic. Namely,

if the payo¤s of prospect i0 dominate the payo¤s of prospect i; and it is strictly optimal to

separate the two prospects from each other (i.e. their payo¤s do not lie on the same horizontal

or vertical line), then prospect i0 is optimally assigned a higher signal than prospect i, and

so enjoys a higher acceptance rate:

Lemma 5 In any optimal disclosure rule, for any two signals s; s0 2 S and any two distinct
prospects i 2 Ps, i0 2 Ps0, if (�i0 ; vi0) � (�i; vi) then either E [(�; v) js0] � E [(�; v) js], or it is
optimal to pool the two signals.

Proof. Let

x = (�i; vi) ; x
0 = (�i0 ; vi0) ; y = E [(�; v) js] ; y0 = E [(�; v) js0] ;

L = f�x+ (1� �) yj� 2 Rg , L0 = f�x0 + (1� �) y0j� 2 Rg .

By Lemma 2, we must either have y0 � y or y0 � y. Now suppose in negation that only the
second inequality holds and that it is not optimal to pool the two signals, hence y0 < y.

By Lemma 3, both L and L0 must have a non-positive slope, and since y0 < y we must

have L 6= L0, hence the two lines have at most one intersection. Moreover, since x0 � x

9To achieve this, an " mass from signal s1 (containing a positive mass of both a1 and b1) can be transferred
to point x (step 1) and then merged with signal s2 (step 2), and, simultaneously, an " mass from signal s2
(containing a positive mass of both a2 and b2) can be transferred to point x (step 10) and then merged with
signal s1 (step 20).
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and y0 < y; L and L0 must intersect at a point C that lies in both line segments [x; y] and

[x0; y0].10 But then we can �nd j 2 Ps, j0 2 Ps0 such that the line segments [x; (�j; vj)] and
[x0; (�j0 ; vj0)] (which belong to the pooling segments of s and s0; respectively) intersect at C;

and this intersection occurs in the interior of at least one of the line segments because x 6= x0.
But since we also know that the lines L;L0 on which these segments lie do not coincide, this

contradicts the optimality of the disclosure rule by Lemma 4.

We can further narrow down the structure of optimal pooling when we focus on the

�generic�case:

De�nition 4 The problem is �generic� if: (1) no three prospects lie on the same straight

line, and (2) for all i; j 2 P we have �i 6= �j and vi 6= vj.

In this case, Lemma 3 tells us that no more than two prospects can share the same

signal.11 Thus, any given signal s either fully reveals a speci�c prospect i, or, alternatively,

it pools exactly two di¤erent prospects fi; jg. Then the disclosure rule induces a �pooling
graph�on P , in which two prospects are linked if and only if they are pooled into one signal.

(Note that by Lemma 2 it cannot be optimal to have two distinct signals that both pool

the same two strictly unordered prospects, since then the two signals would themselves be

strictly unordered.)

De�nition 5 For two prospects i; j 2 P , if �i � �j and vi � vj then we say that i is �to

the SE�of j, and that j is �to the NW�of i:

Proposition 1 In the generic case, an optimal disclosure rule partitions P into three sub-

sets: the set V of �bait prospects,�the set � of �switch prospects,�and the set I of �isolated

prospects,� so that for any signal s, the pool Ps consists either of a single prospect i 2 I or
of two prospects fi; jg with i 2 V and j 2 �, with i being to the NW of j. Each �bait� or

�switch� prospect is pooled with other prospects with probability 1, whereas each �isolated�

prospect is never pooled.

Proof. Observe that a given prospect i cannot be optimally pooled with a prospect iSE
to the SE of it and, simultaneously, with another prospect iNW to the NW of it. Indeed,

10Where [x; y] = f�x+ (1� �) yj� 2 [0; 1]g.
11If we instead considered a continuous distribution of prospects, then this notion of genericity would not

be appropriate, and we would typically expect many prospects to be pooled into one signal.
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were this to happen, letting sSE and sNW represent the two respective signals, the posteriors

E [(�; v)jsSE] ; E [(�; v)jsNW ] would be strictly unordered (here also using genericity), and so
by Lemma 2 this could not be an optimal rule.

Thus, for any given prospect i, there are just three possibilities: (i) it does not participate

in any pools, in which case we assign i to I, (ii) all of its pooling partners are to the SE of

i, in which case we assign it to V , and (iii) all of its pooling partners are to the NW of i, in

which case we assign it to �. Finally, note that a given �bait�or �switch�prospect i cannot

be pooled with a given partner j and, simultaneously, separated with positive probability.

Indeed, were this to happen, letting s = fi; jg and s = fig represent the two respective
signals, the posteriors E [(�; v)jfi; jg] ; E [(�; v)jfig] would be strictly unordered (again using
genericity), and so by Lemma 2 this could not be optimal.

Intuitively, a �bait�is a prospect used to attract consumers by o¤ering them a high value,

while a �switch�is a pro�table prospect that exploits the attracted consumers. (Of course,

rational consumers take the probability of being �switched�into account.) The substantive

contribution of the Proposition is in showing that the role of a pooled prospect in the optimal

disclosure rule cannot change across signals: it is either always used as a �bait�or always

used as a �switch.�

Example 2 (Taxonomy of optimal pooling with 4 prospects) Focusing on the case

in which all prospects are pooled (I = ?), the optimal pooling possibilities are:

a) jV j = 1, j�j = 3 or jV j = 3, j�j = 1: 3 signals (�Fan�)

b) jV j = j�j = 2:

b.1) 2 signals, 1-to-1 pooling between V and � (�Two lines�)

b.2) 3 signals (�Zigzag�)

b.3) 4 signals (�Cycle�)

Figure 3 illustrates these possibilities (a: Fan. b: Two lines. c: Zigzag. d: Cycle).

Furthermore, it turns out that cycles are �fragile:�they can only be optimal for non-generic

parameter combinations, and even for such combinations there exists another optimal pooling

graph that does not contain cycles (see Section VI).
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V. Solving for Optimal Disclosure

The results in the previous section tell us a great deal about the optimal disclosure rule,

but do not fully describe it. In this section we discuss how to solve for the optimal rule. For

simplicity we restrict attention to the generic case, in which by Lemma 3 we can restrict

attention to signals that either pool a pair of prospects, or separate a single prospect. Thus,

we can take S = fs � P : jsj = 1 or jsj = 2g, where a single-element signal fig separates
prospect i while a two-element signal fi; jg is a pool of prospects i and j.
One way to describe such a disclosure rule is by de�ning, for any two-element signal

fi; jg � P , the weight �ij = pi�fi;jg (i) �namely, the mass of prospect i that is pooled

into signal fi; jg. Given these weights, we can calculate the Sender�s expected payo¤ (3) as
follows. For each signal fi; jg that is sent with positive probability (i.e. �ij + �ji > 0), the
expected payo¤ from using this signal relative to that from breaking it up into separation

can be obtained using formula (4), by substituting into it pi = �ij and pj = �ji. Thus, the

Sender�s expected payo¤ can be written as

F (�) =
X
i2P

pi�ivi �
X

fi;jg�S

g
�
�ij; �ji

�
Zij, (5)

where g (a; b) =

(
ab= (a+ b) if a+ b > 0;

0 otherwise,

and Zij = (�i � �j) (vi � vj) for all i; j 2 P .

The Sender will choose nonnegative weights to maximize this function subject to the

constraints

X
j 6=i

�ij � pi for all i 2 P ,

�ij � 0 for all fi; jg � P:

(When the �rst constraint holds with strict inequality for some prospect i this means that

with the remaining probability the prospect is separated.)

Furthermore, note that the Sender strictly prefers not to use any signals fi; jg for which
Zij > 0 (i.e. for strictly ordered prospects). Thus, we can restrict attention to pools from

the set

U = ffi; jg � P : Zij � 0g :
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The Sender�s program can then be written as

max
�2RU

X
i2P

pi�ivi �
X

fi;jg2U

g
�
�ij; �ji

�
Zij, s.t. (6)

X
j:fi;jg2U

�ij � pi for all i 2 P; (7)

�ij � 0 for all fi; jg 2 U: (8)

Lemma 6 The objective function in (6) is continuous and concave on RU+.

Proof. For continuity, it su¢ ces to show that the function g (a; b) is continuous on (a; b) 2
R2+. Continuity at any point (a; b) 6= (0; 0) follows from the fact that it is a composition

of continuous functions. To see continuity at (0; 0), note that g (a; b) 2 [0; a � b]; hence
lima;b!+0 g (a; b) = 0 = g (0; 0) :

For concavity, since Zij � 0 for all fi; jg 2 U , it su¢ ces to show that g (a; b) is a concave
function on R2+. We �rst show that it is concave on R2+n f(0; 0)g by expressing its Hessian
at any (a; b) 6= (0; 0) as

D2g(a; b) =
2

(a+ b)3

 
�b2 ab

ab �a2

!
;

and noting that it is negative semide�nite. Moreover, since g is continuous at (0; 0), its

concavity is preserved when adding this point to the set.

This Lemma implies that the set of solutions to the above program is convex and compact.

We now proceed to write �rst-order conditions for this program. However, before doing so,

a word of caution is in order: The function F (�) proves non-di¤erentiable in
�
�ij; �ji

�
at

points where �ij = �ji = 0. Indeed, on the one hand, the partial derivative of F with respect

to either �ij or �ji is zero at any such point. This is simply because raising one of the

weights while holding the other at zero has no e¤ect on the information disclosed to the

Receiver. However, the directional derivative of F in any direction in which �ij and �ji are

raised at once is not zero: in particular, it is positive when i and j are strictly unordered.

We can still make use of �rst-order conditions for program (6) in the variables �ij; �ji for

signals fi; jg such that
�
�ij; �ji

�
6= (0; 0), holding the set of such signals �xed at some Ŝ � U .

20



Letting �i denote the Lagrange multipliers with adding-up constraints (7), the �rst-order

conditions can be written as:

�2ji�
�ij + �ji

�2 jZijj � �i, with equality if �ij > 0: (9)

In particular, for signals fi; jg and fi; kg to both be sent with positive probability for prospect
i, we must have

�ji�
�ij + �ji

�qjZijj = �ki
(�ik + �ki)

p
jZikj:

Thus, one way to solve for an optimal disclosure rule is by trying di¤erent sets of signals

Ŝ � U , writing interior �rst-order conditions for all signals from Ŝ to be sent with positive

probability, solving for the optimal weights � given Ŝ, and calculating the resulting expected

pro�t for the Sender. Then we can choose the set Ŝ that maximizes her expected pro�ts. In

this case, we can also use Proposition 1 to narrow down the set of possible signal combinations

that could be optimal. Still, when the set P of prospects is large, this procedure may be

infeasible, since the set of possible signal combinations Ŝ can grow exponentially with the

number of prospects. For such cases, we propose an alternative approach: choose " > 0 and

introduce the additional constraints �ij+�ji � " for each fi; jg 2 U . Within this constrained
set, the objective function is totally di¤erentiable, hence the solutions can be characterized

by the respective �rst-order conditions. Then, by taking " to zero, we approach a solution

to the unconstrained program.

Finally, while so far we have not allowed the Sender to exclude prospects (fully or par-

tially), it is easy to introduce this possibility. Fix a prospect i:When �i � 0, the Sender will
never strictly gain from excluding this prospect since it can always be separated from the

others while delivering a nonnegative payo¤. In this case, the original �rst-order conditions

(9) for the weights �ij remain valid. On the other hand, when �i < 0, prospect i will not

be included in isolation, but might still be pooled with other prospects to increase their

acceptance rate. Thus, the overall probability with which prospect i is included becomes

pi =
P

j:fi;jg2U �ij: We now substitute pi for pi in the Sender�s objective (6) and obtain the

following �rst-order conditions for �ij:

�2ji�
�ij + �ji

�2 jZijj � �i + j�ij � vi, with equality if �ij > 0; (10)
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which are identical to the original �rst-order conditions (9) except for the constant j�ij � vi:
This constant captures the fact that the best alternative to pooling is now to exclude the

prospect rather than including it in isolation, with j�ij�vi representing the bene�t of exclusion
relative to isolation.

Conditional on any given set of signals Ŝ � U , we obtain the optimal values of �ij across
all prospects by combining the original �rst-order conditions (9) (for prospects such that

�i � 0) with the new �rst-order conditions (10) (for prospects such that �i < 0), together
with the complementary slackness conditions associated with the adding-up constraints (7).

VI. Cycles and Generic Uniqueness

In this section we provide a condition for the Sender�s problem to have an essentially

unique solution. This condition also rules out the optimality of cycles (as in Figure 3.d). We

continue to restrict attention to the generic case.

We begin by noting that there is a trivial reason why the set of solutions to program (6),

which we denote B�, may contain multiple elements. Suppose there is an optimum �� 2 B�

such that for some pair fi; jg we have ��ji = 0: In this case, g(�ij; ��ji) = 0 for any �ij, and
so �ij does not a¤ect the value of the Sender�s objective (6). Thus, provided the adding-up

constraint (7) is slack, �ij can be chosen arbitrarily.

In order to abstract from this arti�cial source of multiplicity, we restrict attention to the

subset of optima such that

�ij = 0, �ji = 0 for all fi; jg 2 U: (11)

Denote this subset of optima bB = f� 2 B� : (11) holdsg: The following results establish
properties of these optima.

Lemma 7 The set of optima bB is convex and compact. Thus, by the Krein-Milman theorem,
it is the convex hull of its vertices.

Proof. See Appendix.

bB may in principle contain two types of optima: cyclic and acyclic. (Formally, we say

that � is cyclic if its pooling graph contains a cycle, namely, a set of prospects (i1; i2; :::; iK);
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with K > 2, such that both �ik;i(kmodK)+1 and �i(kmodK)+1;ik are strictly positive for every

k = 1; 2; :::; K:)12

Lemma 8 An optimum � 2 bB is acyclic if and only if it is a vertex of bB:
Proof. See Appendix.

Under a speci�c condition for the prospects�payo¤s (which also holds generically), cycles

cannot arise, and, therefore, from Lemmas 7 and 8, the optimum is guaranteed to be unique:

Proposition 2 There exists an acyclic optimum. Moreover, if for every subset of prospects

(i1; i2; :::; iK) with K even and greater than or equal to four, we have

KX
k=1

(�1)k
q
Zik;i(kmodK)+1 6= 0;

then bB contains a single element.

Proof. See Appendix.

VII. An Independent Advertiser

Here we assume that the prospect is owned by a new player, called the Advertiser, rather

than the Sender. This prospect is characterized by a parameter vector (�; �) that is randomly

drawn from a �nite set ��R � R2. The �rst component � represents the pro�t obtained by
the Advertiser if the prospect is accepted (a = 1). The second component � is a �relevance�

parameter that, in combination with �; determines the bene�t v(�; �) 2 [0; 1] obtained by
the Receiver conditional on accepting the prospect.

The prospect�s pro�t parameter � is privately observed by the Advertiser, and its rele-

vance parameter � is jointly observed by the Advertiser and the Sender. In this way, the

Sender enjoys at least partial knowledge of v: (The Receiver observes neither � nor �.) Let

h(� j �) denote the probability of � conditional on �; with cumulative function H(� j �):
The Sender sells a signal lottery to the Advertiser using a direct revelation mechanism.

For each value of �; this mechanism requests a report b� of the Advertiser�s pro�tability � and,
based on this report, determines: (1) a lottery �(b�; �) 2 �(S); and (2) a monetary transfer
12Where (kmodK) equals k when k < K; and equals 0 when k = K:
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t(b�; �) 2 R from the Advertiser to the Sender.13 The goal of the Sender is to maximize

expected revenues E [t(�; �)] subject to the relevant participation and incentive constraints.
For the time being we assume that the Sender does not exclude any of the Advertiser�s

prospects, but we discuss this possibility below.

The timing is as follows:

1. The Sender chooses a mechanism consisting of a disclosure rule � : ��R! �(S) and

a transfer rule t : ��R! R.

2. The Advertiser draws a prospect (�; �) 2 ��R.

3. The Advertiser reports b� and transfers t(b�; �) to the Sender.
4. A signal s 2 S is drawn from distribution �(b�; �) and shown to the Receiver.
5. The Receiver privately observes r, and accepts or rejects the prospect.

We assume that the Receiver has knowledge of the mechanism chosen by the Sender as

well as the prior distribution of (�; �): Accordingly, for any given signal s; the Receiver�s

acceptance rate is given by E [v(�; �) j s] ; where the expectation is taken over (�; �):
The net expected pro�t obtained by an Advertiser who is endowed with prospect (�; �);

and who reports type b�; is given by
� � E

h
E [v j s] j �(b�; �)i� t(b�; �);

where the �rst expectation is taken over s according to the lottery �(b�; �): The Advertiser�s
participation and incentive constraints require, respectively, that this payo¤ must be non-

negative and maximized at b� = �.
For any given �; the highest transfers that the Sender can obtain are determined by a

binding participation constraint for the Advertiser with the lowest value of �; and a binding

downward-adjacent incentive constraint for all other Advertisers. Accordingly, the Sender�s

objective becomes

E [t(�; �)] = E (E [�(�; �) j s] � E [v(�; �) j s]) ; (12)

13Equivalently, the monetary transfer could be made contingent on Receiver acceptance (such as having
per-click rather than per-impression payments in online advertising auctions), in which case t(b�; �) would
simply represent the expected transfer conditional on (b�; �):
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where �(�; �) denotes the �virtual pro�t�that the Sender obtains from an Advertiser with

prospect (�; �). This virtual pro�t is given by

�(�; �) = � � (�0 � �)1�H(� j �)
h(� j �) ; (13)

where �0 denotes the type immediately above � (or �0 = � if � is the largest type), and 1�H(�j�)
h(�j�)

is the inverse hazard rate for �:

In addition, the Advertiser�s incentive constraints require that the Sender restrict to

disclosure rules h�; Si that result in a monotonic allocation. Namely, for any given �; the
expected probability that a = 1 must be a nondecreasing function of the Advertiser�s pro�t

�:

E [E [v j s] j �(�; �)] is non-decreasing in � for all �: (M)

Aside from the monotonicity constraint, the Sender�s problem of maximizing (12) is

identical to the original problem of maximizing (3), where � and v are now simply indexed

by (�; �): Consequently, whenever the monotonicity constraint is slack, all results derived

in Sections IV-VI apply. The following conditions guarantee that this constraint is in fact

slack:

Condition 1 �(�; �) is increasing in � for all �:

Condition 1 is met, for example, when: (i) � takes only two values, or (ii) the distribution

H has an increasing hazard rate h(� j �)= [1�H(� j �)], and adjacent types �; �0 are evenly
spaced.

Condition 2 v(�; �) is nondecreasing in � for all �:

Condition 2 indicates that a more pro�table Advertiser also delivers higher consumer

surplus.14

14For instance, a more pro�table Advertiser may have a higher-quality product and therefore charge a
higher price than his competitors. But this higher price may only partially capture the consumer�s higher
willingness to pay for the Advertiser�s product, therefore leaving more surplus for the consumer. To see this
more formally, consider a simple example, gracefully suggested by Michael Schwarz. Suppose the Advertiser
has a underlying private type t:When a consumer clicks on the respective ad, he draws a gross private value
z for the Advertiser�s product, with z uniformly distributed over [0; t]; and purchases the product when
z exceeds its price: Assuming zero marginal costs, the optimal price for the Advertiser is t=2: This price
delivers expected pro�ts t=4 for the Advertiser (which correspond to � in our model) and expected surplus
t=8 for the consumer (which corresponds to v). As a result, pro�ts and consumer value are positively related.
(This type of example can also be extended to include a role for the relevance parameter �.)
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Lemma 9 Under Conditions 1 and 2 the monotonicity constraint (M) does not bind.

Proof. Consider a disclosure rule h��; Si that maximizes (12) and is such that the posterior
payo¤s of all signals are strictly ordered (which is without loss for the Sender due to Lemma

2 and the fact that any pair of signals with posterior payo¤s that are both ordered and

unordered can be pooled without changing her objective). We show that such disclosure rule

satis�es (M).

Suppose not. Then, for some �; there must exist a pair �1; �2; with �1 < �2; such that

E [E [v j s] j ��(�1; �)] > E [E [v j s] j ��(�2; �)] :

This inequality implies that there exist two signals s1; s2, with ��s1(�1; �); �
�
s2
(�2; �) > 0; such

that

E [v j s1] > E [v j s2] : (14)

When combined with the fact that the posterior payo¤s of all signals are strictly ordered,

this inequality implies that

E [� j s1] > E [� j s2] : (15)

On the other hand, since v and � are, respectively, nondecreasing and increasing in �; we

have v(�1; �) � v(�2; �) and �(�1; �) < �(�2; �): But when combined with (14) and (15), these
inequalities contradict Lemma 5.

Finally, whenever a prospect delivers negative virtual pro�ts �(�; �) (which is possible

from (13) even when true pro�ts � are positive), the Sender may wish to exclude it. Provided

the monotonicity constraint is slack, so that the Sender�s problem reduces to the original

one, we can compute the optimal probability of inclusion using the �rst-order conditions (10)

derived in Section V.

A Stylized Application.�In practice, online search engines typically display links to their

search results in three broad categories: left-hand-side sponsored links, left-hand-side organic

links (displayed immediately below the sponsored links), and right-hand-side sponsored links.

The engine receives direct revenues from all sponsored links (which are auctioned o¤), but

not from the organic ones (which are chosen based on a measure of consumer value). The

links on the left normally enjoy a signi�cantly higher acceptance rate (or clickthrough) than

those on the right.
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In addition, it is reasonable to assume that many consumers do not draw a sharp dis-

tinction between the top organic links and the sponsored links on the left (for example,

despite being Bayesian updaters, users may optimally devote limited attention resources to

distinguish between the two).15 In fact, search engines normally o¤er only a very mild visual

distinction between these two types of links on the left, such as slight �sometimes almost

imperceptible �background shading, which is suggestive of an attempt to pool.16 Thus, we

can roughly interpret this scenario as the engine showing two types of signals: a low-quality

�right-hand-side�signal that includes only low-revenue sponsored links, and a high-quality

�left-hand-side�signal that is shared by top organic and sponsored links.17

The following simple example illustrates how the model can provide a stylized rationale

for the above practice:18

Example 3 Suppose the Sender (search engine) has three prospects. The �rst two prospects

(1 and 2) represent advertisers that share the same value of �; but have di¤erent pro�t levels

�; with �1 > �2 > 0; and therefore, from eq. (13), prospect 1 delivers a higher virtual pro�t

for the Sender �namely, �1 > �2 �and therefore Condition 1 is met. Suppose �2 is positive.

Moreover, suppose consumer value is increasing in � �namely, v1 > v2 �so that Condition

2 is met as well. Finally, suppose the third prospect represents an organic link that delivers

no pro�t to the Sender (�3 = 0), but delivers high value for the consumer, with v3 > v1; v2.

(To formally �t this example in the model let � = f�1; �2; 0g; R = fsponsored, organicg;
and suppose only the combinations (�1; sponsored); (�2; sponsored); and (0; organic) occur

with positive probability, so that the remaining combinations can be ignored.)

Notice that prospects 1 and 2 are ordered, (�1; v1) > (�2; v2); while prospect 3 lies to the

NW of the �rst two, �3 < �1; �2 and v3 > v1; v2. Moreover, since Conditions 1 and 2 are

met, Lemma 9 indicates that the monotonicity constraint is slack and therefore the optimal

disclosure policy solves program (6).

15We are grateful to Glenn Ellison for this observation.
16The Chinese search engine Baidu o¤ers no distinction whatsoever between some of its sponsored and

organic links. This practice would be illegal in the U.S.
17We abstract from the fact that the speci�c position in which a sponsored link is displayed (within a

given side of the page) also has an important e¤ect on clickthrough.
18Since the Sender has only one prospect, while in practice search engines display multiple links at once,

for the model to literally apply we need to make the additional strong assumption that there is no comple-
mentarity/substitutability across links, so that when presented with multiple links, the user clicks on every
link that delivers an expected value higher than his opportunity cost � in which case the model with one
prospect is equivalent to a model with many.
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Lemma 10 The optimal disclosure rule for Example 3 involves two signals s1 and s2. Ad-

vertiser i = 1; 2 is assigned signal si with probability one. The organic prospect, in contrast,

serves as a bait and is randomly assigned one of the two signals (with possibly degenerate

probabilities). Other things equal, the bait shares the signal of advertiser i with a higher

probability if: (1) this advertiser has a larger mass pi; and (2) the payo¤s of this advertiser

are more unordered vis-a-vis the payo¤s of the bait (i.e. jZi3j is larger).19

Proof. See Appendix.

The two signals s1 and s2 in the Lemma can be interpreted as the �left-hand-side�and

�right-hand-side�signals that are used in practice. While the organic prospect in the example

can in principle serve as bait for both advertisers, it will be pooled exclusively with the high-

pro�t advertiser whenever jZ13j is large relative to jZ23j. This would occur, for instance,
when the di¤erence in pro�tability between the two advertisers is su¢ ciently large.20

While stylized, this example helps explain why, in practice, not all sponsored links are

grouped together (for example, on the right) and also why search engines do not introduce

a sharper distinction between the top organic and sponsored links on the left (for example,

by placing the high-revenue sponsored links in an altogether separate location). Indeed, the

example tells us that if all sponsored links were grouped, advertisers that are likely to be

ordered would be bundled, therefore reducing pro�ts. And it also tells us that introducing

a sharper distinction on the left would make the organic links a less e¤ective bait.

VIII. Extensions

A. Pareto-Optimal Disclosure Rules

Here we consider the more general problem of maximizing a weighted average of expected

Receiver surplus and expected Sender pro�t, rather than focusing on expected pro�t alone.

The objective becomes

�E
�
1

2
E [v j s]2

�
+ (1� �)E (E [� j s] � E [v j s]) ; (16)

19Recall that the example assumes �2 > 0. If instead �2 < 0, then prospect 2 would be ordered relative to
prospects 1 and 3, and given that it delivers negative virtual pro�ts, it would be strictly optimal to exclude
it. Similarly, if �2 = 0; excluding this prospect would be weakly optimal. In either case, prospects 1 and 3
would be pooled with probability one.
20Indeed, jZi3j = jvi � v3j�i, which is increasing in �i:
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where � 2 [0; 1] is an arbitrary Pareto weight on the Receiver. This problem captures

a scenario in which competition against other platforms to attract consumers induces the

Sender to place a positive weight on consumer surplus.21

From linearity of the expectation operator, the above objective can be expressed as

E
�
E
�
�

2
v + (1� �)� j s

�
� E [v j s]

�
:

It follows that the problem of maximizing (16) is mathematically equivalent to the original

problem after a linear transformation of the prospect�s payo¤s (�; v) into the new payo¤s

(b�(�); v); with b�(�) = �
2
v + (1� �)�:22 Graphically, we can think of this transformation as

a horizontal shift of the payo¤s of each prospect toward a ray with slope 2, where the new

payo¤s correspond to a weighted average between (�; v) and (1
2
v; v): Figure 4 provides an

illustration with three prospects (black balls). Patterned balls correspond to � = 1
2
, and

white balls correspond to � = 1: Notice that as � grows, prospect 1 eventually looses both

potential pooling partners.

In the extreme when � = 1 the Sender cares exclusively about Receiver surplus and,

therefore, full separation becomes optimal. For intermediate levels of � it may still be

optimal to pool some pairs of prospects but not others. Let

Zij(�) = (b�i(�)� b�j(�))(vi � vj)
=

�

2
(vi � vj)2 + (1� �)(�i � �j)(vi � vj);

so that the transformed payo¤s of any two prospects i and j are ordered if any only if

Zij(�) � 0:
If the original payo¤s of these prospects ((�i; vi) and (�j; vj)) are strictly ordered, it

follows that the new payo¤s are strictly ordered as well. On the other hand, if the original

payo¤s are unordered, then the new payo¤s remain unordered if and only if � 2 [0; b�ij];
21This model could also apply to the case in which prospects are owned by an independent Advertiser

(see footnote 22). Here we abstract away from competition across platforms to attract the Advertiser, but
such competition would be immaterial if this Advertiser employs a constant-return technology, and advertises
simultaneously on every platform that meets his participation constraint. In this case, the analysis in Section
VII remains valid, with � interpreted as the Sender�s virtual pro�ts per consumer.
22If the Sender acts as an intermediary, the assumption in Section VII that � is increasing and v is

nondecreasing in � remains su¢ cient for the monotonicity constraint to be slacked. Indeed, when � < 1; this
assumption implies that b�(�) is also increasing in � (as required by Lemma 9), and when � = 1 we obtain
full separation, in which case the monotonicity constraint is automatically met.
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where b�ij = �1 + 1
2

���� vi � vj�i � �j

������1 :
Notice that b�ij < 1 whenever vi 6= vj: Thus, in the �generic�case in which prospects have
di¤erent values, full separation is strictly optimal for all � close to 1.

B. Non-Uniform Acceptance Rate

Here we return to the original problem of maximizing expected pro�ts, but we discuss

the case in which the Receiver�s reservation value r is drawn from a general distribution G

over [0; 1]. Conditional on observing a given signal s; the Receiver�s acceptance rate becomes

prob fr � E[vj s]g = G(E[vj s]). Thus, the Sender�s expected pro�t from sending this signal

is E[�j s] �G(E[vj s]). Taking an ex-ante expectation over signals according to �, the Sender�s
payo¤ is now

E (E[�j s] �G(E[vj s])) : (17)

We begin by computing the Sender�s expected gain from pooling two prospects i and j

into one signal ŝ = fi; jg relative to separating them (while disclosing information about the
other prospects as before). This gain is given by

(pi + pj)E[�j ŝ] �G(E [vj ŝ])� pi�iG(vi)� pj�jG(vj)

= � pipj
pi + pj

(�i � �j)(G(vi)�G(vj)) (18)

+(pi + pj)E[�j ŝ] � fG(E[vj ŝ])� E[G(v)j ŝ]g :

When both prospects have the same acceptance rate G; pooling has no impact. In

contrast, when G(vi) 6= G(vj); pooling has two e¤ects. First, as before, it shifts acceptance
rate from the more valuable prospect (with a higher rate G) to the less valuable prospect.

This e¤ect is captured by the �rst term in (18), which indicates that the shift in acceptance

rate raises the Sender�s payo¤ when the more valuable prospect is also less pro�table (the

unordered case), and vice versa.

Second, depending on the curvature of G; pooling may also change the overall acceptance

rate. This e¤ect is captured by the expression in braces in the last term in (18). For exam-

ple, when G is strictly concave, pooling increases the overall acceptance rate (by Jensen�s
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inequality the expression in braces is positive), therefore raising pro�ts. The opposite occurs

when G is strictly convex. Once both e¤ects are combined we obtain:

Lemma 11 Pooling two prospects with di¤erent acceptance rates yields (strictly) higher prof-

its for the Sender than separating them if the prospects are (strictly) unordered and G is

(strictly) concave, and yields (strictly) lower pro�ts if the prospects are (strictly) ordered and

G is (strictly) convex.

From (18), we also learn that when G is nonlinear, the desirability to pool any two

prospects with di¤erent values (and positive pro�ts) inevitably depends on the speci�c shape

of G: Indeed, letting v = E [vj ŝ] ; the left-hand-side of (18) simpli�es to pi�i [G(v)�G(vi)]�
pj�j [G(vj)�G(v)] : But since G(v) lies anywhere between G(vi) and G(vj); this expression
can always be either positive or negative, depending on the shape of G.23 Consequently,

when G is allowed to have an arbitrary shape, not much can be said in general about the

optimal rule.

Nevertheless, we show that two of the Lemmas in Section IV remain valid (provided G is

di¤erentiable and strictly increasing): (1) the payo¤s of prospects that are pooled together

must lie on a straight line, and (2) pooling segments cannot intersect at an interior point.

Lemma 12 Assume G is di¤erentiable and strictly increasing. In a pro�t-maximizing dis-

closure rule �, for any given signal s 2 S, the payo¤s of the prospects in the pool of s,

f(�i; vi) : i 2 Psg, lie on a straight line.

Proof. See Appendix.

To provide intuition for this result, it is useful to examine the curvature of the Sender�s

pro�t function � �G(v): Along direction (��;�v), this curvature is given by:

d2

dt2
[(� + t��) �G (v + t�v)] = 2G0(v)���v +G00(v)��v2. (19)

Note that the �rst term is proportional to �v; whereas the second term is proportional to

�v2: Thus, starting from an arbitrary point (�; v) with G0(v) > 0; we can always �nd an

ordered direction (��;�v) with su¢ ciently small �v along which the �rst term is larger

23For example, when G(vi) 6= G(vj) and G(v) is arbitrarily close to max fG(vi); G(vj)g ; pooling inevitably
bene�ts the Sender because it sharply increases the overall acceptance rate. The opposite occurs when G(v)
is arbitrarily close to min fG(vi); G(vj)g :
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than the second, and therefore � � G(v) is strictly convex.24 Consequently, if a given signal
pools prospects that do not lie on a straight line, this signal can always be spread out in a

direction of convexity (as in Figure 1, but now spread out along a direction with su¢ ciently

small slope), therefore increasing expected pro�ts.

Lemma 13 Assume G is di¤erentiable and strictly increasing. In a pro�t-maximizing dis-

closure rule �, if the pooling segments of two signals do not lie on the same line, they can

only intersect if they share an end point.

Proof. See Appendix.

Beyond these results, little can be said about the optimal pooling graph for arbitrary

G; given that its curvature can greatly in�uence the outcome. More can be said, however,

when the curvature of G is mild. For example, if G is everywhere concave and its curvature

is not strong enough to lead to pooling of strictly ordered prospects, then all the additional

characterization results in Section IV continue to hold.

C. Receiver Incentives

We now consider the case in which the Sender o¤ers the Receiver a monetary transfer

� 2 R conditional on accepting the prospect �with a potentially di¤erent � for each signal
s. (Note that the Sender may represent the seller of a product whose price and production

cost are �� and ��, respectively.) We allow r to be drawn from a general distribution G

over [0; 1].

Given signal s; the Receiver�s expected value from accepting the prospect, inclusive of

the transfer �; is given by w = E [v j s] + �. Thus, he accepts the prospect if and only if
r � w, which occurs with probability G(w). The Sender�s expected pro�t conditional on

acceptance is E [� j s] � � = E [� + v j s] � w: We can now treat w 2 R, rather than �, as
the Sender�s choice variable (which is selected separately for each s).

For each signal s, letting y = E [� + v j s] denote the expected joint surplus given s, the
24Indeed, for small �v the acceptance rate G is approximately linear, and therefore the curvature of the

Sender�s objective is essentially determined by the sign of ���v.
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Sender�s expected payo¤ from the optimal w can be represented as25

US(y) = max
w2R

(y � w) �G (w) : (20)

This representation allows us to see that full information disclosure is optimal:26

Proposition 3 When the Sender uses monetary incentives, full information disclosure is

optimal for any distribution G over [0; 1].

Proof. The function US in (20) is convex because it is the upper envelope of a family of

functions (y � w) � G (w), each of which is linear in y. It follows from Jensen�s inequality

that full separation is optimal: for any disclosure rule h�; Si ;

E [US(E [� + v j s])] � E [E [US(� + v) j s]] = E [US (� + v)] ;

where E [US (� + v)] is the expected pro�t under full separation.

To develop intuition for this result, suppose the Sender pools two prospects into one

signal s, and o¤ers Receiver value w for this signal. The Sender can then instead separate

the prospects, o¤ering Receiver value w for each of the prospects. This modi�cation will not

change the probability of the Receiver accepting each prospect, nor will it change the Sender�s

expected pro�t conditional on acceptance, which will continue to be E [� + v j s]�w. Hence,
the Sender will achieve exactly the same pro�t with full disclosure as he did with pooling.

Observe also that with full disclosure it need not be optimal to o¤er the same Receiver value

w for both prospects. The Sender will thus become strictly better o¤ with full disclosure

whenever optimality requires o¤ering di¤erent Receiver values for di¤erent prospects.

25The maximization program in (20) is guaranteed to have a solution. When y � 0; any w < 0 (which
implies G(w) = 0) is optimal. When y > 0; the existence of a solution follows from the fact that the
objective function is upper semi-continuous over the relevant (compact) domain of optimization, namely,
w 2 [0; y]. (This upper semi-continuity in turn follows from the fact that the c.d.f. G is non-decreasing and
right-continuous.)
26This result extends to the case in which the Sender maximizes a weighted sum of Receiver surplus and

Sender pro�ts (as in Section VIII.A). The optimized objective becomes

US(y) = max
w2R

�
�

Z w

0

(w � r)dG(r) + (1� �) (y � w) �G (w)
�
;

where we restrict attention to � 2 [0; 1=2] (with � > 1=2, the Sender would wish to make an in�nite money
transfer to the Receiver). Since Receiver surplus does not directly depend on y; the same argument as in
the proof of Proposition 3 implies that US is a convex function, and therefore full disclosure is optimal.
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Example 4 Suppose r is uniformly distributed over [0; 1]; so that G(w) = w over this in-

terval. The Sender�s optimized payo¤ (20) then equals

US(y) =

8>><>>:
0 if y < 0;
1
4
y2 if y 2 [0; 2];

y � 1 if y > 2:

(This expression follows from the optimality of setting w = 0 when y < 0; w = 1
2
y when

y 2 [0; 2]; and w = 1 when y > 2.) Note that US is linear when y < 0; strictly convex when
y 2 [0; 2] (since in this region w changes with y), and again linear when y > 2:
The Sender is indi¤erent between pooling or separating two prospects whenever it is opti-

mal to induce the same acceptance rate for both of them. This occurs when: (i) each prospect

generates a weakly negative joint surplus �i+vi � 0 (since the optimal acceptance rate is zero
for both prospects), (ii) each prospect generates a joint surplus �i + vi weakly larger than 2

(since the optimal acceptance rate is 1 for both prospects), or (iii) the two prospects generate

the same joint surplus �i + vi. In every other case, due to the strict convexity of US over

[0; 2]; separating the two prospects is strictly optimal.

Despite disclosing all information, the Sender does not generally implement �rst-best

e¢ ciency. Indeed, �rst-best e¢ ciency means that the Receiver accepts prospect i if and only

if �i + vi � r. When G0 (�i + vi) > 0, implementing this acceptance requires the Sender

to o¤er a transfer � = �i for this prospect, leaving him with exactly zero pro�ts, while

a positive pro�t could be obtained with a transfer below �i, which creates ine¢ ciency.27

This ine¢ ciency can be viewed as resulting from monopoly pricing. Equivalently, it can be

attributed to the Sender�s incentive to extract the Receiver�s information rents due to the

latter�s private information about r.

The result that full disclosure is optimal when transfers are allowed is related to the

�ndings of Ottaviani and Prat (2001) and Es½o and Szentes (2007), but does not follow from

them. Ottaviani and Prat show that a monopolist facing a price-discrimination problem

�nds it optimal to publicly reveal a signal a¢ liated to the buyer�s private information.

In their model, the payo¤-relevant state is one-dimensional, whereas our state, (�; v; r),

cannot be collapsed into a single dimension while satisfying their a¢ liation condition. Es½o

and Szentes note that full disclosure is always optimal when the seller/auctioneer can o¤er

27For example, when G is uniform, the Receiver is induced to accept prospect i if and only if �i+ vi � 2r,
which implies that the acceptance rate is ine¢ ciently low.
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buyers a mechanism before the disclosure, specifying how the disclosed information will be

used. (Their main contribution lies in showing that in many cases the same outcome can

be achieved when the disclosed information is observed only by the buyers and needs to be

elicited by the mechanism.) In contrast, in our model with transfers, full disclosure turns

out to be optimal even in the absence of ex-ante contracting.28

Note that o¤ering money transfers may prove impractical in some applications because

the Receiver can potentially game the contract (e.g. there may exist a mass of strategic

Internet users with very low clicking costs that are not interested in the Advertiser�s product

per se, but nevertheless click on the ad in order to exploit the transfer), or it may prove

infeasible if the Sender cannot directly contract with the Receiver (e.g. a university may not

be capable of o¤ering payments to future employers of its students).

IX. Conclusion

We have studied a Sender-Receiver disclosure game in which the Sender is endowed

with a random prospect that has two-dimensional payo¤s � known only to the Sender �

and the Receiver has a private opportunity cost of accepting this prospect. The Sender�s

problem is to select an information disclosure rule (a mapping from prospects to lotteries over

signals) that maximizes her expected pro�ts. We have shown that under the assumption that

the Receiver�s opportunity cost is uniformly distributed over [0,1], the optimal randomized

disclosure rule can be fully characterized and is generically unique.

When there are no monetary transfers between these players (as in the case of an internet

user not paying to click on the links o¤ered by a search platform), the Sender�s optimal

disclosure rule typically involves partial disclosure. For generic parameter values, the set

of prospects is partitioned into three subsets: �bait� prospects, �switch� prospects, and

�isolated�prospects, so that any possible pooling signal involves one �bait�prospect and

one �switch�prospect. Each �bait�or �switch�prospect is pooled with other prospects with

probability 1, whereas each �isolated�prospect is never pooled. In contrast, when transfers

28In our model the Sender would not bene�t from eliciting the Receiver�s r before disclosing information
provided that G is increasing and di¤erentiable, and the Receiver�s �virtual cost�of accepting the prospect,
' (r) = r +G (r) =G0 (r), is increasing in r. (This virtual cost accounts for the Receiver�s information rents
which are not captured by the Sender.) Indeed, the virtual surplus is maximized by inducing acceptance for
prospect i if and only if �i+ vi � ' (r), which can be achieved in the ex-post mechanism with full disclosure
that o¤ers, for each prospect i, Receiver value wi = 0 when �i + vi < ' (0), wi = 1 when �i + vi > ' (1),
and wi = '�1 (�i + vi) otherwise. Since the Receiver with r = 1 is left with zero utility under both ex-post
and ex-ante contracting, the Sender�s expected pro�t is the same by the Revenue Equivalence Theorem.
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are introduced (as in the case of a buyer-seller relationship), this bait-and-switch strategy is

replaced with direct incentives, and full disclosure becomes optimal.

We also considered an environment in which the Sender is an intermediary between the

Receiver and an independent Advertiser who owns the prospect. Through a simple example,

we have argued that this model can help account for a stylized feature of Internet advertising:

the use of organic links as baits for those sponsored links that are most pro�table for the

platform, with the latter visually separated from less-pro�table links. Finally, we have shown

that the problem of �nding Pareto-optimal disclosure rules turns out to be mathematically

equivalent to the original problem of maximizing Sender pro�ts, upon a linear change of

coordinates. As the Pareto weight on Receiver welfare increases, the optimal rule eventually

becomes fully revealing.

It future work, it would be interesting to extend this model along several dimensions:

1. Allowing di¤erent Receiver types to have di¤erent preferences across prospects. In this

case, we would expect an additional reason for hiding information, as occurs in models

of optimal bundling with heterogeneous consumers.

2. Allowing the Sender to be endowed with multiple prospects at once, with these prospects

being complements or substitutes for the Receiver.

3. Studying mechanisms in which the Receiver is asked to report his opportunity cost

before being presented with a prospect (as in the model of Es½o and Szentes, 2007, but

without the possibility of monetary transfers).

36



Appendix

A. Proof of Lemmas 7 and 8, and Proposition 2

We begin with some preliminary results.

Lemma 14 Suppose h�; Si and h�0; S 0i are optimal disclosure rules. Then, for any pair of
signals s 2 S and s0 2 S 0; the posterior payo¤s E [(�; v)js] and E [(�; v)js0] are ordered.

Proof. Suppose without loss that the sets S and S 0 have no signal in common (which is

always possible through a relabeling of signals). Now consider a new disclosure rule h�00; S 00i
that results from randomizing between the two original rules h�; Si and h�0; S 0i with equal
probability assigned to each. Namely, S 00 = S [ S 0 and �00s(i) = 1

2
f�s(i) + �0s(i)g for every

i 2 P and s 2 S 00:
Since S and S 0 do not intersect, for any given s 2 S and s0 2 S 0; the posterior payo¤s

E [(�; v)js] and E [(�; v)js0] are equal under the original and new disclosure rules. As a result,
the expected payo¤ delivered by h�00; S 00i is

X
s2S00

X
i2P

pi�
00
s(i)E [�js] � E [vjs] =

1

2

(X
s2S

X
i2P

pi�s(i)E [�js] � E [vjs] +
X
s2S0

X
i2P

pi�
0
s(i)E [�js] � E [vjs]

)
;

where the two terms in braces represent, respectively, the payo¤s delivered by h�; Si and
h�0; S 0i : It follows that h�00; S 00i is also optimal. Consequently, from Lemma 2, the set of

posterior payo¤s under h�00; S 00i, which is composed of all posterior payo¤s from the original
disclosure rules, must be ordered.

Corollary 1 Suppose � and �0 are solutions to program (6). If a given pair of prospects

fi; jg 2 U is pooled under both � and �0, then the posterior payo¤s E [(�; v)jfi; jg] conditional
on signal fi; jg must be equal for both solutions. As a result, �ij=�ji = �0ij=�0ji:

Proof. For each solution, the posterior payo¤s E [(�; v)jfi; jg] lie on the straight line with
negative slope connecting (�i; vi) and (�j; vj). Consequently, if these posterior payo¤s di¤ered

across solutions, they would be strictly unordered, a contradiction to Lemma 14.

Proof of Lemma 7.�That bB is convex follows from the fact that the objective in (6) is

concave (Lemma 6) and the set of vectors � 2 RU that satisfy constraints (7), (8), and (11)
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is convex. For compactness, it su¢ ces to show that bB contains its boundary. Suppose �0

belongs to the boundary of bB and let �n 2 bB; n = 1; 2; :::; be a sequence converging to �0:
Constraint (11) and Corollary 1 imply that there exists a constant C > 0 such that, for every

n and every fi; jg � U; �nij = C�nji: Taking the limit as n ! 1; this equality implies that
�0 satis�es constraint (11). In addition, since the objective F (�) is continuous, �0 must also

be an optimum. It follows that �0 2 bB. Q.E.D.
Proof of Lemma 8.�We begin with necessity ()). Suppose that � 2 bB is not a vertex ofbB: Since bB is convex, there must exist an optimum �0 2 bB that is arbitrarily close to � and

yet �0 6= �: Indeed, we can select �0 such that, for every fi; jg 2 U; �0ij > 0 , �ij > 0: LetbU � U denote the subset of pairs fi; jg 2 U such that �ij > 0: Since � is not a vertex of bB,bU is nonempty. Moreover, from Corollary 1,

�ij
�ji

=
�0ij
�0ji

for all fi; jg 2 bU: (21)

Now let ��ij = �ij � �0ij: Constraint (7), which by Proposition 1 binds for all pooled
prospects, implies X

j:fi;jg2bU
��ij = 0 for all i 2 P: (22)

Since �0 6= �, there must exist a pair fi; jg 2 bU such that ��ij 6= 0: Moreover, whenever

��ij 6= 0, (21) implies that ��ji 6= 0 (with sign(��ji) = sign(��ij)), and equation (22)

in turn implies that there exists a prospect k; with k 6= i; such that ��jk 6= 0 (with

sign(��jk) 6= sign(��ji)). It follows that we can select an in�nite sequence of prospects

i1; i2; ::: (with repeated elements) such that, for all k = 1; 2; :::; we have: ik 6= ik+1 and

��ikik+1 6= 0: Moreover, since ��ikik+1 6= 0 requires by construction that �ikik+1 > 0; and

the set of prospects P is �nite, � must contain a cycle.

We now turn to su¢ ciency ((). Suppose � 2 bB contains a cycle among prospects

(i1; i2; :::; iK): Without loss, denote these prospects (1; 2; :::; K): Notice from Proposition 1

that K must be even. For notational simplicity, let K + 1 = 1 and k � 1 = K when k = 1:

For every k in the cycle, let k =
�k;k+1

�k;k+1+�k+1;k
(i.e. the share of k in signal fk; k + 1g) and

let Ak =
p
jZk;k+1j. The �rst-order conditions (9) for weights �k;k+1 and �k;k�1 (which are

both positive) are

(1� k) � Ak = k�1 � Ak�1 =
p
�k: (23)
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Multiplying these �rst-order conditions across k; and rearranging terms, we obtain

KY
k=1

1� k
k

= 1: (24)

We now show that there exist two optima �0; �00 2 bB; both di¤erent from �; such that

� = 1
2
(�0 + �00); which in turn implies that � is not a vertex of bB. Select a small " > 0 and,

for all k = 1; 2; :::; K; let

�0k;k+1 = �k;k+1 +�k; �
0
k;k�1 = �k;k�1 ��k; (25)

�00k;k+1 = �k;k+1 ��k; �
00
k;k�1 = �k;k�1 +�k;

where the values of �k satisfy �1 = " and

�k+1 = �
1� k
k

��k: (26)

(That the above equation can be satis�ed for all k follows from equation (24) and the fact

that K is even). For all other pairs fi; jg 2 U; let �0ij = �00ij = �ij: Notice that, provided " is
small, �0 and �00 satisfy (11) and � = 1

2
(�0 + �00): Moreover, combining equations (25) and

(26) we obtain
�0k;k+1
�0k+1;k

=
�00k;k+1
�00k+1;k

=
�k;k+1
�k+1;k

:

As a result, �0 and �00 lead to the same values of k as the original optimum �, and therefore

they also meet the �rst-order conditions (23). It follows that �0; �00 2 bB. Q.E.D.
Proof of Proposition 2.�The �rst part of the Proposition follows directly from Lemmas

7 and 8. For the second part, we show that, under the assumed condition, no � 2 bB can

be cyclic. As a result, from Lemmas 7 and 8, bB must be a singleton. Suppose in negation

that � 2 bB contains a cycle among a subset of prospects denoted (1; 2; :::; K): Notice from

Proposition 1 that K must be even. Moreover, from the proof of Lemma 8, for every k in this

subset, the �rst-order conditions (23) must be met. Combining these �rst-order conditions

to solve for the value of 1 we obtain

1 = 1 +
1

A1

KX
k=1

(�1)kAk;
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where Ak =
q��Zk;(kmodK)+1��: But this equation can only hold when PK

k=1(�1)kAk = 0;

which is ruled out by the assumed condition. Q.E.D.

B. Proof of Lemma 10

The optimal disclosure rule solves the Sender�s program (6) with P = f1; 2; 3g; U =

ff1; 3g; f2; 3gg; and the payo¤s (�i; vi) described in the example, so that Z13 and Z23 are
strictly negative. Since prospects 1 and 2 have only one potential pooling partner each

(prospect 3), we can set, without loss, �13 = p1 and �23 = p2, so that the full masses of

prospects 1 and 2 are pooled, respectively, into the signals f1; 3g and f2; 3g: Denote these
signals s1 and s2:

It remains only to �nd optimal weights �31 and �32 (with �31+�32 = p3); which indicate

how the mass of prospect 3 (the bait) is distributed between s1 and s2. The corresponding

�rst-order conditions (9) for these two weights are:�
p1

�31 + p1

�2
� jZ13j � �3, with equality if �31 > 0; and�

p2
�32 + p2

�2
� jZ23j � �3, with equality if �32 > 0:

Depending on the parameter values, we have three possible types of solutions. First, if�
p1

p3+p1

�2
� jZ13j � jZ23j, we obtain a corner solution in which �31 = p3 and �32 = 0: In this

case, the bait is exclusively pooled with advertiser 1 into signal s1; and advertiser 2 receives

his own signal s2: Second, if jZ13j �
�

p2
p3+p2

�2
� jZ23j, we obtain the opposite corner solution

in which �31 = 0 and �32 = p3: Third, in all other cases, we obtain an interior solution with

�31; �32 > 0; so that the bait shares part of his mass with each advertiser. In this case, both

�rst-order conditions above hold with equality and we obtain:

1 + �31=p1
1 + �32=p2

=

r
Z13
Z23

:

Inspection of this expression delivers the last statement in the Lemma. Q.E.D.

C. Proof of Lemma 12

Suppose not. Then the convex hull of f(�i; vi) : i 2 Psg, which we denote by H, has a
nonempty interior that contains E[(�; v)js]. In addition, H contains E[(�; v)js]� (�1; �2) for
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small �1; �2 > 0: Let � 2 �(Ps) be such that

E[(�; v)js]� (�1; �2) =
P
i2Ps

�i � (�i; vi):

Now consider a new disclosure rule �̂ that replaces the original signal s with two new

signals s1; s2; and for each i 2 Ps has pi�̂s1 (i) = "�i and pi�̂s2 (i) = pi�s (i) � "�i, where
" > 0 is chosen small enough so that pi�̂s2 (i) > 0 for all i 2 Ps. (Also set �̂t (i) = �t (i) for
all i and all t 2 Sn fsg.) Let (�; v) = E[(�; v)js] and (�k; vk) = E[(�; v)jsk] for k = 1; 2. By
construction, we obtain

(�1; v1) = (�; v)� (�1; �2) and (27)

"

qs
(�1; v1) +

qs � "
qs

(�2; v2) = (�; v); where qs =
X
i2Ps

pi�s(i):

These equations in turn imply

(�2; v2) = (�; v) +
"

qs � "
� (�1; �2) : (28)

The Sender�s gain from adopting �̂ relative to � is

" � �1G(v1) + (qs � ") � �2G(v2)� qs � �G(v)

=
"(qs � ")
qs

(�2 � �1)(G(v2)�G(v1))

�qs�
�
G(v)� "

qs
�G (v1)�

qs � "
qs

�G(v2)
�
:

From (27) and (28), and letting � = "
qs�" ; this gain is equal to

"(qs � ")
qs

(1+�)�1(G(v + ��2)�G(v � �2))

�qs�
�
G(v)� "

qs
�G (v � �2)�

qs � "
qs

�G(v + ��2)
�
;

which we denote by �("; �1; �2): Now �x small "; �1 > 0: Notice that �("; �1; 0) is zero, and

the partial derivative @
@�2
�("; �1; 0) is strictly positive:

@

@�2
�("; �1; 0) =

"(qs � ")
qs

(1+�)2�1G
0(v) > 0:
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It follows that �("; �1; �2) is strictly positive for any small �2 > 0; which contradicts the

optimality of the original disclosure rule �. Q.E.D.

D. Proof of Lemma 13

Identical to the proof of Lemma 4 (see Section IV), but with Lemma 12 replacing Lemma

3 in the last line of the proof. Q.E.D.
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Figure Legends

Figure 1.�Pooling along Straight Lines

Figure 2.�Pooling Segments do not Intersect

Figure 3.�Taxonomy with 4 Prospects

Figure 4.�Pareto-Weighted Payo¤s
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