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Abstract

Information storage and retrieval systems are communication systems from the present
to the future and fall naturally into the framework of information theory. The goal of
information storage is to preserve as much signal fidelity under resource constraints
as possible. The information storage theorem delineates average fidelity and average
resource values that are achievable and those that are not. Moreover, observable
properties of optimal information storage systems and the robustness of optimal sys-
tems to parameter mismatch may be determined. In this thesis, we study the physical
properties of a neural information storage channel and also the fundamental bounds
on the storage of sources that have nonsequential semantics.

Experimental investigations have revealed that synapses in the mammalian brain
possess unexpected properties. Adopting the optimization approach to biology, we
cast the brain as an optimal information storage system and propose a theoretical
framework that accounts for many of these physical properties. Based on previous
experimental and theoretical work, we use volume as a limited resource and utilize
the empirical relationship between volume and synaptic weight. Our scientific hy-
potheses are based on maximizing information storage capacity per unit cost. We use
properties of the capacity-cost function, ǫ-capacity cost approximations, and measure
matching to develop optimization principles. We find that capacity-achieving input
distributions not only explain existing experimental measurements but also make
non-trivial predictions about the physical structure of the brain.

Numerous information storage applications have semantics such that the order of
source elements is irrelevant, so the source sequence can be treated as a multiset.
We formulate fidelity criteria that consider asymptotically large multisets and give
conclusive, but trivialized, results in rate distortion theory. For fidelity criteria that
consider fixed-size multisets, we give some conclusive results in high-rate quantization
theory, low-rate quantization, and rate distortion theory. We also provide bounds on
the rate-distortion function for other nonsequential fidelity criteria problems. Sys-
tem resource consumption can be significantly reduced by recognizing the correct
invariance properties and semantics of the information storage task at hand.
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Chapter 1

Introduction

Information storage and retrieval are fundamental for the preservation and use of

cultural, scholarly, and literary heritage. For a typical person, the most local and

immediate seat of information storage is the brain. Papers on a desk, books on

a shelf, photographic negatives in a box, data files on a computer hard drive, and

music on a compact disc are more distant seats of information storage. Still more

distant are non-local repositories of these print, film, magnetic, and optical storage

media, such as libraries and digital archives. These distant, technological storage

media supplement the local, biological storage medium.

Information storage and retrieval systems must meet certain performance objec-

tives, such as maintaining stored signals within a certain fidelity. These systems

must also operate with limited resources, such as energy or physical volume. Since

information storage and retrieval is a form of communication from the present to the

future, the mathematical formalism of information theory is directly applicable to the

study of these systems. It is the purpose of this thesis to study the tradeoff between

the two fundamental parameters of information storage: the average signal fidelity

maintained and the average resources consumed.

In Chapter 2, we review the information theoretic formulation of information

storage, and present several characterizations of optimal systems. We also give some

examples of optimal information storage, inspired by paper, magnetic, and optical

storage media. In Chapter 3, we adopt the optimization approach to biology and

discuss physical properties of the mammalian brain that would be required for opti-

mal information storage. These optimal properties are consistent with experimental
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results and also lead to non-trivial scientific predictions that would need to be tested

in future experimental investigations. In Chapter 4, we discuss a family of fidelity

criteria that correspond to a natural invariance property in numerous information

storage applications. We deal with non-single-letter fidelity criteria that arise when

the order of elements to be stored is irrelevant and develop fundamental bounds on

optimal performance from all of the major branches of source coding theory.

The next section gives a more detailed summary of the contributions of the thesis.

� 1.1 Outline and Contributions

Chapter 2: General Information Storage Systems

It has long been evident that information storage and retrieval is a special case of

point-to-point information transmission,1 arguably the central problem in information

theory. In Section 2.1, we define the two main system parameters that will be used to

judge performance—average incurred distortion (∆) and average incurred cost (B)—

in terms of fidelity criteria and resource criteria, respectively. The fidelity criterion

quantifies the notion of signal reproduction quality, comparing the signal that was

stored with the one that was retrieved. The fidelity criterion should incorporate the

semantic nature of the information transmission problem; the distortion assigned to

a retrieved signal that is almost as useful as the original stored signal for the task

should be small. The fidelity criterion will be of central importance in Chapter 4.

The resource criterion quantifies the cost of storing and retrieving a particular signal.

It should reflect the cost of building and operating the information storage system.

The resource criterion will be of central importance in Chapter 3. In Section 2.2, we

define an optimal information storage system to be one where ∆ cannot be reduced

without increasing B and B cannot be reduced without increasing ∆.

The information storage theorem, Theorem 5 in Section 2.3, divides the set of

(∆, B) duples into two classes: the possible and the impossible. Optimal information

1Multiple retrieval attempts may be thought of as a broadcast system and multiple storage
attempts may be thought of as a multiple descriptions system, however this is not the view that we
adopt. See Chapter 2 for further discussion and [1] for related discussion.
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storage systems lie at the boundary between the two classes. There are numerous

ways of characterizing an optimal information storage system, and in the chapter,

we review three of them. The first is what we call the rate matching interpretation,

described in Section 2.4. Here optimality is defined as requiring R(∆) = C(B), where

R(·) and C(·) are the rate-distortion and capacity-cost functions, which measure in-

formation rate. The factorization interpretation, given in Section 2.5, emphasizes

that marginal probability distributions of the information storage system must be of

a particular form. The distribution of letters at the storage channel input must be

the capacity-cost achieving input distribution and the joint distribution of the source

letters and the retrieved reproduction letters must be the rate-distortion achieving

distribution. A third interpretation given in Section 2.6, the measure matching in-

terpretation, imposes conditions on the fidelity and resource criteria to make an in-

formation storage system optimal. Since these three interpretations are essentially

equivalent and address properties of three different parts of an information storage

system, they provide complementary views of system optimality. These complemen-

tary views also suggest three different architectures of system design that all result in

optimality. The different architectures partition incurred distortion in different parts

of the system.

The review of the information storage theorem and several characterizations of

optimal information storage serve to collect results from information theory and to

establish terminology and notation. Although the chapter is mainly a review, we also

present some new results. We give two new examples of optimal information storage

systems and review a third example of an optimal system. Given in Section 2.4.1, the

first new example considers the storage of a source with a context-dependent fidelity

criterion in a magnetic or optical medium. Context-dependent fidelity criteria are a

first step to incorporate meaningful semantics into the storage problem and so this

example is something of a preview of Chapter 4. The duality relationship between

storage of a source under the context-dependent fidelity criteria and storage in mag-

netic or optical media with objectionable intersymbol interference does not seem to

have been noticed previously. The second new example, Section 2.6.1, involves using
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a spacing storage channel which corresponds to timing channels used in information

transmission. Such spacing channels have been used to covertly store information

in paper documents. This example uses the measure matching conditions and pro-

vides intuition into the measure matching characterization. Not only are the measure

matching conditions used, but also the source and channel model are similar to mod-

els of excitatory synaptic information storage, so the example serves as somewhat of a

preview of Section 3.5. The third example deals with the storage of a Gaussian source

in an AWGN channel (Section 2.5.1). Such a system is used to obtain results about

the robustness of an information storage system to modeling errors, which forms the

final section of Chapter 2.

This final section, Section 2.7, deals with robustness of optimal systems to param-

eter mismatch. For a system designed using separate source and channel coding, if

the rate-distortion value exceeds the capacity-cost value, then the probability of error

quickly goes to one, and the average incurred distortion becomes large. Contrariwise,

when a Gaussian source is stored in an AWGN channel and the system is designed

using single-letter codes, when the capacity degrades below the rate-distortion value,

the loss in performance below optimality is not much. In fact, to a first-order approx-

imation, there is no loss between the optimal performance and the performance of

the mismatched single-letter scheme. Thus, systems designed according to uncoded

or single-letter principles are robust to uncertainty in some noise parameters. Some

comments on the robustness of single-letter schemes in the finite alphabet case are

also made. These new results show that even though two systems may achieve the

same optimal performance for the same source and the same channel in the (∆, B)

sense, there may be reasons to prefer one system design over another.

Chapter 3: Information Storage in Neural Memory Channels

The mammalian brain is a complicated system composed of billions of neurons and

trillions of synapses. A common mechanistic view of the brain is as a computer, how-

ever besides computing, another important task of the brain is to remember things.

Some even argue that “. . . the brain doesn’t ‘compute’ the answers to problems; it
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retrieves the answers from memory.. . . The entire cortex is a memory system. It isn’t

a computer at all” [2, p. 68]. Thus the brain falls naturally into the information

storage and retrieval framework of this thesis. Although previous philosophical and

psychological investigations of the brain as a memory system have used information

theoretic principles, particularly in the heyday of information theory euphoria in

the 1950s [3, 4], and previous quantitative neuroscience investigations have used the

information theoretic framework to study the transmission of information between

neurons, particularly in the context of sensory processing [5,6], the work presented in

this chapter is, to the best of our knowledge, the first application of the information

theory framework to a quantitative neuroscience investigation of memory. Thus the

entire chapter, including the problem formulation; the development of the system

model; the scientific hypotheses developed from the model through the optimiza-

tion approach to biology; and some experimental tests of these hypotheses may be

considered novel.

We formulate a unified set of optimization principles that explain physical char-

acteristics of synapses that have been observed and also make predictions that would

need to be tested in future experiments. In particular we try to explain why synapses

are rather noisy (Section 3.3), why synaptic connectivity is sparse (Sections 3.4 and

3.5), and why the distribution of synaptic efficacies contains many strong synapses

(Sections 3.4 and 3.5). We also comment on observations of discrete-valued synapses

(Section 3.6). Since it is widely believed that long-term memories are stored in

synapses through processes of synaptic plasticity modulating synaptic efficacy, the

information storage channel is identified with the synapses; each synapse is a discrete-

space channel usage. Based on previous theoretical and experimental work, the re-

source criterion is identified with synaptic volume, since volume is a scarce resource

and also measures metabolic energy expenditure.

With the synapse channel model and the volume resource criterion established, we

use the factorization interpretation and the measure matching interpretation of op-

timal information storage, focusing on the channel half. For the neural information

storage problem, we would like to not only achieve capacity-cost, but also achieve
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optimal capacity per unit cost. This second stage of optimization determines a par-

ticular point on the capacity-cost curve. It should be noted that although systems

obeying weaker notions of optimality than implied by the factorization interpretation

conditions may be able to achieve optimal capacity per unit cost when there are zero-

cost symbols [7, 8], the volume resource criterion has no such free symbols, and the

factoring interpretation conditions must be met for optimality. The optimality con-

ditions from Chapter 2 lead to optimization principles that describe the distribution

of synaptic efficacies and synaptic volumes, which can be measured through electro-

physiology experiments and electron microscopy experiments, respectively. Properties

required for optimality are garnered from both the factoring characterization and the

measure matching characterization. In Section 3.7, we compare the qualitative and

quantitative predictions of our theory to the results of electrophysiology experiments.

In large part, the experimental results verify the theoretical predictions. Experiments

relating synaptic efficacy to synaptic volume as well as experiments determining the

distribution of synaptic volume are needed to further test the theory. A final point

that is made in the chapter is that many forms of synaptic noise may not have been

captured in the experiments, so further experiments may change the particular quan-

titative predictions, however the method of making predictions and the qualitative

predictions themselves would remain the same.

Chapter 4: Source Coding for Nonsequential Sources

For a given semantic framework with a given fidelity criterion, Shannon’s statement

that “semantic aspects of communication are irrelevant to the engineering prob-

lem” [9] is certainly true, however establishing the semantic framework is not a trivial

task. Desirable properties for a fidelity criterion include such things as tractability,

computability, and semantic significance. These desiderata, particularly tractability

and semantic significance, are often not attainable simultaneously. In this chapter,

we develop a fidelity criterion that is not only mathematically tractable and easily

computable, but it also bears significance in numerous information storage applica-

tions.
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Numerous sources produce sequences of messages that are in arbitrary order. For

example, the order of financial transactions carried out by a bank, the order in which

results of electrophysiology experiments used in Chapter 3 are collected, or the order

in which songs are placed in an online jukebox are rather arbitrary. The records

can be reordered without ill effect. Thus these source-destination pairs display order

irrelevance in their semantics, and the fidelity criterion should reflect this invariance.

There are numerous other invariant representations one can envisage, ones that re-

sult in no degradation of utility. Melodies are invariant to changes in key, and can be

represented with a differential encoding with no perceivable loss. If photographs are

stored in a shoebox and the prints become arbitrarily rotated, it does not degrade

quality, as the destination can easily determine the correct orientation. Many algo-

rithms in machine learning and machine vision try to form invariant representations

to facilitate detection, recognition or other tasks, with varying degrees of success [10].

There are also numerous suggestions that animals form invariant representations. Al-

though we do not attempt to tie the results of this chapter to a biological substrate,

there are certainly results from psychology that are suggestive of the applicability of

the semantics that we adopt to human memory. In our formalization, sources with a

fixed order are equivalent to sources with order that does not matter. A simple psy-

chology experiment that displays fixed-order storage is to try to recite the alphabet

out of order: it is much more difficult and seems to involve buffering the alphabet in

the correct order first.

The order irrelevance semantics are particularly nice since the associated invariant

representation is mathematically well-characterized. For discrete alphabets, the type

(empirical distribution) is a sufficient statistic for sequences where order does not

matter. For continuous alphabets, the order statistics are a natural representative

of the equivalence class of arbitrarily ordered values. Thus the semantic fidelity

criteria operate on the types or the order statistics. If desired, one can also state

the fidelity criteria in group theoretic terms using permutation groups and invariance

under the group operator. Source coding can be thought of as projecting source

outputs to canonical representations for each equivalence class, which results in no
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distortion, and then performing further compression if needed. By imposing rules on

the arrangement, the source output patterns become ordered and thus the dimension

of the possible outcomes is reduced. This dimensionality reduction is a basic tool that

we use in developing our new results on information storage systems for nonsequential

sources, as now described.

Nonsequential semantics allow interesting statements to be made about joint

source and channel coding, using the measure matching conditions. Furthermore,

order irrelevance suggests itself as a way of embedding covert information into a

source sequence. The main focus, however is on separate source and channel coding

in the manner of the rate matching interpretation of optimal information storage.

First we show that information about the values of a sequence and the information

about the order of a sequence are independent for exchangeable sources. Next we

formulate some rate-distortion problems with nonsequential fidelity criteria and show

that the rate-distortion function is the (R = 0,∆ = 0) point. Alternative nonse-

quential fidelity criteria yield non-trivial results. A first step is to study the design

of low-rate and low-dimension quantizers. We obtain conditions on when quanti-

zation and projection to canonical representatives can be interchanged without loss

of optimality. We also obtain results in high-rate quantization theory, a branch of

source coding theory related to rate-distortion theory, that show how much rate can

be saved using the nonsequential fidelity criterion as opposed to more traditional non-

semantic fidelity criteria. Bounds on the rate-distortion function for a problem with

the alternative nonsequential fidelity criteria are also obtained.

Chapter 5: Conclusion

The final chapter recapitulates the results of the thesis, interpreting some results in

terms of a hierarchy of difficulty of communication problems. Suggestions for future

work are also made. One of the main issues that is not considered in the thesis is

the issue of time delay, which is known to be important for the control of dynamical

systems and has been considered in the design of computer memory systems.
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Chapter 2

General Information Storage Systems

� 2.1 The Problem of Information Storage

The basic problem of information storage and retrieval is the preservation of infor-

mation generated in the present for use in the future. When stored information is

retrieved, a minimum fidelity should be preserved, independent of the way the process

of storage and retrieval is constrained by finite resources. Therein lies the difficulty of

the storage and retrieval problem: maintaining good fidelity while remaining within

resource constraints. The storage and retrieval problem is a physical problem, in that

the information must be maintained in some physical medium that can withstand the

passage of time. In this thesis, we will cast both fidelity, which is a potentially seman-

tic quality, and resource consumption, which is a physical quality, in mathematical

terms. By doing so, we will be able to use mathematical techniques to determine

characterizations of the optimal tradeoff between fidelity preservation and resource

consumption.

For brevity, in the sequel we refer to the information storage and retrieval prob-

lem as the information storage problem. The fundamental nature of the information

storage problem is captured in the celebrated Figure 1 of Shannon’s “A Mathemat-

ical Theory of Communication” [9] (Figure 2-1). Following Figure 2-1, we define an

information storage system to have five parts: source, storer, channel, retriever, and

destination. We model messages and signals probabilistically and enforce a Markov

information pattern consistent with the figure: the retrieved signal is independent of

the source message given the stored signal and the destination message is indepen-
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Figure 2-1. Schematic diagram of a general information storage system, Figure 1 from Shannon’s
“A Mathematical Theory of Communication,” [9], redrawn and relabeled by author.

dent of the source message and stored signal given the retrieved signal. To illustrate

the relationship between the physical/semantic problem of information storage and

the mathematical problem of information storage and more fully explicate the math-

ematical model, we use an example.

Consider the storage process whose end stage is happening now: the storage of

the informational content of the thesis over a paper medium. The paper medium is

the channel; the information that has been stored is a sequence of ideas, theorems,

principles, and concepts. Owing to the novelty of this sequence, there exists some

uncertainty that is mitigated when a representation of the sequence is retrieved. We

model the information source in probabilistic terms as producing a sequence of ran-

dom variables, Uk
1 = (U1, U2, . . . , Uk) which are drawn from a common alphabet U

according to a probability distribution pUk
1
(~u), defined for all k. In contrast to prob-

lems in observation and estimation [11, 12, 13], the source side has a storer by which

the source message may be transformed to facilitate storage in the physical medium.

Since the ensemble of ideas, theorems, and such is not well-suited for storage in paper,

the storer physically acts as a transducer which has a mathematical representation as

an operator. The operation of the storer is to express ideas in linguistic and mathe-

matical terms, which are then represented with a symbol alphabet with an associated

typography. The storer may also filter the message to reduce redundancy. The typog-

raphy is the physical manifestation of the signal that is stored in the physical storage

medium. Although the stored signal is not the medium and should be understood
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independently of the medium, a physical manifestation is necessary nonetheless. The

storer converts a block of k source symbols into a block of n channel symbols, thus

the system has a fixed code rate κ = k/n. Mathematically, the storer is specified as

a sequence of transition probability assignments

Kn
ST = pXn

1 |Uk
1 ,(~x|~u), (2.1)

defined for all n. The output of the storer is a sequence of channel input random

variables, Xn
1 = (X1, X2, . . . , Xn) which are drawn from a common alphabet X . The

distribution of the channel input letters, pXn
1
(~x), is determined by the source distri-

bution and the storer.

The channel is the physical medium over which storage is carried out; in our ex-

ample it is the paper. The channel provides the physical link between the source and

destination and may be restricted to allow only a finite number of states or may in-

troduce noise or both. Noise may be manifested through degradation of paper fibers,

fading of ink, stains, smudges, or dirt. The mathematical model of the channel is

defined as a sequence of transition probability assignment between the channel input

space and the channel output space, pY n
1 |Xn

1
(~y|~x), for all n. The resource constraints

of the information storage system are specified as constraints on what can be stored

over the channel. A word cost function is defined on the channel input alphabet

X n. Formally, we require that the word cost function be a nonnegative function

bn(~x) : X n 7→ [0,∞). It is desirable for the cost function to be based on some fun-

damental system resource such as energy, bandwidth, volume, or money. Sometimes

it is difficult to determine the cost constraints that limit system functionality [14]. A

sequence of word cost functions,

E = {bn(xn
1 ), n = 1, 2, . . .} , (2.2)

is called a resource criterion. A resource criterion composed of word cost functions of
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the form

bn(~x) =
1

n

n
∑

i=1

b(xi) (2.3)

is called a single-letter resource criterion.

In the specification of the channel, we have implicitly defined the channel output

random variables, Y n
1 = (Y1, Y2, . . . , Yn) which are drawn from the common alphabet

Y according to the marginal distribution pY n
1
(~y), which is determined by pXn

1
(~x) and

the channel. In the thesis, we assume that the channel does not introduce insertion

or deletion errors and so the number of channel input and output symbols is iden-

tical. In reversing the operations of the storer, the retriever converts the retrieved

signal back into the form of the original source message. The retriever converts n

channel symbols into k reconstruction symbols, where the same code rate κ = k/n is

used. Mathematically, the retriever is specified as a sequence of transition probability

assignments

Kn
RT = pV k

1 |Y n
1
(~v|~y), (2.4)

for all n. The destination receives a sequence of reconstruction random variables,

V k
1 = (V1, V2, . . . , Vk) which are drawn from the common alphabet V . The probability

distribution of ~V , pV k
1
(~v), is determined by the distribution of ~U , the storer, the

channel, and the retriever in the Markov fashion. Note that since the channel does

not delete or insert symbols and since the code rate is fixed, there are an equal number

of source and reconstruction letters, k.

For the source-destination pair, we define a word distortion function that mea-

sures the quality of the reproduction ~V for the source ~U . Formally, we require that

the word distortion function be a nonnegative function dk(~u,~v) : Uk × Vk 7→ [0,∞).

Desirable properties for word distortion functions include such things as tractabil-

ity, computability, and subjective significance [15]. These desiderata, particularly

mathematical tractability and semantic significance, are often difficult to attain si-

multaneously [16]. A sequence of word distortion functions,

F =
{

dk(u
k
1, v

k
1), k = 1, 2, . . .

}

, (2.5)
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is called a fidelity criterion. A fidelity criterion composed of word distortion functions

of the form

dk(~u,~v) =
1

k

k
∑

i=1

d(ui, vi) (2.6)

is called a single-letter fidelity criterion.

We have specified an information storage system by six sequences of measures

that are naturally grouped into three pairs [17, 18]. The source-destination pair is

specified by the source distribution and the fidelity criterion, (p~U(~u), F ). The storer

and retriever are specified by their transition probability assignments, (KST , KRT ).

Finally, the channel is specified by the transition probability assignment and resource

criterion (p~Y | ~X(~y|~x), E).

The three functionals that are used to measure the performance of an information

storage system are the code rate κ, the average incurred cost,

Bn = E
pXn

1
(~x)

[b(Xn
1 )] , (2.7)

and the average incurred distortion

∆k = E
p

Uk
1 ,V k

1
(~u,~v)

[

d(Uk
1 , V

k
1 )
]

. (2.8)

Of course, we would prefer a system with large κ, small B, and small ∆. We will give

a definition of an optimal communication system in the next section.

In the framework of information theory, information storage is studied as a prob-

lem built upon probability theory. As such we have modeled the mechanisms of source

message production and channel signal perturbation with probability laws. The ac-

tions of the storer and retriever are also described by probability laws. Although there

are alternatives to the probabilistic formulation of information theory [19,20,21], these

will not be our concern. In the remainder of this chapter, we will follow [22], consider-

ing the basic asymptotic blocklength point-to-point information storage problem with

synchronous, discrete-space, stationary, ergodic sources and channels. Asynchronous

sources [23], channels with synchronization errors [24, 25, 26], and non-stationary,
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non-ergodic systems [27, 28, 29] have been considered elsewhere. The conversion of

continuous-space storage systems to discrete-space systems by appealing to the sam-

pling theorem and its generalizations [30,31,32] is standard.1

One might argue that if the same signal is retrieved from the channel multiple

times, then the storage system is not point-to-point, but rather a broadcast system.

In fact, assuming that channel degradation is non-decreasing as a function of how

long the physical channel medium is maintained, the system is a degraded broadcast

system: as each increment of time passes, the signal is passed through an incremen-

tal channel cascaded to the previous set of channels. In a similar vein, one might

envision storing information more than once, as in a multiple descriptions system.

Like the degraded broadcast system, presumably this would reduce to a successive

refinement system. For simplicity, we do not adopt either of these views in the thesis.

The degraded broadcast view would require the characterization of channel quality

as a function of time and would involve uncountably many destinations in which to

optimize. There do not appear to be many physical characterizations of such channel

degradations as functions of time. The storage procedure suggested by the successive

refinement view is suboptimal. Rather than providing a new description to supple-

ment an old description, overwriting the stored signal with a new signal would do

better in terms of fidelity and resources, in a sense creating a palimpsestic memory

system.

In this section, we have taken the physical information storage problem and cast

it into a mathematical information storage problem by adopting the information the-

oretic formulation of information storage. By analogy with the storage of water or

electrical potential, one might wonder what the jar or capacitor for information stor-

age is. While it is true that the stored signal can remain in the physical medium of

the channel for an indefinite period of time, it is not quite the same as a jar or capac-

itor, a priori. The signal, rather than some object which can be measured in units of

information, is what is stored. Only when we invoke the separation-based approach

1Care may be needed to preserve spacing information, a method of modulating signals, see Section
2.6.1.
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to optimal information storage will the quantity that is stored in the channel be mea-

surable in units of information. Otherwise, all that we can measure is the amount of

distortion that is introduced by each of the stages of the information storage system.

The storer, the channel, and the retriever may all introduce or mitigate distortion.

Even when we use the separation-based approach and adopt the rate matching inter-

pretation, as in Section 2.4, dissipating entropy and losing mutual information is not

necessarily objectionable if it has no effect on average incurred distortion. The loss of

entropy is actually beneficial when it reduces the average incurred cost. Thus if the

storer performs a computation that dissipates irrelevant entropy, it is beneficial and

should not be seen as degrading the quality of the information storage system, as a

leaky jug might. The performance of an information storage system is measured in

terms of distortion and cost and so an entropic notion of information supply, storage,

and dissipation is not universally applicable. In the next section, we define the notion

of an optimal information system in terms of fidelity and resources without reference

to amount of information.

� 2.2 Operational Definition of Optimal Information Storage Systems

Information storage system optimality is defined in terms of the performance criteria

κ, B, and ∆. To make this definition, assume that the code rate κ is a fixed system

parameter and not subject to optimization.

Definition 1 (Definition 5 in [17]). For the source-destination pair (p~U(~u), F ), and

the channel (p~Y | ~X(~y|~x), E), a sequence of storers and retrievers (Kn
ST , K

n
RT ) of fixed

code rate κ that achieve average incurred costs {Bn} and average incurred distortions

{∆κn} are optimal if the following conditions are satisfied.

1. There is no sequence of storers and retrievers, (K̂n
ST , K̂

n
RT ), such that the se-

quence of achieved average incurred costs {B̂n} is less than {Bn}, while the

achieved average incurred distortion {∆̂κn} = {∆κn}, and

2. there is no sequence of storers and retrievers, (K̂n
ST , K̂

n
RT ), such that the se-

quence of achieved average incurred distortions {∆̂κn} is less than {∆κn}, while
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the achieved average incurred cost {B̂n} = {Bn},

without any restriction on (Kn
ST , K

n
RT ) or (K̂n

ST , K̂
n
RT ) other than the Markov infor-

mation pattern.

A cost-distortion curve may be drawn which gives all system performances, (∆, B),

that are optimal. This curve is given by the set of points that simultaneously satisfy

two optimization problems derived from the definition of optimality. In particular,

the cost-distortion curve is the intersection of points (∆, B) that satisfy

∆ (B) = lim inf
n→∞

(Kn
ST

,Kn
RT ):EpXn

1
[b(Xn

1 )]≤B

E
p

Uk
1 ,V k

1

[

d
(

Uk
1 , V

k
1

)]

(2.9)

and

B (∆) = lim inf
n→∞

(Kn
ST

,Kn
RT ):Ep

Uk
1 ,V k

1
[d(Uk

1 ,V k
1 )]≤∆

E
pXn

1

[b (Xn
1 )] . (2.10)

The distortion-cost notion of system performance can be used to compare various

information storage systems to each other and to the optimality bound. Distortion

and cost are also fundamental parameters for information systems other than the basic

point-to-point scenario and similar optimal performance tradeoffs between these two

parameters may be formed. As an example, for the storage of many correlated sources

for a single destination, a natural fidelity criterion would use sum distortion measures

on the individual components and a natural resource criterion would use sum costs.

This formulation would allow comparison of various styles of storer and retriever

designs that run the entire gamut from separate source and channel processing [33,34]

to joint source and channel processing [35] to uncoded storage [36].

� 2.3 Informational Definition of Optimal Information Storage Systems

Although we have a definition (Definition 1) and a general formula (intersection of

(2.9) and (2.10)) for an optimal information storage system, the general formula

is given in terms of an optimization problem over a sequence of storers and re-
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trievers, which seems rather intractable. One would like to reformulate the prob-

lem from this operational definition into some informational definition in terms

of (p~U(~u), F, p~Y | ~X(~y|~x), E). To do so, we will invoke the informational functions,

capacity-cost and rate-distortion [9, 37], which are defined in terms of the mutual

information functional [38].

Definition 2. For each positive integer n and B ≥ 0, the nth capacity-cost function

of the channel pY n
1 |Xn

1
(yn

1 |xn
1 ) with respect to the resource criterion E is

Cn(B) = sup {I(Xn
1 ;Y n

1 ) : E [bn(Xn
1 )] ≤ B} . (2.11)

The supremum is taken with respect to any pXn
1
(xn

1 ) that satisfies the cost constraint.

By convention, the nth capacity-cost is 0 when no random vectors in X n satisfy the

constraint.

Definition 3. The capacity-cost function with respect to the resource criterion E is

C(B) = lim sup
n→∞

1

n
Cn(B). (2.12)

Definition 4. For each positive integer k and ∆ ≥ ∆min, the kth rate-distortion

function of the source pUk
1
(uk

1) with respect to the fidelity criterion F is

Rk(∆) = inf
{

I(Uk
1 , V

k
1 ) : E

[

dk(U
k
1 , V

k
1 )
]

≤ ∆
}

. (2.13)

The infimum is taken with respect to any pUk
1 ,V k

1
(uk

1, v
k
1) that satisfies the distortion

constraint.

The constant ∆min is the minimum possible value of average incurred distortion

under the fidelity criterion.

Definition 5. The rate-distortion function with respect the fidelity criterion F is

R(∆) = lim inf
k→∞

1

k
Rk(∆). (2.14)
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Now that we have defined some basic informational functions, we can formulate

the information storage theorems that yield an informational formulation of optimal

information storage systems.

Theorem 1 (Converse Information Storage Theorem [22]). The performance

parameters, B, ∆, and κ, of an information storage system must satisfy κR(∆) ≤
C(B).

Proof.

I(~U ; ~V )
(a)

≤ I( ~X; ~Y ) (2.15)

I( ~X; ~Y )
(b)

≤ Cn(B) (2.16)

Cn(B)
(c)

≤ nC(B) (2.17)

I(~U ; ~V )
(d)

≥ Rk(∆) (2.18)

Rk(∆)
(e)

≥ kR(∆) (2.19)

Inequality (a) follows by the Markov relation ~U → ~X → ~Y → ~V implicit in Figure 2-1

and the data processing inequality [38, Theorem 2.42]; inequality (b) is by Definition

2; inequality (c) is by Definition 3; inequality (d) is by Definition 4; and inequality

(e) is by Definition 5. Combining these five inequalities

kR(∆) ≤ Rk(∆) ≤ I(~U ; ~V ) ≤ I( ~X; ~Y ) ≤ Cn(B) ≤ nC(B) (2.20)

yields the desired result

κR(∆) ≤ C(B). (2.21)

Note that the converse information storage theorem is simply a consequence of

the definitions of the capacity-cost and rate-distortion information functions and the

mutual information functional (through the data processing inequality). There has

been no consideration of retrievers and storers yet.
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To establish an achievability result, we must design the retriever and storer, and

the code that they share. Following Shannon [9], we will partition both the storer and

the retriever into two parts: a source encoder and channel encoder at the storer, and

a channel decoder and source decoder at the retriever. The modularity introduced

by this partitioning will simplify the design of the storer and retriever as well as the

analysis of the system performance (allowing the use of the channel coding and source

coding theorems). Separation, however, is not the only possible storer and retriever

design.

Define an (n,Mf ) channel code to consist of a channel encoding operation fST :

{1, 2, . . . ,Mf} → X n and a channel decoding operation fRT : Yn → {1, 2, . . . ,Mf}.
The sequences {fST (1), . . . , fST (Mf )} are called channel codewords and the set of all

channel codewords is called the channel codebook. The rate of the code is defined

in terms of the size of the codebook, Mf , and blocklength n, as rf = 1
n

logMf . The

code is termed B-admissible with respect to the resource criterion E if bn(~x) ≤ B

for all codewords in the codebook. When we use the channel code, we will use the

codewords with equal frequency, hence the logarithmic rate measure and the cost

constraint imposed on each codeword. Notice, however, that using codewords with

equal frequency does not imply that channel letters will be used with equal frequency.

For convenience, a channel code performance criterion is introduced, though it is not

fundamental to the information storage problem.2

Definition 6. The conditional probability of error given that the message i is sent,

for 1 ≤ i ≤Mf is

λi =
∑

~y∈Yn:fRT (~y) 6=i

Pr[~Y = ~y| ~X = fST (i)]. (2.22)

Definition 7. The maximum probability of error of the channel code is

λmax = max
i
λi. (2.23)

2Similarly, other channel code performance criteria such as zero-error reliability [39] or anytime
reliability [27,40] are not fundamental to the information storage problem either.
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The channel coding theorem is an achievability statement about maximum prob-

ability of error for a sequence of (n,Mf ) channel codes for asymptotically large n.

Theorem 2 (Channel Coding Theorem [22]). Let a channel with capacity-cost

function C(B) be given and fix a value B0. Then for any three values B > B0,

R > C(B0), and ǫ > 0, for all sufficiently large n, there exists an (n,Mf ) channel

code such that the code is B-admissible, the size of the codebook is lower bounded as

Mf ≥ 2⌈nR⌉, and the maximum probability of error is upper bounded as λmax < ǫ.

Proof. The proof is based on a random coding argument. See standard texts, e.g. [22],

for details. See [41] for a very general version.

Given the existence of good channel codes (in the sense of the channel coding

theorem), the existence of good source codes must also be established, so that the

combination produces good storers and retrievers. Define a (k,Mg) source code to

consist of a source encoding operation gST : Uk → {1, 2, . . . ,Mg} and a source de-

coding operation gRT : {1, 2, . . . ,Mg} → Vk. The sequences {gRT (1), . . . , gRT (Mg)}
are called source codewords and the set is called the source codebook. The rate of

the code is defined in terms of the size of the codebook, Mg, and blocklength k, as

rg = 1
k

logMg. The average incurred distortion of the source code is defined in the

same manner as the average incurred distortion of an information storage system. The

source coding theorem is an achievability statement about average incurred distortion

for a sequence of (k,Mg) source codes for asymptotically large k.

Theorem 3 (Source Coding Theorem). Let a source destination pair with rate-

distortion function R(∆) be given and fix a ∆0 > ∆min. Then for any two values

∆ > ∆0 and R > R(∆0), for all sufficiently large k, there exists a (k,Mg) source code

such that the size of the codebook is upper bounded as M ≤ 2⌊kR⌋, and the average

incurred distortion ∆g is upper bounded as ∆g < ∆.

Proof. The proof is based on a random coding argument. See standard texts, e.g. [22],

for details. See [41] for a very general version.
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The direct part of the information storage theorem is based on using a source

encoder guaranteed to exist by the source coding theorem to produce an index into

the set {1, 2, . . . ,M} and then applying a channel encoder guaranteed to exist by

the channel coding theorem to produce the channel input stream. After the channel

perturbations, the corresponding channel decoder and source decoder are used.

Theorem 4 (Direct Information Storage Theorem [22]). Let an information

storage system consist of a source, channel, and destination with capacity-cost func-

tion C(B) and rate-distortion function R(∆) and fix B0, ∆0 > ∆min, and κ0 <

C(B0)/R(∆0). Then for sufficiently large k, there exists an information storage sys-

tem that can achieve (B,∆, κ) for any three values B ≤ B0, ∆ ≤ ∆0, and κ ≥ κ0.

Proof. The proof here is based on the proof given for [22, Theorem 5.1.b]. Select

numbers β0, δ0, δ1, C0, and R0 that satisfy the following relations β0 < B0, ∆min ≤
δ0 < δ1 < ∆0, C0 < C(β0), R0 > R(δ0), κ0 < C0/R0.

The storer is composed of a source encoder followed by a channel encoder. By

Theorem 3, for sufficiently large k0, there is a (k0,Mg) source code where Mg ≤ 2⌊k0R0⌋

and ∆g < δ1. Use this source code. For a certain integer m, take k = k0m.

Define the worst-case distortion of the source code. For each source sequence

~u ∈ Uk0 , let dmax(~u) = max{dk0(~u,~vi) : ~vi ∈ {gRT (1), . . . , gRT (Mg)}}. The worst-case

distortion for the source code is the average of these:

∆max
g = E

p~U
(~u)

[dmax(~U)]. (2.24)

Note that the worst-case distortion is bounded, since dk(·) has range [0,∞). Now

define

ǫ =
∆0 − δ1
∆max

g

, (2.25)

which will relate the probability of error of the channel code that we design to the

amount of end-to-end distortion it may cause.

For each m = 1, 2, . . ., define an integer nm = ⌈mk0R0/C0⌉. Then by Theorem 2,

there is a (nm,Mf ) channel code such that all codewords in the codebook meet the
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cost constraint, Mf ≥ 2⌈nmC0⌉ ≥ 2mk0R0 , and λmax < ǫ. Use this channel code. Also

take m sufficiently large so k0m/nm ≥ κ0.

Now it follows directly from the choice of m that κ = k/n = k0m/nm ≥ κ0. It also

follows directly from the design of the channel code that the channel cost constraint

is met. It remains to show that the average distortion incurred ∆ ≤ ∆0. Distortion

is incurred through channel decoding failure and through the distortion introduced

by the source code. Use the random variable Ffail to indicate channel code failure.

Then the distortion can be decomposed as

∆ = E
p~U,~V

[dk(~U, ~V )|Ffail = 0] Pr[Ffail = 0] + E
p~U,~V

[dk(~U, ~V )|Ffail = 1] Pr[Ffail = 1].

(2.26)

By the design of the source code and the bound Pr[Ffail = 0] ≤ 1, we get

E
p~U,~V

[dk(~U, ~V )|Ffail = 0] Pr[Ffail = 0] < δ1. (2.27)

By the bound on the frequency of error of the channel code, the worst-case perfor-

mance of the source code, and (2.25),

E
p~U,~V

[dk(~U, ~V )|Ffail = 1] Pr[Ffail = 1] ≤ λmax∆
max
g ≤ ǫ∆max

g = ∆0 − δ1. (2.28)

Adding the bounds on the two terms, we get

∆ < ∆0. (2.29)

Finally, we can present the informational definition of an optimal information

storage system, which is equivalent to the operational definition given in Section 2.2.

Theorem 5 (Information Storage Theorem [22]). An information storage sys-

tem is optimal if and only if

κR(∆) = C(B), (2.30)
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∆ cannot be decreased without increasing R(∆), and B cannot be decreased without

decreasing C(B).

Proof. Follows directly from Theorem 1 and Theorem 4.

� 2.4 Rate Matching Interpretation of Optimal Information Storage Systems

Since the storer in the achievability proof comprises separate source and channel

coding, Theorem 4 is often called the separation theorem. Since the proof is by a

particular construction of storer and retriever, it does not preclude other constructions

that also yield the achievability result. In particular, methods of joint source channel

coding, which we will discuss in later sections, may also be used to show achievability.

The separation of source and channel coding yields a rate matching characterization of

system optimality; it requires the rate-distortion of the source, a mutual information

quantity that measures information rate, to be equal to the capacity-cost of the

channel, another mutual information quantity that measures information rate.

The separation-based approach concentrates essentially all incurred distortion into

the source code. In an information storage system, the end-to-end distortion that is

incurred may be divided into three parts:

∆ = ∆Source + ∆Mixed + ∆Channel. (2.31)

The ∆Source term is the amount of distortion introduced if the storer has range space

smaller than domain space. In the separation-based approach, this is the distortion

caused by the source code, the E[dk(~U, ~V )|Ffail = 0] Pr[Ffail = 0] term in (2.26) in

the proof of Theorem 4. The ∆Channel term is the amount of distortion introduced

by unmitigated channel noise, the E[dk(~U, ~V )|Ffail = 1] Pr[Ffail = 1] term in (2.26).

The ∆Mixed term is the remaining distortion and arises from the interaction between

the several parts of the system; it is zero for optimal systems, including cases where

the source code is optimally designed for a noiseless channel [42] or the system is

uncoded. As can be noted from the proof, the goal of the separation-based approach

is to use channel coding to make the channel essentially deterministic, by driving

37



λmax to be arbitrarily small, so that ∆Channel is essentially zero, and consequently

∆ ≈ ∆Source. Alternative optimal information storage systems have other values of

γ in decomposing ∆ = γ∆Source + (1 − γ)∆Channel. In uncoded storage, the storer

is an identity map, therefore ∆Source = 0 and ∆ = ∆Channel. A side benefit of the

separation-based approach to information storage system optimality is the duality

between the design of source codes and channel codes that is induced [37,43].

As a consequence of the rate matching interpretation of optimal information stor-

age, information may be understood in the same manner as fluid flow. Although

fluids appear in many of the idioms of electrical engineering theory (the “waterbed

effect” in Bode’s integral formula, “waterfilling” to achieve capacity in colored noise,

or “digital fountains” for multicasting), here the fluid paradigm is often taken to be

an ontological description of information. The paradigm of electricity as a water-like

fluid has been central to the development of electrical engineering theory, and has

allowed connections with other branches of engineering theory such as acoustics, me-

chanics, thermics, and hydraulics [44, 45, 46]. Since information theory is arguably a

branch of electrical engineering theory,3 it is not surprising that a similar character-

ization of information would be sought, allowing problems of information storage to

yield to previously developed methods of analysis.

In many cases, the fluid framework for electricity led to fruition, but in other

cases, this framework led down the wrong path. Very briefly, we can look at the

development of electrophysiology as an example of the double-edged nature of the

fluid paradigm. This will also serve to introduce the tradition of interaction between

neurobiology and electrical engineering theory, of which our contributions in Chap-

ter 3 are a part. It was long held that there was some curious fluid, referred to as

“animal spirits,” that was involved in muscle contraction and nerve conduction. In

the late eighteenth century, Galvani was able to show that this fluid is electrical in

nature [47]. The fluid paradigm had also become well-established in another branch

3For a discussion of the sociological process that took place in defining the boundaries and
proper place of information theory, see [20]; for a discussion of the role played by mathematicians
and electrical engineering theorists in the early post-1948 period, see [19].
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of electrical science, that dealing with electrical machines and Leyden jars.4 After

Galvani’s initial discovery, a great debate developed surrounding the nature of this

electrical fluid. Galvani held to the belief that animals possessed intrinsic “animal

electricity” (animalis electricitas), whereas Volta eventually came to lead the argu-

ment that animals were simply conductors of the electrical fluid and the source of

electricity resided in metals [49]. As this debate raged, the fluid paradigm was cen-

tral to steps forward and to missteps alike. The validity of the fluid paradigm in

this electrophysiological situation can be essentially summarized by two facts—when

flowing through materials, electricity is very much a fluid; at a distance, water-like

fluids cannot act on other water-like fluids, whereas electrical flow can cause distant

electrical flow through electrical induction. As Pierce points out [46]:

. . . Maxwell’s equations cover the behavior not only of idealized elec-

trical networks but of all physical structures and include the behavior of

radio waves, which lies outside of the scope of network theory.

Volta’s theory and the voltaic pile batteries that came about from his experiments

would come to dominate. To complete the story, Matteucci through experiments

such as depicted in Figure 2-2 would eventually confirm that animals have intrinsic

Galvanic fluid and this would form the basis of the modern theory of neuroscience,

described in Chapter 3.

Returning our attention from electricity, where the fluid paradigm led to Kirchoff’s

laws and essentially all forms of circuit analysis, to information, one can see evidence

of the fluid perspective right from the early period [19]:

As Jerome Wiesner, director of the Massachusetts Institute of Tech-

nology’s Research Laboratory of Electronics said in 1953, “Before we had

the theory,. . . we had been dealing with a commodity that we could never

see or really define. We were in the situation petroleum engineers would

4This can be seen very simply using an etymologically oriented argument: the name “jar” applied
to a device for electricity storage implies that this storage was considered to be akin to the storage of
fluids in jars. It can be considered as a particular instance of the general phenomenon of interpreting
new technologies in terms of old ones [48].
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Figure 2-2. Experiment to verify the electrical nature of neural activity. A pile of frog legs, Figure
22 from Matteucci’s Traité des Phénomènes Électro-physiologiques des Animaux [50].

be in if they didn’t have a measuring unit like the gallon. We had intuitive

feelings about these matters, but we didn’t have a clear understanding.”

as well as through to modern views [51], such as [52]:

“A bit is a bit is a bit” seems to have become the motto of this digital

age. Though we often take it for granted, the existence of such a common

currency for information is far from obvious. While in practice it has

been justified by the rapid advancement of digital electronics and the

rise of a communications infrastructure to match, its meaningfulness rests

upon the fundamental theorems of information theory—the philosophical

foundation that helps us gain insight into problems of communication.

This feeling that the bit is a universal measure of information, like the gallon is for

water, has often led to fruition. Many such examples include problems where there

is a single destination, with perhaps multiple sources [53, 34, 54]. Furthermore, the

rate matching idea, which is based on equating rate to capacity and uses the con-

cept of bit as a fundamental unit of information has been applied to great success in

practical information storage systems [55]. However, just as in electricity, where wave
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propagation was not explained by the fluid paradigm, there are instances in infor-

mation theory where the water perspective does not lead to correct theory. Notable

examples include the non-ergodic problem [28], the multicast problem [56], and other

multiterminal problems [18]. To use the terminology of electricity theory, the field

problem cannot be reduced to a circuit problem [44].

When the fluid paradigm is valid, the optimal information storage problem reduces

to a circuit problem of equating the maximum information flow through the circuit

to the minimum cut of the network capacity links, by invoking the celebrated max

flow min cut theorem [57,53]. The max flow min cut theorem is in fact another form

of more general minimax problems in graph theory. A minimax theorem in graph

theory, such as König’s Theorem, is an identity of the form

max
p
v(G, p) = min

q
w(G, q), (2.32)

where G is a graph, p and q are some parameters of the graph, and v and w are

functionals of the graph [58]. For the basic information storage theorem that we have

been considering, the graph, G, is the Markov graph U → X → Y → V , the func-

tional v is the mutual information I(X;Y ), the functional w is mutual information

I(U ;V ), and the parameters for optimization are the storer and retriever, expressed

in single-letter form as pX|U(x|u) and pV |Y (v|y). Information storage problems where

rate matching does not quite apply also may have graph theoretic minimax charac-

terizations [59]. In this general minimax characterization, the fact that I(X;Y ) is

determined by the channel input distribution pX(x), and that I(U ;V ) is determined

by the transition probability assignment pV |U(v|u) will be used in Section 2.5. Prior

to that, we present an example of rate matching.

� 2.4.1 An Example of Rate Matching

This example will introduce a source with a context-dependent fidelity criterion, which

is often good for realistic sources. The channel will be closely related to channel

models for optical and magnetic recording, and thus is quite appropriate for our
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information theoretic investigation of information storage.

First establish the rate-distortion point, R(0), for the following source and fidelity

criterion. Let the source alphabet and reconstruction alphabets, U and V both be

binary, and the source distribution be arbitrary. A local distortion function of span s

is any function ρs: U s ×Vs 7→ [0,∞). The fidelity criterion generated from this local

distortion function (defined only for k ≥ s) has a sequence of distortion functions

dk (~u,~v) =
k−s+1
∑

i=1

ρs

(

ui+s−1
i , vi+s−1

i

)

, (2.33)

the sliding sum of ρs [37]. Here we consider a local distortion function of span 3 that

penalizes for either two consecutive errors or for an error pattern error–no error–error.

This is very closely related to a source and fidelity criterion considered in [60]. The

matrix form of the local distortion measure is given as

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

~v

[ρ3 (~u,~v)] =

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1
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d d d 0 d 0 0 0









































~u

(2.34)

for some d > 0.

As shown in [60], the value for R(0) can be found by enumerating binary strings

that avoid the patterns that induce non-zero distortion. In particular, we want to

enumerate binary strings that avoid the patterns “11” and “101.” By [61] or [62,
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Theorem 24], we can find the generating function for this enumeration to be

S11,101(x) =
x2 + x+ 1

−x3 − x+ 1
. (2.35)

From the generating function, we find that the number of binary strings that do not

have “11” or “101” as substrings satisfies the recursion

ak = ak−1 + ak−3, (2.36)

with initial conditions a0 = 1, a1 = 2, and a2 = 3. This sequence is very closely

related to the second Meru sequence (a shifted version of it) as well as the second

Meru constant5

meru2 =
1

3





3

√

29 + 3
√

93

2
+

3

√

29 − 3
√

93

2
+ 1



 = 1.465571 . . . (2.37)

Using the equivalent of Binet’s formula6 for the second Meru sequence in the

achievability proof, we can get the following:

Theorem 6. For the context-dependent fidelity criterion generated by ρ3 above, the

rate-distortion point R(0) ≤ log(2/meru2) for all binary sources, with equality holding

when the probability of all binary n-strings is strictly positive for all n.

Proof. A line by line recreation of the proofs of Theorems 4 (direct) and 5 (converse)

in [60] suffice. The only modification is we let fn denote the number of strings

that have neither “11” nor “101” as substrings. Then n−1 log fn → log meru2 as

n→ ∞.

The achievability proof is based on a random coding argument. Without loss of

5Following [63], we use the name meru2 for this constant in reference to the fact that the constant
is associated with Piṅgala’s Meru prastāra [64], also known as Pascal’s triangle. The relationship
between the prastāra and the constants is explicated in [65], but seems to have been known to
Nārāyaṅa [64]. The first Meru constant is also known as the golden ratio and appears in the rate-
distortion theorem in [60].

6Binet’s formula generates the first Meru sequence (Fibonacci sequence) and allows easy calcu-
lation of the first Meru constant (golden ratio)
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generality, to evaluate error frequency, storage of only the all zero string can be used.

Then the enumeration given by the second Meru sequence is used.

The converse proof is also based on a standard argument. It is noted that theRk(0)

is the same for any source distribution that satisfies the condition that the probability

of all binary k-strings is greater than zero. Thus, without loss of generality, the source

distribution can be assumed to be equiprobable and memoryless.

As seen, finding the rate-distortion function at zero distortion for context de-

pendent rate-distortion measures that have local distortion measure matrices with

many zeros can be reduced to a string enumeration problem. It should be noted that

although this example reduced to enumeration of various strings and probabilistic

descriptions did not arise, the reduction of the Shannon problem to a Hartley prob-

lem [66] does not usually happen in rate matching. The fact that R(0) problems may

turn into enumeration problems will also be exploited in Chapter 4.

Second establish the capacity-cost point, C(0), for the following channel and re-

source criterion. The result will be closely related to previous results on the capacity

of discrete noiseless channels [9,67], and in particular to the storage capacity of mag-

netic and optical disks and tapes [68]. Let the channel input and output alphabets X
and Y both be binary. Moreover, let the channel be noiseless. A local cost function

of span s is any function υs: X s 7→ [0,∞). The resource criterion generated from this

local cost function (defined only for n ≥ s) has a sequence of cost functions

bn (~x) =
n−s+1
∑

j=1

υs

(

xj+s−1
j

)

, (2.38)

the sliding sum of υs. Here we consider a local cost function of span 3 that charges for

either two consecutive zeros or for a pattern of zero–one–zero, whereas other patterns
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incur no cost

υ3 (~x) =















































































b, ~x = 000

b, ~x = 001

b, ~x = 010

0, ~x = 011

b, ~x = 100

0, ~x = 101

0, ~x = 110

0, ~x = 111

(2.39)

for some b > 0. By a form of duality, the enumeration used for the rate-distortion

problem can be used for the capacity-cost problem as well. To meet the cost constraint

for C(0), only channel inputs that use zero-cost channel input sequences will be used.

Moreover, to maximize the rate, these will be used equiprobably. Thus the problem

will reduce to an enumeration of zero-cost strings. The enumeration of the strings

with non-zero cost is given by the second Meru sequence. This is also the number of

2-limited binary sequences for runlength-limited recording channels [69, Table I: d =

2].

Theorem 7. For the context-dependent resource criterion generated by υ3 above, the

capacity-cost point C(0) = log(2/meru2), with each (B = 0)-admissible channel input

codeword used equiprobably.

Proof. Since we require each codeword in the codebook to be B-admissible, here for

B = 0, our optimization is so restricted. Since the channel is noiseless, the optimal

input distribution should use each admissible codeword equiprobably to maximize

rate. Then the desired result follows directly from the previous enumeration.

Finally, we can see that the information storage system specified in this example

is optimal for κ = 1 since R(∆) = C(B) = log(2/meru2) for some ∆ and B, and

neither ∆ nor B can be lowered.
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� 2.5 Factoring Interpretation of Optimal Information Storage Systems

Theorem 5 shows the equivalence of the operational and the informational definitions

of optimal information storage. The theorem is stated in a form that is conducive to

the rate matching interpretation given in the previous section. There are, however,

alternate interpretations that are based on the probability measures that parame-

terize the mutual information functionals rather than the values of these functionals

themselves. Note that although the pair of codes that were used in the proof of The-

orem 4 are fixed, when viewed with the single-letter characterization, they appear to

be governed by a probabilistic description.

Our original operational definition of an optimal information storage system was

based on two main system performance parameters, B and ∆. For a given resource

criterion, E, it can be noted that B only depends on the marginal channel input

distribution pX(x). Similarly, for a given fidelity criterion, F , ∆ only depends on

the marginal source-destination distribution pU,V (u, v) and in particular on pV |U(v|u)
since the source distribution pU(u) is given. This leads to the conclusion that infor-

mation storage system optimality is simply a matter of having the correct marginal

distributions. That is to say, we require two conditions for an information system to

be optimal [17, 70,71].

Condition 1. The channel input distribution should be the capacity-achieving input

distribution for the channel pY |X(y|x):

pX(x) = arg max
qX(x)

I(X;Y ) = arg max
qX(x)

I(qX(x), pY |X(y|x)). (2.40)

Condition 2. The source-destination conditional distribution should be the rate-

distortion achieving forward test channel for the source pU(u):

pV |U(v|u) = arg min
qV |U (v|u)

I(U ;V ) = arg min
qV |U (v|u)

I(pU(u), qV |U(v|u)). (2.41)

With these two conditions and the given source distribution and channel transition

probability assignment, we can formulate the design of an optimal information storage
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system as a problem of factoring probabilistic kernels. This is most easily formulated

in the memoryless case. We want to choose the storer, pX|U(x|u), and retriever,

pV |Y (v|y) so that

pX(x) =

∫

U

pU(u)pX|U(x|u)du (2.42)

and

pU,V (u, v) =

∫

X ,Y

pU(u)pX|U(x|u)pY |X(y|x)pV |Y (v|y)dxdy, (2.43)

where the integrals are understood to be sums when appropriate for the alphabets.

In the separation-based approach, as given in the proof of Theorem 4, asymptotically

long codewords are used to achieve the correct matchings. Moreover, intermediate

message index spaces, denoted M and M̂, are introduced between source coding and

channel coding. Thus, the source-destination distribution is given by

pU,V (u, v) =

∫

M,X ,Y,M̂

pU(u)pM |U(m|u)pX|M(x|m)pY |X(y|x)pM̂ |Y (m̂|y)pV |M̂(v|m̂)dmdxdydm̂.

(2.44)

The channel input distribution is given by

pX(x) =

∫

U ,M

pU(u)pM |U(m|u)pX|M(x|m)dudm. (2.45)

The design of the information storage system, i.e. the determination of the unknown

factors in the two product expressions, is often easier in this separated way by using

the asymptotics. To reduce the complexity of long codes, one might try restriction

to linear codes, but this is hopeless (in the unlimited resource, lossless information

storage problem, however, this restriction does not preclude achievability [72]). The

use of long, separate codes, however, is not required, and joint source channel codes

can be designed directly. In fact, if pU(u) = pX(x) and pV |U(v|u) = pY |X(y|x), then

uncoded storage is optimal. If the source distribution is already the capacity-cost

achieving channel input distribution and the channel distribution is already the rate-

distortion achieving forward test channel, optimality is achieved by directly sending
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source outputs through the channel and using the channel outputs as the reconstruc-

tion [73,18,17,14].

This factoring problem, like the factorization of integers, seems difficult; even

more so, since the optimal pX(x) and pU,V (u, v) are usually difficult to find. Due

to the difficulty of the problem, the optimality of uncoded information storage will

be investigated in Section 2.6. Prior to that, we present an example of optimality

through factorization.

� 2.5.1 An Example of Factoring

Consider an information storage system that has a memoryless Gaussian source and

an additive white Gaussian noise (AWGN) channel. The resource criterion restricts

average signal power to B and the fidelity criterion requires average mean square error

of at most ∆. AWGN channels often arise as simple models of magnetic recording

channels [74,68,75], and are also a rough model of synaptic storage channels (Section

3.3). The storage of a Gaussian source over an AWGN channel with quadratic cost and

distortion has been discussed numerous times in the past, see e.g. [76,17,73,22], [77,

pp. 100–101], [78, Section II.E].

It can be noted that the set of jointly Gaussian distributions is closed under linear

operations such as addition, scalar multiplication, and integration, and our factoring

will result in probabilistic transformations that stay within this set.

It is well known that the rate-distortion function for a Gaussian source with mean

zero and variance P under squared error distortion is

R (∆) =







1
2
log2

(

P
∆

)

, ∆ < P

0, else
(2.46)

and the capacity-cost function for an AWGN channel with noise variance σ2 under

quadratic cost is

C (B) = 1
2
log2

(

1 + B
σ2

)

. (2.47)

Taking κ = 1, equating these two expressions yields the fact that the smallest achiev-
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able distortion at cost B = P is

∆ =
Pσ2

P + σ2
, (2.48)

by Theorem 5.

To invoke factoring, two other well known facts are used. First that the capacity-

achieving input distribution for an AWGN channel under power constraint B is a

Gaussian distribution with variance B. Second that the rate-distortion achieving

reverse test channel for a Gaussian source under distortion constraint ∆ is an AWGN

channel with noise variance ∆. Due to the closure property of jointly Gaussian

distributions under conditioning and Bayes’ rule, since the reverse test channel is

AWGN, the rate-distortion achieving forward test channel is also AWGN. So we want

pX(x) to be Gaussian with the correct power. The source is already Gaussian with

the correct power, so if we were to use it uncoded, one of the factoring conditions

would be met. If the channel input and the channel noise are both independent

Gaussian, then the channel input and output would be jointly Gaussian, as desired.

The distortion incurred would be that desired for optimality with a retriever that

scales the channel output, so almost uncoded storage seems optimal.

Consider the information storage system shown in Figure 2-3. The source/channel

input is distributed as U = X ∼ N (0, P ); the independent additive noise is dis-

tributed as N ∼ N (0, σ2); the channel input cost function is quadratic; and distor-

tion is the squared difference. Computing the performance of this scheme, we find

that

B = P , (2.49)

and

∆ =
Pσ2

P + σ2
, (2.50)

which is the best possible, so we have achieved an optimal information storage system

by factoring with uncoded storage, without using the separation-based achievability

method in the proof of Theorem 4.
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Figure 2-3. Optimal quadratic Gaussian information storage system

� 2.6 Measure Matching Interpretation of Optimal Information Storage Sys-

tems

In Section 2.5.1, almost uncoded storage resulted in an optimal information storage

system with a simple achievability scheme.7 The reason that this happened was that

the redundancy in the source was exactly matched to the redundancy required to

protect against the channel. As noted by Shannon [9], “any redundancy in the source

will usually help if it is utilized at the receiving point. In particular, if the source

already has a certain redundancy and no attempt is made to eliminate it in matching

to the channel, this redundancy will help combat noise.”

In Section 2.5, the problem of optimal information storage was characterized as a

problem of having the correct marginal channel input and end-to-end distributions,

rather than having the rate equal the capacity. The two distributions that have

to be used are determined from the capacity-cost and rate-distortion optimization

problems, which are difficult to solve. Rather than determining the optimal solution

over a fixed feasible set, an alternative method of achieving an optimal information

storage system is to fix a solution and change the feasible set to make the solution

optimal. The feasible set of the capacity-cost optimization problem is determined

by the resource criterion, whereas the feasible set of the rate-distortion optimization

problem is determined by the fidelity criterion. Choosing the resource and fidelity

criteria to make an information storage system optimal is the measure matching

characterization [18, 17]. The measure matching paradigm yields, in closed form,

the single-letter E and F that make a memoryless, single-letter system with given

7According to Massey [72], the separation-based approach “provides jobs for those who take out
redundancy and jobs for those who put redundancy back in.” Such a scheme not only eliminates the
middlemen (M and M̂) like complicated joint source-channel coding does, but actually eliminates
all jobs.
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(pU , pY |X , KST , KRT ) optimal, and can be generalized for systems with memory. In

the usual end-to-end information storage problem formulation, however, the goal is to

design the (KST , KRT ) for a given (pU , F, pY |X , E) to make the system optimal. This

problem inversion is often a reasonable approach, as good fidelity and resource criteria

are difficult to determine [14]. Not only does the measure matching characterization

yield a closed form solution, but also like Section 2.5.1, a system designed according

to this principle is uncoded and so incurs no delay and is easy to implement. Such

systems harken back to systems like AM radio. In fact uncoded operation may be

universally optimal for a large set of channels, as encountered in radio broadcast; see

Section 2.7.8

Theorem 8 (Theorem 2.6 in [18]). An information system with a discrete-time

memoryless source pU(u) and a discrete-space memoryless channel pY |X(y|x) for which

there exist values of B and ∆ such that R(∆) = C(B) and has a single-letter storer

and retriever (KST , KRT ) with 0 < I(U ;V ) = I(X;Y ) < C(∞) is optimal for single-

letter fidelity and resource criteria generated by

b(x)







= νD(pY |X(·|x)‖pY (·)) + ν0, pX (x) > 0

≥ νD(pY |X(·|x)‖pY (·)) + ν0, else
(2.51)

for some ν > 0 and ν0, and

d(u, v) = −µ log pU |V (u|v) + d0(u), (2.52)

for µ > 0 and arbitrary d0(·).

Proof. See [18].

For discrete alphabets, the theorem holds in “necessary” form in addition to this

“sufficient” form [18, 17]. The cost function is an affine scaling of the derivative

of mutual information with respect to the input distribution, which is sometimes

8In non-probabilistic treatments of AM with envelope detection, the modulation index parame-
terizes the operational tradeoff between cost and distortion, however our optimal tradeoff between
cost and distortion is of the type defined at the beginning of the chapter.
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called the Bayesian surprise [79]. The distortion function is closely related to the

derivative of mutual information with respect to the test channel, which one might

call the conditional entropy density, following [28]. Seeing that the optimizing cost

and distortion are the derivatives of the functionals being optimized, one can see

that Theorem 8 is simply a consequence of solving the Karush-Kuhn-Tucker (KKT)

conditions from optimization theory.

One can interpret these optimizing resource and fidelity criteria in terms of the

mechanics interpretation of the KKT conditions [80, Section 5.5.4]. In the finite al-

phabet setting, for each letter there are blocks with associated mass. These blocks

are connected by springs with associated stiffness. The goal is to minimize the ten-

sion. In the factoring interpretation, stiffness is fixed and the mass of the blocks are

optimized. Here, the stiffness function is changed so that the fixed masses of blocks

minimize the tension. Thus, if the cost is proportional to the information storage util-

ity (Bayesian surprise), things balance. Similarly, if the distortion is proportional to

the uncertainty induced by the channel (conditional entropy density), things balance.

The spring-mass balance view will allow us to make statements about robustness. Be-

fore moving to an analysis of robustness of uncoded storage, we present an example

of measure matching. Although the example is not for a discrete alphabet, we will

show uniqueness of the solution.

� 2.6.1 An Example of Measure Matching

Timing information [81] is used in practice for overt [82] and covert [83] information

transmission. Timing channels are also of interest in neuroscience where the timing of

post-synaptic potentials are thought to perhaps provide information [5]. A degenerate

form of a covert timing channel can be developed by the techniques of Chapter 4,

where order is similar to timing. Spacing, the information storage equivalent to

timing, may also be used for covert information storage. Techniques of embedding

information in the spacing between rows in printed text and other such schemes are

discussed in [84,85].

Consider a rough model of information transmission through M/M/∞ timing: a
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system with a memoryless exponential source and an additive white exponential noise

(AWEN) channel. The AWEN channel was previously considered in [86, Section 5]

with magnitude cost; here we have not yet determined the cost. Note that this

system is closely related to, but different from the M/M/1 single-server queue system

considered in [81, Section II], [18, Section 3.6.1] and the telephone signaling system

considered in [81, Section III]. Also, unlike traditional telephony, where unanswered

telephone calls are toll-free [81], here there will be a resource criterion, e.g. as in

modern cellular telephony pricing where unanswered calls are also tolled.

Consider a fixed channel input distribution that is given by the exponential dis-

tribution

pX(x) = λ0e
−λ0x

1(x), (2.53)

where 1(·) is the unit step function. Also consider a channel transition probability

assignment that corresponds to independent additive exponential noise

pY |X(y|x) = λe−λ(y−x)
1(y − x). (2.54)

This corresponds to an independent noise variable Z with distribution

pZ(z) = λe−λz
1(z). (2.55)

Consider the case when the signal to noise ratio is unity, i.e. λ = λ0. Then the

channel output distribution is given by the convolution theorem in a simple form

according to the gamma distribution

pY (y) = λ2ye−λy
1(y). (2.56)

For an arbitrary additive channel, the relative entropy term in (2.51) can be
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simplified as follows.

D(pY |X(y|x)‖pY (y)) =

∫

pY |X(y′|x) log
pY |X(y′|x)
pY (y′)

dy′ (2.57)

=

∫

pY |X(y′|x) log pY |X(y′|x)dy′ −
∫

pY |X(y′|x) log pY (y′)dy′

=

∫

pZ(z) log pZ(z)dz −
∫

pZ(z) log pY (x+ z)dz

= −
∫

pZ(z) log pY (x+ z)dz + h(Z).

For the exponential-exponential example, setting λ = 1 for simplicity, the cost func-

tion that results in optimal performance is

b(x) = −ν







∞
∫

0

e−z log
[

(x+ z)e−(x+z)
]

dz + h(Z)







+ ν0 (2.58)

= ν
{

2 − exE1(x)) − log(xe−x)
}

+ ν0,

where

E1(x) =

∞
∫

x

e−t

t
dt (2.59)

is the exponential integral function. The cost function is shown in Figure 2-4. Ev-

idently, it is very similar to the magnitude function, especially if the constants are

chosen properly for correct shifting and scaling. In fact,

lim
x→∞

b(x)
x

= 1 (2.60)

for ν = 1. This result is quite similar to the result that was demonstrated in [18]

for the Laplacian source and additive white Laplacian noise channel. There the cost

function also resembled the magnitude function.

By Theorem 8, this cost function is a sufficient condition for optimality. We would

also like to show necessity, by establishing that the capacity-cost problem here is a

convex optimization problem. First we show that the subset of input distributions

over the nonnegative reals that also meet the average b constraint is convex. Let
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Figure 2-4. Optimal cost function for exponential input over additive white exponential channel;
arbitrary constants ν and ν0 in (2.58) taken to be 1 and 0 respectively. The limiting value for x = 0
is 2 + γ, where γ ≈ 0.577215665 is the Euler-Mascheroni constant.

F denote the set of all distribution functions, and let Ω ⊂ F be the distribution

functions of nonnegative random variables with an average b constraint. The set Ω is

the set of FX that satisfy

FX(0−) = 0 (2.61)

and
∞
∫

0

b(x)dFX(x) ≤ B. (2.62)

The set Ω is convex because convex combinations of distribution functions are distri-

bution functions; for two distribution functions with F
(1)
X (0−) = 0 and F

(2)
X (0−) = 0,

the convex combination FX will also have FX(0−) = 0; and the b-moment of FX

will be the convex combination of the b-moments of F
(1)
X and F

(2)
X , thus meeting the

constraint.

The second part of establishing that the optimization problem is convex is to show

that the objective function is strictly concave over the feasible set. We now prove that
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the mutual information I(X;Y ) = I(FX) is a strictly concave function over not only

Ω, but all of F for the AWEN channel. For additive channels, the mutual information

can be decomposed as

I(FX) = h(Y ;FX) − h(Y |X;FX) = h(Y ;FX) − h(Z;FX), (2.63)

where h(Z;FX) is a constant in FX , so we want to show that h(Y ;FX) is strictly

concave. Following the method of [87], we can show that the channel, which gives an

output pY (y) for an input FX , is one-to-one. The function h(Y ) is clearly a strictly

concave function of pY (y). Since the channel is a convolution with noise, it is a linear,

one-to-one operator, so pY (y) is a linear, one-to-one function of FX . Thus h(Y ) is a

strictly concave function of FX , and so I(FX) is a strictly concave function of FX .

Since the feasible set is convex and the objective is strictly concave, the capacity-

cost problem is a convex optimization problem where the global optimum is unique.

Theorem 9. The additive white exponential noise channel with noise variance 1

operates at capacity-cost with channel input distribution that is exponential with noise

variance 1 if and only if the single-letter resource criterion E is generated by cost

function (2.58) for some ν > 0 and ν0.

Proof. Follows from Theorem 8 and the fact that the capacity-cost problem is a

convex optimization problem.

Now our attention turns to the fidelity criterion. Fix the source to be exponential

with unit variance. Fix the forward test channel to be the AWEN channel with unit

variance noise. This implies that the conditional distribution pU |V (u|v) is uniform

over the interval [0, v], taking value 1/v. Due to the uniform distribution, the channel

output is rather uninformative about the channel input. The conditional entropy

density form of the optimal distortion function turns out to be d(u, v) = log v for

0 ≤ u ≤ v. The distortion function does not even depend on u, which is rather

strange indeed, and points out the danger of the measure matching approach. The

fidelity and resource criteria that are generated may be quite unnatural.

56



Before closing this example, we give an intuitive explanation for why the capacity-

achieving input distribution for the AWEN channel under our cost function b(x) is

different from the capacity-achieving input distribution under Verdú’s magnitude cost

function [86, Section 5]. Under the magnitude cost function, the capacity-achieving

input distribution is

p(x) = 1
2
δ(x) + 1

4
e−

1
2

x
1(x), (2.64)

whereas it is (2.53) under b(x) from (2.58). As can be seen from Figure 2-4, the cost

function starts at the Euler-Mascheroni value and then decreases for input letters

less than ∼ 0.434818, before starting to increase like the magnitude function. The

dip in b(x) makes low-valued input letters costly, and thus it is advantageous to use

them less frequently than other letters. This acts to eliminate the delta function that

appears in (2.64); under the magnitude cost function the zero-valued letter is free.

� 2.7 On Robustness of Optimal Information Storage Systems

In the previous three sections, we have given three different characterizations of op-

timal information storage systems: rate matching, factoring, and measure matching.

System design based on rate matching involves separate source and channel codes

that are usually long and complicated. Design based on the factorization principle

results in joint source channel codes, which may or may not be long or complicated.

Systems designed according to measure matching are simple uncoded single-letter

systems. Blocklength is often used as a proxy for complexity, which leads to the lossy

joint source channel coding error exponent [88,89]. Since practical systems cannot use

asymptotically long codes, the error exponent gives a characterization of robustness

to complexity limitation. We will not discuss robustness to complexity constraints in

greater detail. Rather, we will focus on robustness to system modeling errors.

To design an optimal information storage system using the rate matching, separation-

based approach, the rate-distortion is taken at the capacity-cost. As was seen in the

achievability proof, the separate system hinged on channel codes providing essentially

a noise-free “bit pipe.” But what happens if the source code rate increases beyond
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the channel capacity or the channel code rate dips below the rate-distortion? That

is to say, what happens when things are mismatched, perhaps due to slight errors in

modeling the source distribution and the channel transition probability assignment?

One approach is to study the sensitivity of the codes to mismatch or to mismatched

retrievers, however a coarse look shows that the channel code error frequency must

go to 1 exponentially fast when the rate exceeds the capacity [90], so the end-to-end

distortion must exceed the constraints that are set. The main difficulty is that a new

code cannot be designed to compensate for the modeling error.

Information storage systems are much more robust when designed according to the

uncoded transmission principle inherent in the measure matching characterization.

A prime example is provided by AM radio. To quantify the robustness of uncoded

transmission to small modeling errors, we focus on the effects of mismatch on the

Gaussian source-AWGN channel system that was explicated in Section 2.5.1. Inspired

by ultrawideband communication for the information transmission context, and short-

term plasticity interacting with long-term memory in the neural information storage

context (see Chapter 3), we will investigate the effect of weak additive interference on

the uncoded Gaussian system. These weak interferences, at least in the UWB case,

remain unmodeled and so systems should be robust to them.

� 2.7.1 Quadratic Gaussian Mismatch due to Interference

Before proceeding with this analysis, we review some results of Pinsker, Prelov, and

Verdú on the sensitivity of channel capacity to weak additive interference [91].

Sensitivity of Channel Capacity

Consider the channel shown in Figure 2-5, with average power constraint B on the

input X; nominal Gaussian noise N ∼ N (0, σ2); and contaminating noise normalized

so that E [Z] = 0 and E [Z2] = 1. The scalar θ determines the contaminating noise

power, θ2 = ζ. We denote the capacity of this channel as CB(θ), and for any θ > 0,

this capacity is usually not known in closed form; for θ = 0, the channel reduces to

the usual AWGN channel which has known solution. Since we cannot find CB(θ), we

58



Figure 2-5. Quadratic AWGN channel with additive interference

would like to find an approximation to it for small θ, based on the known value for

CB(0). One can think of this as the technique from perturbation theory which uses

the result of a known solvable problem to find an approximation to the solution of a

difficult problem. Here, we aim to find the linearization of CB(θ) around θ = 0. We

define the sensitivity of channel capacity with respect to contaminating noise power

as

SB = lim
θ→0

−CB(θ) − CB(0)

θ2
. (2.65)

By the limit definition of the derivative, this is also

SB = −∂CB

∂ζ

∣

∣

∣

∣

ζ=0

. (2.66)

Then the linearization of the channel capacity is

CB(θ) ≈ CB(0) − SBθ
2. (2.67)

When the contaminating noise is Gaussian, we can find the sensitivity directly

from the definition:

SB =
B

2σ2 (B + σ2) loge 2
. (2.68)

This is clearly an upper bound on arbitrary white noise, since Gaussian noise results

in worst case capacity degradation. The surprising result in [91], however is that the

sensitivity is actually equal to the upper bound for any contamination noise Z that

is drawn i.i.d.9 Thus we can approximate the channel capacity for a wide class of

9The theorems in [91] are much more general, however the result as stated is sufficiently general
for our purposes.
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interference noise distributions as

CB(θ) ≈ log2

(

1 + B
σ2

)

2
− Bθ2

2σ2 (B + σ2) loge 2
. (2.69)

Sensitivity of Distortion to Interference

The previous subsection established the sensitivity of channel capacity to interfer-

ence. Now we want to find the sensitivity of end-to-end distortion to interference.

For a N (0, B) source, the distortion-rate function, the inverse of the rate-distortion

function, is

∆ (R) = B2−2R. (2.70)

Using a separation-style method, we want to use the distortion-rate function op-

erating at capacity to find the sensitivity of distortion to the contamination noise

power. Using the chain rule of differentiation, and assuming that (2.69) is exact, we

find that

− ∂∆

∂ζ

∣

∣

∣

∣

ζ=0

= −
(

∂∆

∂CB

∂CB

∂ζ

)∣

∣

∣

∣

ζ=0

(2.71)

= −
(

∂∆

∂CB

)∣

∣

∣

∣

CB=CB(0)

(

∂CB

∂ζ

)∣

∣

∣

∣

ζ=0

=

(

∂

∂CB

B2−2CB

)∣

∣

∣

∣

CB=CB(0)

SB

=

(

−2B loge 2

1 + B
σ2

)

(

B

2σ2 (B + σ2) loge 2

)

= − B2

(B + σ2)2

The Gaussian rate-distortion function is differentiable, so this computation makes

sense. We have found the sensitivity of distortion to changes in contamination noise

power. By the limit definition of the derivative, this is also

Soptimal
∆,B

∆
= lim

θ→0

∆B(0) − ∆B(θ)

θ2
= − ∂∆

∂ζ

∣

∣

∣

∣

ζ=0

= − B2

(B + σ2)2 , (2.72)
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where we have defined the new quantity, S∆,B, the distortion sensitivity to contami-

nation noise power for a fixed cost B. Thus the end-to-end distortion, for fixed cost

B, as a function of contamination noise power may be approximated by

∆B(θ) ≈ ∆B(0) − θ2S∆,B (2.73)

≈ Bσ2

B + σ2
+

B2θ2

(B + σ2)2 .

This approximation involves two stages of linearization, first the capacity is linearized

using the results of [91], and then the distortion is linearized using the chain rule of

differentiation. Alternatively, we can get a better approximation of the distortion

function if we use only one stage of linearization. This would involve substituting

(2.69) into (2.70) to get

∆(CB(θ)) = ∆B(θ) ≈ Bσ2

B + σ2
2SBθ2

. (2.74)

Performance of Single Letter Codes in the Presence of Interference

Now that we know an approximation of the best that we can do, let us determine how

well our original single letter scheme does. The new system is created by substituting

the channel in Figure 2-5 into the system in Figure 2-3. Since everything is mean zero,

the second moments and the variances are equal. Working through the calculation,

making use of various independence relationships, we get that

∆B(θ) =
Bσ4 +B2θ2 +B2σ2

(B + σ2)2 . (2.75)

Taking the derivative of this with respect to θ2 and evaluating the negative at θ = 0

yields

Suncoded
∆,B = − B2

(B + σ2)2 . (2.76)

Now consider a decoder that has knowledge of the interference statistics and takes

that into account. The decoder is now a scalar multiplication by B/(B + σ2 + θ2).
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Computing the distortion, we get

∆B(θ) =
B (σ2 + θ2)

B + σ2 + θ2
. (2.77)

The associated sensitivity is

Suncoded,PI
∆,B = − B2

(B + σ2)2 . (2.78)

Evidently, partial knowledge of the interference noise statistics does not reduce the

sensitivity to the interference noise power.

Theorem 10. To a first-order approximation, the end-to-end distortion performance

in the single-letter mismatched case, in the single-letter partially-matched case, and

in the optimal case are the same.

Proof. Compare (2.76), (2.78), and (2.71).

Writing on Dirty Paper

Since we are looking at channels with interference, for completeness, we should also

comment on dirty paper [92] (or more precisely generalized writing on dirty paper [93])

results. In the previous subsection where we considered a partially informed single-

letter decoder, the decoder had access to the variance of the contamination noise

(dirt) distribution. In the dirty paper scenario, the encoder has access to the actual

realization of the dirt, not just a statistical parameter. It has been shown that for any

i.i.d. interference noise, the capacity is not reduced, so the distortion is not increased,

and so the sensitivity of distortion to interference, Sdirtypaper
∆,B , is zero.

Comments on Robustness

First, we have shown that distortion as a function of interference noise power is

continuous for arbitrary zero-mean, memoryless interference. This follows from the

continuity of the channel capacity as a function of interference noise power and the

continuity of the distortion-rate function for a Gaussian source with respect to squared
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error. One can regard the optimal cost-distortion point as a saddlepoint, with per-

turbations causing smooth changes.

Second, we have found an approximation of the optimal sensitivity of distortion to

interference noise power through a first-order approximation of the channel capacity

as a function of interference noise power.

Third, we have found the distortion as a function of interference noise power for

two single-letter coding schemes: one uses the decoder designed for no interference,

and the other uses the decoder that is designed with interference noise power taken

into account. These distortion-interference noise power functions give associated sen-

sitivity values. We find that the sensitivity in the optimal case, the partially informed

decoder case, and the uninformed decoder case are all equal. Thus to a first-order ap-

proximation, the distortion-interference noise power functions are all equal for weak

additive interference. That is to say, in an approximate sense, single-letter codes per-

form as well as the optimality bound, despite not being designed with the interference

in mind.

The robustness of the single-letter code is in stark contrast to a separation-based

approach for which additive interference causes the probability of error to go to one.

To continue operating at optimal levels, new source and channel codes would be

required. The single-letter coding scheme, on the other hand, remains fixed, yet has

performance degradation commensurate with the optimal performance degradation.

One can characterize this robustness to uncertain weak channel interference as

a type of weak universality of uncoded transmission, to complement other true uni-

versality properties. A true universality property for the partially informed scenario

considered here would hold if the interference was restricted to be white Gaussian.

Then the resultant channel would be AWGN, and the uncoded system is optimal for

the Gaussian source with squared error fidelity and any member of the entire class

of AWGN channels with power constraint. There would be some degradation in the

fully uncoded system, since the decoder would not apply the correct scaling.
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� 2.7.2 Finite Alphabets

Since the space of probability distributions is not compact and information is not

a continuous functional in general, a priori, it is not clear that channel input dis-

tributions close to the capacity-achieving distribution will perform almost as well.

Similarly, it is not clear that channels close to the rate-distortion achieving forward

test channel will perform almost as well. When the alphabet is finite, however, nice

analytical properties of the space of probability distributions emerge, and we can

make statements about robustness to parameter mismatch.

The cost constraints that we impose on the channel input distributions are of

the form E[b(X)] ≤ B, which include the boundary, and so the spaces of input

distributions are closed sets. Moreover, they are bounded subsets of R
|X | and are

thus compact. The operation of the channel on the channel input distribution to

produce the channel output distribution is a linear function and hence a continuous

function, so a neighborhood in the channel input distribution space is mapped to a

neighborhood in the channel output distribution space. Therefore, the set of possible

channel output probability distributions, Π, is closed. As shown, e.g. in [94], if Π

is a closed subset of R
|Y|, then the set of all probability measures on Π is compact

in the topology of weak convergence. Since mutual information is continuous in

that topology, there exists a capacity-achieving input distribution. Uniqueness of

the capacity-achieving input distribution can also be shown. Due to these analytical

properties, Theorem 8 provides both necessary and sufficient conditions for optimality.

These analytical properties also simplify statements about robustness of uncoded

information storage systems in the finite alphabet case. Consider a storage system

where the channel input distribution (source distribution) is slightly different than

what has been designed for. Due to continuity of the channel mapping, the channel

output distribution (reconstruction distribution) pY (y), is also only slightly differ-

ent than what is expected. By the continuity of the relative entropy function in

(2.51), this implies that the cost function for which the system is now optimal is only

slightly different than the cost function for which the system was designed. Similarly,

by the fact that both pU(u) = pX(x) and pV (v) = pY (y) are only slightly perturbed,
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by Bayes’ rule, and by continuity of the logarithm function in (2.52), the distor-

tion function for which the system is now optimal is only slightly different than the

distortion function for which the system was designed.

Supposing the cost and distortion functions are fixed, the perturbation will result

in suboptimality, however the suboptimality will be small for small perturbations. In

addition to our previous characterizations of capacity-cost, there is also an output-

centered characterization, based on the KKT conditions.

Theorem 11 (Corollary 2.3.4 in [95]). For B > Bmin

C(B) = min
pY (y)

min
γ≥0

max
x∈X

[

D(pY |X(y|x)‖pY (y)) + γ(B − b(x))
]

. (2.79)

Proof. See [95].

Like the mechanics interpretation of the KKT conditions (Section 2.6), this output-

centered minimax characterization of capacity-cost has a nice geometric interpreta-

tion. Since relative entropy is a measurement of distance between distributions, C(B)

is the so-called I-radius [94] of the smallest I-sphere that contains the set of distri-

butions pY |X(·|x), x ∈ X . The capacity-cost achieving output distribution, pY (y), is

the I-centroid of the I-sphere. Perturbing pY (y) slightly from the I-centroid position

increases the maximal I-radius only slightly due to compactness, and so the system is

only slightly suboptimal. A similar result can be shown for the rate-distortion using

Corollary 2.3.7 in [95]. Equivalent statements for the cost function, the distortion

function, and suboptimality for capacity-cost and rate-distortion can be made when

the perturbation is to the channel transition probability assignment rather than to

the channel input distribution. Overall with finite alphabets, small modeling errors

do not appreciably degrade performance of information storage systems designed ac-

cording to uncoded principles, due to continuity and compactness.
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Chapter 3

Information Storage in Neural

Memory Channels

We have promulgated several interpretations and characterizations of optimal infor-

mation storage systems in Chapter 2. Here we apply these characterizations to study

scientific questions that arise in neuroscience.1 It is widely believed that memories

are stored in the brains of mammals and that the physical mechanism for informa-

tion storage in the brain involves changes in synapses, termed synaptic plasticity. As

such, our theory provides explanations for and makes predictions about the physical

properties of synapses.

Our approach is rooted in the optimization approach to biology [97, 98, 99, 100]

in which biological systems are thought to be best solutions to some optimization

problem and thus seem to be “designed” or “engineered” under some optimality

criterion. Since evolution by random mutation and natural selection favors genotypes

of high fitness, qualities that affect fitness tend to improve through evolution. Thus,

mathematical analysis of fitness optimization seems reasonable as an approach to

understand why animals are the way that they are. Since establishing a quantitative

relationship between fitness and observable features is difficult, the mathematical

problem posed is to optimize beneficial features under cost constraints.

The scientific method for the optimization approach that we will follow uses a few

basic steps [98].

1It is assumed that the reader has basic knowledge of neuroscience, though important details of
the nervous system will be reviewed in the text. A leisurely introduction to the subject is provided
by [96].
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1. Ask an explicit scientific question, informed by existing experimental findings.

2. Define a feasible set of strategies or structures in the model, relating to the

question.

3. Define the objective fitness function to be optimized in the model. This perfor-

mance criterion should be mathematical in nature.

4. Given the feasible set and the objective function, determine the optimal strategy

or structure by appropriate mathematical analysis. This yields optimization

principles as hypotheses, which in turn give explanations and predictions.

5. Test the hypotheses with experimental measurements. Either confirm the the-

ory or falsify it.

This epistemic framework is different than the framework usually adopted in engi-

neering theory or in mathematics, since in science, one is always concerned about the

physical world that is to be described by the theory. The connection of science to

the physical world necessitates the comparison to experiment, either confirming or

falsifying the theory. Comparison to experiment is in some sense a more stringent

requirement because not only must the solution be mathematically optimal for the

model (Step 4 above), the solution must also exist in the physical world.

Before we go through these steps for our problem on information storage in the

brain, we should state some caveats about the optimization approach. First and

foremost, the goal of such investigations is not to prove that a particular animal is

optimal; rather it is to generate general optimization principles that can unify and

explain experimental observations. It must also be kept in mind that animals may

have been “designed” for niches different from the ones that they currently occupy,

features may have been inherited unchanged from ancestors, and there is always the

possibility of pure randomness in evolutionary progression. Notwithstanding these

caveats, it is hoped that the idea of optimality leads to a harmonious theory of the

physical architecture of the brain.
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� 3.1 Scientific Questions Posed

As noted in Section 2.4, early work on establishing the electrical nature of the nervous

system was carried out in the eighteenth century. In the interceding centuries, many

facts about the physical nature of the nervous system have been collected. With the

late nineteenth century discovery of synapses and the recognition of their importance

in the two principal tasks of the brain, information processing and information storage

[101], their physical properties have been the subject of extensive experimentation.

In this section, we review the results of some experiments and use them to formulate

our explicit scientific questions.

Average Noisiness of Synapses

Numerous studies have found that typical synapses in the central nervous system,

including the brain, are noisy devices in the following sense. Arriving pre-synaptic ac-

tion potentials occasionally fail to evoke an excitatory post-synaptic potential (EPSP)

due to probabilistic release of neurotransmitters at the synaptic terminal; further-

more, when an EPSP is evoked, the amplitude varies from trial to trial [102,103,104,

105,106,107,108]. This has led other investigators to ask whether unreliable synapses

are a feature or a bug [109, Section 13.5.5]. Taking an optimistic viewpoint, we ask:

Question 1. Why are typical central synapses noisy?

The noisiness of typical central synapses has seemed puzzling because synapses

act as conduits of information between neurons [109], and in general, synaptic un-

reliability is detrimental for information transmission. Several previous theoretical

studies have considered the impact of synaptic noise on information transmission

through a synapse, generally in the context of sensory processing [110, 111, 112, 113].

It has been shown that, under some suitable constraint models, synaptic noisiness

facilitates the efficiency of information transmission. Moreover, Laughlin et al. [114]

have noted that splitting information and transmitting it over several less reliable

but metabolically cheaper channels reduces energy requirements. However, adding

information channels invokes costs associated with building and maintaining those
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channels [115, 116], which must also be taken into account [117]. Our approach to

addressing this question will focus on information storage rather than on information

transmission.

Distribution of Synaptic Efficacies

A second observation that has been made regarding synapses is the broad distribution

of synaptic efficacy (synaptic weight) across different synapses in the brain. Although

the majority of synaptic weights are relatively weak (mean EPSP < 1 mV), there is

a notable tail of stronger connections [118, 104, 119, 105, 108, 120], with EPSP values

exceeding 20 mV having been observed.

Question 2. Why does the distribution of synaptic efficacies display a notable tail of

strong connections?

The optimal design of digital filters under a minimax criterion yields solutions

with equal ripples [121], and maximizing volume of a rectangular prism for fixed sur-

face area yields a cube with equal sides. Optimization problems in information theory

also have solutions with symmetry properties, but in terms of equal Bayesian surprise,

rather than equiprobable channel outputs (Section 2.7.2). Given the pervasiveness of

equality and symmetry in the solutions to optimization problems, one might think at

first that if there is some optimal value of synapse strength, then this value should be

used for all synapses, hence the puzzling nature of this observation. Brunel et al. [122]

have explained the distribution of synaptic weights in the cerebellum by maximizing

the storage capacity of a perceptron network. When we attack this question from

the information storage perspective, we will use an information theoretic approach.

The implementation of storage through either neural networks or coding will be ab-

stracted. Memory storage will be considered from a physical perspective, looking

at the information storage density of neural tissue, rather than previous work on the

memory storage capacity of specific neural network models [122,123,124,125,126,127],

which is quite different.
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Sparsity of Synaptic Connectivity

A third observation that has been made regarding synapses is their absence. One

can experimentally create an approximate adjacency matrix of neuron-neuron con-

nections. It has been found that synaptic connectivity, i.e. this adjacency matrix,

is sparse in the brain. One might explain this away by inferring that the absent

connections are between neurons that are physically distant, however the synaptic

connectivity is sparse in local circuits also. That is to say, the chance of finding a

synaptic connection between a randomly chosen pair of neurons, even nearby ones, is

much less than one [118,104,128,119,105,129,130,131].

Question 3. Why is synaptic connectivity sparse?

In local circuits, neuronal axons and dendrites are close enough so that the po-

tential connectivity is nearly all-to-all, so the cost of adding connections is not over-

whelming. It seems that increased connectivity would enhance system functionality,

so the sparse connectivity is puzzling. Sparseness has previously been explained by

maximizing the information storage capacity of a neural network [122].

Discrete-valued Synaptic Efficacies

There have been some controversial reports that synaptic efficacies vary in discrete

steps, rather than in a graded manner [132,133,134], which leads to our final question.

Question 4. Why do synaptic efficacies vary in discrete steps?

A caveat with this question is that due to the difficulty in differentiating continuous

and discrete objects in experimental science, it is unclear whether any hypothesis can

be verified experimentally. In our discussion of this question from the information

storage perspective, we will be able to make some predictions, but not nearly as well

as for the first three questions.

Having formulated the questions to be addressed, we move to the second and third

steps of our scientific program: the development of a physicomathematical model of

synapses as information storage elements.
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Figure 3-1. Schematic diagram of a neural memory system cast as a general information storage
system. The various sources of noise in the system have been explicitly notated. Storage noise refers
to noise that arises in the storage process; in situ noise refers to noise that perturbs the information
while it is stored; and retrieval noise refers to noise in the retrieval process.

� 3.2 Model of Synaptic Memory

We develop a model of synapses, based on their role in long-term information stor-

age, which will lead to a unified theoretical framework answering Questions 1-4. It

is widely believed that long-term memories are recorded in neuronal circuits through

alteration in the efficacy of existing synapses [135, 136], through long-term potentia-

tion (LTP) and long-term depression (LTD) [137, 138]. Synaptogenesis and synapse

elimination are alternative ways that neuronal circuits may be altered. Memories are

retrieved from storage by chemical and electrical activity of neurons, which gener-

ates synaptic potentials determined by the pattern of synaptic connectivity between

them. Thus a synaptic memory system is naturally cast into the model of a general

information storage system (Figure 2-1) with suitable identification as shown in Fig-

ure 3-1. We should note that although information storage is well recognized as a

case of a general communication system [95, 74, 68] and information theory has been

successfully applied in neuroscience [5], the application of information theory to the

analysis of synapses as memory elements has received little attention previously.

To more fully specify the model in terms of the definitions of Chapter 2, the

source is determined by the things that an animal is to remember; there is also

some associated fidelity criterion, perhaps based on the utility of degraded memories.

Since the source and the fidelity criterion seem particularly hard to describe, we will

not consider them further and will focus strictly on the channel. We will return
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Figure 3-2. Illustration of two possible volume-constrained signaling strategies for synaptic in-
formation storage. Replacement of a large synapse with several smaller ones (connecting different
neurons) may increase information storage capacity (and does, as shown in Section 3.3). Notice that
the total volume of the smaller synapses is the same as that of the larger synapse. Since synapse
volume is a monotonic function of synapse efficacy, the realization of synapse volume also represents
the efficacy realized by that synapse.

to sources and fidelity criteria in Chapter 4. The storer is most likely composed of

some sort of coding, followed by a process of synaptic weight change. Synaptogenesis

creates a synapse where there was none previously; long-term potentiation increases

the weight of an existing synapse; long-term depression decreases the weight of an

existing synapse; and synapse elimination removes an existing synapse. Each synapse

represents a channel usage. The channel input alphabet is the synaptic efficacy and

the distribution of synaptic efficacies across synapses is the channel input distribution.

Figure 3-2 illustrates the basic form that the signaling scheme can take. For example,

a large synapse can be replaced by a number of smaller synapses that take the same

volume.

There is noise associated with the LTP, LTD, synaptogenesis, or synapse elimi-

nation processes, which we term the storage noise. While information is stored in

the synapse, computational and short-term memory processes may act to perturb the

synaptic efficacy; this is termed in situ noise. The retriever consists of activity to

retrieve synaptic efficacies, as well as some sort of decoding. There is noise associated

with this EPSP-generating chemical and electrical activity, which we term retrieval

noise.

The channel alphabet X is the alphabet of synaptic weights, which we consider to

be the real line. Excitatory synapses are represented by positive values, and inhibitory

synapses would be represented by negative values, though we do not consider such
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synapses in this investigation. A true characterization of the synaptic weight alphabet

would require identification and description of the so-called engram, the physical

embodiment of memory. Since this is unavailable, we will identify the input letters

with the mean EPSP amplitude generated over numerous firings of the pre-synaptic

neuron and will measure it in units of electrical potential. Numerous experimental

studies have shown synaptic weight to be positively correlated with synaptic volume

[139,140,141,142,143,144]. Synaptic volume increases with LTP and decreases with

LTD [145, 146]. Synapse volume also increases with synaptogenesis and decreases

with synapse elimination. Other anatomical and physiological observations show

that the volume of individual synaptic contacts is correlated with many microscopic

characteristics, such as the number and area of active zones, number of vesicles, area of

the post-synaptic density, and the number of receptors [141,142,147,143,148,144,149].

As stated in Ramón y Cajal’s laws of economy of space, time, and matter [101],

and numerous subsequent theoretical investigations, volume in the brain is a costly

resource [150, 151, 152, 153]. Volume not only measures the amount of space that is

taken, but also measures the amount of material and metabolic energy required to

maintain a structure. The fact that volume sums linearly and can be evenly exchanged

among various structures makes it a convenient measure. Given these properties of

synapse volume, we take our resource criterion to be generated by the single-letter

synapse volume cost function.

Although synaptically connected pairs of cortical neurons usually share multiple

synaptic contacts [154, 155, 119, 156], here we refer to these contacts collectively as a

synapse. Such a definition is motivated by electrophysiological measurements, which

record synaptic weight of all the contacts together. The total synaptic volume is

correlated with the total synaptic weight because contributions of individual contacts

to synaptic weight may also add up linearly [157] and a neuron can be viewed as a

single computational unit [158]. There is evidence that multiple synaptic contacts

within a connected pair of neurons have correlated release probability [155] and that

the total synaptic connection weight correlates with the number of synaptic contacts

[154]. Thus this definition seems well justified. In an alternative scenario where the
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integrative compartment is smaller, such as a single dendritic branch [159, 160], and

individual synaptic contacts can vary their weights independently, our definition of

channel usage would need to be redefined at this finer level.

In addition to the volume cost of the synapse itself, some accessory volume is

needed to support a synapse. Accessory volume includes the volume of axons, den-

drites, cell bodies, glia, and perhaps extracellular space. Since each potential synapse

represents a channel usage, this accessory volume may be interpreted as the cost of

providing discrete-space bandwidth. Unlike in other information storage systems,

bandwidth and channel alphabet cost (power in other systems) consume the same

resource and thus an interesting tradeoff between allocating resources for bandwidth

or for power is presented. An alternative view is that there are no free symbols, and

that the minimal achievable cost Bmin is this accessory volume. We will denote it by

V0.
2

As stated before, in our model, the channel input letters are the average EPSP

amplitudes, x ∈ X , where x
∆
= EpY |X

[Y ]. A second-order characterization of the

noise is given by the standard deviation of the EPSP readout trials. The standard

deviation of the EPSP amplitude from trial to trial in a given synapse is denoted as the

noise amplitude, AN . If the noise were from an additive channel, with the mean-zero

noise variable Z distributed according to pZ(z), then AN =
√

EpZ(z)[Z2]. Synaptic

release may be modeled by a Poisson process [161,162], which leads to the conclusion

that noise amplitude increases sublinearly with the synaptic weight. In fact, the

relationship between synapse amplitude and noise amplitude is well-approximated by

a power law with exponent about 0.38 [119,129], see Figure 3-3.

Since the noise amplitude, AN , is related by a power law to the mean EPSP

amplitude, x, which is itself strongly correlated with the synapse volume, V , we can

formulate the following relationship:

V

Vν

=

(

x

AN

)α

, (3.1)

2In this chapter, V , V0, Vν , and related expressions will refer to the volume cost, rather than to
the source reconstruction as in previous and subsequent chapters.
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Figure 3-3. Standard deviation of the EPSP amplitude as a function of the mean EPSP amplitude.
Data presented corresponds to 637 synapses that have been measured experimentally (see [120,163,
129] for details on experimental procedure). Solid line is least squares fit by a power law with
exponent 0.38.
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where Vν is the volume of a synapse with a signal to noise ratio of 1. This normaliza-

tion constant should not be confused with other volume quantities. Although existing

experimental measurements [139, 140, 141, 143, 129, 144] support (3.1), they are not

sufficient to establish the value of the exponent, α. Determination of α would specify

part of the cost, V (x), of the input letter x.

This establishes the physicomathematical model of synapses in terms of channel

input alphabet X , the resource criterion E generated by the single-letter cost function

V (x) + V0, and a description of the channel noise by its moment AN . The overall

objective function we would like to meet is to have optimal information storage in

the sense of Chapter 2. To do so, we will try to meet Condition 1 from the factor-

ization interpretation of optimal storage and use (2.51) from the measure matching

interpretation of optimal storage.

For the Condition 1 problem, the decision variable in the optimization problem

is the signaling scheme which is described by the distribution of synaptic efficacy

across the synapses, pX(x). For the (2.51) problem, the decision variable will be the

single-letter resource criterion E, specified in terms of b(x) = V (x) + V0. Note that

constraints imposed by the evolutionary process and by some biological mechanisms

have been implicitly incorporated. That is to say, the basic structure of the system

has been assumed, and the details are to be determined by the optimization theory.

� 3.3 Noisy Synapses Maximize Information Storage Capacity

Question 1 asked why synapses are noisy on average. By the relationship between

noisiness and small volume established in (3.1), the question can be recast as the

question of why synapses are small on average. That is to say, why is the average

incurred cost B small. Our mathematical formalization based on the capacity-cost

function C(B) is inadequate to address this question as it is a curve parameterized

by B, and we are interested in determining a particular point on the curve. Rather

than trying to just achieve some point on the capacity-cost curve, it seems that one

should want to achieve the capacity per unit cost. At this point, the rate achieved
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is the least costly on a per unit basis; the most “bang for the buck,” as it were. As

shown by Verdú [7], the capacity per unit cost is given by

C = sup
B>0

C(B)

B
= sup

pX(x)

I(X;Y )

EpX(x)[V (X) + V0]
, (3.2)

where V (X)+V0 is the volume cost for the channel input letters. So in this section, we

will deduce optimal average synaptic weight and volume by maximizing information

storage capacity per unit volume. We invoke the synaptic weight/volume relationship

formulated in the previous section (3.1) with α = 2, other cases to be considered in the

following sections. For α = 2, the problem of maximizing information storage capacity

in a given volume reduces to the well-studied problem of maximizing channel capacity

for a given input power. When the channel contributes additive white Gaussian noise

(AWGN), the solution is well known. For concreteness and ease of exposition, we

assume here that the noise is Gaussian with a given variance; this model is also

reasonable for the observed noise. The qualitative result and the general optimization

principle do not depend on this assumption; at the end of this section, we will argue

that the conclusions hold for other noise models.

Information storage capacity per synapse (measured in nats) for the AWGN chan-

nel is given by [9]

Csynapse =
1

2
ln

(

1 +
〈X2〉
A2

N

)

, (3.3)

where 〈X2〉 is used to denote EpX(x)[X
2]. The quantity 〈X2〉

A2
N

is the average SNR among

synapses with respect to the channel input and to the noise distributions. SNR for

each synapse is defined as the square of the mean EPSP amplitude divided by the

trial-to-trial variance of EPSP amplitude. Using (3.1), we can rewrite information

storage capacity in terms of volume

Csynapse =
1

2
ln

(

1 +
〈V 〉
Vν

)

, (3.4)

where 〈V 〉 is the average synapse volume, EpX(x)[V (X)], excluding the accessory vol-

ume.
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As volume is a scarce resource, information storage capacity is likely to be op-

timized on a per volume basis. For example, placing two or more smaller synapses

(connecting different pairs of neurons) in the place of one larger synapse may in-

crease memory capacity, see Figure 3-2. Maximum storage capacity is achieved when

synaptic weights are independent, since the capacities of channels with memory are

bounded by the capacities of channels without memory. Dividing by the average cost

of a synapse, the total storage capacity of a unit volume of neural tissue is

Cvolume =
Csynapse

〈V 〉 + V0

=
1

2 (〈V 〉 + V0)
ln

(

1 +
〈V 〉
Vν

)

. (3.5)

Information storage capacity per unit volume, Cvolume, as a function of the average

size of the synapse, the relationship in (3.5), is plotted in Figure 3-4 for different

values of V0. The location of the maximum of such a curve gives the normalized

average volume, 〈V 〉/Vν , that provides the optimal storage capacity in the capacity

per unit cost sense.

Next, we can analytically calculate the optimum average synapse volume 〈V 〉 that

maximizes information storage capacity per volume Cvolume for given accessory volume

V0 and normalization Vν . This problem is mathematically identical to maximizing

information transmission along parallel pathways [117]. We take the derivative of

(3.5) and set it to zero to obtain

2
∂Cvolume

∂〈V 〉 =
−1

(〈V 〉 + V0)
2 ln

(

1 +
〈V 〉
Vν

)

+
1

〈V 〉 + V0

1

〈V 〉 + Vν

= 0. (3.6)

This implies that the optimal 〈V 〉 can be found by solving the equation

〈V 〉 + V0

〈V 〉 + Vν

= ln

(

1 +
〈V 〉
Vν

)

. (3.7)

In the limiting case, when V0 ≪ Vν , the optimizing average volume 〈V 〉 and the

maximum storage capacity achieved are [117]:

〈V 〉 =
√

V0Vν , (3.8)
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and

max Cvolume =
1

2Vν

. (3.9)

In the opposite limiting case when V0 ≫ Vν ,

〈V 〉 ln (〈V 〉/Vν) = V0, (3.10)

and

max Cvolume =
1

2〈V 〉 . (3.11)

If one looks at the dependence of information storage capacity Cvolume (peak height

in Figure 3-4) and optimal synaptic volume (horizontal coordinate of the peak in

Figure 3-4) on the accessory volume V0, as would be expected, maximum information

storage capacity per unit volume is achieved when the accessory volume V0 is the

smallest possible. In this regime, average synapse volume 〈V 〉 is much less than Vν

and according to (3.1), synapses should therefore be noisy.

In reality, the accessory volume V0 may not be infinitesimal as this could affect

system functionality adversely. Although these requirements are abstracted in the

information theory, they are present in the physical system. As an example, there

is a hard limit on how thin axons can be [164]. Also, reducing wiring volume may

increase conduction time delays and signal attenuation [165]; delay is objectionable

for control applications [52, 40]. In fact, delay and attenuation are optimized when

the wiring volume is of the same order as the volume of synapses [166]. Since the

increase in capacity achieved by reducing accessory volume below Vν is not too large,

it is reasonable to think that the channel input distribution is such that the average

synapse volume 〈V 〉 is either less than or of the order of Vν . In either case, we arrive at

the conclusion that typical synapses should be noisy, in agreement with experimental

observations.

The advantage of having greater numbers of smaller synapses is valid not only for

the AWGN model that was considered above, but also for many reasonable noise and

cost models. The best way to see this advantage is through the non-decreasing and
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Figure 3-4. Information storage capacity per unit volume of neural tissue as a function of normal-
ized average synapse volume for AWGN synapse approximation. The relationship between signal to
noise ratio and volume for this plot uses accessory volume, V0, values of 0, 1, 5, and 10, normalized
with respect to Vν . When V0 = 0, the maximum storage capacity per unit volume occurs when
average synapse volume is infinitesimal. When V0 > 0,, the finite maximum storage capacity per
unit volume occurs at some non-zero normalized synapse volume.
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concave downward nature of the capacity-cost function [22,37]. Due to concavity, the

slope (capacity/cost) increases at lower costs. If there are no zero-cost symbols, then

the capacity per unit cost is maximized at the average cost value where a line through

the origin and tangent to the capacity-cost function has its point of tangency, the

location of the peaks in Figure 3-4. If there is a zero-cost symbol, then the optimum

is for zero average cost (V0 = 0 curve in Figure 3-4). It is usually difficult to find the

optimum capacity per unit cost analytically [7], however there is a numerical algorithm

that can be used for such a computation [167]. Similar mathematical arguments have

been used in the context of information transmission to show that having parallel less

reliable channels, such as synapses [114] and ion channels [116], reduces metabolic

costs and to show that scheduling of packets for wireless radio networks should go

as slow as possible [168]. Along these lines, Berger notes that “information handling

always should be conducted at as leisurely a pace as the application will tolerate” [73].

In this section, we have developed the following general optimization principle,

provided that the accessory volume needed to support a synapse is small.

Optimization Principle 1. To optimize information storage capacity per unit vol-

ume of neural tissue, synapses should be small and noisy on average.

� 3.4 Optimal Distribution of Synaptic Efficacies in the Discrete States Model

Having established the fact that synapses should be small and noisy on average,

we are interested in how volume and EPSP amplitude should be distributed among

synapses. The distribution of synaptic weight addresses both Question 2 and Question

3 because absent synapses are synapses with zero weight. In the AWGN model used in

Section 3.3, the capacity-achieving input distribution is also Gaussian [9], as shown in

Section 2.5.1. By (3.1) with α = 2, a capacity-achieving Gaussian input distribution

implies a distribution of synaptic volume that follows an exponential distribution. If

the noise amplitude AN is constant, synaptic weight has a Gaussian distribution, as

suggested previously by different methods [122]. If AN scales as a power of X (Figure

3-3), the synaptic weight distribution is a stretched (or compressed) exponential. The
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cumulative distribution function

FX(x) = exp
[

−
(

x
x0

)c]

, (3.12)

with suitable normalization x0, is a stretched exponential for c < 1, an exponential for

c = 1, and a compressed exponential for c > 1. However, it is not clear whether the

prediction for the synapse weight and volume distributions from the AWGN model

can be taken at face value for the following reasons. First, the AWGN channel

model allows both negative and positive signals whereas synaptic weight is positive

for excitatory synapses; remember we have not been considering inhibitory synapses.

Second, the Gaussian noise assumption is unlikely to hold especially if synaptic weight

must be non-negative. Third, synaptic volume may not scale as the synaptic weight

SNR squared, i.e. the parameter α in (3.1) may not be 2.

We now consider an alternative noise model, where the cost function can be chosen

arbitrarily and the synaptic weight is non-negative, but still yields an exactly solvable

optimization problem. The reason an exact solution can be found is that the noise is

treated approximately. Rather than considering a continuous distribution of synaptic

weights, we consider a set of discrete synaptic states, with each state representing the

range of weights in the continuous distribution that could be confused on retrieval

due to noise. Then the difference in synaptic weight between adjacent states is given

by twice the noise amplitude 2AN . We are engaging in hard sphere packing rather

than soft sphere packing, hence the factor of 2. Each of these finite states is viewed

as an input symbol with associated volume cost.

The conversion of the noisy continuous-valued input channel into a zero-error,

discrete-valued input channel is a convenient approximation [169], especially when

a probabilistic description of the noise is not known. This approximation allows

us to calculate the ǫ-capacity-cost, a generalization of the Kolmogorov ǫ-capacity

[170], rather than the Shannon capacity. Since the converted channel is noiseless, the

mutual information reduces to the self-information of the channel input distribution

(or, equivalently, channel output distribution). By resorting to this ǫ-capacity-cost
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approximation, we do not wish to imply that synaptic weights in the brain vary

in discrete steps. In Section 3.7 we will validate this approach by comparing its

predictions to the predictions from a continuous channel model (Section 3.5).

Since the self-information is identical to entropy in the discrete alphabet case,

the maximization of information storage capacity per volume can be solved using

the maximum entropy method, a standard statistical physics technique [171]. In

neuroscience, such a mathematical problem has been solved in the context of neuronal

communication by the spike code [172, 173]. Consider a set of synaptic states, i,

characterized by the EPSP amplitudes, xi, and volume cost, bi, which includes both

the synapse volume and the accessory volume V0 . We search for the probability

distribution over synaptic states, pi, that maximizes information storage capacity:

Csynapse = −
∑

i

pi ln pi (3.13)

per average volume of a synapse

B = E
pi

[b(x)] =
∑

i

pibi. (3.14)

To reiterate, the average synaptic volume cost B includes the accessory volume, V0,

which was excluded from the definition of 〈V 〉 used in the previous section.

It is well-known that the maximum entropy distribution takes an exponential form

[171]. Therefore the probability distribution over synaptic states, pi that maximizes

information capacity is given by

pi =
1

Z
exp(−λbi), (3.15)

where Z =
∑

i

exp(−λbi) is a normalization constant [171]. The Lagrangian quantity

λ is implicitly specified by the condition

B =
1

Z

∑

i

bi exp(−λbi). (3.16)
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Recall that we are interested in capacity per unit cost and not just capacity-cost. Such

an optimization problem can also be easily solved, as pointed out by Balasubramanian

et al. [172], by choosing λ such that Z = 1, i.e.

∑

i

exp(−λbi) = 1. (3.17)

In this case, the probability expression (3.15) simplifies to

pi = exp(−λbi) (3.18)

where λ is defined by the condition
∑

i

pi = 1. This input distribution gives

Csynapse = λ
∑

i

bi exp(−λbi), (3.19)

which in turn implies that

Cvolume =
Csynapse

B
=

λ
∑

i

bi exp(−λbi)
∑

i

bi exp(−λbi)
= λ. (3.20)

To make further progress, we assume that synaptic state volume is distributed

equidistantly, i.e. the volume cost of the ith synaptic state is given by

bi = V0 + i2Vν . (3.21)

This is exactly what is obtained when the volume-SNR exponent α from (3.1) is taken

to be 1. With this assumption, we can rewrite the normalization condition as

1 =
∞
∑

i=0

exp(−λbi) (3.22)

= exp(−λV0) + exp(−λV0)
∞
∑

i=1

exp(−λi2Vν)

= exp(−λV0) +
exp(−λ(V0 + 2Vν))

1 − exp(−λ2Vν)
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where we used the geometric series sum. Multiplying both sides of this expression by

the denominator we find

exp(−λV0) + exp(−2λVν) = 1. (3.23)

The average volume per potential synapse (including accessory volume, V0) given by

the total volume divided by the number of potential synapses (including actual ones)

is:

B =
∞
∑

i=0

bi exp (−λbi) (3.24)

= − ∂

∂λ

∞
∑

i=0

exp (−λbi)

= − ∂

∂λ

(

exp (−λV0)

1 − exp (−2λVν)

)

=
2Vν exp (−2λVν) + V0 exp (−λV0)

exp (−λV0)

= V0 + 2Vν exp (λ(V0 − 2Vν))

In the limiting case when V0 ≪ Vν , these expressions reduce to:

B = 2λVνV0, (3.25)

and

λV0 = exp(−2λVν). (3.26)

In the opposite limiting case when V0 ≫ Vν ,

B = V0, (3.27)

and

2λVν = exp(−λV0). (3.28)

To allow comparison with empirical measurements (Section 3.7), we also derive an
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expression for the average volume of actual synapses, i.e. states with i > 0, and

excluding accessory volume, V0.

〈V 〉i>0 = E
qi

[b− V0] , (3.29)

where we have defined a distribution on states i > 0, qi, which is the conditional

probability of being in state i given not in state 0. This simplifies as follows:

〈V 〉i>0 =
∞
∑

i=1

(bi − V0)qi (3.30)

=
∞
∑

i=1

2iVν
exp(−λbi)
exp(−2Vν)

= exp(2λVν)
∞
∑

i=1

2iVν exp(−λbi)

= exp(2λVν)
∞
∑

i=1

2iVν exp(−(2iVν + V0))

= exp(2λVν) exp(−λV0)
∞
∑

i=1

2iVν exp(−2λVνi)

= − exp(2λVν) exp(−λV0)
∂

∂λ

{

∞
∑

i=1

exp(−2λVνi)

}

= − exp(2λVν) exp(−λV0)
∂

∂λ

{

exp(−2λVν)

1 − exp(−2λVν)

}

= exp(2λVν) exp(−λV0)

{

2Vν exp(−2λVν)

[exp(−2λVν) − 1]2

}

= exp(2λVν) exp(−λV0)

{

2Vν exp(−2λVν)

[exp(−λV0)]2

}

= 2Vν exp(λV0),

where the steps follow by algebraic manipulations or by (3.23). The optimal average

volume of actual synapses increases with the accessory volume. This result has an

intuitive explanation: once the big investment in wiring (V0) has already been made,

it is advantageous to use bigger synapses that have higher SNR.

The ratio between the number of actual synapses and the number of potential
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synapses (including actual) is called the filling fraction, f . In our model the filling

fraction is just the fraction of synapses in states i > 0 and is given by

f = exp(−2λVν) = 1 − exp(−λV0). (3.31)

Information storage capacity per volume can be calculated using (3.20) and (3.23).

Just as in the AWGN model, information storage capacity increases monotonically

with decreasing accessory volume. Unlike the AWGN model where storage capacity

per unit cost is capped at 0.5, information storage capacity per unit cost can grow

without bound. Since information storage capacity per unit cost diverges with de-

creasing accessory volume, V0, optimal information storage is achieved when V0 is

as small as possible. As seen from (3.31), in the small V0 limit, the filling fraction,

f , is much less than one. This prediction is qualitatively consistent with empirical

observations of sparse connectivity, but see the next paragraph and Section 3.7. In

addition, most actual synapses have volume 2Vν , and thus have SNR of order one,

(3.1). This prediction is in agreement with the empirically established noisiness of

typical synapses.

Although local cortical circuits are sparse and typical synapses are noisy, the filling

fraction is not infinitesimal. As discussed in the previous section, system functionality

would be adversely affected by very small V0. The condition that accessory wire

volume is of the order of synapse volume [166], along with (3.23), implies that Vν ∼
1/λ, meaning that information storage capacity of volume Vν is on the order of one

nat. This sets the filling fraction at a value below 1/2 but not infinitesimal.

By using (3.18) and (3.1), we can find the probability of synaptic states in terms

of the EPSP amplitude,

pi = exp (−λVν (xi/AN)α) . (3.32)

These are samples from a stretched (or compressed) exponential distribution. In the

continuum limit, when the probability changes smoothly between states, we can con-

vert (3.32) to the probability density. Considering that there should be one synaptic
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state per two noise amplitudes, 2AN , the probability density of the EPSP amplitudes

is given by

pX(x) =
1

AN

exp (−λVν (x/AN)α) , (3.33)

which we compare with experiment in Section 3.7.

Interestingly, the explicit consideration of noise does not alter the result, following

from (3.18), that for V0/Vν → 0 optimum information storage is achieved by using

mostly the i = 0 state, with i = 1 used with exponentially low frequency. If V0 = 0,

this type of problem can be solved exactly [7,8] and the information storage capacity is

maximized when, in addition to the zero cost symbol, only one other symbol is chosen.

The additional symbol is chosen to maximize the relative entropy between conditional

probabilities of that symbol and of the zero cost symbol divided by the cost of the

additional symbol. If V0 > 0, however, the problem of optimizing information storage

capacity cannot be solved analytically, prompting us to pursue a reverse approach

discussed in the next section.

To summarize the results of this section, we state two further general optimization

principles.

Optimization Principle 2. To optimize information storage capacity per unit vol-

ume, the filling fraction should be small, an exponential with exponent determined by

the SNR exponent α and accessory volume V0. Small filling fraction is equivalent to

sparse synaptic connectivity.

Optimization Principle 3. To optimize information storage capacity per unit vol-

ume, although there will be many absent synapses and numerous small synapses, there

will also be some large synapses, with synaptic efficacy distribution like a stretched

exponential.
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� 3.5 Calculation of the Synaptic Cost Function from the Distribution of Synap-

tic Efficacies

In Section 3.4, we used an ǫ-capacity-cost approximation to obtain a capacity-achieving

input distribution. This was motivated by Condition 1 of the factorization interpreta-

tion of optimal information storage. The problem of directly and analytically finding

the capacity-achieving input distribution and the channel capacity for a specified cost

function is often rather difficult and is only known in closed form for certain special

cases. In most cases, the channel capacity and capacity-achieving input distribution

are found using numerical algorithms [174, 175]. In neuroscience, this algorithm was

used by [172, 173] in the context of optimal information transmission by the spike

code.

To move away from the ǫ-capacity-cost approximation, we will apply conditions

from the measure matching interpretation of optimal information storage. The chan-

nel conditional probability distribution and the channel input distribution can be

measured experimentally and used in (2.51) to determine the single-letter cost func-

tion for which the system is operating at capacity-cost [95, 17]. This methodology

does not seem to have been used for neuroscience investigations, other than a brief

look at sensory processing [18]. As noted in Chapter 2, although this method inverts

the problem specification, it seems reasonable if we are not sure of what the channel

input cost function is (e.g. here we do not know what α is). The result of the compu-

tation is a cost function, which may then be examined for relevance to the problem

at hand. Note that due to the arbitrary constants in (2.51), the cost function will be

optimizing for any accessory volume V0 and normalization constant Vν .

We use the dataset from [120, 163], also analyzed in [129], where EPSPs were

recorded in several consecutive trials for each of 637 synapses from the cortex of several

young rats. To carry out this calculation, we rely on the assumption that information

stored at a synapse, x, can be identified with the mean EPSP amplitude. Then, the

conditional density, pY |X(y|X = x), is estimated for each synapse as the distribution

of EPSP amplitude across trials, Figure 3-5A. The marginal density, pY (y), is the
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distribution of EPSP amplitude over all trials and synapses. By substituting these

distributions into (2.51) we find estimates of the cost function, V (x), for each synapse

(Figure 3-5B). A power law with exponent 0.48 provides a satisfactory fit. Error bars

are obtained from a bootstrapping procedure. Statistical procedures are given in the

next paragraphs.

In order to compute the optimal cost function according to (2.51), we require the

channel output distribution as well as the channel output distribution conditioned on

the input. To estimate the channel output cumulative distribution function, FY (y),

we simply use the empirical cumulative distribution function, Femp(y). To account for

the variable number of EPSPs acquired from each synaptic connection, the step size

in the empirical cumulative distribution function contributed by each data point is

inversely proportional to the number of EPSPs obtained from the synapse in question.

To model the effect of absent synapses (which were not measured), we included in the

empirical distribution function a narrow Gaussian distribution function with mean at

zero EPSP amplitude and standard deviation of 0.1 mV (typical noise amplitude).

The area under this Gaussian distribution function is given by one minus the filling

fraction of 11.6% [129]. To estimate the channel conditional density, pY |X(y|x), we

assume that all EPSPs from a given synapse correspond to the same input letter;

furthermore, we make a correspondence between the mean EPSP amplitude and this

input letter. For each synapse, we use a histogram with 10 uniformly spaced bins to

estimate the conditional density, pemp(y|x). Then the relative entropy is approximated

by the following:

D(pemp(y|x)‖pemp(y)) =
10
∑

i=1

pemp(Y = yi|X = x) log
pemp(y ∈ yi|X = x)

Femp(y = ri) − Femp(y = li)
,

(3.34)

where y ∈ yi implies presence in the ith histogram bin and the right and left bin

edges are denoted ri and li respectively. This relative entropy is computed for each

synapse, and the result is the optimal cost function (Figure 3-5B).

We use the bootstrap method to determine confidence intervals. The confidence

interval represented by the horizontal error bars is a small sample estimate of the
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Figure 3-5. Optimizing synaptic cost function calculated from EPSP measurements. A. Typical
distributions of EPSP amplitude among trials for synapses characterized by different mean EPSP
amplitudes. B. Synaptic cost function as a function of mean EPSP amplitude calculated from (2.51)
under assumption of optimal information storage. Each data point represents a different synapse,
with those appearing in (A) highlighted in light gray. Horizontal error bars represent the standard
error for the mean EPSP amplitude; vertical error bars represent the standard error for the relative
entropy quantity in (2.51). The standard error was estimated by a bootstrap procedure. The points
shown with starred upper vertical error had infinite vertical error, as estimated by the bootstrap
procedure. The line shows a least squares fit by a power law with exponent 0.48.
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standard error of the mean EPSP amplitude. The estimate is the sample standard

deviation of the mean EPSP amplitudes generated by sampling with replacement

from the empirical distribution that were measured for each synapse. The result is

based on 50 bootstrap trials. The confidence interval represented by the vertical error

bars is a small sample estimate of the standard error of the relative entropy quantity

in (3.34). In order to do the sampling with replacement for the bootstrap procedure,

randomness is introduced in two ways. First, 637 synapses are selected uniformly

with replacement from the set of 637 measured synapses. These resampled synapses

are used to generate the empirical cumulative distribution function, Femp(y). Second,

for each of the measured synapses, EPSP values are selected uniformly with replace-

ment to produce the empirical conditional probability mass functions pemp(y|X = x)

for each of the 637 values of x. Finally, (3.34) is used to calculate a bootstrap version

of the data points in Figure 3-5B. This doubly stochastic resampling procedure is

repeated for 50 bootstrap trials, and the estimate is the sample standard deviation

of the relative entropy quantities for each of the synapses. When we resample the

synapses to generate the Femp(y) for each of the bootstrap trials, there is a possibility

that no large EPSP amplitude synapse is selected. In such a case, the relative entropy

quantity will come out to be infinite since the output distribution will be zero where

the conditional distribution will be non-zero, so the two distributions will not be ab-

solutely continuous with respect to each other. In actuality, such lack of absolute

continuity should not occur because of the relationship pY (y) =
∫

pY |X(y|x)pX(x)dx.

This quirky phenomenon of the distributions not being absolutely continuous with

respect to each other results in an infinite discontinuity in the relative entropy func-

tional and thus causes the infinite upper standard deviation errors represented by

stars in Figure 3-5B. For these points, the lower standard deviation is estimated by

excluding points greater than the mean. For other points, the bootstrap distributions

are approximately symmetric, so the vertical error bars are symmetrically replicated.

The unweighted least squares fit in the MATLAB curve fitting toolbox is used to

generate the fit to a function of the form νxη with η = 0.48.

In this section, we did not formulate new optimization principles but provided a
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reverse characterization for Optimization Principles 2 and 3. In fact we essentially

assumed the results of Optimization Principles 2 and 3, and saw that the cost function

for which these principles hold falls neatly into the power law cost function that we

had initially formalized as (3.1). In Section 3.7 we will make further quantitative

comparisons regarding our predictions.

� 3.6 Discrete Synapses May Provide Optimal Information Storage

The models of synaptic information storage presented in Sections 3.3 and 3.5 might

have given the impression that the optimal distribution of synaptic strength must

be continuous. Indeed, Section 3.3 modeled information storage in synapses by

the AWGN channel with average power constraint, for which the optimal (capacity-

achieving) distribution is the continuous Gaussian distribution [9]. In addition, using

the methods of Section 3.5, one can construct innumerable average cost constrained

channels with capacity-achieving distributions that are continuous.

There is experimental evidence, albeit controversial, that synaptic weights change

in discrete steps [132,133,134]. Implicit in Question 4, can these experimental obser-

vations be consistent with the framework of optimal information storage? Here we

make two observations that suggest that discrete synaptic states may achieve optimal,

or close to optimal, information storage. First, we point out that, surprisingly, not

all continuous input channels have optimal input distributions that are continuous.

In particular, imposing a constraint on the maximum weight (or volume) of a single

synapse may change the optimal, capacity-achieving distribution of synaptic weights

from continuous form to a set of discrete values. Such a maximum amplitude con-

straint is quite natural from the biological point of view, because neither volume nor

EPSP can be infinitely large. Note that, unlike in Section 3.4, where discreteness

was an assumption used to simplify mathematical analysis, here the discrete solution

emerges as a result of optimization.

For concreteness, we return to the AWGN channel model considered in Section 3.3,

but now we impose a maximum volume constraint in addition to the average volume
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constraint that was originally imposed. The problem then reduces to the well-studied

problem of maximizing channel capacity for a given average input power and peak

input power. For the AWGN channel, the unique optimal input distribution consists

of a finite set of points. A proof of this fact, based on methods of convex optimization

and mathematical analysis, is given in [176]. Note that the Blahut-Arimoto algorithm

for continuous channels is based on sampling the input space [175], and cannot be

used to determine whether the optimal input distribution is continuous or discrete;

an analytical proof is necessary.

Since it is known that the optimal input distribution consists of a finite number

of points, one can numerically search over this sequence of finite-dimensional spaces

to find the locations and probabilities of these points for particular average power

and peak power values. Moreover, there is a test procedure, based on the necessity

of satisfying the Karush-Kuhn-Tucker conditions, to determine whether the obtained

numerical solution is in fact optimal. So one can apply the numerical procedure

to generate a possible solution and unmistakably recognize whether this solution is

optimal [176]. Applying Smith’s optimization procedure, including both the search

and the test for optimality, yields the following result for the AWGN channel. For

noise power 1, symmetric peak amplitude constraint [−1.5, 1.5], and input power

constraint 1.125 (an SNR close to 1), the optimal input distribution consists of the

zero point with probability 1/2, and the −1.5 and 1.5 points with equal probabilities

of 1/4 [176].

The conclusion that the distribution of synaptic weights should be discrete-valued

holds not only for the AWGN channel with hard limits imposed on synapse size and

weight, but also for other noise models. In particular, the discreteness result holds

for a wide class of additive noise channels under maximum amplitude constraint

[177]. Some fading channels that have both additive and multiplicative noise and are

similarly constrained or even less stringently constrained also have this discrete input

property [178,87]. Furthermore, channels other than AWGN with constraints on both

average power and maximum amplitude have optimal input distributions that consist

of a finite number of mass points [179].
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A second observation is that although some channels have optimal input distribu-

tions that have discrete, even channels that have continuous optimal input distribu-

tions can be used with discrete approximations of the optimal input distribution and

perform nearly at capacity. In the average power constrained AWGN example, it is

well known that in the limit of small SNR, using an alphabet with just two symbols

(±〈X2〉1/2) does not significantly reduce information storage capacity (see e.g. [180]).

In addition, Huang and Meyn [179] demonstrate numerically that discrete input dis-

tributions, in some cases generated by sampling the optimal continuous distribution,

are only slightly suboptimal. Although it is not clear a priori that a distribution

close to the capacity-achieving one will achieve mutual information close to capac-

ity, since the space of probability distributions is not compact without imposition of

constraints, this is almost always the case in practice. Existence or uniqueness of the

capacity-achieving input distribution is not guaranteed either, but must be shown in

the manner of Section 2.6.1.

Although we cannot formulate this as a general optimization principle because a

sufficiently fine characterization of noise is not available, extant analysis of optimal

information storage under hard volume constraints suggests that synaptic weights

should take a set of discrete values. Experimental observations of discrete changes

in synaptic weights are therefore consistent with optimization of information storage.

In addition, even if the capacity-achieving input distribution is continuous, the use

of discrete rather than continuous levels is not likely to reduce information storage

capacity appreciably.

� 3.7 Theoretical Predictions and Comparison to Experiment

In this section, we compare the theoretical predictions made in the previous sections

with known experimental facts and also suggest further experimental tests of the

theory. This is the final step in the scientific method described at the beginning of

the chapter, though of course the steps should be repeated iteratively, if experimental

findings do not confirm the theory.
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In Section 3.3, by considering an AWGN channel we find that information storage

is optimized by synapses with average volume given by the geometric mean of Vν

and V0 (in the relevant regime V0 < Vν). Although storage capacity increases in

the limit V0 → 0, the conduction time delay grows without bound. Although delay

is not explicitly considered in our performance metrics, it is certainly an important

issue. Since the minimum conduction time delay is achieved when synaptic volume

is of the order of the accessory volume [165, 166], the competition between these

requirements would yield the average synaptic volume less or equal to Vν , though

an explicit characterization of the tradeoff between storage capacity and propagation

delay has not been made. Therefore, typical synapses should be noisy, in agreement

with experimental data where the signal to noise ratio is found to one or less. This

result is corroborated in Section 3.4, where optimal synaptic volume was found to

be 2Vν . Although the noise is represented only through the hard sphere packing, the

optimal synapse volume is the minimum possible with the discrete states model.

In Section 3.4, we argue that optimal information storage requires sparseness of

synaptic connectivity and, assuming that synaptic states are equidistant in volume

space, predict a relationship between the filling fraction and the relative volume oc-

cupied by synapses and accessory volume. To make a quantitative comparison with

empirical observations, we use experimental data from a mouse cortical column. Po-

tential synaptic connectivity in a cortical column is all-to-all, meaning that axons

and dendrites of any two neurons pass sufficiently close to each other that they can

be connected through local synaptogenesis [158, 154]. According to [181], the frac-

tion of potential synapses converted into actual synapses in a mouse cortex is ∼ 0.3.

We take this fraction to be our filling fraction, f = 0.3. Then by (3.31), we find

2λVν = − ln 0.3 = 1.2 and by (3.23), we find that λV0 = − ln 0.7 = 0.36. Then,

the average volume of actual synapse is of the same order as the accessory volume

per actual synapse V0/f , in agreement with experiment. A more detailed calculation

using (3.30) on the ratio between the actual synapse volume 〈V 〉i>0 and the accessory
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volume per actual synapse V0/f ,

1

K
=
V0

f

1

〈V 〉i>0

=
V0

2Vνf exp(λV0)
(3.35)

=
V0

Vν

(1 − f)

2f

=
log(1 − f)

log f

1 − f

f

shows that actual synapse volume should be about 40% greater than accessory volume

for an actual synapse. In reality, accessory volume is greater than synapse volume.

This may be a consequence of minimizing conduction delays as discussed in Section

3.4. Hopefully, an optimization framework combining conduction delays and infor-

mation storage capacity will emerge in the future. The anytime information theory

framework seems poised in that direction [52,40].

One might wonder whether the sparseness theory applies to the entire brain net-

work beyond just the cortical column. In principle, the sparseness of the global

connectivity seems consistent with the high cost of wiring. A detailed quantitative

analysis seems difficult, however, because the network does not possess all-to-all po-

tential connectivity, and V0 would change. The cost and benefit of growing axonal

arbors would need to be quantified, however this is not straightforward since a single

axon can implement synaptic connections with several neurons at a time; further-

more, possible correlations in synaptic connectivity patterns would need to be taken

into account.

In Section 3.4, we predicted that synaptic volume should follow an exponential

distribution with parameter λ, (3.18). This prediction can be tested experimentally by

measuring the volume of spine heads and boutons in cortical neuropil. In comparing

the distribution of volume, our definition of a synapse as all synaptic contacts between

two neurons should be remembered. If in addition, an experimental measurement

of the filling fraction in the same neuropil is made, the theory can be tested in a

way that involves no parameter fitting. This is because λ can be calculated from

the wiring volume and the filling fraction: from (3.23) and (3.31), we get that λ =
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− log(1−f)/V0. To overcome the difficulty in measuring Vν or V0, one can alternatively

measure the experimentally accessible quantities f and 〈V 〉i>0 to determine λ. Then,

from (3.30) and (3.31),

λ =
− log(f)

(1 − f)〈V 〉i>0

. (3.36)

However, these predictions are only approximate as the relative importance of max-

imizing information storage and minimizing conduction delays has not been charac-

terized.

In Section 3.4, we predict the distribution of synaptic weight for arbitrary values

of the volume-SNR exponent α (3.32), which can be compared to the experimentally

observed synaptic weight distribution obtained in neocortical layer 5 neurons [129]. To

perform such a comparison, we sort the input distribution synaptic weights into bins

[xi−AN(xi), xi +AN(xi)] and plot a histogram, see Figure 3-6. By performing a least

squares fit of the logarithm of the EPSP distribution we find that the distribution is

a stretched exponential with exponent 0.49. Recall that performing a least squares fit

of the standard deviation of EPSP amplitude as a function of mean EPSP amplitude,

Figure 3-3, yields a power law with exponent 0.38. Hence, x/AN ∼ x0.62, and from

(3.32), we find that α = 0.49/0.62 = 0.79.

In Section 3.5, we had established a measure matching link from the distribution

of synaptic weights and noise statistics to the synaptic cost function. The best power-

law fit to the points in Figure 3-5B yields a sublinear cost function with power law

exponent ∼ 0.48. Recalling that x/AN ∼ x0.62, we find that α = 0.48/0.62 = 0.77.

This estimate is consistent with that obtained from the discrete states model in

the previous paragraph, thus validating the use of that model to approximate the

continuous distribution of synaptic weights. The prediction of α can be tested directly

by measuring the relationship between synaptic volume and weight and would be a

major test of our theory.

In Section 3.6 we argued that discrete synaptic states could achieve informa-

tion storage performance better than or almost as well as synapses with continuous

weights. Then, the discreteness in the weight changes of individual synapses that have
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Figure 3-6. Distribution of synaptic weights sorted into bins whose width is given by two standard
deviations for the corresponding EPSP amplitude. Squares represent the fraction of neuron pairs
belonging to a bin centered on that synaptic weight. The line is a stretched exponential fit (i.e.
power law in the log domain) with exponent 0.49.
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been observed experimentally [132, 133, 134] seem consistent with maximizing infor-

mation storage. However, it should be noted that this theoretical result implies that

the distribution of synaptic weights among all of the synapses—not just the weight of

an individual synapse—is discrete. The fact that such a discrete distribution has not

been seen is not surprising because the theory relies on some simplifying assumptions,

such as identical synaptic weight/volume relationship among all synapses. Since the

relationship between synaptic weight and volume depends on the electrotonic distance

from the synapse on a dendrite to the integration site [182], it can differ from synapse

to synapse. Although the optimal solution is not known in this case, we speculate

that, even if individual synapses were to have discrete states, these states would not

be the same among all the synapses.

� 3.8 Discussion

In this chapter, we have applied information theoretic characterizations of optimal

information storage to generate a unified theory of some structural characteristics

of the mammalian brain. The main tool that was used was that the distribution of

synaptic efficacies should be the capacity-achieving input distribution for the neural

memory channel. The predictions and explanations are of a purely informational and

physical nature; specific implementation issues such as error control codes or neural

networks have been abstracted. Independent of the coding mechanism, however, the

predictions and explanations that we make are required for optimal performance.

In some sense, the abstraction of the specific implementation can be considered

as a weakness, since unknown mechanistic constraints have not been incorporated.

There could be constraints due to mechanisms of storage and retrieval, as well as

operation requirements on the network. Neural network models commonly assume

specific mechanisms and yield information storage capacity estimates different from

ours [122,123,124,125,126]. Interestingly, Brunel et al. [122] predict a distribution of

synaptic weights similar to ours, although results such as this one may depend on the

details of the neural network model at hand. Future research is likely to shed more
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light on the biological mechanisms that shape and constrain information storage and

retrieval.

As our analysis relies on optimizing information storage capacity, it is not applica-

ble to brain regions for which information storage is not the main task. For example,

synapses associated with early sensory processing, e.g. in the retina [114, 183], or

those belonging to motorneurons [147,149] may be large and reliable. This would be

consistent with optimizing information transmission. In actuality, any given brain

circuit probably contributes to both information storage and information transmis-

sion. Indeed, by applying our analysis in reverse, one could infer the role of a given

circuit from its structural characteristics. In particular, different cortical layers may

be optimized for a different combination of storage and processing.

Our formulation of synaptic memory in the optimal information storage framework

implicitly casts each synapse—both potential and actual—as a channel usage; the

total storage capacity being the number of synapses multiplied by the average storage

capacity of each. Incidentally, this makes the storage capacity on the order of the

number of synapses, which would correspond to an overall maximal storage capacity of

several information kilobits for a neocortical L5 pyramidal neuron [184]. It is possible,

however, that the synaptic information retrieval mechanism involves multiple read-

out attempts from a single synapse. Since each channel usage is separated in space

rather than in time, this does not increase the number of channel usages. Regardless,

one may wonder what impact multiple read-out attempts would have on our analysis

of information storage capacity.

It is known that the SNR increases approximately as the square root of the number

of read-out trials for most forms of signal integration [185], so if the information stored

in each synapse was retrieved using the same number of read-out attempts, this simply

introduces a fixed multiplicative constant in (3.1). A fixed constant in (3.1) can simply

be incorporated into the Vν term and all of our results stand. On the other hand,

if the number of read-out attempts is not fixed, but varies across different synapses,

then it would cast much of our analysis into doubt. We point out, however, that

multiple read-out attempts would lead to large time delays. As has been mentioned
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throughout the chapter with reference to minimal accessory volume, time delay is also

an important issue and may constrain the system. If information is used to control

dynamical systems, it is known that large delay can be disastrous [40]. In addition,

it is not clear how short-term plasticity caused by multiple read-out attempts would

be overcome.

Other possible concerns arise from the lack of a true experimentally established

input-output characterization of synaptic memory. Addressing this concern would re-

quire identification and description of the so-called engram, the physical embodiment

of memory, which corresponds to the channel input, X (Figure 3-1). In addition,

it would necessitate a better characterization of the noise process which determines

the input-output probability distribution, pY |X(y|x). Description of the alphabet X
would furthermore settle the question, alluded to in Section 3.6, of whether synapses

are discrete-valued or continuously graded. In addition, we assumed in Section 3.5

that the channel input letter x is given by the arithmetic mean of EPSPs observed

in several trials. Alternatives to this assumption may alter the horizontal coordinate

of points in Figure 3-5B.

Although our analysis relies on identifying synaptic noise with the variability of

EPSP amplitude on read-out, the noise may come from other sources. The experi-

ments that we have used have only been able to access a portion of the channel, the

lower part of Figure 3-7. Perhaps, the main concern is that long-term memory storage

at a synapse is open to perturbations due to active learning rules and ongoing neuronal

activity [186], the so-called in situ noise (Figures 3-1 and 3-7). The longer the infor-

mation is stored, the greater the perturbations caused by such processes (although

see [187]). Amit and Fusi [188] have demonstrated that under mild assumptions,

this noise restricts memory capacity significantly. Fusi, Drew, and Abbott [189] have

recently proposed a solution with a cascade of discrete synaptic states with different

transition probabilities, resulting in a form of metaplasticity that increases retention

times in the face of ongoing activity. Presumably, other forms of metaplasticity may

also help protect stored information from unwanted perturbations. In addition, the

stability of physiological synaptic plasticity appears to depend critically on the details
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Figure 3-7. Partitioned neural memory system. Current experiments have only been able to
characterize the portion of the channel from the unlabeled box to the retriever.

of activity patterns during and after the induction of plasticity [186], suggesting that

specific biological mechanisms for the protection of stored information may exist.

Our theory can be modified to include sources of noise other than retrieval noise.

For example, if in situ noise is quantified and turns out to be dominant, it can be used

in the calculations presented in Sections 3.3-3.5. In fact, optimality of noisy synapses

(Section 3.3) may be relevant to resolving the issue of protecting information from in

situ noise. In general, a better understanding of the system functionality including

characterization of storage, in situ, and retrieval noise should help specify pY |X(y|x)
in the future.

Finally, our contributions include not only many explanations and predictions of

physical structures, but also the introduction of new methods to the study of mem-

ory in the brain. To develop the optimization principles, we have applied information

theory results from Chapter 2 to the study of physical neural memory systems. More-

over, our application of the measure matching conditions to study the cost function

(Section 3.5) appears to be the first instance where the measure matching character-

ization of optimality has been successfully applied to real system analysis, whether

biological or human engineered. The measure matching problem inversion has wide

applicability to the experimental study of information systems.
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Chapter 4

Source Coding for Nonsequential

Sources

The importance of invariant representations for task relevant information storage was

introduced in Chapter 1, and the notion of nonsequential semantics corresponding to

permutation invariance was emphasized. Such invariance properties lead to fidelity

criteria that are not single-letter but look at the entire source sequence collectively.

Historically, the main focus of rate distortion theory has been on single-letter fidelity

criteria, due to mathematical tractability. In Section 2.4.1, we were able to obtain a

rate-distortion characterization with a non-single-letter fidelity criterion, and here we

would like to do the same for nonsequential fidelity criteria.

When source sequences are invariant with respect to the fidelity criterion, a dis-

joint partitioning of the source sequences into equivalence classes is induced. Subsets

of source sequences that are permutations of one another are the equivalence classes

with respect to nonsequential fidelity criteria. These permutation-invariant equiva-

lence classes are also known as composition classes and type classes. A set of class

representatives is a subset of source sequences which contains exactly one element

from each equivalence class. A general principle of source coding for invariant repre-

sentations is to project the set of source sequences down to a set of class represen-

tatives, thereby reducing the dimension and the uncertainty of the source generating

process without increasing the distortion with respect to the fidelity criterion.

In the original proof of the Slepian-Wolf theorem [190] (as opposed to the proof

by random binning [191]), the set of source sequences is also partitioned into classes.
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The partitioning of the source space is accomplished by providing side information to

the decoder at a certain positive rate. The data sequence is then used to specify which

equivalence class is to be used in the reconstruction. In contrast to the Slepian-Wolf

scenario, the partitioning induced by the semantic fidelity criterion does not require

any rate, and may be thought of as side information that comes for free. Moreover,

in the invariant representation situation, the same element of the equivalence class

need not be used as the class representative all the time [14].

� 4.1 Nonsequential Source-Destination Semantics in Applications

Before detailing the results we can garner for information storage systems with nonse-

quential fidelity criteria, we review a few information storage applications where these

semantics arise naturally. To tie things together with Chapter 3, the first application

we present is human memory, though from the psychological perspective rather than

the neurobiological perspective. In psychological experiments on recognition and re-

call, the nonsequential nature of the source is forced. In a recall experiment, a subject

is asked to remember some number of symbols and later asked to recall as many as

possible (without consideration of order). In recognition experiments, a subject is

first shown a set, G, of symbols selected from a set U and later is presented with a

set K, G ⊂ K ⊂ U , from which the choice is made. Again, performance is measured

without reference to ordering [192]. Presumably each subject will have a canonical

representation of the set of symbols based on some personal total ordering principle.

For example, one can imagine several ordering principles for the United States. Pos-

sible ordering principles include alphabetic: Alabama < Alaska < · · · < Wyoming;

geographic: Maine < New Hampshire < · · · < Alaska; or historic: Delaware < Penn-

sylvania < · · · < Hawaii. The reason that there are several ordering principles is that

any curve through all members of a finite set generates a total order; in fact there are

|U|! total orders for a finite set U . Judd and Sutherland’s psychology experiment de-

sign [192] actually uses a model of human memory as a channel with synchronization

errors [24, 25, 26]. As delineated in Chapter 2, we will only consider channels where
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there are the same number of outputs as inputs.

Another application area for the nonsequential fidelity criteria, at least in a partial

sense, is in the storage of computer programs or other descriptions of algorithms [193].

In the psychological realm, this can be thought of as memory of how to perform a

task like tying a shoe. In computer programs, which can be thought of as descriptions

of dynamical processes, some of the steps can be rearranged without any change in

the behavior. For example the following two programs are functionally equivalent.

a = 7 (4.1)

b = 8

c = a+ b

d = b− a

e = c+ d

b = 8 (4.2)

a = 7

d = b− a

c = a+ b

e = c+ d

Similarly, in culinary recipes, instructions for fabricating objects, and deterministic

control policies, there are often interchangeable steps.

The storage of databases of scientific data is another application where reorder-

ing does not affect utility. A fundamental assumption in science is that identical,

unlinked, repeatable experiments yield results that follow an exchangeable joint dis-

tribution. Usually there is the stronger assumption that the results are i.i.d. More-

over, the order of the collected data is not used for any scientific purpose and is

treated as an arbitrary property of data. To take an example, consider the EPSP
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amplitude observations, depicted in Figure 3-5A, and used to calculate the horizontal

coordinate of a data point in Figure 3-5B. Since the horizontal coordinate in the plot

is the sample mean of the observation values, it is invariant to permutation of the

data. In fact, if a sample consists of independent observations from the same distri-

bution, any minimum variance unbiased estimator is invariant to permutations in the

observations [194, p. 259].

Not only are databases of scientific data invariant to reordering of rows and

columns, general databases often also share this feature. Massive tables with fixed-

length records and fields often arise in such applications as logging of network traffic

data in telephone systems and financial transactions in banking systems [195]. For

these applications, several source coding algorithms based on reordering the rows,

the columns, or both have been developed to significantly improve operational per-

formance [196,197], however general information theoretic results on optimal perfor-

mance of such information storage systems have not been developed. That is the

purpose of the remainder of the chapter.

� 4.2 Nonsequential Semantics in Information Storage Problems

We will eventually formalize our notion of nonsequential semantics in terms of fidelity

criteria, but for the current discussion, suffice it to say that when the retrieved vector

~v is a permuted version of the stored vector ~u, there is no distortion. That is to say,

the order of elements in the vectors is not considered when computing distortion. Due

to the fidelity criteria that we adopt, source outputs are intrinsically robust to channel

perturbations that cause permutations. Recall Shannon’s statement [9], “if the source

already has a certain redundancy and no attempt is made to eliminate it in matching

to the channel, this redundancy will help combat noise.” Judd and Sutherland model

human memory in tests of recall and recognition as just such a random permutation

channel [192]. Such a channel is also used as a rough model of neural communication

[14, 17]. For concreteness, consider all alphabets to be binary sequences of length k

and consider the channel that performs an equiprobable random permutation. No
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coding is used, so the source distribution is the channel input distribution. This

distribution, expressed in terms of the Hamming weight, w = wH(uk
1), is chosen to

be

pW (w) =
γk(γ − 1)

(γk+1 − 1)γw
, w ∈ {1, 2, . . . , k}, (4.3)

for some γ > 0. Using the distortion function portion of the measure matching

conditions (Theorem 8), the optimality-inducing distortion measure is found, in [14,

17], to be

d(~u,~v) =







0, type(~u) = type(~v)

∞, type(~u) 6= type(~v)
(4.4)

where the type(·) operator determines the type of its argument and is equivalent to

the Hamming weight here. As seen, the fidelity criterion generated by this distortion

function has the nonsequential semantics, as it depends only on the type, which is

invariant to permutation.

Nonsequential semantics can also be used for the embedding of covert information.

In particular, if the adversary does not realize that the destination does not care about

the order of the cover text data, information can be embedded in the ordering. One

can think of the covert ordering channel as a very degenerate form of a covert timing

channel, as in Section 2.6.1. This method of information embedding is often useful

for card tricks, Fitch’s Five Card Trick being a prime example.1 In the trick, covert

communication is established between the magician and his/her assistant by encoding

information in the order of cards. Since the order of cards is irrelevant in games such

as poker and most instances where playing cards are used, an audience does not

expect information to be embedded, thereby establishing the covert communication.

If the deck is arranged in a particular way, based on de Bruijn cycles, a similar trick

can be performed without an assistant: the encoding is already in the deck [200].

The information embedding problem and the problem of source coding with side

information are closely related, and in fact duals of one another [201]. As we had

1This card trick and variations of it seem to have been popularized in the information theory com-
munity by Elwyn Berlekamp and Thomas Cover [198], among others. For extensions, achievability
proofs, and information theoretic converses, see [199] and references therein.
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mentioned in the opening of this chapter, source coding for systems where order is

irrelevant can be thought of as a problem of source coding with access to free side

information. The main focus of this chapter will be on the source coding problem. The

approach that we take will be based on the rate matching interpretation of optimal

information storage (Section 2.4) so we will be concerned with the tradeoff between

rate and distortion. The storage mechanisms that we consider will sort the source

sequence into a fixed order as a step before any other encoding. One can view the

sorting procedure as a nonlinear filter that dissipates exactly the irrelevant entropy

associated with ordering uncertainty.

� 4.3 Separating Order and Value

Transform coding has been the workhorse of practical source coding [202], with a great

bias towards linear, orthogonal transforms. The Karhunen-Loève Transform (KLT)

is often considered as an optimal transform since it yields independent transform

coefficients for Gaussian sources. For non-Gaussian sources, however, removing the

orthogonality and linearity restrictions on the transform can often yield better source

coding results, e.g. transformation to pseudophase and pseudomagnitude yields im-

provements for Gaussian scale mixture sources [203]. In fact, the pseudophase and

pseudomagnitude representation yields independent components.

A set is a collection of objects in which neither order nor multiplicity have any

significance. A multiset is a collection of objects in which order has no significance,

but multiplicity is explicitly significant. A sequence is a collection of objects in which

order and multiplicity both have explicit significance. Consider the source variables

U1, U2, . . . , Uk drawn from the common alphabet U according to a joint distribution

that is exchangeable. Denote the random k-tuple Uk
1 as (Ui)

k
i=1. A realization (ui)

k
i=1

can be decomposed by filtering into a multiset of values, denoted {ui}k
i=1, and an order

jk. Here we consider sorting as a nonlinear transform that produces order and value

as “transform coefficients.” We use a collapsed two-line notation for permutations to
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express the output of sorting.

(ui)
k
i=1

sort−→





i1 i2 · · · ik

u1 u2 · · · uk



 =





jk

{ui}k
i=1



 , (4.5)

where the indices i1, . . . , ik are a permutation of the integers 1, . . . , k for sets, but

may have repetitions for multisets. The ordering is collapsed into a single variable jk.

Similarly, the values u1, . . . , uk are collapsed into a set {ui}k
i=1.

For exchangeable sources, the two transform coefficients, Jk (order) and {Ui}k
i=1

(value), are statistically independent chance variables. This can be expressed in

information theoretic terms by decomposing the entropy into two independent parts.

Define H((Ui)
k
i=1) as entropy of the original sequence, H({Ui}k

i=1) as multiset entropy,

and H(Jk) as the entropy of the chance variable representing order. In the statement

of the theorem, we suppress subscripts used to denote length.

Theorem 12. For exchangeable sources, the order and the value are independent and

the sequence entropy can be decomposed into the order entropy and the value entropy:

H((U)) = H({U}) +H(J). (4.6)

Proof.

H((U))
(a)
= H((X)) +H({X}) −H((X)|J) (4.7)

= H({X}) + I((X); J)

(b)
= H({X}) +H(J) −H(J |(X))

= H({X}) +H(J),

where (a) follows from noting that H({X}) = H((X)|J) for exchangeable sources,

since all orderings are equiprobable and uninformative about the value. The step

(b) follows from the fact H(J |(X)) = 0 in general. The other steps are simple

informational manipulations.

Since the transform coefficients are independent, we can code them separately
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without loss of optimality. In fact, we will ignore the order J and only code the

value. In a more general setting, a rate allocation favoring one or the other may be

used, much as some subbands are favored in linear transform coding.

Since source coding considered in this chapter deals with a sorting preprocessing

step to generate a multiset from a sequence, it behooves us to have a convenient rep-

resentation of multisets. In particular, for the sequel, we want to deal with complete,

minimal sufficient statistics of multisets rather than the multisets themselves. For

a multiset, especially if drawn from a discrete alphabet, the number of occurrences

of each u ∈ U fully specifies it. That is to say, the type is a sufficient statistic for

the multiset for any arbitrary parameter estimation problem and is in fact minimal.

In the continuous alphabet case, rather than working directly from types, we use

the sequence in which the elements are in ascending order, a natural representative

of a permutation-invariant equivalence class. This canonical sequence representation

is equivalent to type representation and naturally leads to the framework of order

statistics. Assuming that the parent alphabet consists of the real line, the basic dis-

tribution theory of order statistics can be used [204]. When the sequence of random

variables X1, . . . , Xn is arranged in ascending order as X(1:n) ≤ · · · ≤ X(n:n), X(r:n)

is called the rth order statistic. It can be shown that the order statistics for ex-

changeable variates are complete, minimal sufficient statistics [204]. Since the order

statistics are sufficient and complete statistics, an alternate proof of Theorem 12 can

be constructed using Basu’s Theorem on the independence of a sufficient, complete

statistic for a parameter and any ancillary statistic whose distribution does not de-

pend on that parameter. Here the parameter is the multiset, the sufficient statistic

is the sequence of order statistics, and the ancillary statistic is the order. In contrast

to discrete alphabets and real-valued scalar alphabets, for alphabets of vectors of

real numbers there is no simple canonical form for expressing the minimal sufficient

statistic, since there is no natural ordering of vectors [205].
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� 4.4 Rate Distortion Theory for Growing Multisets

When order is irrelevant, the source coding problem reduces to a problem of coding

multisets. Communicating a multiset of size k should, of course, require less rate than

communicating a vector of length k, since there is no need to distinguish between

vectors that are permuted versions of each other. The question that arises is how

much rate can be saved. Since there are k! possible permutations, it would seem that

a rate savings of log k! would enter in some way. If however, log k! turns out to be

greater than kR(0) (for a rate-distortion function with respect to a fidelity criterion

that explicitly considers order), things would not make sense by the information

inequality; there would need to be more to the story. In this section we present

results for multisets that grow with the block length k, discussing cases with discrete

and continuous alphabets separately.

� 4.4.1 Discrete Alphabets

In the finite situation, the multiset of values that we want to code can be represented

by the type of the multiset. Consequently, we do not require an explicit order to

be defined on the source alphabet. An alternative view is that an arbitrary curve

through the alphabet can be used to define an order. As a result, the theory applies

not just to alphabets of numerical scalars, but to alphabets of numerical vectors,

language texts, images, and political subdivisions of republics. Since the multiset is

equivalent to a type, we can use the type to define the word distortion measure and

the fidelity criterion. The word distortion measure of length k is defined to be

dk(u
k
1, v

k
1) =







0, type(uk
1) = type(vk

1)

1, type(uk
1) 6= type(vk

1)
(4.8)

and the fidelity criterion is

Fval1
= {dk(u

k
1, v

k
1), k = 1, 2, . . .}. (4.9)
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This is not a single-letter fidelity criterion on the source, though it does have a

frequency of error interpretation on the types. Due to this frequency of error inter-

pretation, the R(0) point is the entropy of the multiset, H({Ui}k
i=1). Since there are

only k! possible orderings, the alphabet-size upper bound on H(Jk) and Theorem 12

lead to the lower bound

H({Ui}k
i=1) ≥ H((Ui)

k
i=1) − log k!. (4.10)

The lower bound is not tight due to the positive chance of ties among members

of a multiset drawn from a discrete alphabet. If the chance of ties is small (if |U| is

sufficiently large and k is sufficiently small), the lower bound is a good approximation.

As has been noted previously, one interpretation of sequence entropy reduction by

order entropy to yield multiset entropy is of a multiset as an equivalence class of

sequences. Since non-zero distortion only occurs when a sequence is represented by

a sequence outside of its equivalence class, uncertainty within the class is allowable

without incurring distortion.

Rather than bounding H({U}), we can compute it exactly. If the multiset ele-

ments are drawn i.i.d., the distribution of types is given by a multinomial distribution

derived from the distribution of the individual letters [206, Problem VI]. Suppose

ui ∈ U has probability pi and let Li be the number of occurrences of ui in k indepen-

dent trials. Then

Pr[Li = li] =

(

k

l1, l2, . . . , l|U|

) |U|
∏

i=1

pli
i , for i = 1, . . . , |U|, (4.11)

for any type (l1, l2, . . . , l|U|) of non-negative integers with sum k. Therefore,

H({U}k
i=1) = H(L1, L2, . . . , L|U|; k), (4.12)

where dependence on k is explicitly notated. This was an exact calculation of Rk(0)

for a fixed k and known distribution pi. We are interested in R(0) rather than Rk(0)

and would like to have a result that does not require the multiset generating process
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to be i.i.d. As for other fidelity criteria, as in Section 2.4.1, finding an upper bound

to the R(0) point reduces to an enumeration problem, here the enumeration of types.

Denote the alphabet of distinct types as L(U , k); its size may be computed and

bounded through simple combinatorics [207]:

|L(U , k)| =

(

k + |U| − 1

|U| − 1

)

≤ (k + 1)|U|. (4.13)

Using (4.13) and noting that |L(U , k)|/k is a monotonically decreasing bounded se-

quence of real numbers,

R(0) ≤ lim
k→∞

1
k

log |L(U , n)| ≤ lim
k→∞

1
k

log(k + 1)|U| = 0. (4.14)

Theorem 13. R(∆) = 0 for any source with fidelity criterion Fval1
.

Proof. By the information inequality, R(∆) ≥ 0. By (4.14), R(0) ≤ 0, so R(0) = 0.

Since R(∆) is a non-increasing function, R(∆) = 0.

Note that the theorem holds for any multiset, not just for multisets drawn i.i.d. In

fact, if the multiset is drawn i.i.d., the bounding technique yields an upper bound that

is quite loose. To achieve the bound with equality, each of the types would have to be

equiprobable; however by the strong asymptotic equipartition property (AEP) [38],

collectively, all non-strongly typical types will occur with probability as close to zero

as desired.2 The number of types in the strongly typical set is polynomial in k, so we

cannot get a speed of convergence to Rk(0)/k rate faster than O(log k/k). For clarity,

we work through an example.

Example 1. Consider a multiset of size k whose elements are drawn i.i.d. from a

Bernoulli distribution with parameter p. The Rk(0) value is equal to the entropy of

a binomial random variable with parameters k and p. For large k, we can use the

de Moivre approximation of the binomial, N (kp, kp(1 − p)) evaluated at the integers

[206, pp. 243–259]. The entropy of this approximation is the same as the high rate

2The weak AEP is not sufficient to make this claim.
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approximation of Gaussian entropy with interval size 1. In fact, a better asymptotic

expression for this entropy is given in [208] as

Rk(0) ∼ 1
2
log2 (2πekp(1 − p)) +

∑

i≥1

aik
−i, (4.15)

for some known constants ai. Thus the rate-distortion function is

R(0) = lim
k→∞

Rk(0)

k
= lim

k→∞

log2 (2πekp(1 − p))

2k
+
∑

i≥1

aik
−i−1 = 0. (4.16)

Evidently, the speed of convergence is O(log k/k), which is the same as the speed of

convergence for the universally valid Theorem 13.

Theorem 13 was proven for finite alphabets, however it can also be extended to

countable alphabets using a different method of proof [209].

� 4.4.2 Continuous Alphabets

Assume that the source alphabet consists of real scalars, with the usual ordering.3

When source letters are drawn i.i.d. from a continuous alphabet, the associated mul-

tiset is almost surely a set. Rather than using types as natural representatives for

sets, we use order statistics. Recalling that U(r:k) denotes the rth order statistic from

a block of k, we define the word distortion measure to be

ρk(u
k
1, v

k
1) =

1

k

k
∑

i=1

(u(i:k) − v(i:k))
2, (4.17)

and an associated fidelity criterion to be

Fval2
= {ρk(u

k
1, v

k
1), k = 1, 2, . . .}. (4.18)

Although not a single-letter fidelity criterion, it is single-letter mean square error on

the block of order statistics. Just as we were able to show that R(∆) = 0 under the

3Recall that ordering of real vectors and other continuous sources without natural orders is
problematic [205], as is defining multivariate quantile functions [210].
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Fval1
fidelity criterion, we would like to show that R(∆) = 0 under the Fval2

fidelity

criterion. We show exactly that result in this section, but restricting ourselves to

i.i.d. generation and some mild conditions on the distribution from which the multiset

elements are drawn.

The average incurred distortion as a function of rate, ∆(R) is the generalized

inverse function of R(∆) and is called the distortion rate function. For Fval2
, the

incurred distortion for blocklength k is

∆k =
1

k

k
∑

i=1

E
pU,V

[

(

U(i:k) − V(i:k)

)2
]

. (4.19)

If we use no rate, then the best choice for the reconstruction letter is simply v(i:k) =

EpU
[U(i:k)] and the average incurred distortion reduces to

∆k(R = 0) =
1

k

k
∑

i=1

var
pU

[

U(i:k)

]

. (4.20)

Before proceeding with a general proof that ∆(R) = 0 (and so R(∆) = 0), we give

some examples.

Example 2. Consider a set with elements drawn i.i.d. from the uniform distribution

with support
[

−
√

3,
√

3
]

. Then the variance of the ith order statistic from a set of

size k is [211, Section IV.A]

var
pU

[

U(i:k)

]

=
12i (k − i+ 1)

(k + 1)2 (k + 2)
. (4.21)

The average variance is then

∆k(0) =
1

k

k
∑

i=1

12i (k − i+ 1)

(k + 1)2 (k + 2)
=

2

k + 1
. (4.22)

The monotonically decreasing sequence of real numbers, {∆k(0)}, is shown in Fig-
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ure 4-1; the sequence clearly satisfies

lim
k→∞

∆k(0) = 0, (4.23)

so ∆(0) = 0.

Example 3. Consider a set with elements drawn i.i.d. from the Gaussian distribution

with mean zero and variance one. Then the variance of the ith order statistic from a

set of size k can be found numerically [212] and used to compute the average variance.

Figure 4-1 shows ∆k(0) as a function of k. This bounded sequence of real numbers

{∆k(0)} is monotonically decreasing and satisfies lim
k→∞

∆k(0) = 0 [213], so ∆(0) = 0.

Example 4. Consider a set with elements drawn i.i.d. from the exponential distribu-

tion with mean one. Then the variance of the ith order statistic from a set of size k

is [204]

var
pU

[

U(i:k)

]

=
k
∑

m=k−i+1

m−2. (4.24)

The average variance is then

∆k(0) =
1

k

k
∑

i=1

k
∑

m=k−i+1

m−2. (4.25)

Again, this bounded, monotonically decreasing sequence of real numbers is shown in

Figure 4-1 and has limit 0 for large k.

The average variance for sets generated according to other distributions may be

computed either directly or by noting that the average second moment of the or-

dered and unordered variates is the same, since it is simply a rearrangement. Then

computation reduces to finding the average mean square of the order statistics. One

particularly interesting way to do this is given in [213].

The general theorem on zero rate, zero distortion will be based on the quantile

function of the i.i.d. process generating the set; this is the generalized inverse of the
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Figure 4-1. Distortion-rate function for some sources. ∆k(0) for standard Gaussian shown with
circles. ∆k(0) for standard exponential shown with diamonds. ∆k(0) for uniform shown with
squares.

cumulative distribution function

Q(w) = F−1(w) = inf{u : FU(u) ≥ w}. (4.26)

The empirical quantile function, defined in terms of order statistics is

Qk(w) = U(⌊wk⌋+1:k) = F−1
k (w), (4.27)

where Fk(·) is the empirical distribution function. The quantile function Q(·) is

continuous if and only if the distribution function has no flat portions in the interior,

i.e. the density is strictly positive over its region of support except perhaps on isolated

points. The main step of the proof will be a Glivenko-Cantelli like theorem for

empirical quantile functions [214].

Lemma 1. Let the sequence to be coded, U1, U2, . . . , Uk, be generated in an i.i.d.
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fashion according to FU(u) with associated quantile function Q(w). Let U1 satisfy

E
pU

|min(U1, 0)|1/ν1 <∞ and E
pU

(max(U1, 0))1/ν2 <∞ (4.28)

for some ν1 > 0 and ν2 > 0 and have continuous quantile function Q(w). Then

the sequence of distortion-rate values for the coding of size-k sets drawn with the

distribution of U1 satisfy

lim
k→∞

∆k(R = 0) = 0. (4.29)

Proof. For any nonnegative function ω defined on (0, 1), define a weighted Kolmogorov-

Smirnov like statistic

Sk(ω) = sup
0<w<1

ω(w) |Qk(w) −Q(w)| . (4.30)

For each ν1 > 0, ν2 > 0, and w ∈ (0, 1), define the weight function

ων1,ν2(w) = wν1(1 − w)ν2 . (4.31)

Assume that Q is continuous, choose any ν1 > 0 and ν2 > 0, and define

γ = lim sup
k→∞

Sk(ων1,ν2). (4.32)

Then by a result of Mason [214], γ = 0 with probability 1 when (4.28) holds. Our

assumptions on the generating process meet this condition, so γ = 0 with probability

1. This implies that

lim sup
k→∞

|U(⌊wk⌋+1) −Q(w)| ≤ 0 for all w ∈ (0, 1) w.p.1, (4.33)

and since the absolute value is nonnegative, the inequality holds with equality. Ac-

cording to (4.33), for sufficiently large k, each order statistic takes a fixed value with

probability 1. The bounded moment condition on the generating process, (4.28), im-

plies a bounded moment condition on the order statistics. Almost sure convergence
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to a fixed quantity, together with the bounded moment condition on the events of

probability zero imply convergence in second moment of all order statistics. This con-

vergence in second moment to a deterministic distribution implies that the variance

of each order statistic is zero, and thus the average variance is zero.

We have established that asymptotically in k, the point (R = 0,∆ = 0) is achiev-

able, which leads to the following theorem.

Theorem 14. Under fidelity criterion Fval2
, R(∆) = 0 for an i.i.d. source that meets

the bounded moment condition (4.28) and has continuous quantile function.

Proof. By the nonnegativity of the distortion function, ∆(R) ≥ 0. By Lemma 1,

∆(0) ≤ 0, so ∆(0) = 0. Since ∆(R) is a non-increasing function, ∆(R) = 0, and so

R(∆) = 0.

Due to the generality of the Glivenko-Cantelli like theorem that we used, the result

will stand for a very large class of distortion measures. One only needs to ensure that

the set of outcomes of probability zero are not problematic.

The Fval2
problem is trivial in the same manner that the Fval1

problem is trivial. No

rate is needed to achieve zero distortion, i.e. no information need be stored on average

to be able to retrieve information within the required fidelity. An interpretation of

this phenomenon is that since the generating distribution is known at the destination,

it is as if the source can just be simulated for the destination without having to

store anything; this recreated source multiset will be the same as the original source

multiset. Given these reductions to triviality for fidelity criteria defined on growing

multisets, one might wonder what happens when the multiset sizes are fixed. This is

the topic of the next three sections.

� 4.5 Low-Rate Low-Dimension Quantization for Fixed Size Multisets

For fidelity criterion Fval1
, as k increases, larger and larger multisets are used to

compute the distortion. This trivializes the problem, in the sense that no rate is

needed to achieve zero distortion. An alternate view of order irrelevance is to fix
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the size of the multiset, at say K, and take larger and larger numbers of multisets.

In effect, we now have a block source with a single-letter fidelity criterion. Using

the previously defined word distortion on blocks of length K, (4.17), a new fidelity

criterion is

Fval3
=







K

k

k/K
∑

i=1

ρK(uiK
iK−K+1, v

iK
iK−K+1), k = K, 2K, . . .







. (4.34)

This is average mean square error on the block of order statistics. Notice that the

fidelity criterion is defined only for words that have lengths that are multiples of the

block size K.

For low rates and coding one set at a time, we can find optimal mean square

error quantizers through the Lloyd-Max optimization procedure [215]. The quantizers

generated in this way are easy to implement for practical source coding, and also

provide an upper bound on the rate-distortion function. Designing the quantizers

requires knowledge of the distributions of order statistics, which can be derived from

the distribution of the unordered variates [204]. For U1, . . . , UK that are drawn i.i.d.

according to the cumulative distribution function FU(u), the marginal cumulative

distribution function of U(r:K) is given in closed form by

F(r:K)(u) =
K
∑

i=r

(

K

i

)

F i
U(u) [1 − FU(u)]K−i = IFU (u)(r,K − r + 1), (4.35)

where Ip(a, b) is the incomplete beta function. Subject to the existence of the density

fU(u) of the original generating process, the marginal density of U(r:K) is

f(r:K)(u) =
1

B(r,K − r + 1)
[1 − FU(u)]K−r F r−1

U (u)fU(u), (4.36)

where B(a, b) is the beta function. The joint density of all K order statistics is

f(1:K)···(K:K)(u1, . . . , uK) =











K!
K
∏

i=1

fU(ui), uK
1 ∈ R;

0, else.

(4.37)
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The region of support, R = {uK
1 : u1 ≤ · · · ≤ uK}, is a convex cone that occu-

pies (1/K!)th of R
K . The order statistics also have the Markov property [204] with

transition probability

fU(r+1:K)|U(r:K)=x(y) = (K − r)

[

1 − FU(y)

1 − FU(x)

]K−r−1
fU(y)

1 − FU(x)
, for y > x. (4.38)

In the usual setup, the sorting filter is applied first and then further source coding

is performed. Since sorting quantized numbers is easier than sorting real-valued

numbers, we would prefer to be able to interchange the operations. Based on the

form of the joint distribution of order statistics, (4.37), we can formulate a statement

about when sorting and quantization can be interchanged without loss of optimality.

If the order statistics are to be quantized individually using scalar quantization, then

interchange without loss can be made in all cases [216]. Scalar quantization, however,

does not take advantage of the Markovian dependence among elements to be coded.

We consider coding the entire set together, referring to K as the dimension of the

order statistic vector quantizer.

If the representation points for an MSE-optimal (R rate, K dimension) order statis-

tic quantizer are the intersection of the representation points for an MSE-optimal

(R+ logK!, K) quantizer for the unordered variates and R, then we can interchange

sorting and quantization without loss of optimality. This condition can be inter-

preted as a requirement of permutation polyhedral symmetry on the quantizer of the

unordered variates. This form of symmetry requires that there are corresponding rep-

resentation points of the unordered variate quantizer in each of the K! convex cones

that partition R
K on the basis of permutation. The polyhedron with vertices that are

corresponding points in each of the K! convex cones is a permutation polyhedron. In

fact, the distortion performance of the MSE-optimal (R,K) order statistic quantizer

is equal to the distortion performance of the best (R + logK!, K) unordered quan-

tizer constrained to have the required permutation symmetry. An example where the

symmetry condition is met is for the standard bivariate Gaussian distribution shown

in Figure 4-2.
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Figure 4-2. Quantization for bivariate standard Gaussian order statistics. Optimal one-bit quan-
tizer (white) achieves (R = 1,∆ = 2π−4

π
). Optimal two-bit quantizer (black) for unordered variates

achieves (R = 2,∆ = 2π−4
π

). Since representation points for order statistic quantizer are the inter-
section of the cone (shaded) and the representation points for the unordered quantizer, the distortion
performance is the same.

� 4.6 High-Rate Quantization Theory for Fixed Size Multisets

Based on the basic distributional properties of order statistics, (4.36)–(4.38), the

differential entropies of order statistics can be derived. The individual marginal dif-

ferential entropies are

h(U(r:K)) =

∫

f(r:K)(u) log f(r:K)(u)du, (4.39)

where no particular simplification is possible unless the generating process is specified.

The average marginal differential entropy, however, can be expressed in terms of the

differential entropy of the generating process and a constant that depends only on

K [217]:

h̄(U(1:K), . . . , U(K:K)) =
1

K

K
∑

i=1

h(U(i:K)) = h(U1)−logK− 1

K

K
∑

i=1

log

(

K − 1

i− 1

)

+
K − 1

2
.

(4.40)

The subtractive constant is positive and increasing in K, and not dependent on the

generating distribution. The individual conditional differential entropies, as derived
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in Appendix 4.A, are

h(U(r+1:K)|U(r:K)) = − log(K − r) −Nh(K) +Nh(K − r) + 1 − 1

K − r
(4.41)

− K!

Γ(K − r)Γ(r)

∞
∫

−∞

∞
∫

x

fU(y) log(y) [1 − FU(y)]K−r−1 dyF r−1
U (x)fU(x)dx,

where Γ(·) is the gamma function and Nh(k) =
∑k

m=1 1/m is the harmonic number.

As in the individual marginal case, further simplification of this expression requires

the generating distribution to be specified. Again, as in the marginal case, the total

conditional differential entropy can be expressed in terms of the generating process

differential entropy and a constant that depends only on K. Due to Markovianity, the

sum of the individual conditional differential entropies is in fact the joint differential

entropy:

h(U(1:K), . . . , U(K:K)) = h(U(1:K)) +
K−1
∑

i=1

h(U(i+1:K)|U(i:K)) = Kh(U1) − logK!. (4.42)

Notice that an analogous statement (4.10) was a lower bound in the discrete alphabet

case; equality holds in the continuous case since there are no ties.

High-rate quantization results follow easily from the differential entropy calcula-

tions. High-rate quantization theory is an alternative to rate distortion theory and

provides a different way of characterizing the tradeoff between rate and distortion

in the rate matching interpretation of optimal information storage. The rate and

distortion performance of a particular form of asymptotic, deterministic source codes

is approximated in the high-rate (low-distortion) limit.

To develop results, we introduce four quantization schemes in turn, measuring

performance under fidelity criterion Fval3
. In particular, we sequentially introduce a

shape advantage, a memory advantage, and a space-filling advantage as in [218].4 As

a baseline, take the näıve scheme of directly uniform scalar quantizing the randomly

ordered sequence with quantization step size ǫ. The average rate and distortion per

4Note that vector quantizer advantages are discussed in terms of distortion for fixed rate in [218],
but we discuss some of these advantages in terms of rate for fixed distortion.
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source symbol of the näıve scheme are R1 = h(U1) − log ǫ, and ∆1 = ǫ2/12. Now

uniform scalar quantize the deterministically ordered sequence (the order statistics).

This changes the shape of the marginal distributions that we are quantizing, and thus

we get a shape advantage. The average rate per source symbol for this scheme is

R2 = h̄(U(1:K), . . . , U(K:K))−log ǫ = R1−logK− 1

K

K
∑

i=1

log

(

K − 1

i− 1

)

+
K − 1

2
. (4.43)

The distortion is the same as the näıve scheme, ∆2 = ∆1. As a third scheme, scalar

quantize the order statistics sequentially, using the previous order statistic as a form

of side information. We assume that the previous order statistics are known exactly

to both the storer and retriever. Since the order statistics form a Markov chain, this

single-letter sequential transmission exploits all available memory advantage. The

rate for this scheme is

R3 = 1
K
h(U(1:K), . . . , U(K:K)) − log ǫ = R1 − 1

K
logK!. (4.44)

Again, ∆3 = ∆1. Finally, the fourth scheme would vector quantize the entire se-

quence of order statistics collectively. Since we have exploited all shape and memory

advantages, the only thing we can gain is space-filling gain. The rate is the same as

the third scheme, R4 = R3, however the distortion is less. This distortion reduction is

a function of K, is related to the best packing of polytopes, and is not known in closed

form for most values of K; see Table I of [218] and more recent work on packings.

We denote the distortion as ∆4 = ∆1/G(K), where G(K) is a function greater than

unity. The performance improvements of these schemes are summarized in Table 4.6.

Notice that all values in Table 4.6 depend only on the set length K and not on the

distribution that is used to generate the sets.

We have introduced several quantization schemes and calculated their performance

in the high-rate limit. It was seen that taking the fidelity criterion into account

when designing the source coder resulted in rate savings that did not depend on

the distribution according to which the source sequence was generated. These rate
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Rate Reduction (−) Distortion Reduction (×)
Scheme 1 0 1

Scheme 2 (s) logK + 1
K

K
∑

i=1

log
(

K−1
i−1

)

− K−1
2

1

Scheme 3 (s,m) logK!/K 1
Scheme 4 (s,m,f) logK!/K 1/G(K)

Table 4.1. Comparison between the Scheme 1 and several other quantization schemes. The symbols
(s),(m), and (f) denote shape, memory, and space-filling advantages.

savings can be quite significant for large blocklengths K.

� 4.7 Rate Distortion Theory for Fixed Size Multisets

Let us return to rate-distortion problems as in Section 4.4, but now under fixed size

multiset fidelity criteria like Fval3
. First consider discrete alphabets, before returning

to the continuous alphabet, Fval3
problem.

� 4.7.1 Discrete Alphabets

For discrete alphabets, we define a fidelity criterion for fixed size multisets in the

same manner as for Fval3
.

Fval4
=







K

k

k/K
∑

i=1

dK(uiK
iK−K+1, v

iK
iK−K+1), k = K, 2K, . . .







. (4.45)

The word distortion measure used to define the fidelity criterion is (4.8). The Fval4

notion of fidelity casts the problem into a frequency of error framework on the types.

Assuming that the multisets to be coded are independent and identically distributed,

this is simply an i.i.d. discrete source with error frequency distortion, so the reverse

waterfilling solution of Erokhin [219] applies. The rate-distortion function is given

parametrically as

∆θ = 1 − Sθ + θ(Nθ − 1)

Rθ = −
∑

l:p(l)>θ

p(l) log p(l) + (1 − ∆θ) log(1 − ∆θ) + (Nθ − 1)θ log θ,
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where Nθ is the number of types whose probability is greater than θ and Sθ is the

sum of the probabilities of these Nθ types. The parameter θ goes from 0 to p(l‡) as ∆

goes from 0 to ∆max = 1− p(l†); the most probable type is denoted l† and the second

most probable type is denoted l‡. If the letters within the multisets are also i.i.d., the

probability values needed for the reverse waterfilling characterization are computed

using the multinomial distribution.

Only the most probable source types are used in the representation alphabet. It is

known that the probability of type class l drawn i.i.d. from the parent pU is bounded

as follows [207]:

1
|L|

2−kD(pl‖pU ) ≤ Pr[l] ≤ 2−kD(pl‖pU ), (4.46)

where pl is a probability measure derived by normalizing the type l. The multiset

types used in the representation alphabet are given by the type classes in the typical

set

T ǫ(θ)
pU

= {l : D(pl‖pU) ≤ ǫ(θ)} . (4.47)

Since multiset sources are successively refinable under error frequency distortion [220],

scalable coding would involve adding types into the representation alphabet.

In addition to Fval4
, we can define other fidelity criteria that reduce the multi-

set rate-distortion problem to well-known discrete memoryless source rate-distortion

problems. As a simple example, consider multisets of length K = 2 and consisting of

i.i.d. equiprobable binary elements. Then there are three letters in the alphabet of

types: {0, 0}, {0, 1}, and {1, 1}, which can be represented by their Hamming weights,

{0, 1, 2}. The probabilities of these three letters are {1/4, 1/2, 1/4}. Define the word

distortion function

δ(u2
1, v

2
1) =

∣

∣wH(u2
1) − wH(v2

1)
∣

∣ . (4.48)

The fidelity criterion is

Fval5
=







2

k

k/2
∑

i=1

δ(u2i
2i−1, v

2i
2i−1), k = 2, 4, . . .







. (4.49)
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This is a single-letter fidelity criterion on the Hamming weights and is in fact the

well-studied problem known as the Gerrish problem [77, Problem 2.8]. One can easily

generate equivalences to other known problems as well.

� 4.7.2 Continuous Alphabets

It is quite difficult to obtain the full rate-distortion function for the Fval3
fidelity

criterion, however upper and lower bounds may be quite close to each other for

particular source distributions. As an example, consider the rate-distortion function

for the independent bivariate standard Gaussian distribution that was considered in

Figure 4-2. The rate-distortion function under Fval3
is equivalent to the rate-distortion

function for the order statistics under the mean square error fidelity criterion. The

Shannon lower bound is simply

RSLB(∆) = log(1/∆), (4.50)

the Gaussian rate-distortion function under the mean square error fidelity criterion,

reduced by logK! bits (one bit). Note that since the order statistic source cannot

be written as the sum of two independent processes, one of which has the properties

of a Gaussian with variance ∆,5 the Shannon lower bound is loose everywhere [221],

though it becomes asymptotically tight in the high-rate limit.

The covariance matrix of the Gaussian order statistics can be computed in closed

form as

Λ =





1 − 1/π 1/π

1/π 1 − 1/π



 , (4.51)

with eigenvalues 1 and 1− 2/π. Reverse waterfilling yields the Shannon upper bound

RSUB(∆) =



















1
2
log
(

2−4/π
∆

)

+ 1
2
log
(

2
∆

)

, 0 ≤ ∆ ≤ 2 − 4/π

1
2
log
(

1
∆−1+2/π

)

, 2 − 4/π ≤ ∆ ≤ 2 − 2/π

0, ∆ ≥ 2 − 2/π.

(4.52)

5Even though U(1:2) = 1
2 (U1 + U2) − 1

2 |U1 − U2| and U(2:2) = 1
2 (U1 + U2) + 1

2 |U1 − U2|, and the
first terms are Gaussian, the troublesome part is the independence.
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Figure 4-3. Shannon upper and lower bounds for the Gaussian order statistic rate-distortion
function. The point achievable by single set code of Figure 4-2 is also shown connected to the zero
rate point, which is known to be tight. Note that rate is not normalized per source letter.

This bound is tight at the point achieved by zero rate. Since the Gaussian order

statistics for K = 2 have small non-Gaussianity, the Shannon lower bound and the

Shannon upper bound are close to each other, as shown in Figure 4-3. For moderately

small distortion values, we can estimate the rate-distortion function quite well.

� 4.8 Closing Remarks

The goal of this chapter has been to present some rate matching implications of source

semantics where order of elements is irrelevant. Such semantics arise in numerous

information storage applications, as well as numerous applications in information

transmission [222]. Separation of order and value and disregard for order is a coding

strategy that is similar to the separation of phase and magnitude for source coding

[223]. The nonlinear sorting filter that dissipates irrelevant entropy may allow a great

savings in the rate required for storage. Overall, in the end-to-end information storage

problem, one can say that correct recognition and discrimination of the invariant
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properties that need to be stored with high fidelity and those properties that need

not be stored at all can significantly reduce the rate, and thereby greatly reduce the

resources that are needed for storage.
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Appendix

� 4.A Conditional Differential Entropy

The conditional differential entropy of the order statistics may be derived from the

joint density and conditional density of the order statistics. For conciseness, denote

the rth order statistic U(r:n) as U(r), and the cumulative distribution function and

density function of the i.i.d. generating process, FU(·) and fU(·), as F (·) and f(·)
respectively. The term distribution-free is used to describe quantities that do not

depend on F or f , only on n and r. It is known [204] that the joint density between

two consecutive order statistics is

fU(r),U(r+1)
(x, y) =

n!

(r − 1)!(n− r − 1)!
F r−1(x)f(x)f(y) [1 − F (y)]n−r−1 , y > x

(4.53)

and the conditional density is

fU(r+1)|U(r)
(y|x) =

(n− r)f(y)

1 − F (x)

[

1 − F (y)

1 − F (x)

]n−r−1

, y > x. (4.54)

Thus the conditional differential entropy is, by definition,

h(U(r+1)|U(r)) = −
∞
∫

−∞

∞
∫

x

fU(r),U(r+1)
(x, y) log fU(r+1)|U(r)

(y|x) dy dx. (4.55)

Substituting in and splitting the logarithm, we get

h = −
∞
∫

−∞

∞
∫

x

fU(r),U(r+1)
{log(n− r) + (r − n) log [1 − F (x)] (4.56)

+ log f(y) + (n− r − 1) log [1 − F (y)]} dy dx
∆
= −t1 − t2 − t3 − t4,
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where the ti are the four additive terms into which the integral may be split. Using

the fact that
∞
∫

x

f(y) [1 − F (y)]n−r−1 dy =
[1 − F (x)]n−r

(n− r)
(4.57)

and that
∞
∫

−∞

[1 − F (x)]n−r F r−1(x)f(x)dx = B(r, n− r + 1), (4.58)

defined in terms of the beta function B(·, ·), which is a distribution-free quantity, we

find that t1 is also distribution-free and simply

t1 = log(n− r). (4.59)

Using (4.57) and the additional fact that

∞
∫

−∞

[1 − F (x)]n−r F r−1(x)f(x) log [1 − F (x)] dx =
−(n− r)!Γ(r) [Nh(n) −Nh(n− r)]

n!
,

(4.60)

where Γ(·) is the Gamma function and Nh(s) =
∑s

m=1 1/m is the harmonic number,

we get that

t2 = (n− r) [Nh(n) −Nh(n− r)] . (4.61)

This is also a distribution-free quantity. Note that the harmonic number can also be

expressed as

Nh(s) = γ + ψ0(s+ 1), (4.62)

where γ is the Euler-Mascheroni constant and ψ0(·) is the digamma function.

We use the fact that

∞
∫

x

f(y) [1 − F (y)]n−r−1 log [1 − F (y)] dy = − [1 − F (x)]n−r {1 + (r − n) log [1 − F (x)]}
(n− r)2

(4.63)
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along with (4.58) and (4.60) to get that

t4 = −1 +
1

n− r
− (n− r − 1) [Nh(n) −Nh(n− r)] . (4.64)

Again, this is distribution-free. Unfortunately, t3 is not distribution-free, nor does it

seem to be expressible in closed form and is

t3 =
n!

Γ(n− r)Γ(r)

∞
∫

−∞

∞
∫

x

f(y) log(y) [1 − F (y)]n−r−1 dyF r−1(x)f(x)dx. (4.65)

So combining the additive terms,

h = − log(n− r) − (n− r) [Nh(n) −Nh(n− r)] + (n− r − 1) [Nh(n) −Nh(n− r)]

(4.66)

+ 1 − 1

n− r
− n!

Γ(n− r)Γ(r)

∞
∫

−∞

∞
∫

x

f(y) log(y) [1 − F (y)]n−r−1 dyF r−1(x)f(x)dx,

which simplifies to

h(U(r+1)|U(r)) = − log(n− r) −Nh(n) +Nh(n− r) + 1 − 1

n− r
(4.67)

− n!

Γ(n− r)Γ(r)

∞
∫

−∞

∞
∫

x

f(y) log(y) [1 − F (y)]n−r−1 dyF r−1(x)f(x)dx.
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Chapter 5

Conclusion

In this ultimate chapter, we briefly recapitulate the main results of the thesis, also

interpreting some results in terms of a hierarchy of communication problems that has

recently been formulated [40]. Although the attentive reader has surely envisaged

areas where the work presented in the thesis may be extended, we also explicitly

mention some of these areas of possible future work, mainly focusing on the issue of

delay.

� 5.1 Recapitulation

The objective of information storage is to store and then retrieve information with

high fidelity and low resource consumption. The notion of fidelity is determined by

the task or set of tasks for which the stored information is to be used upon retrieval.

The notion of resources is determined by the costs and constraints of the physical

information storage medium that is to be used. The semantic and physical problem

of information storage is changed into a mathematical one by appropriate mathema-

tization of the fidelity and resource criteria. Several characterizations of optimal

information storage systems, based on different system properties, can be stated, all

essentially versions of the information storage theorem. Moreover, there are several

ways of designing optimal information systems that have certain robustness proper-

ties superior to others. All of the characterizations are based on matching system

parameters in some way. In some cases, the design of certain system components are

determined by other fixed components. For example, the designs of written alphabets

as stored for humans are thought to be matched to the fixed human visual system
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retriever for information storage through writing on paper [224], which in turn is fixed

for the design of the optical character recognition retriever [225].

Although there are several characterizations of information storage systems in

terms of various system parameters, the fundamental performance parameters are

the average incurred distortion, ∆, and average incurred cost, B. Developing a hi-

erarchy of information storage problems allows interpretation of which problems are

harder than others. Since B and ∆ are fundamental, these should be used to form

the hierarchy. One of the earliest investigations of ordering the difficulty of storage

problems used discrete memoryless channels themselves as the system resource over

which to form a partial order [226]. Similarly, in [40], the channel itself is used to de-

fine a partial order on storage problems, but the fact that more fundamental resource

parameters could be used is noted. Within this Sahai-Mitter hierarchy, our work

is concerned only with a single family of storage problems, the family of estimation

problems with distortion constraints. Though, as will be mentioned in Section 5.2,

perhaps other families of storage problems should also be considered. Parametric

comparison across families seems arduous, but comparison within a single family of

problems can be parameterized by performance criteria such as ∆ and B. Assuming

fixed resource and fidelity criteria, the parameter ∆ or B fully characterizes the diffi-

culty of the storage problem within the family of estimation problems with distortion

constraints. A storage problem is said to be harder than another storage problem if

the minimum cost needed to solve (in the sense of achieving ∆) the first problem is

more than that for the second problem. Since the cost-distortion curve, as defined by

the intersection of (2.9) and (2.10), is a monotonic function, we can equivalently say

that a storage problem with a smaller ∆ is intrinsically harder than a storage problem

with a larger ∆. This gives a partial order on the difficulty of storage problems, pa-

rameterized by ∆. Changing the resource criterion, e.g. changing V0 in Chapter 3, or

changing the fidelity criterion, as in Chapter 4, may change the absolute hardness of

problems in an affine scaling sense, but does not change the partial ordering of prob-

lems. More drastic changes to the resource or fidelity criteria can change the partial

ordering; in fact the partial ordering can be reversed with suitable modification to
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the cost function or the distortion function. The hierarchy casts system resources B

as the central determinant of the hardness of problem that a particular storage sys-

tem can solve. Although not central to our development, the hierarchy provides an

interpretation of how changes in the problem statement make things easier or harder.

Having defined and characterized optimal information storage in Chapter 2, we

used the characterization to investigate scientific questions on the structure of the

mammalian brain. Our procedure can be understood in terms of an analogy with radio

communication. We used optimality theory to say what properties an optimal system

should have, extended an antenna out into the world to observe what the signaling

scheme used in practice was, and then compared. Comparison of the predictions

made by our unified theory and experimental results showed that what is observed

and what is predicted are qualitatively and in some cases quantitatively the same,

though further experimental results would be needed to further confirm or falsify the

predictions. Chapter 3 was mainly concerned with the synaptic memory channel,

whereas Chapter 4 turned to the question of how to represent memories in a useful

way. In a sense, we addressed the question of what we really want to store, not what

we think we want to store. The results of the chapter demonstrated that if the source

has nonsequential semantics, what we really need to store is much less than what we

näıvely might think we need to store: the problem is easier in the hierarchy.

� 5.2 Future Directions

Further experimental verification of our theoretical predictions on the physical struc-

ture of the mammalian brain, as given in Chapter 3, stands out as worthy of fur-

ther investigation. A full input-output characterization of synapses would help refine

the system model and the predictions made by our theoretical framework. Deter-

mining the distribution of synaptic volume would require segmentation and volume

calculation of synapses from electron micrographs and is a non-trivial machine vision

problem. Determining the actual relationship between synaptic weight and synaptic

volume would require a joint electrophysiology and electron microscopy experiment.

137



Since the experimental data that we have used is from rodents of the family Muridae,

another experimental verification to pursue is cross-species validation. It is known

that primates and particularly humans have more voluminous neocortex than other

mammals [227]; a question that might be posed is whether this implies that humans

have more bandwidth and thus have more total storage capacity, or is the volume

taken up by something else.

Our work in Chapter 4 can also be extended in numerous ways. An assumption

in basic information theory is that the storer and the retriever share knowledge of

a code, which is essentially the same as sharing a probabilistic model for messages.

This shared knowledge is what caused the triviality results to arise. One can ask

what happens when neither the storer nor the retriever know the model of the source

and it is necessary to use universal source coding schemes that learn the model of

the source as they go on. It is clear that problems will not trivialize as easily. We

have no results for lossy coding of sets of real-valued vector sources, as might be

the model for compression of certain numerical databases, providing another topic

for further investigation. Finally, investigation of other semantically significant yet

mathematically tractable fidelity criteria calls out for attention.

Shannon’s puzzling epigraph, “we may have knowledge of the past but cannot

control it; we may control the future but have no knowledge of it” [37] comments on

the separation between past and future, but does not explicitly mention that with

an information storage system, knowledge of the past can actually help control the

future. In fact, whether the dynamical system to be controlled is a chemical plant, a

universal source coder, or an animal, it seems that knowledge of the past is requisite

for controlling the future. This thesis has not explicitly incorporated time delay into

the optimality criteria, which were simply the distortion and the cost, (∆, B). Delay,

however, is certainly an important issue in the design of information systems and in

many ways determines the utility of retrieved information. Although information can

remain in the channel for an indefinite period of time, when the need arises for its

retrieval, the retrieval should be fast, so the delay requirement is asymmetric.

With the pyramid of biological and technological storage systems now available
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to people, as alluded to in the first paragraph of the thesis, it seems that delay is a

main limiting factor. In terms of the Sahai-Mitter hierarchy, the joint biological and

technological memory system can use far more resources than a biological system alone

and can thus solve much harder problems. The question is now whether the correct

information can be retrieved quickly. Pyramidal memory systems are commonly used

in computer systems, with many levels of memory with varying speeds and sizes.

The fastest memories are more expensive per bit than the slower memories and are

thus made smaller [228]. Since each type of memory storage medium has a different

capacity per unit cost as well as delay property, it would seem that some optimization

of size and distance could be made.

Related to the issue of delay is the ability to search for useful stored information,

which is perhaps the most significant problem tackled in computer science research on

databases and information storage systems. In computer systems, concepts of tem-

poral and spatial locality, as well as prefetching are used to try to predict what stored

information will become useful in the near future, thus hiding some of the latency

associated with searching [228]. Since these are very simple methods of predicting

the need for particular information in some upcoming time, better prediction would

allow even more of the latency concerns to be hidden. It is believed that the neural

systems of animals are quite good at predicting what information will be needed, so

the search is not an issue, only propagation speed is.

In Chapter 3, we had incorporated the time delay constraint in an ad hoc manner,

using previous results on signal propagation speed [165, 166] to bound the minimal

size of axons and dendrites. A better theoretical approach would involve optimizing

delay, distortion, and cost simultaneously. In the Sahai-Mitter hierarchy, by using a

third performance measure, we would leave the family of estimation problems with

distortion constraints and enter a family of delay-limited estimation problems with

distortion constraints. Since there would be an additional constraint, problems in this

family would be harder than or equal to problems in the previous family. If uncoded

storage, of the type discussed in Section 2.6, could be used in all cases, then the delay

requirement would not be of much concern since the receiving process would involve
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no delay; only signal propagation speed would be of concern. It is not clear whether

there would be a simple parameterization of the difficulty of problems, nor whether

there would be simple characterizations of optimal storage, but it is definitely worthy

of further investigation.

Optimal information storage and retrieval systems preserve information from the

present for use in the future. By consuming more resources, better performance is

possible, but by correct recognition of what needs to be preserved, less resources may

allow equivalent performance. The importance of information preservation can not be

emphasized enough; as people say, those who do not learn from history are doomed

to repeat it.
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