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Optimal Inputs for Some Classes of Degraded

Wiretap Channels

Alex Dytso, Malcolm Egan, Samir M. Perlaza, H. Vincent Poor and Shlomo Shamai (Shitz)

Abstract—In this paper, an analysis of an input distribution
that achieves the secrecy capacity of a general degraded additive
noise wiretap channel is presented. In particular, using convex
optimization methods, an input distribution that achieves the
secrecy capacity is characterized by conditions expressed in terms
of integral equations. The new conditions are used to study the
structure of the optimal input distribution for three different
additive noise cases: vector Gaussian; scalar Cauchy; and scalar
exponential.

I. INTRODUCTION

The degraded wiretap channel consisting of a transmitter,

a legitimate receiver and an eavesdropper is a fundamental

information theoretic model. A key feature of the degraded

wiretap channel is that capacity is achieved via a binning

strategy. Different variants of this channel including discrete

memoryless [1], scalar Gaussian [2] and Poisson [3] wiretap

channels have been extensively studied, including the impact

of peak power constraints [4].

In parallel, memoryless point-to-point channels have been

studied with general noise models and constraints. This in-

cludes characterizations of the capacity and also the structure

of the optimal input distributions. Although initial work fo-

cused on particular noise models and constraint sets [5], there

has been recent success in establishing general conditions for

an optimal input to be compactly supported and discrete or

have unbounded support [6]. These results have all exploited

convex optimization methods over sets of probability measures

in a crucial way.

A fact that has not been widely exploited is that the secrecy

rate for the degraded wiretap channel is concave. This ensures

that many of the same methods developed to study point-

to-point channels are also applicable to wiretap channels.

As such, a natural question is the structure of the optimal

input distributions and the interactions between these optimal

distributions, the noise model and the constraint set.

In this paper, an optimal input distribution for degraded

additive wiretap channels is studied under three noise models:

A. Dytso, S. M. Perlaza, and H. V. Poor are with the Department of Electrical
Engineering, Princeton University, Princeton, NJ, USA (e-mail: {adytso,
poor}@princeton.edu).

M. Egan and S. M. Perlaza are with the Laboratoire CITI (a joint lab-
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Gaussian; Cauchy; and exponential. By exploiting the convex

optimization methods originating in the study of point-to-point

channels, we establish necessary and sufficient conditions for

an input distribution to be optimal. These techniques also

provide a means for deriving constraints on the input that

guarantee that a given input distribution is optimal under

general noise models.

Although Gaussian wiretap channels have been widely

studied in [7], [8] and [9], the structure of the optimal input

distribution is not known for degraded vector Gaussian wiretap

channels under general linear constraints. Two examples of

this class of constraints beyond power are absolute moment

and logarithmic constraints. To this end, we provide a charac-

terization of an optimal input distribution and, in particular,

establish conditions when this distribution is discrete and

compactly supported. As a byproduct of our analysis in the

Gaussian noise case, we establish a new extremal inequality

relying on conditions when an input uniformly distributed on

a spherical shell is optimal.

We show that the same methodology also applies to scalar

Cauchy and exponential noise channels. In the Cauchy noise

case, we establish a constraint on the input such that a Cauchy

input is the unique optimal input. For the exponential noise

model, we study an optimal input distribution corresponding

to a first moment constraint. In particular, we establish that an

optimal input for the point-to-point exponential noise channels

studied in [10] does not correspond to an optimal input for the

degraded wiretap channel. This is, perhaps, surprising since for

several known additive models (e.g., Gaussian and Cauchy) the

input distribution that achieves the capacity of a point-to-point

also achieves the capacity of the degraded wiretap channel.

A. Notation

Vectors are denoted by bold lowercase letters, random vec-

tors by bold uppercase letters, and matrices by bold uppercase

sans serif letters (e.g., x, X, X). We denote the distribution

of a random vector X by PX. Moreover, we say that a point

x is in the support of the distribution PX if for every open

set O such that x ∈ O we have that PX(O) > 0 and denote

the collection of the support points of PX as E(PX). The set

of all the distributions over a set X is denoted by △(X ).
The Gaussian distribution with mean µ and variance σ2 is

denote by N (µ, σ2). The Cauchy distribution with the location

parameter µ and scaling parameter k is denoted by C(µ, k).
The Dirac delta measure at x1 is denote by δx1

(x).



We use the following parametrization of the mutual infor-

mation in terms of the input distribution PX and the random

transformation PY|X:

I(PX, PY|X) , I(X;Y).

We also define the following quantity that is akin to the

information density:

i(x, PX, PY|X) , E

[

log
dPY|X(Y|X)

dPY(Y)
| X = x

]

,

where PY is the distribution of the channel output Y. The

differential entropy of a continuous random vector X is

denoted by h(X).
Let n ∈ N be fixed. An n-ball and an (n − 1)-sphere of

radius r centered at the origin are respectively denoted by

B0(r) , {x : ‖x‖2 ≤ r} and C(r) , {x : ‖x‖2 = r}, where

‖ · ‖2 denotes the Euclidian norm.

Let f(x) and g(x) be two real-valued functions. We use the

Landau notation f(x) = o(g(x)) to mean that for every c > 0
there exists an x0 such that f(x) < cg(x) for all x ≥ x0.

Moreover, we say that f(x) = ω(g(x)) if g(x) = o(f(x)).
Due to space limitations, some of the proofs are omitted

and can be found in an extended version of this paper [11].

II. WIRETAP CHANNEL

Consider an n-dimensional memoryless wiretap channel

(WC) described by the Markov kernel PY1 Y2|X with input

X in
(

R
n,B(Rn)

)

and outputs (Y1,Y2) in
(

R
2n,B(R2n)

)

.

The output Y1 is observed by the legitimate receiver whereas

the output Y2 is observed by the malicious receiver. The input

distribution PX is such that given a set X ⊂ R
n and a function

f : X → R, it satisfies:

PX ∈ F(X , f), (1)

where,

F(X , f) ,
{

QX∈△
(

R
n,B(Rn)

)

:

E(QX)=X and EQX
[f(X)]≤0

}

. (2)

With a slight abuse of notation, the set F(X , f) in (2) is

denoted by

F(X ) , {QX∈△
(

R
n,B(Rn)

)

: E(QX) = X}, (3)

whenever the constraint is only over the support of the input

distribution; or

F(f) , {QX∈△
(

R
n,B(Rn)

)

: EQX
[f(X)]≤0}, (4)

whenever the constraint is only on the expectation of f . In

the following, the constraint set F(X , f) is assumed to be

equipped with the topology of weak convergence, which is

known to be metrized by the Lévy-Prokhorov metric [12].

This analysis is restricted to the case of physically degraded

WCs, i.e., WCs for which the Markov kernel PY1 Y2|X fac-

torizes as

PY1 Y2|X = PY1|XPY2|Y1
. (5)

The maximum secrecy rate of a WC, denoted by Cs ∈ R+,

is referred to as the secrecy capacity. The following lemma

fully characterizes the secrecy capacity of a degraded WC.

Lemma 1 (Secrecy Capacity of a WC). The secrecy ca-

pacity of an n-dimensional memoryless WC described by

the Markov kernel PY1 Y2|X with input
(

R
n,B(R)n

)

and

output
(

R
2n,B(R2n)

)

of the form in (5) subject to the input

constraint in (1) is:

Cs = sup
PX∈F(X ,f)

I(PX, PY1|X)− I(PX, PY2|X). (6)

Throughout the rest of the paper the following assumption

is made.

Assumption 1. There exists at least one solution to the

optimization problem in (6), denoted by P ⋆
X

, and it satisfies

EP⋆

X
[f(X)] = 0.

The next lemma provides sufficient conditions for Assump-

tion 1 to hold true using the extreme value theorem [13].

Lemma 2. Assumption 1 holds true if the constraint set

F(X , f) is compact in the topology of weak convergence

and the objective function in (6), i.e., I(PX, PY1|X) −
I(PX, PY2|X), is weakly continuous on F(X , f).

III. PRELIMINARIES

The following notion of weak or directional derivative will

be useful in our analysis.

Definition 1. (The Gâteaux Derivative.) Let G be a locally

convex topological space. For any two elements P ∈ G and

Q ∈ G, the Gâteaux derivative of a functional G : G → R at

P in the direction of Q is

∆QG(P ) , lim
λ→0

G
(

(1− λ)P + λQ
)

−G (P )

λ
. (7)

The functional G is said to be Gâteaux differentiable at P if

its Gâteaux derivative exists at P for all Q ∈ G.

The following theorem provides a characterization of the

Gâteaux derivative of the solution to the optimization problem

in (6).

Theorem 1. Let G : F(X , f) → R be the functional given by

G(PX) = I(PX, PY1|X)− I(PX, PY2|X). (8a)

Then, if Assumption 1 holds, the functional G is Gâteaux

differentiable at P ⋆
X

and the derivative is given by

∆QX
G(P ⋆

X
)

= EQX

[

log

(

dPY1|X(Y1|X)

dPY1
(Y1;P ⋆

X
)

)]

− I(P ⋆
X
, PY1|X)

− EQX

[

log

(

dPY2|X(Y2|X)

dPY2
(Y2;P ⋆

X
)

)]

+ I(P ⋆
X
, PY2|X) (8b)

for all QX ∈ F(X , f), where for all k ∈ {1, 2}, given a

joint distribution PYk|XP ⋆
X

, the term PYk
(Yk;P

⋆
X
) denotes

the marginal distribution of Yk.



Proof: The proof follows by generalizing the argument

used in [6]. In particular, the Gâteaux differentiability of

G(PX) follows from the differentiability of I(PX, PY1|X) and

I(PX, PY2|X), and the linearity of the Gâteaux derivative.

Using Theorem 1, a sufficient and necessary condition for

an input distribution to be the solution to (6) can be stated.

Theorem 2. Let Assumption 1 hold. Then, PX⋆ is a solution

to (6) if and only if there exists a strictly positive real λ such

that the following hold:

(a) for all x ∈ E(P ⋆
X
)

i(x, P ⋆
X
, PY1|X)− i(x, P ⋆

X
, PY2|X)

− λ(f(x)− EP⋆

X
[f(X)])

= I(P ⋆
X
, PY1|X)− I(P ⋆

X
, PY2|X); and (9a)

(b) for all x ∈ X \ E(P ⋆
X
)

i(x, P ⋆
X
, PY1|X)− i(x, P ⋆

X
, PY2|X)

− λ(f(x)− EP⋆

X
[f(X)])

< I(P ⋆
X
, PY1|X)− I(P ⋆

X
, PY2|X). (9b)

Theorem 2 provides a basis for characterizing the structure

of an optimal input in a range of linear channels with differ-

ent types of noise, e.g., Gaussian noise, Cauchy noise, and

exponential noise.

IV. GAUSSIAN NOISE

This section focuses on the case in which the Markov

kernel PY1 Y2|X factorizes as PY1|XPY2|X and for all x ∈
R

n, the probability measure PY1|X=x is N (
√
snr1x, In) and

the probability measure PY2|X=x is N (
√
snr2x, In), with

snr1 ≥ snr2 and In the n-dimensional identity matrix. More

specifically, let Z1 and Z2 be n-dimensional vectors whose

entries are independent and identically distributed Gaussian

random variables with zero means and unit variances. Hence,

for all k ∈ {1, 2},

Yk =
√
snrkX+ Zk, (10)

where the input X follows a distribution PX that satisfies (1),

for some specific set X and function f . This particular case

is referred to as the degraded Gaussian WC.

The following theorem is a consequence of Theorem 1.

Theorem 3. Let Assumption 1 hold in the degraded Gaussian

WC. Then, P ⋆
X

possesses the following properties:

(i) if snr1 > snr2, then P ⋆
X

is unique;

(ii) if f(x) = ω(‖x‖2), then there exists some R > 0 such

that E(P ⋆
X
) ⊂ B0(R) (i.e., P ⋆

X
has bounded support);

(iii) if f(x) = a‖x‖2 − b, for some strictly positive reals

a and b, then P ⋆
X

is N (0, b
a
In). Moreover, this is the

only choice of f under which a Gaussian distribution is

optimal;

(iv) if f(x) = o(‖x‖2), then for all R > 0 we have that

E(P ⋆
X
) ∩ B0(R)c 6= ∅; and

(v) if the function f(·) satisfies the following: (a)
f(x) 6= c‖x‖2 for any constant c; (b) f(·) is a radial

function, i.e., it depends on x only through ‖x‖; and (c)
f(·) is an analytic function of ‖x‖. Then,

E(P ⋆
X
) =

N
⋃

i=1

C(ri), (11)

where N ≤ ∞ (possibly infinite) and where the se-

quence {ri}Ni=1 does not have an accumulation point.

A. Extremal Inequalities for Gaussian Noise Case

Let XG be an n-dimensional vector whose entries are Gaus-

sian random variables with zero means and finite variances.

Using this notation, the simplified version of the extremal

inequality in [14] can be written as

max
PX∈F(Rn,‖x‖2−c)

h(
√
snr1X+ Z1)− h(

√
snr2X+ Z2)

= h(
√
snr1XG + Z1)− h(

√
snr2XG + Z2), (12)

for a given positive real c. Several interesting inequalities that

are reminiscent of this extremal inequality can be obtained

from Theorem 3. The following theorem presents one of these

results.

Theorem 4. Consider an n-dimensional degraded Gaussian

WC under the assumption that PX ∈ F(B0(R)) for some

R > 0 such that
√
snr1R ≤ √

n. Let also X
◦ be uniformly

distributed in C(R). Then, the following holds

max
PX∈F(B0(R))

h(
√
snr1X+ Z1)− h(

√
snr2X+ Z2)

= h(
√
snr1X

◦ + Z1)− h(
√
snr2X

◦ + Z2). (13)

Proof: The proof follows by setting P ⋆
X

= PX◦ in (9)

and characterizing conditions on R such that the sufficient

and necessary conditions in (9) still hold.

The conditional version of the extremal inequality in (12)

can be used to prove a converse for the Gaussian noise

broadcast channel (BC) with the power constraint on X. An

interesting extension would be to use the inequality in (13)

to establish the converse for the Gaussian noise BC with an

amplitude constraint.

V. CAUCHY NOISE

This section focuses on the one-dimensional case in which

the Markov kernel PY1 Y2|X factorizes as PY1|XPY2|X and

for all x ∈ R, the probability measure PY1|X=x is C(x, γ1)
and the probability measure PY2|X=x is C(x, γ2), with γ2 ≥
γ1 > 0. More specifically, let N1 and N2 be independent

and distributed following a Cauchy distribution with location

parameters equal to zero and scale parameters equal to γ1
and γ2, respectively. Hence, for all k ∈ {1, 2}, the probability

density function (pdf) of Nk is

fNk
(x) =

1

πγk

(

1 +
(

x
γk

)2
) , (14)



and

Yk = X +Nk, (15)

where the input X follows a distribution PX that satisfies (1),

for some specific set X and function f . This particular case

is referred to as the degraded Cauchy WC.

The following lemma is instrumental to state the main

results in this section.

Lemma 3. Let PU be C(0, P ) and for all u ∈ R, let PV |U=u

be C(u, γ), with P > 0 and γ > 0 . Then,

i(u;PU , PV |U ) = log

(

(

P + 2γ

P + γ

)2

+

(

u

P + γ

)2
)

+ log (π(P + γ))− log(4πγ), (16)

and

I(PU , PV |U ) = log

(

P + γ

γ

)

. (17)

The following theorem presents a necessary and sufficient

condition for the Cauchy distribution with null location pa-

rameter and scale parameter P > 0, to be the optimal input

distribution of a degraded Cauchy WC.

Theorem 5. Consider the degraded Cauchy WC subject to

PX ∈ {QX ∈ △
(

R,B(R)
)

: EQX
[f(X)] = 0}, for some

particular function f . Let also P > 0 be fixed and XC be

C(0, P ). Then,

max
X

I(X;X +N1)− I(X;X +N2)

= I(X;XC +N1)− I(XC ;XC +N2), (18)

if and only if

f(x) = λ log







(

P+2γ1

P+γ1

)2

+
(

x
P+γ1

)2

(

P+2γ2

P+γ2

)2

+
(

x
P+γ2

)2






, (19)

where f is unique up to the multiplicative constant λ.

Proof: Denote by P ⋆
X the solution to the optimization

problem in (6) and assume that it is C(0, P ). Then, using

Lemma 3, the lefthand side of the necessary and sufficient

condition in (9a) becomes

i(x;P ⋆
X , PY1|X)− i(x;P ⋆

X , PY2|X)

= log

(

(

P + 2γ1
P + γ1

)2

+

(

x

P + γ1

)2
)

+ log (π(P + γ1))− log(4πγ1)

− log

(

(

P + 2γ2
P + γ2

)2

+

(

x

P + γ2

)2
)

− log (π(P + γ2)) + log(4πγ2), (20)

and the mutual information on the right side of (9a) becomes

I(PX , PY1|X)− I(PX , PY2|X) = log

(

γ2

γ1

P + γ1

P + γ2

)

. (21)

By combining (20) and (21) the sufficient and necessary

condition in (9a) can be written as follows:

log







(

P+2γ1

P+γ1

)2

+
(

x
P+γ1

)2

(

P+2γ2

P+γ2

)2

+
(

x
P+γ2

)2






= λf(x). (22)

This concludes the proof.

Theorem 5 shows that the input constraint set for which the

Cauchy input is optimal in the Cauchy WC depends on the

channel parameters γ1 and γ2. Note that this is not the case

for the Gaussian wiretap channel with the second moment

constraint in which the optimal Gaussian input depends only

on the input power constraint. A similar situation also arises

in the Cauchy point-to-point channel. More specifically, by

letting γ2 → ∞, it follows from Theorem 5 that the secrecy

capacity of the degraded Cauchy WC is the capacity of a point-

to-point Cauchy channel, which was already addressed in [15].

The following corollary describes this observation.

Corollary 1. Consider the Cauchy point-to-point channel

subject to PX ∈ {QX ∈ △
(

R,B(R)
)

: EQX
[f(X)] = 0},

for some particular function f . Let also P > 0 be fixed and

XC be C(0, P ). Then,

max
X

I(X;X +N) = I(XC ;XC +N), (23)

if and only if

f(x) = log

(

(

P + 2γ

P + γ

)2

+

(

x

P + γ

)2
)

− log(4). (24)

Note that the input constraint set for which the Cauchy input

is optimal in the point-to-point channel in Corollary 1 depends

indeed on the channel parameter γ in (24). One interpretation

of this result is that the constraint in (24) is not an input

constraint but rather an output constraint. That is

E[f(X)] = E

[

log

(

1 +
Y 2

d2

)

− log(4)

]

= 0, (25)

for some constant d.

VI. EXPONENTIAL NOISE

This section focuses on the one-dimensional case in which

the Markov kernel PY1 Y2|X factorizes as PY1|XPY2|X and for

all k ∈ {1, 2}, the output Yk is

Yk = X +Nk, (26)

where Nk follows an exponential distribution with parameter

λk. That is, for all x ≥ 0, the pdf of Nk is fNk
(x) = λke

λkx,

with λ1 > λ2. The input X is assumed to follow a distribution

PX that satisfies (1), with X = R
+ , {x : x ≥ 0} and a

specific function f . This particular case is referred to as the

exponential WC.

The following lemma shows that the exponential WC is

degraded and thus, the result of Theorem 2 holds.



Lemma 4. Let U be a random variable with a pdf such that

for all u ≥ 0,

fU (u) = αδ0(u) + (1− α)λe−λu, (27)

for some α ∈ [0, 1]. Let also V be an exponential random

variable with a parameter β and independent of U . Then, the

random variable Z = U + V has the following pdf such that

for all z ≥ 0:

fZ(z) = αβe−βz + (1− α)λβ
e−λz − e−βz

β − λ
. (28)

Note than when α = λ
β

and λ ≤ β, the random variable Z

in Lemma 4 is an exponential random variable. This implies

the following corollary.

Corollary 2. An exponentially distributed random variable is

self-decomposable.

In the exponential WC, in contrast to the Gaussian WC and

the Cauchy WC, the noise is not closed under convolutions

for all choices of parameters. Nevertheless, according to

Lemma 4, exponential noise is self-decomposable; that is, for

each exponential random variable Z, there exists two inde-

pendent random variables Z1 and Z2 such that Z
d
= Z1 + Z2

where Z1 has a pdf according to (27) and Z2 is an exponential

random variable. This fact can be readily used to show that

the pdf in (27) can achieve the capacity of a point-to-point

channel under the first moment constraint on the input [10].

Theorem 6. Let N be an exponential random variable with

parameter β > 0 and X⋆ be distributed according to (27)

with α = c
c+β

and 1
λ
= 1

c
+ 1

β
. Then, for all PX ∈ {QX ∈

△
(

R,B(R+)
)

: EQX
[X − 1

c
]=0}, it holds that

I(X;X +N) 6 I(X⋆;X⋆ +N). (29)

The optimality of the distribution in (27) for a point-to-

point channel with a first moment constraint in (29) comes

from the fact that it induces an exponential distribution on

the output of the channel which is an entropy maximizing

distribution under the first moment constraint. As was shown

in Section IV and Section V, for Gaussian and Cauchy noise,

this entropy maximization paradigm can be extend from a

point-to-point channel to a corresponding wiretap channel. In

other words, for Gaussian and Cauchy noises the distribution

that achieves the capacity of a point-to-point channel and

induces a maximum entropy distribution on the output of the

channel also achieves the capacity of a corresponding wiretap

channel and induces a maximizing entropy distribution on both

outputs of the wiretap channel. Interestingly, however, unlike

for the Gaussian and the Cauchy cases, the distribution that

achieves the capacity of a point-to-point exponential noise

channel no longer achieves the capacity of an exponential

noise wiretap channel.

Theorem 7. Suppose that the constraint function is given by

f(x) = x− 1
P

. Then, for λi > 0, the input distribution in (27)

does not achieve the capacity of a wiretap channel in (26).

The result of Theorem 7 is, perhaps, surprising as it shows

that the distribution that achieves the capacity of a point-to-

point channel does not achieve the capacity of a degraded

wiretap channel. We suspect that the reason the input distribu-

tion in (6) does not achieve capacity of a wire-tap channel has

to do with the fact that the exponential distribution is not a

stable distribution. In fact, we conjecture that the only additive

channels for which the maximizing input random variable is

the same (up to a linear transformation) for a point-to-point

and wiretap channels are those with stable noise.

VII. CONCLUSION

The capacity achieving input distributions for non-Gaussian

degraded wiretap channels have been considered. Using con-

vex optimization methods, a new characterization for the

optimal inputs has been derived. By using this characterization,

optimal inputs for vector Gaussian, scalar Cauchy and scalar

exponential noise channels have been studied. Moreover, the

optimal input for degraded vector Gaussian wiretap channels

has been obtained in general settings. As a byproduct, a new

extremal inequality has been demonstrated and an avenue of

future work is to establish a proof via I-MMSE methods [16].
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