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Abstract

We provide a characterization of an optimal insurance contract (coverage schedule and audit policy) when the
monitoring procedure is random. When the policyholder exhibits constant absolute risk aversion, the optimal
contract involves a positive indemnity payment with a deductible when the magnitude of damages exceeds a
threshold. In such a case, marginal damages are fully covered if the claim is verified. Otherwise, there is an
additional deductible that disappears when the damages become infinitely large. Under decreasing absolute risk
aversion, providing a positive indemnity payment for small claims with a nonmonotonic coverage schedule may
be optimal.
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1. Introduction and summary of results

When insurance purchasers have private information about their losses, insurance contracts
usually involve monitoring procedures to verify the extent of damages suffered by the
policyholders. Insurance contracts should then reach a compromise between two conflict-
ing objectives: sharing the risk between the insurer and the policyholder and minimizing
the expected verification cost. This leads to a second-best insurance contract, including a
coverage schedule and a monitoring procedure (auditing policy).

A deterministic auditing policy specifies whether there is verification or not as a function
of the magnitude of damages (Townsend [1979]). Under deterministic auditing, the optimal
coverage schedule may be characterized under various assumptions, particularly about what
is observed by the insurer and about the ability of the policyholder to manipulate the level of
loss (see Bond and Crocker [1997], Gollier [1987], Huberman, Mayers, and Smith [1983],
Picard [1999]). In particular, the optimal coverage schedule includes a flat part for small
claims for which there is no verification and possibly a deductible when the loss exceeds a
threshold.

Under random auditing, the insurer decides to verify the claims with a probability that
depends on the size of the claim. As shown initially by Townsend [1979], random monitor-
ing procedures can dominate deterministic procedures in a Pareto-sense. Mookherjee and
Png [1989] show that, under random auditing, an optimal contract exists if the policyholder
exhibits a minimal degree of risk aversion and they establish a number of properties of
such an optimal insurance contract. Mookherjee and Png show that the optimal auditing
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policy is random (whatever the size of the claim) if at equilibrium, in all states of nature,
the policyholder can be penalized in case of false claim detected by audit. They also show
that it is optimal to reward policyholders in case of audit by paying a higher coverage than
when the claim is not verified.

Among the issues left open by Townsend [1979] and Mookherjee and Png [1989], we
will consider the following questions:1

• Is the audit probability an increasing function of the size of the claim?
• Should this probability be zero for small claims?
• Is a deductible optimal, and, if yes, is this deductible constant when the size of the loss

increases?
• Is the policyholder’s final wealth monotone in his level of loss?

We are not in position to answer all these questions with full generality. An optimal
contract maximizes the expected utility of the policyholder under the participation constraint
of the insurer and under incentive compatibility constraints that require the policyholder to
always prefer to report his level of loss truthfully. However, it turns out that the standard
methods of incentive theory do not allow us to characterize the optimal solution of this
problem in a simple way. Technically, there is a continuum of types for the agent, but for
some types all the incentive compatibility constraints are tight and for other types none
of them is tight. This implies that we cannot consider only local incentive compatibility
constraints. In other words, the differential approach of Guesnerie and Laffont [1984] is
useless in this model.

Nevertheless, we are able to answer the previous questions when the policyholder has
constant absolute risk aversion. We also have partial answers in the case of a nonincreasing
absolute risk aversion.

Under constant absolute risk aversion, we are in position to identify the types for which
the incentive compatibility constraints are tight and those for which they are not. This will
allow us to completely characterize the optimal contract. We then have the following results.
The answer to the first two questions above is yes. More precisely, the probability of audit
(expressed as a function of the loss) starts from zero at a cutoff point under which no claim
is filed and it goes to a limit less than one when the loss goes to infinity. Turning to the
third question when a claim is filed (i.e., when the size of the loss exceeds the threshold),
then a constant deductible is optimal for verified claims. However, the deductible is larger
when the claim is not audited than when it is audited, but the difference decreases and it
goes to zero when the size of the loss increases and goes to infinity. In other words, the
answer to the third question is that the optimal contract involves a constant deductible to
which a vanishing deductible should be added if the claim is not verified. These results
imply that the answer to question 4 is no: the policyholder’s final wealth decreases when
the loss increases but remains under the threshold (no claim is filed in such cases) and the
final wealth increases when the loss outweighs the threshold since then a claim is filed
with a constant (respectively, decreasing) deductible when the claim is (respectively, is not)
verified.

We also show that these answers to the above questions remain valid if the policyholder
exhibits nonincreasing absolute risk aversion provided that the smallest claims are not
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audited in the optimal contract. Under decreasing absolute risk aversion, we show that, in
some cases, the optimal insurance contract involves a positive coverage and a positive audit
probability for small levels of damages. In such a case the optimal coverage schedule is
not monotonic, which confirms a conjecture by Mookherjee and Png [1989] (see note 1).

After presenting the model in Section 2, we state basic properties of the optimal contract
in Section 3. Our results here are similar to those of Mookherjee and Png [1989] although
our modeling differs in two respects: first, we consider a continuum of possible loss levels,
and second, we assume that feasible penalties are upward bounded either because of liquid-
ity constraints or because the size of possible penalties is exogenously determined by law.2

It is shown in Appendix A that the optimal insurance contract involves random auditing
for all claims if feasible penalties are large enough. Section 4 characterizes the optimal
insurance contract under random auditing when the policyholder exhibits constant abso-
lute risk aversion. Section 5 provides results for the case of a nonincreasing absolute risk
aversion. Section 6 concludes. Most of the proofs are in Appendix B.

2. The model

An insurance buyer owns an initial wealth W, and he faces an uncertain loss with monetary
value θ , where θ is a random variable with a support2= [0, θ ] and a cumulative distribution
F(θ). We assume that θ = 0 with probability f (0) and that θ is distributed over (0, θ ] with a
density f (θ)= F ′(θ)> 0. Hence f (θ)/1− f (0) is the density of the magnitude of damages
over (0, x] conditionally on a loss occurring.

The policyholder privately observes his level of loss, and he reports it to the insurer. The
latter can verify the damage, but he then incurs an audit cost c. The policyholder experiences
a loss θ ∈ 2, and he may choose to file a claim θ̂ ∈ 2, which is a message sent to the
insurer. The latter commits to audit a claim θ̂ with probability p(θ̂). If the claim is not
audited, the payment (net of the insurance premium) from the insurer to the policyholder
is denoted RN (θ̂). In case of audit, the net payment RA(θ, θ̂) depends both on the message
θ̂ and on the true value of the damage θ .

Let W f denote the policyholder’s final wealth. We have W f =W − θ + RN (θ̂) if the
claim is not audited and W f =W − θ + RA(θ, θ̂) in case of audit. The policyholder is risk-
averse. He maximizes the expected utility of his final wealth EU(W f ), where U (.) is a
twice differentiable Von Neumann-Morgenstern utility function, with U ′> 0,U ′′< 0.

Let θ̂ =m(θ) be the message sent by the policyholder when he experiences a loss θ .
Function m(.) defines the strategy of the policyholder. We have

EU(W f ) =
∫
2

{[1− p(m(θ))]U (W + RN (m(θ))− θ)
+ p(m(θ))U (W + RA(θ,m(θ))− θ)} dF(θ).

The insurer is risk neutral. His expected profit E5 is

E5= −
∫
2

{[1− p(m(θ))]RN (m(θ))+ p(m(θ))[RA(θ,m(θ))+ c]} dF(θ),

and he is willing to participate if E5≥ 0.
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Finally, the net payments from the insurer to the policyholder are bounded from below by
a maximal penalty B that can be imposed in case of misrepresentation of loss. B may result
either from a liquidity constraint or from the fact that penalties are exogenously determined
by law.3

Hence a feasible insurance contract is defined by functions p(.) : 2→ [0, 1], RN (.) :
2→ [−B, +∞] and RA(. , .) : 2×2→ [−B,+∞].4 An optimal insurance contract
maximizes EU (W f ) in the set of feasible contracts subject to the insurer’s participa-
tion constraint E5 ≥ 0, given that m(.) : 2 → 2 is an optimal strategy of the policy-
holder.

3. General properties of an optimal insurance contracts

This section characterizes basic properties of an optimal contract. First, because of the reve-
lation principle we can restrict attention to incentive compatible contracts where the agent
reports his damage truthfully: m(θ)≡ θ is then an optimal strategy for the policyholder.
The incentive compatibility conditions are written as

[1− p(θ)]U(W + RN (θ)− θ)+ p(θ)U(W + RA(θ, θ)− θ)
≥ [1− p(θ̂)]U(W + RN (θ̂)− θ)+ p(θ̂)U (W + RA(θ, θ̂)− θ) for all θ̂ , θ in2.

Obviously, it is always optimal to decrease the right-hand side of these incentive compati-
bility constraints as much as possible. Hence without loss of generality, RA(θ, θ̂)= −B if
θ̂ 6= θ is optimal. In other words, the penalty levied when a report is detected to be false is
made as large as possible. Note however that, at equilibrium, nobody lies, so this penalty
B is never actually levied.

In what follows, we write RA(θ)≡ RA(θ, θ), and we consider incentive compatible
contracts with maximal penalty if the policyholder is detected to have lied. Such contracts
are denoted {RN (.), RA(.), p(.)}.

This allows us to characterize the insurance contract in a more usual way. Let

P = −Inf{RN (θ), RA(θ), θ ∈ 2}

and

qN (θ)= RN (θ)+ P ≥ 0

qA(θ)= RA(θ)+ P ≥ 0.

P may be interpreted as the insurance premium paid by the policyholder and qN (θ), qA(θ)

as (nonnegative) indemnity payments. Note that a positive indemnity can be paid in the
no-loss state (when θ = 0). In other words, we may have qN (0)> 0 or qA(0)> 0.

The optimal contract maximizes the policyholder’s expected utility subject to the in-
centive compatibility constraints, to the insurer’s participation constraint and to feasibility
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constraints. This may be written as

Maximize EU =
∫
2

{[1− p(θ)]U (W − θ + RN (θ))

+ p(θ)U(W − θ + RA(θ))} dF(θ) (1)

with respect to p(.), RN (.) and RA(.), subject to∫
2

{[1− p(θ)]RN (θ)+ p(θ)(RA(θ)+ c)} dF(θ)≤ 0 (2)

[1− p(θ)] U (W − θ + RN (θ))+ p(θ)U (W − θ + RA(θ))

≥ [1− p(θ̂)] U (W − θ + RN (θ̂))+ p(θ̂)U (W − B − θ)
for all θ, θ̂ 6= θ (3)

RN (θ) ≥ −B for all θ (4)

RA(θ) ≥ −B for all θ (5)

0≤ p(θ) ≤ 1 for all θ. (6)

This maximization problem will be denoted P0. Condition (2) is the insurer’s participa-
tion constraint. Conditions (3) are incentive compatibility constraints: they state that the
policyholder is willing to report his level of loss truthfully. (4), (5), and (6) are feasibility
conditions.

An optimal solution to P0 entails some degree of insurance (RN (θ)= 0, p(θ)= 0 for all
θ is not an optimal insurance contract) if verifying claims is not too costly (if c is not too
large).5 We assume that this condition is satisfied.

Let

v(θ)≡ [1− p(θ)]U(W + RN (θ)− θ)+ p(θ)U(W + RA(θ)− θ),
v(θ) is the expected utility of a type-θ policyholder. Let us define Assumption A as “An
optimal contract is such that v(θ)>U(W − θ − B) for all θ in2.” We show in Appendix A
that A holds when (ceteris paribus) B is large enough. If A does not hold, then the optimal
audit policy is deterministic—that is, p(θ)∈ {0, 1} for all θ as in Townsend [1979].6 In what
follows, we always assume that A holds.

Proposition 1: An optimal insurance contract has the following properties7

(i) p(θ)< 1 for all θ
(ii) RA(θ)> RN (θ) for all θ such that 0< p(θ)< 1

(iii) If p(θ̂)> 0 for some θ̂ in 2, then there exists θ in 2 such that

v(θ)= [1− p(θ̂)]U (W − θ + RN (θ̂))+ p(θ̂)U (W − θ − B)

(iv) If RN (θ̃)=Min{RN (θ),θ ∈2}, then p(θ̃)= 0. Furthermore p(θ ′′)> p(θ ′) if RN (θ
′′)

> RN (θ
′).

Proposition 1 is similar to results obtained by Mookherjee and Png [1989].
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(i) means that all loss reports are either audited randomly or not audited. Indeed, choosing
p(θ)= 1 for some θ would be excessive since the incentive constraints corresponding to
the report θ would never be tight, whatever the true level of loss. It would be possible,
with an unchanged expected cost, to decrease the audit probability p(θ) and simultane-
ously to pay a larger indemnity RN (θ)= RA(θ), whether the claim θ is audited or not.
This transformation would increase the welfare of a policyholder with loss θ , hence the
result.

(ii) shows that the insurer should pay a bonus to the policyholder if the report is au-
dited and found to be truthful. Indeed, if we had RA(θ)< RN (θ) for some θ , the in-
surer could increase RA(θ) and decrease RN (θ) in such a way as not to modify the ex-
pected cost. He could, for instance, pay p(θ)RA(θ)+ [1− p(θ)]RN (θ) whether the claim
is audited or not. This would preserve the incentive compatibility constraints and the
type-θ policyholder’s expected utility would increase. If such a transformation were
possible, the contract would not be optimal. If we had RA(θ)= RN (θ) and 0< p(θ)
< 1, it would be possible to decrease RN (θ) and p(θ) and simultaneously to increase
RA(θ) in such a way that all incentive constraints still hold, that the expected cost remains
constant, and that the expected utility increases.8

According to (iii), if a report θ̂ is audited with positive probability, there must exist
a level of loss θ such that the policyholder is indifferent between reporting truthfully and
reporting θ̂ . Suppose otherwise that, whatever the true level of loss, the policyholder always
strictly prefers reporting truthfully than reporting θ̂ . Then, the insurer can lower p(θ̂) and
simultaneously increase RN (θ̂) in such a way as not to affect the expected cost and as to
increase the policyholder’s expected utility when the loss is θ̂ . The incentive compatibility
conditions are preserved if this transformation is small enough.

The first part of (iv) states that any report θ̃ corresponding to the lowest indemnity pay-
ment in the absence of audit will not be audited. The sketch of the proof of this result is as
follows. One easily checks that Assumption A and (iii) simultaneously imply RN (θ̃)>−B.
Assume p(θ̃)> 0. Then, (ii) implies that the policyholder always (strictly) prefers report-
ing truthfully than reporting θ̃ , which gives p(θ̃)= 0, hence a contradiction. Intuitively,
reporting θ̃ is always suboptimal when θ 6= θ̃ and auditing such a report is costly and use-
less. The second part of (iv) implies that audit probabilities are increasing in the reported
loss if the indemnity payments are increasing. Larger indemnity payments are more tempt-
ing for the policyholder and then larger audit probabilities are needed to deter fraudulent
claims.

The proof of Proposition 1 shows that any feasible contract that does not satisfy the
conditions (i) to (iv) is dominated by another contract. Hence, without loss of generality we
may restrict attention to contracts that satisfy this conditions, particularly when one aims
at proving the existence of an optimal contract or at characterizing such a contract.

4. Optimal insurance contract under constant absolute risk aversion

The main difficulty in characterizing the optimal contract more completely is to identify the
incentive compatibility constraints that are tight at the optimum. This can be done when
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the policyholder exhibits constant absolute risk aversion—when U (.) is CARA. Let us first
state a preliminary lemma.

Lemma 1: Assume that U (.) is CARA. If {RN (.), RA(.), p(.)} verifies

RA(θ) ≥ RN (θ̃) (7)

U (W + RN (θ̃)) ≥ [1− p(θ)]U (W + RN (θ))+ p(θ)U (W − B) for all θ, (8)

where θ̃ ∈ 2 is such that

RN (θ̃)=Min{RN (θ), θ ∈ 2}, (9)

then all the incentive constraints (3) are satisfied.

Proof. When U (.) is CARA, (8) gives

U (W − θ + RN (θ̃)) ≥ [1− p(θ̂)]U (W − θ + RN (θ̂))

+ p(θ̂)U (W − θ − B) for all θ, θ̂ in2. (10)

Using (7) and (9) gives

[1− p(θ)]U (W − θ + RN (θ))+ p(θ)U (W − θ + RA(θ))

≥U (W − θ + RN (θ̃)) for all θ in 2. (11)

(10) and (11) simultaneously give (3). 2

Lemma 1 states that at an optimal contract the policyholder is deterred from filing a false
claim whatever his true level of loss θ if and only if he is detered from filing a false claim
when he has a right to receive the smallest indemnity payment (when θ = θ̃ ). Indeed, when
θ = θ̃ , truthtelling brings in RN (θ̃) with certainty, which is less than RN (θ) or RA(θ) if
θ 6= θ̃ . A false report θ̂ brings in −B with probability p(θ̂) and RN (θ̂) with probability
1− p(θ̃). If the propensity to run risks is not affected by wealth effects, which is the case
when the policyholder exhibits constant absolute risk aversion, then truthtelling when θ = θ̃
implies truthtelling for all other possible levels of loss.

When U (.) is CARA, Proposition 1(ii) and 1(iv) implies that any optimal contract satisfies
(7), (8), and (9). Lemma 1 then implies that an optimal contract maximizes EU(Wf ) given by
(1) with respect to RN (.), RA(.), and p(.) subject to Eqs. (2), (4), (6), (7), (8), and (9). Let us
call this problem P1. Hence P0 and P1 have the same optimal solutions when U (.) is CARA.
Starting from P1, let us consider a modified problem, called P2, in which an additional
variable K is introduced, with K ≥ − B, and Eqs. (7)–(9) are replaced respectively by

RA(θ) ≥ K (12)

U (W + K ) ≥ [1− p(θ)]U (W + RN (θ))+ p(θ)U (W − B) for all θ (13)

RN (θ) ≥ K for all θ. (14)
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We show in Appendix B (see Lemma 4) that P1 and P2 have the same optimal solutions,
with K = RN (θ̃) = Min{RN (θ), θ ∈ 2}>−B.

Lemma 2 characterizes the optimal audit strategy. The proof of Lemma 2 simply shows
that, at the optimum of P2, (13) is binding for (almost) all θ . Hence, if RN (θ)> K at the
optimum, then p(θ) is just large enough to deter the policyholder who is entitled to receive
K from putting in a claim corresponding to damages θ .

Lemma 2: WhenU (.) is CARA,an optimal audit strategy is such that p(θ)=φ(RN (θ), K )
for all θ with

φ(R, K )≡ U (W + R)−U (W + K )

U (W + R)−U (W − B)
∈ [0, 1) if R≥ K > −B

and φ′1> 0, φ′′1 < 0, φ′2< 0.

Proof. At an optimal solution of P2, (13) is binding for all θ (except perhaps on a zero-
measure subset of 2). Indeed, assume that (13) is not binding for all θ ∈ [a, b] ⊂ 2,
with a< b. We then have p(θ)> 0 for all θ in [a, b], otherwise (13) would not hold. A
small increase in payments dR(θ)≡ dRA(θ)= dRN (θ)> 0 compensated by a decrease in
the audit probability dp (θ)< 0 such that9

dR(θ) = −(RA(θ)+ c − RN (θ)) dp (θ) for all θ in [a, b]

is feasible in P2. In particular, it does not modify the expected cost incurred by the insurer.
Such a change improves the expected utility of the policyholder, hence a contradiction.

2

Function φ(., K ) is depicted in figure 1 when −B< K < 0. When the insurance policy
assigns a net income K with certainty to the policyholder, φ(R, K ) is the audit probability
that deters him from misrepresenting his loss in the hope of receiving R if he is not detected.
When the policyholder exhibits constant absolute risk aversion, this probability does not
depend on the true level of damages. φ is increasing and concave with respect to R and

Figure 1. The audit probability function.
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(because a CARA utility function is upward bounded) φ goes to a limit p̄ less than one,
when R goes to infinity. We are now in position to prove that an optimal insurance contract
exists and to characterize it.

Proposition 2: When U (.) is CARA, there exists an optimal contract. It has the following
properties:

(i) RA(θ)=M + θ for all θ such that RN (θ)> K where M is a constant such that
M < K < 0.

(ii) There exists a threshold θ∗> 0 such that

RN (θ) = K if θ ≤ θ∗
RN (θ) > K if θ > θ∗.

(iii) RN (θ)= RA(θ)− η(θ)=M + θ − η(θ) if θ > θ∗ where η(θ) is a continuous function
with η(θ)> 0, η(θ∗)=M + θ∗ − K > 0, η′(θ)< 0, η(θ)→ 0 when θ →+∞.

(iv) The optimal audit strategy is such that p(θ)= 0 if 0<θ ≤ θ∗ and p(θ)> 0, p′(θ)> 0
if θ > θ∗.

Existence of an optimal contract follows from the fact that a CARA utility function is
upward bounded: the policyholder cannot be induced to tell the truth in contracts where
claims are audited with very low probability and where very large indemnity payments
are provided for claims that are verified to be truthful (see Border and Sobel [1987] and
Mookherjee and Png [1989]).

Proposition 2 provides a full characterization of an optimal insurance policy and of
the corresponding audit strategy. The insurer’s participation constraint implies K < 0.
Hence P =−K may be interpreted as the insurance premium paid by the policyholder
and qN (θ)≡ RN (θ)− K and qA(θ)≡ RA(θ)− K correspond to the indemnity payment.
The optimal coverage schedule and the audit strategy are depicted in figure 2. There exists
a positive threshold θ∗ below which no claim is filed (that is, qN (θ)= 0 and p(θ)= 0 if
θ ≤ θ∗) that corroborates a conjecture by Townsend [1979] (see note 1). When the size
of the loss exceeds θ∗, the policyholder receives a positive insurance coverage with a de-
ductible, and the claim is verified with positive probability. If the claim is verified, the
deductible is constant and equal to θ − qA(θ)= K −M =m> 0. If the claim is not veri-
fied, the deductible is larger than m: it is equal to m+ η(θ). The additional deductible
η(θ) is decreasing, and it goes to zero when θ it goes to infinity (when θ̄ =+∞): The
probability of audit increases when the size of the claim increases (that is, p′(θ)> 0) and
p(θ) → p̄< 1 when θ → +∞. In other words, marginal damages are fully covered in
case of audit, and, in the other case, there is an additional deductible that disappears when
the damages become infinitely large.

The intuition for these results is as follows. Consider a loss level θ larger than θ∗.
Let dRN (θ) be an infinitesimal increase in RN (θ). Such an increase affects the insurer’s
cost in two ways: directly because of the increase in the payment to the policyholder
and indirectly through its effect on the audit probability p(θ). Lemma 2 shows that the
increase dRN (θ) should be accompanied by an increase dp(θ)=φ′1(RN (θ), K ) dRN (θ) for
incentive compatibility to be maintained. Hence the total effect on the insurer’s expected cost
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Figure 2. The optimal insurance policy and the audit strategy.

(conditionally on the occurrence of a loss of size θ ) is dC= [1+ cφ′1(RN (θ), K )] dRN (θ).
On the contrary, an increase in RA(θ) does not affect the audit strategy, and we have
dC= dRA(θ) in that case. In other words, the incremental cost associated with one more
dollar paid in state θ is larger when the additional payment affects the claims that are
not audited than when it affects the claims that are audited. Consequently, it is optimal to
choose RA(θ)> RN (θ), which is another way to state Proposition 1(ii) when U (.) is CARA.
The fact that φ′′1 < 0 and R′N (θ)> 0 implies that the incremental audit cost cφ′1(RN (θ), K )
associated with a one dollar increase in RN (θ) is decreasing in θ and that this incremental
audit cost goes to zero when θ goes to infinity. This explains why the additional deductible
η(θ) is decreasing and why it disappears when θ is large.

Under the assumptions of Proposition 2, v(θ) is continuous over2. It reachs a minimum
at θ = θ∗ and v(θ)→U (W +M) when θ → +∞ (see figure 3). When θ < θ∗, no insur-
ance payment is made and v(θ) is decreasing. When θ > θ∗, the policyholder receives an
indemnity payment. Since the additional deductible η(θ) is decreasing, v(θ) is increasing.

5. Further results

Matters are much more intricate when the assumption of a constant absolute risk aversion
is no more made. In that case, the variations in the level of loss entail a wealth effect
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Figure 3. The expected utility of the policyholder.

that prevents us to identify which incentive compatibility constraints will be tight at the
optimum. Nevertheless, a partial characterization will be provided when the policyholder
exhibits nonincreasing absolute risk aversion. Two effects may be distinguished in such
a case. First of all, because of the risk-sharing objective, larger damages should lead to
larger indemnity payments. If we only focus on this objective, the net insurance payment
should be minimal when θ = 0, which corresponds to the optimal solution derived in the
previous section with qN (θ)= 0 and p(θ)= 0 when θ is small. However, when the pol-
icyholder’s absolute risk aversion is decreasing with respect to wealth, then it may be
optimal to choose an insurance contract that provides a positive coverage (and correlatively
a positive probability of audit) for small losses. The intuition for this result is that, under
decreasing absolute risk aversion, it is particularly difficult to incite a type-θ policyholder
to tell the truth when θ is small because of a wealth effect. Indeed, when U (.) is DARA, a
policyholder who has experienced a small level of loss (or no loss at all) inclines to gam-
ble on the audit probability more than a policyholder who has suffered larger damages. In
such a setting, paying a positive coverage and incurring verification costs when losses are
small is a way to mitigate the intensity of the incentive constraints. It turns out that, under
some circumstances, this wealth effect may dominate the risk sharing effect. A nonmono-
tonic indemnity schedule with positive coverage for small losses will be optimal in such
a case.

Let us first state a preliminary lemma that extends Lemma 1 to the case of a nonincreasing
absolute risk aversion (NIARA).

Lemma 3: Assume that U (.) is NIARA. Then any optimal contract maximizes EU(Wf )
with respect to RN (.), RA(.) and p(.) and θ0 ∈ 2 subject to (2), (4), (6), and

RA(θ)≥ RN (θ0) (15)

U(W − θ0 + RN (θ0)) ≥ [1− p(θ̂)] U (W − θ0 + RN (θ̂))

+ p(θ̂)U (W − θ0 − B) for all θ̂

}
(16)
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[1− p(θ)] U (W − θ + RN (θ))+ p(θ)U (W − θ + RA(θ))

≥ [1− p(θ̂)] U (W − θ + RN (θ̂))+ p(θ̂)U (W − θ − B)

for all θ < θ0 and all θ̂ 6= θ

 (17)

RN (θ) ≥ RN (θ0) for all θ (18)

RN (θ) > RN (θ0) if θ < θ0. (19)

θ0 given by (18) and (19) is the smallest level of loss for which the net transfer to
the policyholder is minimal: −RN (θ0) may be interpreted as the insurance premium. We
know from Proposition 1(iv) that a claim θ̂ = θ0 will not be audited. We also know from
Proposition 1 that the optimal contract verifies the conditions that are listed in Lemma 3.
The missing constraints correspond to the incentive compatibility constraints in the case
where the magnitude of damages is larger than θ0. Lemma 3 states that these constraints
are superfluous. The intuition for this result is straightforward: if a type-θ0 policyholder
is not willing to gamble on the insurer’s audit strategy by announcing a claim θ̂ 6= θ0, then
a policyholder who has experienced a loss larger than θ0 will also tell the truth for two
reasons: first, because truthtelling allows him to get a payment that is larger than (or equal
to) that received by the type-θ0 policyholder and second because he exhibits an absolute
risk aversion that is larger than (or equal to) that of the type-θ0 policyholder.

Proposition 3: Assume that U (.) is NIARA. Let θ0 be defined by (18) and (19). An optimal
contract has the following properties:
(i) There exists a constant M such that RA(θ)=M + θ if θ > θ0 and p(θ)> 0.

(ii) If θ0= 0, the optimal contract has the same characterization as in Proposition 2.

Proposition 3 provides a partial characterization of an optimal insurance policy in the
case where the policyholder exhibits nonincreasing absolute risk aversion. The incentive
compatibility constraints of a type-θ policyholder are not binding when θ is larger than θ0

and p(θ) is strictly positive—when θ > θ0 and RN (θ)> RN (θ0)− . For these levels of θ ,
variations in the indemnity payment RA(θ) would entail no incentive effect and, as stated
in Proposition 3(i) the optimal insurance policy provides full insurance at the margin in
such a case. On the contrary, some incentive compatibility constraints may be binding if
θ is smaller than θ0 and, for that very reason, it is optimal to increase RN (θ) over RN (θ0)

in [0, θ0). When θ0= 0, the only incentive compatibility constraints that are binding are
those of a policyholder who has not experienced any loss and the characterization given in
Proposition 2 remains valid. However, when the policyholder exhibits decreasing absolute
risk aversion (DARA), the risk sharing objective conflicts with the incentive compatibility
constraint. Indeed, in the neighborhood of θ = 0, increasing RN (θ) over RN (θ0) allows the
insurer to relax the incentive compatibility constraints for the type-θ policyholder. On the
contrary, the risk sharing objective should lead the insurer to offer a coverage schedule that
is increasing in the level of loss. As stated in Proposition 4, it turns out that in some cases
the tradeoff may tip in favor of the incentive compatibility concern.
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Proposition 4: Let F(θ, z) be the cumulative probability distribution of θ over2, conti-
nuously parametrized by z ∈ R+, with f (0, z)= F(0, z)= Prob(θ = 0 | z) and f (θ, z)=
F ′1(θ, z) for θ > 0. Assume that f (0, 0)= f (0+, 0)= 0 and that f (θ, z)> 0 for all θ in 2
if z> 0. Assume that U (.) is DARA.

Let θ0(z) be the value of θ0 defined in Lemma 3 when θ is distributed according to
F(θ, z). Then there exists ẑ> 0 such that θ0(ẑ)> 0.

Proposition 4 shows that providing positive coverage for small losses is optimal when the
policyholder exhibits decreasing absolute risk aversion if the probability of small losses is
small enough. Indeed, assume that f (0)= f (0+)= 0. In such a case, providing a small pos-
itive coverage in the neighborhood of θ = 0 entails no first-order risk-sharing effect but this
positive coverage allows us to relax the incentive compatibility constraints for the policy-
holders who have experienced very small losses. Consequently, a less intense audit strategy
may be chosen: one may lower the audit probability that corresponds to claims θ̂ for which
the incentive compatibility conditions are binding when θ is in the neighborhood of θ = 0.
This change will entail a positive first-order effect on the policyholder’s expected utility.
By a continuity argument, this characterization still holds if the policyholder experiences
small or zero losses with positive (but small) probability.

6. Conclusion

In this article, we have approached the normative analysis of optimal insurance contracts
under costly state verification initiated by Townsend [1979]. We have focused on ques-
tions tackled but not completely settled by Mookherjee and Png [1989]—namely, what
should be the shape of the coverage schedule and the audit strategy when there is random
auditing?

The characterization obtained under constant absolute risk aversion is rather intuitive.
There is no insurance coverage when the magnitude of damages is less than a threshold.
When the damages exceed the threshold, the policyholder receives a positive indemnity
payment with a deductible. This deductible is constant when the claim is verified. Otherwise,
there is an additional deductible that reflects the effect of insurance payments on verification
costs and that disappears when the claims are very large. Furthermore, the larger the size
of the claim, the larger the probability of audit should be.

Under decreasing absolute risk aversion, because of a wealth effect it may be optimal
to provide a positive coverage for small claims to mitigate the intensity of the incen-
tive compatibility constraints. In such a case, the optimal coverage schedule may be non-
monotonic, which confirms a conjecture by Mookherjee and Png [1989]. This last result
may be considered only as a theoretical curiosity since, in practice, coverage schedules
are almost always monotonic. However, it also provides another case for offering con-
tracts with no-claim bonuses besides the well-known interpretations of experience rating
in term of effort incentives or informational learning. Of course, the empirical relevance
of this argument for no-claim (or small claim) bonuses remains an open issue. If the opti-
mal coverage schedule is monotonic—which is likely if the probability of zero loss or of
small losses is large enough—then the characterization derived in the case of a constant
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absolute risk aversion still holds when the policyholder exhibits decreasing absolute risk
aversion.

Appendix A

1. Let us show that the optimal audit policy is deterministic when assumption A does
not hold. In what follows, the index ∗ refers to an optimal solution to P0. Assume that A
does not hold for that optimal solution. Let θ0 ∈ 2 such that v∗(θ0)=U(W − θ0− B). If
R∗N (θ1)>−B for some θ1 in2, then p∗(θ1)= 1 for otherwise (3) would not hold for θ = θ0

and θ̂ = θ1. Hence, without loss of generality, we may assume that R∗N (θ)=−B for all
θ. R∗A(.), p∗(.) maximize

EU=
∫
2

{[1− p(θ)]U(W − θ − B) dF(θ)+ p(θ)U(W − θ + RA(θ))} dF(θ)

with respect to RA(.), p(.), subject to∫
2

{p(θ)[RA(θ)+ c]− [1− p(θ)]B} dF(θ) ≤ 0

RA(θ)≥−B and 0 ≤ p(θ) ≤ 1 for all θ.

Note that the optimal solution to this problem verifies the incentive compatibility conditions
since R∗N (θ)=−B for all θ . Furthermore, we have R∗A(θ)>−B for all θ such that p∗(θ)> 0
for otherwise p(θ)= 0 would lead to the same expected utility at a lower cost.

Let λ be the Kuhn-Tucker multiplier associated with the insurer’s participation constraint
in this problem. The first-order optimality conditions are

p(θ)[U ′(W − θ + RA(θ))− λ] = 0 (20)

and

0(θ) ≤ 0 if p(θ) = 0

= 0 if 0 < p(θ) < 1

≥ 0 if p(θ) = 1

 (21)

for all θ , where

0(θ) ≡ U(W − θ + RA(θ))−U(W − θ − B)− λ[RA(θ)+ c + B].

Using (20), we may write RA(θ)=M + θ for all θ such that p(θ)> 0, where M is a
constant such that M + θ >−B if p(θ)> 0. We have

0′(θ) = U ′(W − θ − B)−U ′(W + M) > 0.
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Let θ̂ such that 0(θ̂)= 0 with θ̂ >−B−M . If θ > θ̂ , we have 0(θ)> 0 which implies
p(θ)= 1. If θ < θ̂ , then 0(θ)< 0 and p(θ)= 0. Furthermore, we have 0(0)< 0 which
implies θ̂ > 0. Choosing p(θ)= 1 if θ > θ̂ and p(θ) = 0 if θ ≤ θ̂ is optimal.

2. Let us show that Assumption A holds when B is large enough. Let us first characterize
the optimal contract with deterministic auditing when B=+∞. Under deterministic audit-
ing an incentive compatible contract entails a flat coverage schedule in the no-verification
regime, and full insurance at the margin in the verification regime. Furthermore, the largest
claims should be verified. Hence we have10

RN (θ) = K and p(θ) = 0 if θ ≤ θ̂
RA(θ) = M + θ and p(θ) = 1 if θ̂ < θ ≤ θ̄ .

The optimal insurance contract maximizes

EU =
∫ θ̂

0
U(W − θ + K ) dF(θ)+U(W + M)[1− F(θ̂)]

with respect to K , M , and θ̂ ∈ [0, θ̄ ], subject to the insurer’s participation constraint

KF(θ̂)+
∫ θ̄

θ̂

(M + θ + c) dF(θ) ≤ 0

and to the incentive compatibility constraint M + θ̂ ≥ K . Let K = K̄ at the optimum under
deterministic auditing. This solution remains optimal (under deterministic auditing) when
B>−K̄ .

Assume that Assumption A does not hold at the optimum of P0 and that B>−K̄ . Then
the optimal insurance contract involves deterministic auditing, which implies RN (θ)≥ K̄
and RA(θ)≥ K̄ for all θ . Consequently, we have v(θ)≥U(W − θ + K̄ )>U(W − θ − B)
for all θ . Hence A is satisfied, which is a contradiction.

Appendix B

Proof of Proposition 1

Proof of (i). Assume that, for an optimal contract C , we have p(θ)= 1 for all θ in
[a, b] ⊂ 2, with a< b. Let C̄ ={R̄N (.), R̄A(.), p̄(.)} : C̄ coincides with C if θ /∈ [a, b], and
R̄N (θ)= R̄A(θ)= RA(θ)+ cσ and p̄(θ)= 1− σ if θ ∈ [a, b], with σ > 0. C̄ is incentive
compatible for σ small enough because of Assumption A. Furthermore C̄ induces the same
expected cost as C . C̄ provides a higher (an unchanged) expected utility than C if θ is (is
not) in [a, b], which contradicts the fact that C is optimal.

Proof of (ii). Assume first that, for an optimal contract C , we have 0< p(θ)< 1 and
RA(θ)< RN (θ) for all θ in [a, b] ⊂ 2, with a< b.
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Let C̄ ={R̄N (.), R̄A(.), p̄(.)} be another contract that coincides with C if θ /∈ [a, b] and
R̄N (θ)= R̄A(θ)= [1− p(θ)]RN (θ)+ p(θ)RA(θ) and p̄(θ)= p(θ) if θ ∈ [a, b].

Let v̄(θ)≡ [1− p̄(θ)]U(W − θ + R̄N (θ))+ p̄(θ)U(W − θ + R̄A(θ)).
We have v̄(θ)= v(θ) if θ /∈ [a, b] and v̄(θ)> v(θ) if θ ∈ [a, b] and R̄N (θ)≤ RN (θ).

Hence, using (3) gives

v̄(θ) ≥ v(θ) ≥ [1− p(θ̂)] U (W − θ + RN (θ̂))+ p(θ̂)U (W − θ − B)

≥ [1− p(θ̂)] U (W − θ + R̄N (θ̂))+ p(θ̂)U (W − θ − B) for all θ (22)

Equation (22) implies that C̄ is incentive compatible. Furthermore, C̄ induces the same
expected cost as C and it provides a higher expected utility to the policyholder. Hence a
contradiction.

Assume now that, for an optimal contract C, 0< p(θ)< 1 and RA(θ)= RN (θ)> −B for
all θ in [a, b] ⊂ 2, with a< b. Consider infinitesimal variation dRA(θ)> 0, dRN (θ)< 0,
dp(θ)< 0 with dp(θ)= h(θ) dRN (θ) where

h(θ) = Min

{
[1− p(θ)]U ′(W − θ ′ + RN (θ))

U(W − θ ′ + RN (θ))−U(W − θ ′ − B)
, θ ′ ∈ 2

}
> 0,

which reduces the expected utility of a policyholder who falsely reports that his loss is θ ,
whatever his true level of loss. Furthermore, the expected cost that corresponds to a type-θ
policyholder remains constant—that is,

p(θ) dRA(θ)+ (1− p(θ)) dRN (θ)+ c dp(θ) = 0,

which gives

dv(θ) = −c U ′(W − θ + RN (θ)) dp(θ) > 0.

Hence, the expected utility of a type-θ policyholder increases. This transformation may
be performed for all θ in [a, b], without modifying the payment and the audit probability
when θ /∈ [a, b], which contradicts the fact that C is optimal.

Proof of (iii). Assume that, for an optimal contract C , we have p(θ̂)> 0 and

v(θ) > [1− p(θ̂)] U (W − θ + RN (θ̂))+ p(θ̂)U (W − θ − B)

for all θ̂ in [a, b] ⊂ 2 with a< b and all θ ∈ 2. Let C̄ ={R̄N (.), R̄A(.), p̄(.)} be another
contract that coincides with C if θ /∈ [a, b] and such that

R̄N (θ) = RN (θ)+ ε(θ), R̄A(θ) = RA(θ), p̄(θ) = p(θ)− σ(θ) if θ ∈ [a, b]

with p(θ)>σ(θ) > 0 for all θ in [a, b] and ε(θ)= η(σ (θ), θ), with

η(σ, θ) ≡ σ [RA(θ)+ c − RN (θ)]

1− p(θ)+ σ .
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If σ(θ) is small enough for all θ in [a, b], then C̄ is incentive compatible. Furthermore, we
have for all θ in [a, b]

p̄(θ)[R̄A(θ)+ c]+ [1− p̄(θ)]R̄N (θ) = p(θ)[RA(θ)+ c]+ [1− p(θ)]RN (θ).

Hence C and C̄ induce the same expected cost. Let φ(σ(θ), θ) denote the expected utility
of a type-θ policyholder under C̄ , with

φ(σ, θ) = [1− p(θ)+ σ ] U (W − θ + RN (θ)+ η(σ, θ))
+ [p(θ)− σ ] U (W − θ + RA(θ)).

We have

∂φ

∂σ|σ=0
= U(W − θ + RN (θ))−U(W − θ + RA(θ))

+ [RA(θ)+ c − RN (θ)]U
′(W − θ + RN (θ)) > 0.

Hence, we can choose a function σ(θ) that is positive and continuous over [a, b] such that
the expected utility of any type-θ policyholder increases if θ ∈ [a, b], which contradicts
the fact that C is an optimal contract.

Proof of (iv). Let θ̃ ∈ 2 such that RN (θ̃)=Min{RN (θ), θ ∈ 2}. Assume that p(θ̃)> 0
which implies RN (θ̃)>−B because of Assumption A. Using (ii) gives

v(θ) ≥ U(W − θ + RN (θ̃))

> [1− p(θ̃)]U(W − θ + RN (θ̃))+ p(θ̃)U(W − θ − B)

for all θ , which implies p(θ̃)= 0, hence a contradiction. Hence p(θ̃)= 0. Let

ψ(R, θ) ≡ U(W + R − θ)− v(θ)
U(W + R − θ)−U(W − B − θ) for R>−B.

Assume RN (θ
′′)> RN (θ

′)> B for θ ′′, θ ′ in 2. We then have p(θ ′′)> 0, otherwise the
type-θ̃ policyholder would (strictly) prefer to report θ ′′ rather than θ̃ . Hence, from (iii),
there exists θ0 and θ1 (if p(θ ′)> 0) in 2 such that

p(θ ′′) = ψ(RN (θ
′′), θ0) ≥ ψ(RN (θ

′′), θ) for all θ

p(θ ′) = ψ(RN (θ
′), θ1) ≥ ψ(RN (θ

′), θ) for all θ.

ψ(R, θ) is increasing with respect to R, which gives

p(θ ′′) = ψ(RN (θ
′′), θ0) ≥ ψ(RN (θ

′′), θ1) > ψ(RN (θ
′), θ1) = p(θ ′).

If p(θ ′)= 0, we also have p(θ ′′)> p(θ ′). When RN (θ
′)=−B, we have p(θ ′)= 0

< p(θ ′′), which completes the proof. 2
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Lemma 4: When U is CARA, an optimal contract {RN (.), RA(.), p(.), K } is an opti-
mal solution to problem P2. Furthermore, at the optimum, there exists θ̃ in 2 such that
K = RN (θ̃)=Min{RN (θ), θ ∈ 2}> −B.

Proof. In problem P2, EU(W f ) is maximized with respect to RN (.), RA(.), p(.) and K
subject to (2), (6), (12), (13), (14), and K ≥−B. At an optimal solution of P2, EU is at least
as high as in P1 since K =Min{RN (θ), θ ∈ 2} is a possible choice in P2.

In P2, the first-order optimality conditions with respect to RN (θ) and RA(θ) imply
RA(θ̂)≥ RN (θ̂). Assume RN (θ)> K for all θ—and thus RA(θ)> K for all θ—at an optimal
solution of P2. Then K can be slightly increased without violating constraints (12) and
(14). Hence (13) is not binding for all θ . Given p(.) the first-order optimality conditions
corresponding to the maximization of EU subject to (2) give RA(θ)= RN (θ) for all θ ,
which implies that p(θ)= 0 for all θ is optimal. Equation (13) would not hold, hence a
contradiction.

Thus, at an optimal solution of P2, there exists θ̃ ≥ 0 such that

K = RN (θ̃) = Min{RN (θ), θ ∈ 2}.

We deduce that P1 and P2 have the same optimal solution. Under assumption A, we have
K >−B at the optimum. 2

Proof of Proposition 2

We first prove that an optimal contract exists. Assume that U (.) is CARA. We know from
Lemmas 2 and 4 that any optimal contract maximizes

EU =
∫
2

{[1− φ(RN (θ), K )] U (W + RN (θ)− θ)

+φ(RN (θ), K )U (W + RA(θ)− θ)} dF(θ) (23)

with respect to RN (.)RA(.) and K ≥−B subject to∫
2

{[1− φ(RN (θ), K )]RN (θ)+ φ(RN (θ), K )[RA(θ)+ c]} dF(θ) ≤ 0 (24)

RN (θ) ≥ K for all θ (25)

RA(θ) ≥ K for all θ. (26)

A straightforward extension of Lemmas 1, 2, and 4 shows that, if an optimal contract
does not exist, then there exists a sequence of contracts that satisfy Eqs. (24)–(26) such that
the corresponding level of expected utility goes to the upper bound of the level of feasible
expected utility. Hence, to prove the existence of an optimal contract we have to prove that
the above maximization problem has an optimal solution.



OPTIMAL INSURANCE UNDER RANDOM AUDITING 47

The proof is in two steps. In Step 1, we consider K as a fixed parameter (with −B ≤ K
≤ 0), and we characterize an optimal contract conditionally on K . In Step 2, we show that
the expected utility that corresponds to this optimal contract (denoted by Ä(K ) hereafter)
is continuous w.r.t. K ∈ [−B, 0], which proves that Ä(K ) reaches a maximum in [−B, 0].

Step 1. Consider K as fixed parameter, with K < 0. Let

L(RN , RA, λ, θ) = {[1− φ(RN , K )] U (W + RN − θ)
+φ(RN , K )U (W + RA − θ)} f (θ)

− λ{[1− φ(RN , K )]RN + φ(RN , K )[RA + c]} f (θ)

be the Lagrangean, where λ is a Kuhn-Tucker multiplier. If there exist λ≥ 0 and {RN (.),

RA(.)} such that, for all θ, (RN (θ), RA(θ)) maximizes L(RN , RA, λ, θ) subject to (25),
(26) and (24) holds, then {RN (.), RA(.)} is an optimal contract (conditionally on K ) (see
Hestenes [1980], Theorem 5.1).

Assume λ> 0. Let R̃A(θ, λ, K )= Sup{M̃(λ)+ θ, K }, where M̃(λ) is given by U ′(W +
M̃)= λ. Note that M̃ always exists when U (.) is CARA. R̃A(θ, λ) maximizes L(RN , RA,

λ, θ) with respect to RA, subject to (26). Furthermore, R̃A(θ, λ) is continuous with respect
to θ and λ.

Let us consider two possible cases. Assume first that R̃A(θ, λ, K )= M̃(λ)+ θ . Let

H̃(RN , θ, λ) = L
′
1(RN , M̃(λ)+ θ, λ, θ)
φ′1(RN , K ) f (θ)

—that is,

H̃(RN , θ, λ) = 1− φ(RN , K )

φ′1(RN , K )
[U′(W + RN − θ)− λ]+U(W + M̃(λ))

−U(W + RN − θ)− λ[M̃(λ)+ θ + c − RN ].

We have

H̃ ′1(R, θ, λ) = −λ r
U(W + R)−U(W − B)

U ′(W + R)
< 0

and

H̃(M̃(λ)+ θ, θ, λ) = −λc < 0,

where r is the (constant) index of absolute risk aversion.
If H̃(K , θ, λ)> 0 there exists R∗N (θ, λ, K ) ∈ (K , M̃(λ)+ θ) such that H̃(R∗N , θ, λ)= 0.

Let R̃N be defined by{
R̃N (θ, λ, K ) = R∗N (θ, λ, K ) if H̃(K , θ, λ) > 0

R̃N (θ, λ, K ) = K otherwise.
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R̃N maximizesL(RN , R̃A(θ, λ, K ), λ, θ)w.r.t. RN subject to RN ≥ K when R̃A= M̃(λ)
+ θ . Furthermore, R̃N (θ, λ, K ) is continuous and almost everywhere continuously diffe-
rentiable over the subset 2× R∗+ × R∗− where M̃(λ)+ θ > K . Finally R̃N (θ, λ, K )→ K
when (θ, λ, K )→ (θ0, λ0, K0) with M̃(λ0)+ θ0= K0.

Assume now that R̃A(θ, λ, K )= K . Let

Ĥ(RN , θ, λ) = L
′
1(RN , K , λ, θ)

φ′1(RN , K ) f (θ)
.

We have Ĥ ′1(RN , θ, λ)< 0 and

Ĥ(K , θ, λ) = 1

φ′1(K , K )
[U ′(W + K − θ)− λ]− λc.

We have U ′(W + K − θ)≤ λ when R̃A(θ, λ)= K , which gives Ĥ(K , θ, λ)< 0. Hence
R̃N = K maximizes L(RN , R̃A(θ, λ, K ), λ, θ)with respect to RN subject to RN ≥ K when
R̃A= K . R̃N (θ, λ, K ) is continuous and almost everywhere differentiable over 2×
R∗+ × R∗−.

Let C̃(λ, K )be the expected cost associated with R̃N and R̃A—that is, C̃(λ, K ) is obtained
by substituting R̃N and R̃A in the left-hand side of (24). C̃(λ, K ) is continuous w.r.t. λ and
K and decreasing w.r.t. λ. Furthermore C̃(λ, K )→+∞ when λ→ 0 and C̃(λ, K )→ K
when λ→+∞. Hence, when K < 0, there exists λ(K )> 0 such that C̃(λ(K ), K )= 0 and
λ(K ) is continuous over R∗−. Hence {RN (.), RA(.)} given by RN (θ)≡ R̃N (θ, λ(K ), K ) and
RA(θ)≡ R̃A(θ, λ(K ), K ) is an optimal contract, conditionally on K when K < 0.

Step 2. Let Ä(K ) be the corresponding expected utility of the policyholder. The results
obtained at Step 1 show that Ä(.) is continuous over R∗−.
When K = 0, the only feasible contract involves RN (θ)= 0 for all θ , which gives

Ä(0)=EU(W − θ). Let us show thatÄ(K ) is continuous at K = 0. Note first thatÄ(K )≥
EU(W + K − θ) since RN (θ)≡ K is feasible.

Let Ä∗(K ) be the optimal expected utility when c= 0, with Ä(K )≤Ä∗(K ). When
c= 0, an optimal contract involves

RA(θ) = RN (θ) = K if θ ≤ θ̂ (K )
RA(θ) = RN (θ) = M + θ if θ > θ̂(K ),

where M = K − θ̂ (K ) and θ̂ (K ) is continuous w.r.t. K . Hence, Ä∗(K ) is continuous over
R−. Since

EU(W + K − θ) ≤ Ä(K ) ≤ Ä∗(K )

and

Ä∗(0) = EU(W − θ)
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we deduce that

Ä(0−) = EU(W − θ),

which implies that Ä(K ) is continuous at K = 0.
Hence Ä(K ) is continuous and reaches a maximum at K ∗ ∈ [−B, 0]. The contract

RN (θ)≡ R̃N (θ, λ(K ∗)K ∗), RA(θ)≡ R̃A(θ, λ(K ∗), K ∗) is optimal.

Proof of (i). As shown in Step 1 above, RN (θ)> K implies RA(θ)= M̃(λ)+ θ > K ,
hence the result with M = M̃(λ). The fact that M is less than K will be established in the
proof of (ii).

Proof of (ii). We know from the proof of Step 1 that at the optimum

RN (θ) = K if H̃(K , θ, λ) ≤ 0

K < RN (θ) < M + θ with H̃(RN (θ), θ, λ) = 0 if H̃(K , θ, λ) > 0

}
(27)

Let us show that there exists θ∗> K −M such that H̃(K , θ∗, λ)= 0. Assume that this is
not the case. We have

H̃(K , K − M, λ) = −λc < 0

H̃1(R, θ, λ) < 0

and

H̃ ′2(R, θ, λ) = −
[U(W + R)−U(W − B)]U ′′(W + R− θ)

U ′(W + R)
+U ′(W + R− θ)− λ,

which implies, by using M = M̃(λ), that H̃ ′2(R, θ)> 0 if R<M + θ .
Hence H̃(R, θ, λ)< 0 if θ ≥ K −M and R≥ K , which gives RN (θ)= K if θ ≥ K −M .

We also have RN (θ)= K if θ < K −M . This means that the optimal contract provides no
insurance (that is, RN (θ)= K and p(θ)= 0 for all θ is optimal) hence a contradiction. The
characterization of RN (.) follows from (27) and H̃ ′2> 0.

It remains to show that θ∗> 0. Let ω(θ) a Kuhn-Tucker multiplier associated with (25).
The optimality conditions on RN (θ) and K are respectively

φ′1(θ)H̃(RN (θ), θ, λ)+ ω(θ) = 0 for all θ (28)

∫
2

φ2(θ){U(W + M)−U(W + RN (θ)− θ)− λ[M + θ + c − RN (θ)]} dF(θ)

−
∫
2

ωN (θ) dθ = 0 (29)
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with M = M̃(λ). Note that, without loss of generality, we have assumed RA(θ)=M + θ
for all θ . Indeed, when RN (θ)= K , we have p(θ)=φ(K , K )= 0 and RA(θ) is arbitrary
in such a case.

Integrating (28) multiplied by φ′2(θ)/φ
′
1(θ) over 2 and substracting the result from (29)

gives ∫
2

[1− p(θ)]φ′2(θ)
φ′1(θ)

[U ′(W + RN (θ)− θ)− λ] dF(θ)

+
∫
2

ω(θ)[φ′2(θ)+ φ′1(θ)]
φ′1(θ)

dθ = 0. (30)

If ω(θ)> 0, then RN (θ)= K and φ′2(θ)= −φ′1(θ). Hence (30) and M = M̃(λ) give∫
2

[1− p(θ)]φ′2(θ)
φ′1(θ)

[U ′(W + RN (θ)− θ)−U ′(W + M)] dF(θ) = 0, (31)

which implies∫ θ∗

0

φ′2(θ)
φ′1(θ)

[U ′(W + K − θ)−U ′(W + M)] dF(θ)

=
∫ θ̄

θ∗+

[1− p(θ)]φ′2(θ)
φ′1(θ)

[U ′(W + M)−U ′(W + RN (θ)− θ)] dF(θ).

 (32)

The right-hand side of (32) is positive because of the concavity of U (.). Assume that
θ∗ = 0. Since there is a mass of probability at θ = 0, (32) implies K >M , which contradicts
the fact that RA(θ)=M + θ > K for all θ > θ∗. Hence we have θ∗> 0. If M ≥ K , we
have U ′(W + K − θ)−U ′(W +M)> 0 for all θ in [0, θ∗]. We deduce that the left-hand
side of (32) is negative, which is a contradiction. Hence, we have M < K .

Proof of (iii). Let η(θ)=M + θ − RN (θ) for θ > θ∗ given by

H̃(M + θ − η(θ), θ, λ) = 0

η(θ) is strictly positive. It is continuous since H(R, θ, λ) is almost everywhere continuously
differentiable over (K ,+∞)×2× R+ and η(θ∗)=M + θ∗ − K since H(K , θ∗, λ)= 0.
We also have

R′N (θ) = 1− η′(θ) = − H̃ ′2(RN (θ), θ, λ)

H̃ ′1(RN (θ), θ, λ)
> 0.

Let

ψ(R, K ) ≡ 1− φ(R, K )

φ′1(R, K )
= U(W + R)−U(W − B)

U ′(W + R)
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with ψ ′1(R, K )> 0. We have

H̃(RN (θ), θ, λ) = ψ(RN (θ), K )[U ′(W + M − η(θ))− λ]+U (W + M)

−U (W + M − η(θ))− λ[c + η(θ)] = 0 if θ > θ∗, (33)

which implies

[U ′(W + M − η(θ))− λ]ψ ′1(RN (θ), K )R′N (θ)

= [ψ(RN (θ), K )U ′′(W + M − η(θ))−U ′(W + M − η(θ))+ λ]η′(θ). (34)

The left-hand side of (34) is strictly positive when θ > θ∗, since R′N (θ)> 0, ψ ′1(RN (θ), K )
> 0 and U ′(W + M − η(θ))>U ′(W + M)= λ. The term into brackets in the right-hand
side is strictly negative. Hence η′(θ)< 0.

Finally, we have

U(W + M)−U(W + M − η(θ))− λ[c + η(θ)] ∈ [A, B] for all θ > θ∗,

with

A = −λ[c + η(θ∗)]
B = U(W + M)−U(W + M − η(θ∗)).

When U (.) is CARA, ψ(R, K )→+∞ when R→+∞. Hence (33) implies U ′(W +
M − η(θ))→ λ=U ′(W +M) when θ→∞, which implies η(θ)→ 0 when θ→+∞.

2

Proof of (iv). This results straightforwardly from Lemma 2 and from (ii) and (iii) in
Proposition 2. 2

Proof of Lemma 3

First, observe that there exists θ0 given by (18) and (19) since RN (.) is supposed to be lower
semicontinuous. Furthermore, Proposition 1 shows that the optimal contract satisfies all the
constraints listed in Lemma 3. It remains to show that the contract obtained by maximizing
EU(W f ) subject to these constraints satisfies (3) for all θ, θ̂ such that θ > θ0 and θ̂ 6= θ .

Let C(θ, θ̂) defined by

U(W +C(θ, θ̂)− θ)= [1− p(θ̂)] U (W − θ + RN (θ̂))+ p(θ̂)U (W − θ − B) if θ 6= θ̂

and

U(W + C(θ, θ)− θ)= [1− p(θ)] U (W − θ + RN (θ))+ p(θ)U(W − θ + RA(θ)).

Equation (3) is equivalent to C(θ, θ) ≥ C(θ, θ̂ , ) if θ 6= θ̂ . If U (.) is NIARA, we have
C(θ, θ̂)≤C(θ ′, θ̂ ) for all θ, θ ′, θ̂ such that θ > θ ′, θ̂ 6= θ, θ̂ 6= θ ′.
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Let θ and θ̂ such that θ > θ0 and θ̂ 6= θ . The contract obtained by maximizing EU(W f )
subject to the constraints listed in Lemma 3 is such that

C(θ, θ̂) ≤ C(θ0, θ̂ ) ≤ RN (θ0) ≤ C(θ, θ).

The first above inequality results from θ > θ0, the second one corresponds to (16) and the
third one results from (15) and (18). We obtain C(θ, θ)≥C(θ, θ̂), which proves the desired
result. ¤

Proof of Proposition 3

Proof of (i). Assume that for the optimal contract {RA(.), RN (.), p(.)} there exist 11 ⊂
2,12 ⊂ 2 and a real number M such that for i = 1, 2:1i ⊂ [θ0, θ̄ ],

∫
1i

dF(θ)> 0 and
p(θ)> 0 if θ ∈ 1i .

Assume also that RA(θ)<M + θ if θ ∈ 11 and RA(θ)>M + θ if θ ∈ 12.
Consider another contract {R̄A(.), R̄N (.), p̄(.)} such that p̄(θ)= p(θ) and R̄N (θ)= RN (θ)

for all θ, R̄A(θ)= RA(θ) if θ /∈11 ∪12 and R̄A(θ)= RA(θ)+ εi if θ ∈ 1i for i = 1, 2,
where ε1 and ε2 are small perturbations such that

ε2

∫
12

p(θ) dF(θ) = −ε1

∫
11

p(θ) dF(θ) > 0.

Lemma 3 implies that the new contract remains incentive compatible if ε1 and ε2 are
small enough. Furthermore, the perturbations ε1 and ε2 do not modify the expected profit
of the insurer. Finally, the first-order variation in the policyholder’s expected utility is

dU = ε1

∫
11

p(θ)U ′(W − θ + RA(θ)) dF(θ)

+ ε2

∫
12

p(θ)U ′(W − θ + RA(θ)) dF(θ)

> U ′(W + M)

[
ε1

∫
11

p(θ) dF(θ)+ ε2

∫
12

p(θ) dF(θ)

]
= 0

Hence, the perturbation is feasible and welfare improving, which is a contradiction.

Proof of (ii). Assume θ0= 0. Lemma 3 then implies that the optimal contract maximizes
EU(W f ) subject to Eqs. (2), (4), (6), (15), (16), and (18). This means that the optimal
contract is an optimal solution to P2 (under the additional constraint that θ̃ = 0, but this is
unimportant since θ̃ = 0 at the optimal solution to P2). We conclude that the characterization
of the optimal contract given in Proposition 2 is still valid in this case.

Note that the proof of Proposition 2 does not use the fact that U (.) is CARA except in
the derivation H̃ ′1(R, θ, λ). When U (.) is NIARA, we have

H̃ ′1(R, θ, λ) = [(r(W + R)− r(W + R − θ))U ′(W + R − θ)− λr(W + R)]

× U(W + R)−U(W − B)

U ′(W + R)
,
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where r(W )≡−U ′′(W )/U ′(W ) is the index of absolute risk-aversion. When U (.) is
NIARA, we still have H̃ ′1(R, θ, λ)< 0 for all θ ≥ 0. Hence the proof of Proposition 2
remains valid in this case. 2

Proof of Proposition 4

See Fagart and Picard [1998].
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Notes

1. Some of these questions are formulated by Townsend [1979]: “One might conjecture, based on the results
for deterministic verification, that the probability of verification should be a nonincreasing function of y2

and perhaps should be zero in states with high realizations.” In Townsend’s paper, y2 may be interpreted as
the wealth level of our policyholder: an increase in y2 thus corresponds to a decrease in his level of loss.
Likewise, Mookherjee and Png [1989] note that “the monotonicity of transfers and audit probabilities in the
case without moral hazard, but with three or more possible income levels, remains an open question.”

2. Mookherjee and Png [1989] assume that the consumption of the policyholder can be set to zero if the
latter is detected to have lied. In an insurance context, assuming that feasible penalties are upward bounded is
(hopefully) more realistic. Moreover, this assumption will make the problem much more tractable, particularly
when the policyholder exhibits constant absolute risk aversion.

3. When B is the penalty (in monetary terms) incurred by a policyholder who is prosecuted after having been
caught filing a fraudulent claim, then it may be more realistic to assume that the penalty is paid in addition to
the premium P , since the latter is usually paid at the beginning of the time period during which the insurance
contract is enforced. This assumption is equivalent to ours when the policyholder is affected by a liquidity
constraint. Indeed, in such a case, an optimal contract specifies the largest possible premium compensated
by a large insurance coverage, unless a fraudulent claim is detected by audit. This provides the best incentive
to tell the truth and this does not affect equilibrium net payments.

In this article, for the sake of simplicity, the penalty is supposed to be exogenously given, but optimal
penalities could be characterized in a more general setting. In particular, imposing maximal penalties on
defrauders may not be optimal either because auditing is imperfect (so that innocent policyholders may be
wrongly indicted for loss misrepresentation) or because a policyholder may overestimate his damages in good
faith. Furthermore, the literature on optimal auditing (particularly in the framework of tax compliance games)
has emphasized the fact that very large penalties create incentives for policyholders to bribe auditors, which
also limits the size of optimal penalties.

4. We assume that RN (.) is lower semicontinuous over 2, which guarantees that Arg Min{RN (θ), θ ∈ 2} 6= ∅.
5. Indeed, full insurance with p(θ)= 1 for all θ dominates no-insurance if c is small enough. Hence the no-

insurance contract is not optimal it c is small enough.
6. The reason is the following. If at the optimum v(θ)=U(W − θ − B) for some level of loss θ , then the

type-θ policyholder cannot be penalized in case of misreporting detected by audit. Hence, in such a case,
the only way to deter fraudulent claiming is to verify with probability one all the claims that correspond to
a net indemnity payment larger than −B. This means that the optimal audit policy is deterministic. In such
a case, the insurance premium (which is paid in the no-audit region) would be equal to B. Assumption A is
verified if the optimal net indemnity payment under deterministic auditing is larger than −B for all θ . See
Appendix A for details.
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7. In (i) and (ii), a rigorous formulation is “for almost all θ” “—that is, for all θ except in a zero measure subset
of 2,” instead of “for all θ .” Likewise, “for some θ̂” in (iii) means “in a nonzero measure subset of 2.” We
keep to this loose formulation for the sake of simplicity in the presentation. See Appendix B for details.

8. Note that RA(θ)− respect. RN (θ)− is arbitrary if p(θ)= 0− respect if p(θ)= 1−. Hence, without loss of
generality, we may assume that the optimal contract verifies RA(θ)> RN (θ) for all θ .

9. Remind that RA(θ)> RN (θ) at the optimal contract. Hence dp(θ)< 0 implies dR θ > 0.
10. See Townsend [1979], Bond and Crocker [1997], and Picard [1999].
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