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Abstract

This paper presents in a new unified way, optimal instrumental variable methods for

identifying discrete-time transfer function models when the system operates in closed-loop.

The conditions for the optimal design of prefilters and instruments depending on common

model structures are analyzed and different approaches are developed according to whether

the controller is known or not. The performance of the proposed approaches is evaluated by

Monte-Carlo analysis in comparison with other alternative closed-loop estimation methods.
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1 Introduction

Feedback is present in a variety of practical situations due to safety and/or economic restrictions.

In the last two decades, various attempts have been made to handle linear system identification

in the presence of feedback. The main difficulties are well-known and due to the correlation

between the disturbances and the control signal induced by the loop. Identification methods

dealing with closed-loop experimental data were first developed in the eighties ([18], [12]); several

overviews gather these results (see e.g. [2], [20], [1]). Renewed attention has been given lately

to the problem of closed-loop identification initiated by an emerging interest in identification

for model-based control ([3], [10], [7]) and/or experiment design in the closed-loop framework

([15],[8]). Several methods have been developed recently, therefore, and may be divided into

two main approaches depending on the chosen state-space (see e.g. [9] for a survey) or transfer

function model form. In this paper, transfer function model identification via instrumental

variable (IV) methods is considered.

The IV technique to the identification of transfer function models has indeed a rich history in the

control and system literature, with the earliest algorithms of this type dating back to the 1970s

for the open-loop case [22] and 1980s for the closed-loop situation [19]. More recently, a so-called

‘tailor-made IV algorithm’ was proposed [5] where the closed-loop plant is parameterized using

the (open-loop) plant parameters. A connexion with the bias eliminated least-squares method

was also discussed ([28],[27]). Then, an optimal (minimal) variance result was developed in the

closed-loop extended IV identification case, revealing consequences for the choice of weights, fil-

ters and instruments. Two bootstrap techniques were developed for estimating AR and ARARX

models [6].

Attention has been given very recently to more general models and optimal IV solutions are

presented either for linear model identification (see e.g. [16] or [4] for Box-Jenkins hybrid

continuous-time models) or non-linear models [11]. This paper outlines the main aspects of

a statistically optimal refined IV approach for the identification of common use structures as

ARX, ARARX, OE and BJ, in closed loop. The BJ model structure presents the advantage of

allowing the plant and the noise models to have different dynamics and it can be shown that the

estimates of the noise model parameters are asymptotically independent of the process model

parameter estimates (see [24] and the prior references therein). An apparent problem with this

type of BJ model is that simple IV estimation cannot be used directly because the model is non-

linear-in-the-parameters. However, more sophisticated IV estimation can be used to overcome

this limitation [24]. Indeed, the identification problem is rewritten in this paper to make use

of a linear-in-the-parameters predictor next to an additional noise model identification required

for determining the optimal prefilter and instrument.

This paper provides, therefore, a survey on the statistically optimal IV solutions for the esti-

mation of discrete-time transfer function models when the system operates in closed-loop, and
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whatever the controller knowledge is. In this regard, it can be compared to the well-known

Prediction Error Minimization (PEM) approach [12]. However, as illustrated in this paper, the

proposed refined IV algorithm seems, as in the open-loop case [24], less sensitive than the PEM

algorithm to the initialization [14].

The paper is organized as follows. After the preliminaries, the optimal IV solution is presented

according to the model structure used, and the controller knowledge. Finally, the different

methods are compared with the help of Monte-Carlo simulation examples.

2 Problem formulation
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Figure 1: Closed-loop system configuration

Preliminaries

Consider a stable, linear, Single Input Single Output (SISO), closed-loop system of the form

shown in Figure 1. The data generating system is assumed to be given by the following relations

S :







y(t) = G0(q)u(t) + H0(q)e0(t)

u(t) = r(t) − Cc(q)y(t), where r(t) = r1(t) + Cc(q)r2(t).
(1)

The plant is denoted by G0(q) = B0(q
−1)/F0(q

−1) with the numerator and denominator degree

equals to n0, the controller is denoted by Cc(q) and q−1 is the delay operator with q−ix(t) =

x(t−i). u(t) describes the plant input signal, y(t) the plant output signal. A coloured disturbance

ξ0(t) = H0(q)e0(t) is assumed to affect the closed-loop, where e0(t) is a white noise, with zero

mean and variance σ2
e0

.

The following general model structure is chosen to model the system (1)

M : y(t) = G(q, ρ)u(t) + H(q, η)ε(t, θ), (2)

where the parameter vector is given as θT = (ρT ηT ). The parameterized plant model takes then

the form,

G : G(q, ρ) =
B(q−1, ρ)

F (q−1, ρ)
=

b1q
−1 + · · · + bnq−n

1 + f1q−1 + · · · + fnq−n
, (3)
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where n denotes the plant model order and with the pair (F,B) assumed to be coprime. The

plant model parameters are stacked columnwise in the parameter vector

ρ = [f1 · · · fn b1 · · · bn]T ∈ R
2n. (4)

The plant model order n is assumed known or identified from the data and the parameterized

noise model is assumed to be in the form of the following ARMA process,

H :H(q, η)=
C(q−1, η)

D(q−1, η)
=

1 + c1q
−1 + · · · + cmq−m

1 + d1q−1 + · · · + dmq−m
, (5)

where the associated noise model parameters are stacked columnwise in the parameter vector,

η =
[

d1 · · · dm c1 · · · cm

]T

∈ R
2m. (6)

Note that this paper deals with IV-based methods which are known to give consistent plant

model parameter estimates of G0 irrespective of the structure of H0.

Now consider the relationship between the plant input and output signals in (1),

y(t) = G0(q)u(t) + H0(q)e0(t). (7)

If the plant G0 is included into the chosen model set G (G0 ∈ G), y(t) can be written as

y(t) = ϕT (t)ρ0 + v0(t), (8)

where ρ0 denotes the true plant parameter vector,

ϕT (t) = [−y(t − 1) · · · − y(t − n) u(t − 1) · · ·u(t − n)] (9)

and v0(t) = F0(q
−1)H0(q)e0(t).

In the following, the closed-loop system is assumed to be asymptotically stable and r(t) is an

external signal that is persistently exciting of sufficient high order.

The objective is then to estimate the parameter vector from the collected sampled data y(t),

u(t) and r(t) when the controller Cc(q) is known or not.

Let us introduce some notations used in the following Sections. The closed-loop system can be

split up into two different parts as follows

y(t) =
G0(q)

1 + Cc(q)G0(q)
r(t) +

1

1 + Cc(q)G0(q)
ξo(t) = ẙ(t) + ỹ(t)

u(t) =
1

1 + Cc(q)G0(q)
r(t) −

Cc(q)

1 + Cc(q)G0(q)
ξo(t) = ů(t) + ũ(t), (10)

where ẙ(t) and ů(t) are the noise-free input/output, ỹ(t) and ũ(t) the noise part of y(t) and

u(t) respectively. The noise-free regressor ϕ̊T (t) is then defined on the basis of these signals as

follows

ϕ̊T (t) = [−ẙ(t − 1) · · · − ẙ(t − n) ů(t − 1) · · · ů(t − n)]. (11)
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3 IV method for closed-loop identification

3.1 Extended IV

The extended-IV estimate is given by (see e.g. [17])

ρ̂xiv(N) = arg min
ρ

∥

∥

∥

∥

∥

[

1

N

N
∑

t=1

L(q)ζ(t)L(q)ϕT (t)

]

ρ −

[

1

N

N
∑

t=1

L(q)ζ(t)L(q)y(t)

]
∥

∥

∥

∥

∥

2

W

, (12)

where ζ(t) ∈ R
nζ with nζ ≥ 2n is the instrument vector, ‖x‖2

W = xT Wx, with W a positive

definite weighting matrix and L(q) a stable prefilter.

By definition, when G0 ∈ G, the extended-IV estimate is consistent under the following two

conditions1

• ĒL(q)ζ(t)L(q)ϕT (t) is full column rank,

• ĒL(q)ζ(t)L(q)v0(t) = 0.

3.2 Lower bound for an IV method

The choice of the instrumental variable vector ζ(t), the number of instruments nζ , the weighting

matrix W and the prefilter L(q) may have a considerable effect on the covariance matrix Pxiv

produced by the IV estimation algorithm. In the open-loop situation the lower bound of the

covariance matrix for any unbiased identification method is given by the Cramer-Rao bound

(see e.g. [17] and [12]). The closed-loop situation has been investigated more recently in [6].

The main results to be used in the following are only briefly recalled here. It was shown that

a minimum value of the covariance matrix Pxiv as a function of the design variables ζ(t), L(q)

and W exists under the restriction that ζ(t) is a causal function of the external signal r(t) only.

In that case Pxiv ≥ P opt
xiv with

P opt
xiv = σ2

e0
[Ēϕ̊f (t)ϕ̊T

f (t)]−1, (13)

ϕ̊f (t) = Lopt(q)ϕ̊(t), (14)

Lopt(q) =
1

F0(q−1)H0(q)
, and ζ(t) = ϕ̊(t). (15)

where ϕ̊(t) is the noise-free part of ϕ(t) (see Section 2). Using equations (12) and (13)-(15), the

following IV estimate is optimal

ρ̂opt(N) =

(

N
∑

t=1

ζf (t)ϕT
f (t)

)

−1( N
∑

t=1

ζf (t)yf (t)

)

(16)

and where the regressor ϕf (t) = Lopt(q)ϕ(t), the output yf (t) = Lopt(q)y(t) and the instrument

vector ζf (t) = Lopt(q)ζ(t) are filtered by Lopt(q) (15).

1The notation Ē[.] = limN→∞
1

N

PN

t=1
E[.] is adopted from the prediction error framework of [12].
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It has to be noted that in the IV estimator considered in (16), the optimal choice of instru-

ments and prefilter is dependent on unknown system properties, i.e. the plant as well as the

noise dynamics. Whereas dependency of plant dynamics could be taken care of by an iterative

procedure where the instrument and prefilter are constructed on the basis of a previous plant

model estimate ρ̂i−1. Knowledge of the noise dynamics is generally missing in an extended IV

estimator like (12) as it is not particularly estimated.

Therefore the next step to an optimal IV method should be to extend the estimator (12) with

a procedure to estimate an appropriate noise model, to be used as a basis for constructing the

optimal prefilter Lopt(q) given in (15).

4 Optimal IV identification in closed-loop

4.1 IV solutions for commonly used model structures in closed-loop

Optimal IV identification is based on (12). However, it requires the knowledge or the estimation

of the noise model to build the filter. In this perspective, a general prediction error identifi-

cation step is added to estimate a model for H0(q). This requires the choice of a particular

parametrization for H(q, θ), possibly in relation to G(q, ρ).

Two common types of model structure2 have been used so far in the literature [6].

• ARX model structure:

A(q−1, ρ)y(t) = B(q−1, ρ)u(t) + ε(t, ρ).

In this case the noise model

H(q, ρ̂) =
1

A(q−1, ρ̂)
(17)

is already available from the plant model estimate, and no additional noise model estimate

is required. On the basis of the estimated plant model G(q, ρ̂) the corresponding filter is

given by

L(q, ρ̂) =
1

A(q−1, ρ̂)H(q, ρ̂)
= 1 (18)

ρ̂ is estimated during the plant model identification step.

• ARARX model structure:

A(q−1, ρ)y(t) = B(q−1, ρ)u(t) +
1

D(q−1, η)
ε(t, θ).

In this case the corresponding noise model

H(q, η) =
1

A(q−1, ρ̂)D(q−1, η)
(19)

2According to standard PE identification literature the autoregressive part of the following models is denoted

by polynomial A (in contrast with the notation F in section 2).

6



is not available from the plant model ρ̂ only as previously, but an additional noise model

estimate is required. In [6], this is achieved by identifying D(q−1, η) as an autoregressive

model D(q−1, η)w(t) = ε(t, η) with

w(t) = A(q−1, ρ̂)y(t) − B(q−1, ρ̂)u(t), (20)

by using a first plant model estimate ρ̂ and by applying a least square estimator

η̂ = arg min
η

1

N

N
∑

t=1

ε(t, η)2.

The optimal filter that results from this procedure is therefore

L(q, η̂) = D(q−1, η̂). (21)

Note that these two methods rely on special structures of the assumed noise models, and therefore

limit the possibility to reach consistent estimates of H0(q) in situations where these structures

are not in accordance with the properties of the underlying systems. Therefore, the IV estimators

are then extended to other more general OE and BJ model structures.

• BJ model structure:

The more general structure is obtained by choosing a Box-Jenkins (BJ) model

y(t) =
B(q−1, ρ)

F (q−1, ρ)
u(t) +

C(q−1, η)

D(q−1, η)
ε(t, ρ, η), (22)

The IV estimator (16) cannot be directly applied to this non-linear-in-the-parameter model

structure (as in [6]). Therefore, the solution is to deal with an IV estimator for the process

model coupled with a noise model estimation. This approach is stimulated by the previous

development of the refined IV method for open-loop system identification (see [23], [25],

[26] and [24] for a unified form that deals with both discrete and continuous-time models).

A natural way to extend the IV estimator (12) with an estimation of the noise model η is

to write

v(t) =
C(q−1, η)

D(q−1, η)
ε(t, ρ̂, η) (23)

with v(t) = y(t) − B(q−1, ρ̂)/F (q−1, ρ̂)u(t) being available as a measured/reconstructed

signal once IV estimator (12) has delivered a plant model ρ̂ (see the algorithm Section

4.3). Estimation of η in the above equation is then undertaken by an ARMA estimation

algorithm on the basis of v(t).

The optimal prefilter that results from this identification procedure is then given by

L(q, ρ̂, η̂) =
D(q−1, η̂)

F (q−1, ρ̂)C(q−1, η̂)
. (24)
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• OE model structure:

When choosing an Output Error (OE) model structure for the noise dynamics, we arrive

at

y(t) =
B(q−1, ρ)

F (q−1, ρ)
u(t) + ε(t, ρ), (25)

and of course no additional estimation of the noise dynamics is required. The optimal

prefilter however changes, and now becomes given by

L(q, ρ̂) =
1

F (q−1, ρ̂)
. (26)

4.2 Construction of the instruments

According to (15), the instruments make use of the noise-free regressor ϕ̊(t) which is unknown.

It has to be estimated, therefore, from data during the plant model estimation. Two situations

have to be investigated according to the controller knowledge.

4.2.1 Controller unknown

When the controller is unknown, the IV series ζf (t, θ̂) are generated on the basis of the two closed-

loop auxiliary models denoted as Gyr(q, ρ̂yr) and Gur(q, ρ̂ur) (estimated TF between y(t)/r(t)

and u(t)/r(t) respectively) as follows

ˆ̊y(t) = Gyr(q, ρ̂yr)r(t) (27)

ˆ̊u(t) = Gur(q, ρ̂ur)r(t) (28)

ζT
f (t, θ̂) = L(q, θ̂)

[

−ˆ̊y(t − 1) . . . − ˆ̊y(t − n) ˆ̊u(t − 1) . . . ˆ̊u(t − n)
]

(29)

where the closed-loop parameters ρ̂yr and ρ̂ur can be estimated by the following IV technique

ρ̂yr =

[

N
∑

t=1

ζr(t)ϕ
T
yr(t)

]

−1 N
∑

t=1

ζr(t)y(t) (30)

ρ̂ur =

[

N
∑

t=1

ζr(t)ϕ
T
ur(t)

]

−1 N
∑

t=1

ζr(t)u(t) (31)

with the instruments ζr(t) generated from the excitation signal r(t).

4.2.2 Controller known

When the controller is known, it is worthwhile to use this information into the identification pro-

cedure. Therefore, it may be used with the open-loop plant model to construct the instruments

and the filter while satisfying the optimal conditions (13)-(15). Indeed, the two closed-loop
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transfer functions (Gyr(q, ρ̂yr) and Gur(q, ρ̂ur)) are no longer needed and the noise-free estima-

tion of the instrumental vector can be achieved by using the previous-step estimated open-loop

transfer function. In this case, the IV series ζf (t, θ̂) are generated on the following basis

ˆ̊y(t, ρ̂) =
G(q, ρ̂)

1 + Cc(q)G(q, ρ̂)
r(t), (32)

ˆ̊u(t, ρ̂) =
1

1 + Cc(q)G(q, ρ̂)
r(t), (33)

ζT
f (t, θ̂) = L(q, θ̂)

[

−ˆ̊y(t − 1, ρ̂) . . . − ˆ̊y(t − n, ρ̂)ˆ̊u(t − 1, ρ̂) . . . ˆ̊u(t − n, ρ̂)
]

(34)

4.3 Algorithm

The outline of the optimal IV algorithm for any model structures described Section 4.1, within

the closed-loop context is given below.

Step 1. Initialization

• Estimate a first plant model, get ρ̂0 and denote G(q, ρ̂0) = B(q−1, ρ̂0)/F (q−1, ρ̂0) the

corresponding transfer function.

• Set the initial noise model estimates C(q−1, η̂0) = D(q−1, η̂0) = 1 and i = 1.

• If the controller is unknown, estimate as well the two closed-loop models (30)-(31) used in

the following to build the instruments.

Step 2. Estimate by IV

Generate the filtered instruments3 according to the model structure used and the previous

estimated models as






L(q, θ̂i−1) computed using either (18), (21), (24), or (26)

ζf (t, θ̂i−1) = L(q, θ̂i−1)
[

−ˆ̊y(t − 1) . . . − ˆ̊y(t − n) ˆ̊u(t − 1) . . . ˆ̊u(t − n)
] (35)

where θ̂i−1,T =
[

ρ̂i−1,T η̂i−1,T
]

, and ζf (t, θ̂i−1) can be seen as a filtered estimate of the noise-free

part of the regressor vector ϕ(t) (9) based on estimates ˆ̊y(t) and ˆ̊u(t) of the noise-free output

and input of the plant, respectively (using (27)-(28) if the controller is unknown and (32)-(33)

if it is known). Determine the IV estimate using the prefilter and these instruments

ρ̂i =

[

N
∑

t=1

ζf (t, θ̂i−1)ϕT
f (t, θ̂i−1)

]

−1 N
∑

t=1

ζf (t, θ̂i−1)yf (t, θ̂i−1) (36)







ϕf (t, θ̂i−1) = L(q, θ̂i−1)ϕ(t)

yf (t, θ̂i−1) = L(q, θ̂i−1)y(t)
(37)

3i stands for the ith iteration
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This yields B(q−1, ρ̂i) and F (q−1, ρ̂i). Denote the corresponding transfer function by G(q, ρ̂i) =

B(q−1, ρ̂i)/F (q−1, ρ̂i).

Step 3. Obtain an estimate of the noise model parameter vector ηi based on the

estimated noise sequence

Use one of the noise model identification scheme4 described in Section 4 to estimate η̂i and the

associated transfer function H(q, η̂i).

Step 4. Repeat from step 2. Stop when F (q−1, ρ̂), B(q−1, ρ̂), H(q, η̂) and L(q−1, θ̂) have

converged.

Step 5. Compute the estimated parametric error covariance matrix P̂θ associated

with the parameter estimates, from

P̂θ = σ̂2
[

ϕT
f (t, θ̂)ϕf (t, θ̂)

]

−1
, (38)

where σ̂2 is the sample variance of the estimated residuals.

Then, according to the model structure used, the resulting algorithm will be referred to as

clivarx, clivararx, clivbj or clivoe.

Remark - Initialization step

As illustrated in the following simulation example Section, the proposed optimal IV estimation

method is robust to the initialization. Therefore, several methods may be used in this initial-

ization step of the algorithm. Indeed, this first plant estimate is only used to construct the first

filter and instruments, and therefore this suggests that minor deviations from the optimal value

only causes second-order effects in the resulting accuracy of the first iteration model.

5 Simulation examples

These examples are concerned with a simulation model based on the following relations (1),

where

G0(q) =
0.0997q−1 − 0.0902q−2

1 − 1.8858q−1 + 0.9048q−2
, n = 2

Cc(q) =
10.75 − 9.25q−1

1 − q−1
,

4One of the advantages of the proposed algorithms is that they provide consistent plant estimates while still

exploiting the pseudo-linear regression type of estimation. Indeed, the IV based pseudo-linear regression method

recently suggested in [21] could be used to estimate the ARMA process noise in this step of the algorithms.
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The excitation signal r(t) is a pseudo random binary signal of maximal length, with the number

of stages for the shift register set to 9 and the clock period set to 8; e0(t) is a white noise

uncorrelated with r(t).

All of the IV methods presented in this paper lead to consistent results if the assumption G0 ∈ G

is fulfilled and optimal estimates if S ∈ M. This example section illustrates this point with the

use of the two following examples.

5.1 Example 1: white measurement noise

Firstly, a white noise disturbance (H0(q) = 1) is considered in order to evaluate the performance

of the clivoe algorithm in the case S ∈ M. The plant parameters are estimated on the basis

of closed-loop data of length N = 4088. A Monte-Carlo simulation of 100 runs is used for a

signal-to-noise (SNR) ratio given as

SNR = 10 log

(

Pẙ

Pe

)

= 35 dB, (39)

where Pe represents the average power of the zero-mean additive noise on the system output

(e.g. the variance) while Pẙ denotes the average power of the noise-free output fluctuations. The

proposed method is compared to:

• clivr : the first basic IV method developed to handle the closed-loop case which uses the

delayed version of the reference signal as instruments [19];

• clivarx: the optimal IV method for an ARX model structure making use of the controller

knowledge (see Section 4);

• clivoe1: the proposed IV method for OE model, assuming the controller unknown (see

Section 4.3);

• clivoe2: the proposed IV method for OE model, making use of the controller knowledge

(see Section 4.2.2);

• pem: direct use of the closed-loop data (u(t) and y(t)) in the pem (OE here) method (see

e.g. [1]). The method is known to be theoretically efficient in the S ∈ M case.

Monte-Carlo simulation (MCS) results are presented in Table 1 where the mean and standard

deviation of the estimated parameters are displayed. The average number of iterations (Niter)

for the pem and clivoe algorithms are also given. All the methods provide unbiased results

with smaller standard deviations for the two proposed clivoe and pem methods. Indeed, these

methods lead to better results thanks to the iterative estimation procedure, even though the

number of iterations required for convergence is quite low (although it should be noted that, on

11



average, pem requires more iterations to converge here). As expected, the clivr method provides

the least accurate results since it is a basic (and not optimal) IV approach.

Moreover, it has to be noted that, contrary to the clivoe and pem algorithms, the clivarx method

only works within the G0 ∈ G assumption (and not S ∈ M). However, even if the standard

deviations are higher than those of the clivoe and pem, this refined IV provides satisfactory

results and is robust to a miss-specified noise model.

Nevertheless, the proposed clivoe algorithms allow to achieved more accurate results thanks to

the appropriate noise model estimation. The two clivoe methods (with or without the knowledge

of the controller) perform similarly overall.

parameters b̂1 b̂2 â1 â2 Niter

true values 0.0997 -0.0902 -1.8838 0.9048

clivr 0.0997 ± 0.30e−3 −0.0898 ± 3.80e−3 −1.8821 ± 35e−3 0.9014 ± 32.4e−3

clivarx 0.0997 ± 0.30e−3 −0.0900 ± 1.10e−3 −1.8772 ± 9e−3 0.8977 ± 8.5e−3

clivoe1 0.0997 ± 0.05e−3 −0.0902 ± 0.06e−3 −1.8858 ± 0.12e−3 0.9048 ± 0.10e−3 3.53

clivoe2 0.0997 ± 0.05e−3 −0.0902 ± 0.06e−3 −1.8858 ± 0.10e−3 0.9048 ± 0.09e−3 3.89

pem 0.0996 ± 0.05e−3 −0.0901 ± 0.06e−3 −1.8858 ± 0.12e−3 0.9048 ± 0.10e−3 4.14

Table 1: Mean and standard deviation of the 100 estimated models, white measurement noise

5.2 Example 2: colored measurement noise

5.2.1 G0 ∈ G case

A second example is used to illustrate the performance of the proposed methods in the case of

a colored measurement noise, with

H0(q) =
1 + 0.5q−1

1 − 0.85q−1
.

The following algorithms are used to estimate this model:

• the clivr method (with G0 ∈ G, S 6∈ M);

• the clivararx method (with G0 ∈ G, S 6∈ M);

• the clivoe1 method (with G0 ∈ G, S 6∈ M);

• clivbj1: the proposed IV method for BJ model, assuming the controller unknown (with

S ∈ M);

• clivbj2: the proposed IV method for BJ model, making use of the controller knowledge

(S ∈ M);
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• the pem algorithm (with S ∈ M).

The plant parameters are estimated on the basis of closed-loop data of length N = 4088. A

Monte-Carlo simulation of 100 runs is performed for SNR = 25dB. As previously, the results

obtained using different algorithms are presented in Table 2 along with the average number of

iterations needed for the clivbj and pem algorithms. The Bode diagrams of the 100 models

identified by the clivr, pem, clivararx and clivbj algorithms are displayed in Figure 2.

As previously, all the IV-based methods give unbiased results. However, the basic clivr does

clearly not deliver statistically efficient results. The additional noise model estimation in the

refined IV type of algorithms allows to achieve statistically accurate results, especially with

the clivbj methods which makes it possible to exactly model the noise. Moreover, it could be

noted that the clivarx is again robust to a miss-specified noise model. Furthermore, in Table

2 and Figure 2, it could be noticed that the pem algorithm (in the situation S ∈ M) is not

able to converge to the global minimum at each run and therefore leads sometimes to erroneous

results (see the large standard deviation of the pem estimates in Table 2). This is an expected

result since it is well-known that this method may suffer from initialization issues (see e.g. [13]

and [14]). However, better results may be obtained using the pem routine along with a more

sophisticated multiple initialization step.

Additionally, it can be seen from Figure 2 that the proposed IV method named clivoe still

gives really accurate results (unbiased and low variance) even in the G0 ∈ G but S 6∈ M case.

Obviously, the variance is a little bit higher than with clivbj but still satisfactory. This point

illustrates the ‘robustness’ of the method face to a miss-specified noise model.

parameters b̂1 b̂2 â1 â2 Niter

true values 0.0997 -0.0902 -1.8838 0.9048

clivr 0.0992 ± 0.5e−3 −0.0900 ± 4.9e−3 −1.8834 ± 44.3e−3 0.9025 ± 41.1e−3

clivararx 0.0998 ± 0.5e−3 −0.0898 ± 2.4e−3 −1.8823 ± 21.1e−3 0.9014 ± 19.6e−3

clivbj1 0.0997 ± 0.6e−3 −0.0903 ± 0.7e−3 −1.8860 ± 3.7e−3 0.9050 ± 3.4e−3 5

clivbj2 0.0997 ± 0.7e−3 −0.0903 ± 0.7e−3 −1.8856 ± 3.6e−3 0.9048 ± 3.2e−3 5.88

clivoe1 0.0996 ± 0.5e−3 −0.0901 ± 0.7e−3 −1.8857 ± 3.1e−3 0.9047 ± 2.9e−3 5

pem 0.0793 ± 64.8e−3 −0.0715 ± 64e−3 −1.8993 ± 34.7e−3 0.9181 ± 33.8e−3 4.22

Table 2: Mean and standard deviation of the 100 estimated models, colored measurement noise

5.2.2 G0 6∈ G case

This section illustrates the performance of the proposed method face to miss-specified process

and noise model structures (with S 6∈ M and G0 6∈ G). The example is the same as in Section
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5.2.1. A single experience is conducted using the clivoe method, estimating a third order model

and assuming a white noise model.

The results are given in Figure 3 where the comparison between the model output for the input

signal and the measured output are depicted (over the first 1000 data points). Since we generated

the data, we enjoy the luxury of comparing the model output to the noise-free system output

(using the compare Matlab routine). The two plots coincide quite well and the coefficient of

determination is equal to 98.9% (the pem routine on the same data set and assuming the same

model structure leads to 81.4%).

6 Conclusion

This paper has highlighted the use of optimal instrumental variable techniques in the closed-loop

identification framework. Several available techniques have been presented in a new unified way

according to the chosen model structure. Furthermore, a method able to estimate efficiently

closed-loop Box-Jenkins models has been proposed. The general Box-Jenkins model structure

identification has been handled by making use of a linear-in-the-parameters predictor next to

an additional noise model identification required for determining the optimal filter and the

instruments. The proposed method presents several advantages: it does not need to know the

controller, it may be applied whatever the structure (linear or not) of the controller, it is able to

handle the estimation of the more common use model structures (as ARX, ARARX, OE, BJ),

it is quite robust to the initialization step and it does not suffer from convergence problem.
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perspectives in the theory and its applications.

[3] M. Gevers. Identification for control: from the early achievements to the revival of experi-

ment design. European Journal of Control, 11(4-5):335–352, 2005.

[4] M. Gilson, H. Garnier, P.C. Young, and P. Van den Hof. Instrumental variable methods

for closed-loop continuous-time model identification. In Identification of Continuous-time

Models from Sampled Data, pages 133–160. Springer, London, H. Garnier and L. Wang

edition, 2008.

14



[5] M. Gilson and P. Van den Hof. On the relation between a bias-eliminated least-squares

(BELS) and an IV estimator in closed-loop identification. Automatica, 37(10):1593–1600,

2001.

[6] M. Gilson and P. Van den Hof. Instrumental variable methods for closed-loop system

identification. Automatica, 41(2):241–249, 2005.

[7] G. Goodwin and J. Welsh. Bias issues in closed loop identification with application to

adaptive control. Communications in Information and Systems, 2(4):349–370, December

2002.

[8] H. Hjalmarsson. From experiment design to closed-loop control. Automatica, 41(3):393–438,

March 2005.

[9] T. Katayama. Subspace methods for system identification. Springer, 2005.

[10] I.D. Landau, A. Karimi, and A. Constantinescu. Direct controller order reduction by iden-

tification in closed loop. Automatica, 37(11):1689–1702, 2001.

[11] V. Laurain, M. Gilson, and H. Garnier. Refined instrumental variable methods for identi-

fying hammerstein models operating in closed loop. In 48th IEEE Conference on Decision

and Control (CDC’09), Shanghai - China, December 2009.

[12] L. Ljung. System Identification : Theory for the User - Second Edition. Prentice-Hall, 1999.

[13] L. Ljung. Initialisation aspects for subspace and output-error identification methods. In

European Control Conference, Cambridge - UK, 2003.

[14] L. Ljung. Experiments with identification of continuous-time models. In 15th IFAC Sym-

posium on System Identification, Saint Malo - France, June 2009.
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Figure 2: Estimated Bode diagrams (gain and phase (degree)) of the plant model G(q, η) over

the 100 MCS, colored noise
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Figure 3: Estimated (with clivoe) and noise-free outputs in the G0 6∈ G case
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