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Optimal Integrated Control and Scheduling of

Networked Control Systems with Communication

Constraints: Application to a Car Suspension

System
Mohamed El Mongi Ben Gaid, Arben Çela and Yskandar Hamam

Abstract— This paper addresses the problem of the optimal
control and scheduling of Networked Control Systems over
limited bandwidth deterministic networks. Multivariable linear
systems subject to communication constraints are modeled in
the Mixed Logical Dynamical (MLD) framework. The trans-
lation of the MLD model into the Mixed Integer Quadratic
Programming (MIQP) formulation is described. This formulation
allows the solving of the optimal control and scheduling problem
using efficient branch and bound algorithms. Advantages and
drawbacks of on-line and off-line scheduling algorithms are
discussed. Based on this discussion, a computationally efficient
on-line scheduling algorithm, which can be seen as a compromise,
is presented and its performance is evaluated. Finally, this
algorithm, called Optimal Pointer Placement (OPP) scheduling
algorithm, is applied to the control and scheduling of a car
suspension system.

Index Terms— Networked Control Systems, Limited Commu-
nication Control, Hybrid Systems, Control and Scheduling Co-
design, Real-Time Scheduling, Active Suspension Control

I. INTRODUCTION

S
HARED communication networks are increasingly being

used to support the information exchange in distributed

control systems. Using a control network has many advan-

tages, such as a higher reliability, an easier deployment and

maintenance. However, many communication networks are

subject to bandwidth constraints (for example Underwater

Acoustic Networks [1] or Wireless Networks [2]). Reasons

behind these resource constraints are multiple. Guaranteeing

deterministic real-time communications induces important re-

strictions on the available bandwidth, especially when the

communication channel is noisy. In other situations, some

nodes of the communication network may be autonomous

and battery-powered. The lifetime of the batteries limits the

energy used in the transmission and thus limits the bandwidth

of the communications. On the other hand, in the automotive

industry, an increasing number of applications are being de-

veloped in order to improve the driving safety and comfort.

These applications need to share and to exchange an important
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amount of information. As a consequence, the local bus is

becoming more and more loaded. Using a more expensive

technology can solve these problems, but components price is

strongly balanced by production cost requirements.

Many approaches were proposed to address the problems

stemming from the use of communication networks in control

loops. Recently, it was shown that considering jointly control

and communication/computation resource allocation leads to

an improvement of the control performance with respect to the

classical approaches, given the same resources ( [3]–[11]).

The experimental study of communication networks char-

acteristics was performed in [12]. It was shown that the

transmission time of a message in the most used networks

can be neglected and that the delays occurring in networked

control loops are mainly due to the contention between the

different messages sent by the nodes of the network. The most

efficient way of reduction of these delays is through the design

of appropriate message scheduling strategies.

Scheduling algorithms for networked control applications

can be classified according to the scheduling policy, which

may be either off-line or on-line. In off-line scheduling al-

gorithms, the order of the different messages is specified at

design time. In on-line scheduling algorithms, the access to the

shared resource (the network) is determined at runtime, based

on the information related to the priorities of the messages

or to the controlled system state. Scheduling algorithms can

also be designed to tackle the scheduling of sensor measures

that are sent to the controller ( [6], [13]) or to address the

scheduling of control commands to the actuators ( [7]–[9]).

The problem of the optimal control and off-line scheduling

was studied in [7]. In the proposed model, the commands are

sent to the actuators through a shared TDMA bus. At each

slot, only one control command can be sent, the remaining

commands for the other actuators are held constant. The choice

of which actuator to update at each slot is handled using the

notion of communication sequence [14]. Only periodic com-

munication sequences were considered. Control commands

and periodic communication sequences are obtained through

the solving of a complex combinatorial optimization problem,

which aims at optimizing a quadratic cost function. This

problem can be treated using the approach developed in [15],

which has the advantage of applying the dynamic program-

ming method leading to a more efficient search heuristics.

On-line scheduling of control commands to the actuators
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was studied in [8]. In the proposed model, it is assumed

that every slot, only one command vector can be sent to an

actuator group, the other control vectors are set to zero. The

stabilization is achieved using a Model Predictive Controller,

which calculates on-line the appropriate control law and the

allocation of the shared bus. The cost function used by the

MPC calculates a weighted sum of the infinity norms of the

states and the control commands over a specified horizon.

The optimization problem solved at each step by the MPC

algorithm was proven to be equivalent to the Generalized Lin-

ear Complementarity Problem [16]. However, setting control

commands to zero can degrade the dynamics of the controlled

continuous time systems, that’s why this approach is mainly

dedicated to discrete-time systems, rather than sampled-data

systems. The receding horizon approach was also addressed

in [9]. The control commands were assumed to belong to a

finite set of values. The solving of the optimization problem

involves the search of the Nearest Neighbor Vector Quantizer,

which may be very complex as the size of the finite set of

control values increases.

In this paper, the problem of the distributed control over de-

terministic real-time networks is addressed. The corresponding

optimal control and scheduling problem is formulated. An ef-

ficient approach for the solving of this problem is proposed. A

model predictive controller based on this problem formulation

is studied and evaluated. In opposition to [8], control signals

that could not be updated are held constant, a quadratic cost

function is used to evaluate the control performance and the

ability of the adaptive scheduling to improve the performance

of sampled-data systems is demonstrated. The on-line solving

of the optimization algorithm is very costly, that’s why a

computationally efficient on-line scheduling algorithm, which

can be seen as a compromise between off-line and on-line

scheduling algorithms, is designed and applied to a typical

example of a distributed control system: the active suspension

of car.

This paper is organized as follows. In section II, the mod-

eling of a multivariable control system with communication

constraints in the Mixed Logical Dynamical framework is

described. Section III addresses the translation of this model

into the Mixed Integer Quadratic Programming Formulation.

The finite-time optimal control and scheduling problem based

on this formulation is then solved. In section IV, a Model

Predictive Controller based on the formulated optimization

problem is designed. In section V, a computationally efficient

algorithm (the Optimal Pointer Placement (OPP) scheduling

algorithm) is proposed and compared to the Model Predictive

Controller. Finally, in section VI, the OPP algorithm is applied

to an active suspension system.

II. PROBLEM FORMULATION

Consider the continuous-time LTI plant described by:

ẋc(t) = Acxc(t) + Bcuc(t) (1)

where xc(t) ∈ R
n and uc(t) ∈ R

m. The plant contains m
distinct actuators which are spatially distributed. The actua-

tors are connected to the main controller through a limited

bandwidth communication network (figure 1).

Plant

Limited bandwidth communication network

Controller

A
m

A1

Fig. 1. A networked control system with communication constraints affecting
the transmission of control commands to the actuators

In order to derive a digital control law, a discrete-time

representation of system (1) at the sampling period Ts is

considered:

x(k + 1) = Ax(k) + Bu(k) (2)

where x(k) = xc(kTs) and u(k) = uc(kTs).
In this article, it is assumed that the pair (A, B) is reachable

and that the full state vector x(k) is available to the controller

at each sampling period.

The communication resource is limited in the sense that,

at each sampling interval, it can carry at most b control

commands, where b ≤ m [4]. In contrast to [7], [9], where

only a control signal can be updated at each slot time (which

is equal to the sampling period), the adopted modeling allows

to specify separately the temporal parameters that are related

to the dynamics of the control system (the sampling period)

and those corresponding to the network capacity (the network

bandwidth), and thus permits to achieve a maximal use of the

available network resources.

The description of the constraints affecting the transmission

of the control commands to the actuators can be performed us-

ing the notion of scheduling function. The scheduling function

δ(k) at the sampling period k is defined by:
{

δi(k) = 1 if ui(k) is updated at instant k
δi(k) = 0 otherwise

Bandwidth limitations can be specified by the following

equality:
m∑

i=1

δi(k) = b (3)

The digital-to-analog converters, which are located at the

actuators, use zero-order-holders to maintain the last received

control commands constant until new control values are re-

ceived. Consequently, if a control command is not updated at

the kth sampling period, then it is held constant. This assertion

can be modeled by the logic formula:

δi(k) = 0 =⇒ ui(k) = ui(k − 1) (4)

Let v(k) ∈ R
b be the vector of control commands that are

sent to the actuators through the network at the kth sampling

period and uf (k) the vector containing the b “free” elements of

u(k) (i.e. the elements of u(k) whose indices i satisfy δi(k) =
1), arranged according to the increasing order of their indices.
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The elements of v(k) are mapped to the b free elements of

u(k) such that:

uf (k) = v(k)

This mapping, together with constraint (4), can be described

by:






ui(k) = vj(k) if δi(k) = 1 and
i∑

l=1

δl(k) = j

ui(k) = ui(k − 1) otherwise
(5)

It can be easily verified that if vj1 and vj2 are mapped to

respectively ui1 and ui2 , than (j1 < j2) implies that (i1 < i2).
The mapping (5) can be written in matrix form. Let

[Dδ(k)]1≤i≤m,1≤j≤b the matrix defined by:







[Dδ(k)]ij = 1 if δi(k) = 1 and
i∑

l=1

δl(k) = j

[Dδ(k)]ij = 0 otherwise

and:

Eδ(k) = Diag (1 − δ1(k), . . . , 1 − δm(k))

then:

u(k) = Dδ(k)v(k) + Eδ(k)u(k − 1)

Conversely, knowing the control input u(k) and the schedul-

ing decision δ(k), the vector of control commands v(k)
that were sent through the network can be determined. Let

[Mδ(k)]1≤i≤b,1≤j≤m the matrix defined by:







[Mδ(k)]ij = 1 if δj(k) = 1 and
j∑

l=1

δl(k) = i

[Mδ(k)]ij = 0 otherwise

then:

v(k) = Mδ(k)u(k) (6)

The control system and its communication network can

be seen as a hybrid system S, having two types of inputs:

continuous inputs v(k) (control commands transmitted through

the network) and logical inputs δ(k) (scheduling decisions)

(figure 2). The considered model of system S is composed of:

• A recurrent equation (2) describing the dynamics of the

system.

• An equality constraint (3) expressing the limitations of

the communication medium.

• Logic rules (5) modeling the zero-order holders and

addressing the mapping of control signals vi that are sent

through the network to control system inputs ui according

to the scheduling decisions δi.

This model can be handled using the Mixed Logical Dynam-

ical (MLD) framework [17].

Networkδ(k)
u(k) x(k)x(k + 1) = Ax(k) + Bu(k)

v(k)

Fig. 2. Hybrid model of the networked control system S

III. FINITE-TIME OPTIMAL CONTROL AND SCHEDULING

In this paragraph, the problem of the finite-time optimal

control and scheduling is formulated and translated into the

Mixed Integer Quadratic Programming (MIQP) formulation.

It is assumed that u(k) = 0 and v(k) = 0 for k < 0, and

that control commands u(k) and v(k) are subject to saturation

constraints:

Li ≤ ui(k) ≤ Ui and Li ≤ vi(k) ≤ Ui

where Li < 0 and Ui > 0.

A. Performance index definition

In order to quantify the “Quality” of the control and schedul-

ing, a quadratic cost function is associated to system (1) :

Jc(xc, uc, 0, Tf) =

Tf∫

0

(
xT

c (t)Qcxc(t) + uT
c (t)Rcuc(t)

)
dt

+ xT
c (Tf )Scxc(Tf )

(7)

where Tf = NTs and Qc, Rc and Sc are positive definite

matrices. These matrices define the design specifications of

the ideal controller. The sampled-data representation of the

cost function Jc(xc, uc, 0, Tf) at the sampling period Ts is:

J(x, u, 0, N) =

N−1∑

k=0

[
x(k)
u(k)

]T [
Q1 Q12

QT
12 Q2

] [
x(k)
u(k)

]

+ xT (N)Q0x(N)
(8)

The expressions of Q1, Q2, Q12 and Q0 can be found in ( [18],

pp. 411–412). Note that this representation does not involve

any approximation and is exact. In the following, it is assumed

that Q, Q2 and Q0 are positive definite matrices, where:

Q =

[
Q1 Q12

QT
12 Q2

]

B. Formalization and solving of the finite-time optimal inte-

grated control and scheduling problem

The finite-time optimal control and scheduling problem can

be formalized as follows:

Problem formulation 1: Given an initial state x(0) and a

final time N , find the optimal control sequence vN−1 =
(v(0), . . . , v(N − 1)) and the optimal scheduling sequence

δN−1 = (δ(0), . . . , δ(N − 1)) which minimize the perfor-

mance index:

J(x, u, 0, N) =
N−1∑

k=0

[
x(k)
u(k)

]T

Q

[
x(k)
u(k)

]

+xT (N)Q0x(N)

subject to:

x(k + 1) = Ax(k) + Bu(k)
m∑

i=1

δi(k) = b

u(k) = Dδ(k)v(k) + Eδ(k)u(k − 1)

Li ≤ vi(k) ≤ Ui
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System S is time varying and the problem of finding the

optimal control sequence vN−1 for a given fixed scheduling

sequence δN−1 is a quadratic programming (QP) problem.

The number of possible scheduling sequences is finite. The

resolution of problem 1 is reduced to the exploration of all the

feasible scheduling sequences and the solving of a QP problem

for each fixed scheduling sequence. However, in practice, the

number of feasible scheduling sequences grows exponentially

with N , which means that exhaustive search cannot be applied

to problems with large values of N .

The solution of problem 1 can be obtained through the

solving of a simpler optimization problem, which can be seen

as a constrained control problem, where the variables vN−1

are eliminated and the constraint (5) is replaced by (4). Let

uN−1 = (u(0), · · ·u(N − 1)), this problem can be stated as

follows:

Problem formulation 2: Given an initial state x(0) and a

final time N , find the optimal control sequence uN−1 and

the optimal scheduling sequence δN−1 which minimize the

performance index:

J(x, u, 0, N) =
N−1∑

k=0

[
x(k)
u(k)

]T

Q

[
x(k)
u(k)

]

+xT (N)Q0x(N)

subject to:

x(k + 1) = Ax(k) + Bu(k)
m∑

i=1

δi(k) = b

δi(k) = 0 =⇒ ui(k) = ui(k − 1)

Li ≤ vi(k) ≤ Ui

In order to solve this problem, it is necessary to translate

the logical formula (4) into linear inequalities. The connective

“=⇒” can be eliminated if (4) is rewritten in the equivalent

form:

ui(k) − ui(k − 1) = δi(k)ui(k) − δi(k)ui(k − 1) (10)

However, equation (10) contains terms which are the product

of logical variables and continuous variables. The use of the

procedure described in [17] allows the translation of this

product into an equivalent conjunction of linear inequalities.

For example, let:

zi(k) = δi(k)ui(k) (11)

Then (10) can be rewritten in the equivalent form:

zi(k) ≤ Uiδi(k)
zi(k) ≥ Liδi(k)
zi(k) ≤ ui(k) − Li(1 − δi(k))
zi(k) ≥ ui(k) − Ui(1 − δi(k))

(12)

Note that the same procedure can be applied to wi(k) =
δi(k)ui(k − 1).

Let ∆ =





δ(0)
...

δ(N − 1)



, U =





u(0)
...

u(N − 1)



, X =





x(0)
...

x(N)



,

Z =





z(0)
...

z(N − 1)



, W =





w(0)
...

w(N − 1)



 and V =








∆
U
X
Z
W








,

then problem 2 can be written:
{

min
V

1
2V

T HV + fTV

AV ≤ B
(13)

where H , f , A, and B can be easily deduced form the

discussion above. Problem (13) is a Mixed-Integer Quadratic

Program. The advantage of this formulation is the existence

of many efficient academic and commercial solvers, based on

the branch and bound algorithm.

Problem 1 is identical to problem 2 augmented with the

additional constraint: v(k) = uf (k). As a consequence, the

optimal solutions of problem 1 can be deduced from the

optimal solutions of problem 2 using the mapping (6).

IV. MODEL PREDICTIVE CONTROL

Open-loop optimization problems constitute the cornerstone

of a successful control method: the model predictive control

(MPC). MPC has strong theoretical foundations, and many

interesting properties which make it suitable to address con-

strained control problems. However, its main drawback is that

it requires very expensive computing resources, which make

it only applicable to slow systems, like chemical processes.

Model predictive control is the standard approach to control

MLD systems. Its application to this particular problem was

motivated by:

• The need to optimize simultaneously control actions and

network scheduling, in order to achieve a better quality

of control than the static network allocation schemes.

• The need for a control law that changes on-line the

sampling period in order to improve the quality of control.

This requires that these variations are taken into account

by the control law [19].

Using Model Predictive Control, an optimal control problem

is solved on-line at each sampling period. It aims at finding

the optimal control values sequence ûN−1 = (û(0), ..., û(N −
1)) and the optimal network allocation sequence δ̂N−1 =
(δ̂(0), ..., δ̂(N − 1)) which are solutions of the following

optimization problem:






min
ûN−1,δ̂N−1

N−1∑

h=0

[
x̂(h)
û(h)

]T

Q

[
x̂(h)
û(h)

]

+ x̂T (N)Q0x̂(N)

subject to:

x̂(0) = x(k)
x̂(h + 1) = Ax̂(h) + Bû(h) , h ∈ [0, N − 1]
m∑

i=1

δ̂i(h) = b , h ∈ [0, N − 1]

δ̂i(0) = 0 =⇒ ûi(0) = ui(k − 1)

δ̂i(h) = 0 =⇒ ûi(h) = ûi(h − 1) , h ∈ [1, N − 1]
(14)

The solution of this problem is based on the prediction of the

future evolution of the system over a horizon of N sampling

periods. This predicted evolution is calculated according to

the model of the plant, knowing the current state x(k) of the
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system and the previously applied control input u(k−1). The

variables x̂(h), h ∈ [0, N ] represent the predicted values of

system states x(k + h). The sequences (û(0), ..., û(N − 1))
(virtual control sequence) and (δ̂(0), ..., δ̂(N − 1)) (virtual

network allocation sequence) are called virtual sequences,

because they are based on the predicted evolution of the

system. The resolution of this problem aims at finding the

optimal virtual control sequence (û∗(0), ..., û∗(N−1)) and the

optimal virtual network allocation (δ̂∗(0), ..., δ̂∗(N−1)) which

minimize a quadratic cost function over a finite horizon of N
sampling periods. Assuming that the optimal virtual sequences

exist, the actual control commands are obtained by setting:

v(k) = M
δ̂∗(0)û∗(0) (15)

and:

δ(k) = δ̂∗(0) (16)

and disregarding the remaining elements of the sequences

(û∗(1), ..., û∗(N −1)) and (δ̂∗(1), ..., δ̂∗(N −1)). At the next

sampling period (step k+1), the whole optimization procedure

is repeated, based on x(k + 1).
A important issue concerns the stability of the proposed

Model Predictive Controller. If the following constraint is

added to problem (14):

x̂(N) = 0 (17)

the following result is obtained:

Theorem 1: If at k = 0, a feasible solution exists for the

problem (14) augmented with the additional constraint (17),

then ∀Q = QT > 0, the MPC law (14)(17) stabilizes the

system S such that:

lim
k→∞

x(k) = xe = 0 and lim
k→∞

u(k) = ue = 0

Proof: The proof can be easily performed following the

same ideas of the proof of the sufficient stability conditions for

the Model Predictive Control of MLD systems stated in [17].

Although the application of this technique gives very good

results (as it will be illustrated in the next section), its major

drawback is that it requires very expensive computational

resources, which makes its application to fast systems imprac-

ticable. A more efficient heuristics are needed.

V. OPTIMAL POINTER PLACEMENT SCHEDULING

The motivation behind the Optimal Pointer Placement

(OPP) scheduling algorithm presented in this section is to be a

compromise between the advantages of the on-line scheduling

(control performance) and those of the off-line scheduling (a

very limited usage of computing resources).

A. Algorithm description

First, a time varying state representation of system S is

derived. Let ξ(k) = u(k−1) and x̃(k) =

[
x(k)
ξ(k)

]

. For a fixed

scheduling function δ verifying the constraint (3), the system

S can be represented by the time-varying state equation:

x̃(k + 1) = Ã(k)x̃(k) + B̃(k)v(k) (18)

where:

Ã(k) =

[
A BEδ(k)
0 Eδ(k)

]

and B̃(k) =

[
BDδ(k)
Dδ(k)

]

Assume that a periodic off-line controller as well as a

periodic off-line schedule (both of period T ) guaranteeing the

asymptotic stability of the system exist. The periodic controller

is defined by a periodic sequence of state feedback control

gains KT−1 = (K(0), . . . , K(T −1)) and the schedule by the

periodic communication sequence γT−1 = (γ(0), . . . , γ(T −
1)). Note that optimal KT−1 and γT−1 selection is described

in [7] (considering worst case initial conditions) and in [15]

(according to LQG arguments).

At runtime, the execution of the periodic off-line controller

and scheduler can be described using the notion of pointer. The

pointer can be seen as a variable which contains the index of

the control gain to use and the scheduling to apply. The pointer

is incremented at each sampling period. If it reaches the end

of the sequence, its position is reset. More formally, if the

pointer is started at position p (0 ≤ p < T ) its expression

Ip(k) at the kth sampling period is:

Ip(k) = (k + p) mod T (19)

According to the off-line strategy, the control commands that

are sent and the scheduling decisions are chosen such that:

v(k) = K(Ip(k))x̃(k) and δ(k) = γ(Ip(k))

The idea behind the OPP scheduling heuristic is that instead

of finding an optimal solution to problem (14), the search is

restricted to the finding of a sub-optimal solution, based on an

optimal off-line schedule, over a horizon N (which is assumed

to be a multiple of T ), according to the following problem:







min
p

N−1∑

h=0

[
x̂(h)
û(h)

]T

Q

[
x̂(h)
û(h)

]

+ x̂T (N)Q0x̂(N)

subject to:

x̂(0) = x(k)
û(−1) = u(k − 1)
and for all h ∈ [0, N − 1]

v̂(h) = K(Ip(h))

[
x̂(h)

û(h − 1)

]

û(h) = Dγ(Ip(h))v̂(h) + Eγ(Ip(h))û(h − 1)
x̂(h + 1) = Ax̂(h) + Bû(h)

(20)

The cost function is calculated according to a prediction of

the future evolution of the system (described by x̂(h)). This

evolution is calculated assuming that sequences KT−1 and

γT−1 are started from position p. The solution of problem (20)

is the pointer’s position p∗ which minimizes the cost function

Ĵ(x̃(k), p), subject to the constraints expressed above, where:

Ĵ(x̃(k), p) =
N−1∑

h=0

[
x̂(h)
û(h)

]T

Q

[
x̂(h)
û(h)

]

+ x̂T (N)Q0x̂(N)

The control command v(k) = K(p∗)x̃(k) is sent according to

the scheduling function δ(k) = γ(p∗).
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B. A numerical example

In order to illustrate the proposed approach and to study the

interdependency between control and scheduling, especially

the relationship between the state vector of the plant and the

network allocation, consider the continuous-time LTI system

described by the state and input matrices:

Ac =

[
Ac1

0
0 Ac2

]

, Bc =

[
Bc1

0
0 Bc2

]

where:

Ac1
= Ac2

=

[
0 130

−800 10

]

and Bc1
= Bc2

=

[
0

230

]

The system consists of two identical and independent subsys-

tems (S1 and S2), which are open-loop unstable. A scalar

control input is used in order to stabilize each subsystem.

The control commands are sent to the actuators through a

bus characterized by a slot time of 2 ms. Design criteria

of the closed loop system are defined by matrices Qc =
Sc = Diag(100, 10, 100, 10) and Rc = Diag(1, 1). In fact,

in opposition to the ideal case (corresponding to an infinite

network bandwidth), the limited bandwidth of the network in-

troduces a coupling between the different systems. This makes

the impact of scheduling decisions on control performance

very significant. The control performance corresponding to the

use of a static scheduling (SS) algorithm, an OPP scheduling

algorithm and a model predictive controller is compared.

Static scheduling and OPP algorithms use the communication

sequence γ1 which together with the controller K1 = (K, K)
guarantees the asymptotic stability of the system, where:

γ1 =

([
1
0

]

,

[
0
1

])

and K = [−1.1688 1.0609]

The period T of the schedule is equal to 2 and the horizon N
of the OPP and MPC algorithms is equal to 14. A sub-optimal

solution with a relative error of 1×10−5 was required for the

MPC algorithm. System responses corresponding to state vari-

ables x1 and x3 (i.e. systems outputs) are depicted in figures 3

and 4. The continuous-time cost functions corresponding to

these responses are illustrated in figure 5.

The global system is started from the initial state

[1 0 − 0.2 0]
T

. Subsystems S1 and S2 converge progres-

sively to the steady state. At t = 20 ms, system S1 is dis-

turbed. This deviation is quickly corrected. The best response

is achieved by the model predictive controller. However, this

algorithm cannot be implemented in practice, because the re-

quired computation time is too long (hundreds of milliseconds

at each step in this example). For N = 14, the number of

feasible communication sequences is 214 = 16384. The fact

that the used branch and bound algorithm finishes in less

than one second shows its efficiency to address this particular

problem. The OPP algorithm significantly improves the control

performance with respect to the static scheduling algorithm,

requiring fewer computing resources than the MPC. In fact,

using OPP, the maximum number of possible communication

decisions is equal to T = 2.

The schedule obtained by the OPP and MPC algorithms

are respectively depicted in figures 6 and 7. The MPC has the

ability to change on-line the sampling period of each subsys-

tem, and to compensate for these changes. Consequently, the

scheduling pattern is irregular. Network slots are allocated in

order to improve the control performance. When a system is

closer to the equilibrium, then its control commands remains

constant and they may be sent less frequently over the network.

That’s why the MPC algorithm does not allocate network slots

to systems in the equilibrium, when other systems are “far”

from the steady state. At t = 20 ms, when the subsystem S1

is disturbed, OPP and MPC algorithms allocates the network

slots mainly for the transmission of the control command

u1, allowing to react earlier and quicker to the disturbance.

This contrasts with the static scheduling algorithm, where the

allocation of the network resources is independent from the

dynamical state of the systems.

Finally, the two subsystems are disturbed with a band

limited white noise characterized by a noise power of 0.1 and

a correlation time of 1×10−5. Simulation results are depicted

in figure 8. Performance improvements using the OPP and the

MPC algorithms are similar to those observed in the previous

simulations.

C. Optimal infinite horizon control given a periodic schedul-

ing function

In a wide category of networked control applications, es-

pecially those constructed for time-triggered networks (like

TT-CAN, TTP/C,...), off-line schedules are periodic. An in-

teresting property which is induced by the periodicity is that

the solution of the Riccati equation associated with an infinite

horizon optimal control problem will converge to a periodic

solution if the controllability of system (18) is fulfilled [7].

This observation leads to an interesting simplification of the

OPP scheduling algorithm. In the following we describe how

the periodic optimal controller can be obtained given a fixed

periodic communication sequence, guaranteeing the controlla-

bility of the system. A method for selecting communication

sequences that guarantee the controllability was proposed

in [20].

Assume that the scheduling function is periodic and verifies

δ(k + T ) = δ(k), where T is period of the schedule. In

addition, suppose that δ ∈ Sc, where Sc is the set of

scheduling functions such that the system (18) is controllable.

A periodic scheduling function δ can be described by the

communication sequence δT−1 = (δ(0), · · · , δ(T − 1)). As

a consequence of the periodicity of the scheduling function,

the networked control system S is periodic and the matrices

Ã and B̃ verify Ã(k + T ) = Ã(k) and B̃(k + T ) = B̃(k).
The cost function J(x, u, 0, N) can be written:

J(x, u, 0, N) =J(x̃, v, 0, N) = x̃T (N)Q̃0x̃(N)

+

N−1∑

k=0

[
x̃(k)
v(k)

]T

Q̃(k)

[
x̃(k)
v(k)

]

where:

Q̃(k) =





Q1 Q12Eδ(k) Q12Dδ(k)
ET

δ (k)QT
12 ET

δ (k)Q2E
T
δ (k) ET

δ (k)Q2Dδ(k)
DT

δ (k)QT
12 DT

δ (k)Q2Eδ(k) DT
δ (k)Q2Dδ(k)
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Fig. 8. Cumulative continuous time cost functions

and:

Q̃0 =

[
Q0 0 0
0 0 0
0 0 0

]

Let τ be a discrete time instant, assume that N = τ + HT
and consider the optimal control problem:







min
v

J(x̃, v, τ, N) =
N−1∑

k=τ

[
x̃(k)
v(k)

]T

Q̃(k)

[
x̃(k)
v(k)

]

+ x̃T (N)Q̃0x̃(N)

Subject to:

x̃(k + 1) = Ã(k)x̃(k) + B̃(k)v(k)
(21)

As illustrated in [21], a time invariant reformulation of the

optimal control problem (21) can be obtained using the lifting

technique. The time invariant reformulation can be seen as a

down sampled representation of system (18) with periodicity

T , having an augmented input vector. In the following, the

formulation of the time invariant representation is described.

Let Φ be the transition matrix associated with the state

matrix Ã. Φ is defined by:
{

Φ(r, s) = Ã(r − 1)Ã(r − 2) · · · Ã(s) if r > s
Φ(r, r) = I

and Γ the matrix defined by:






Γ(r, s) = [Φ(r, s + 1)B̃(s) Φ(r, s + 2)B̃(s + 1) · · ·

Φ(r, r)B̃(r − 1) 0 · · · 0
︸ ︷︷ ︸

T−r−s

] for s < r ≤ s + T

Γ(s, s) = [0 · · · 0]

Let x̄τ (q) = x̃(τ+qT ) and v̄τ (q) =





v(τ + qT )
...

v(τ + (q + 1)T − 1)



,

then for 0 ≤ i ≤ T :

x̃(τ + qT + i) = Φ(τ + i, τ)x̄τ (q) + Γ(τ + i, τ)v̄τ (q)

In particular, let Āτ = Φ(τ + T, τ) and B̄τ = Γ(τ + T, τ),
then the following relation is obtained:

x̄τ (q + 1) = Āτ x̄τ (q) + B̄τ v̄τ (q)

Let Λ(i) the matrix defined for 0 ≤ i < T by:

Λ(i) = [0 · · · 0
︸ ︷︷ ︸

i

Ib 0 · · · 0
︸ ︷︷ ︸

T−i−1

]

then the cost function can be written:

J(x̃, v, τ, N) = J(x̄τ , v̄τ , 0, H) = x̄T
τ (H)(Q̄τ )0x̄τ (H)

+

H−1∑

q=0

[
x̄τ (q)
v̄τ (q)

]T

Q̄τ

[
x̄τ (q)
v̄τ (q)

]

where:

Q̄τ =

T−1∑

i=0

FT (i)Q̃(τ + i)F (i)

F (i) =

[
Φ(τ + i, τ) Γ(τ + i, τ)

0 Λ(i)

]
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and (Q̄τ)0 = Q̃0. Finally, the following optimal control

problem is obtained:






min
v̄τ

J(x̄τ , v̄τ , 0, H) = x̄T
τ (H)(Q̄τ)0x̄τ (H)

+
H−1∑

q=0

[
x̄τ (q)
v̄τ (q)

]T

Q̄τ

[
x̄τ (q)
v̄τ (q)

]

subject to:

x̄τ (q + 1) = Āτ x̄τ (q) + B̄τ v̄τ (q)
(22)

Let S̄τ the solution of the Riccati equation associated with

problem (22). Optimal control problems (21) and (22) are

coincident. Consequently, as pointed in [21], the performance

indices must be the same, which implies that the solutions of

the Riccati equation associated with the two problems must

be equal, thus S̃(τ + qT ) = S̄τ (q), for 0 ≤ q ≤ H . As a

result, when H → +∞, S̄τ (q) will converge to a constant

solution S̄τ , consequently, S̃(k) will converge to a periodic

solution. This periodic solution can be obtained by solving

the algebraic Riccati equation associated with problem (22)

when H → +∞. The optimal periodic control gains can be

described by the sequence
(

K̃(0), . . . , K̃(T − 1)
)

.

D. OPP scheduling over an infinite horizon

If the horizon N is infinite, the OPP scheduling algorithm

presents interesting properties : its implementation becomes

simpler and a formal proof of its stability can be given.

Moreover, it can also be proven that OPP always improves the

performance with respect to the static scheduling algorithm.

Knowing that Ĵ(x̃(k), p) = x̃T (k)S̃(p)x̃(k), the implementa-

tion of the OPP scheduling algorithm is simpler and can be

described as follows:

Find p∗ = argmin
p

x̃T (k)S̃(p)x̃(k)

v(k) = K̃(p∗)x̃(k) and δ(k) = γ(p∗)

For N = +∞, the stability of the OPP scheduling algorithm

is stated in the following theorem:

Theorem 2: If the asymptotic stability of system S is guar-

antied by the off-line control and scheduling using the control

gains sequence K̃T−1 and the network scheduling sequence

γT−1, than it is also ensured by the Optimal Pointer Placement

scheduling algorithm.

Proof: The proof is based on the comparison of the

trajectory of the system scheduled by the static scheduling

algorithm (denoted by x̃ss) and that of the system scheduled

by the OPP algorithm (denoted by x̃opp), starting from the

same arbitrary initial condition x̃ss(0) = x̃opp(0) = x̃(0).
Let Jss(x̃(i), i, f, p) be the cost function corresponding to an

evolution from instant k = i to instant k = f starting from

the state x̃(i) where the static scheduling algorithm is applied

and where the pointer at instant i is placed at position p.

Jss(x̃(i), i, f, p) =

f
∑

k=i

[
xss(k)
uss(k)

]T

Q

[
xss(k)
uss(k)

]

Let Jopp(x̃(i), i, f) be the cost function corresponding to an

evolution from instant k = i to instant k = f starting from

the state x̃(i) where the OPP algorithm is applied.

Jopp(x̃(i), i, f) =

f
∑

k=i

[
xopp(k)
uopp(k)

]T

Q

[
xopp(k)
uopp(k)

]

In order to prove the stability of the system scheduled using the

OPP algorithm, we must prove that for all p0 ∈ {0, · · · , T−1}

Jopp(x̃(0), 0, +∞) ≤ Jss(x̃(0), 0, +∞, p0) (23)

In fact, Q is definite positive. As a consequence,

Jss(x̃(0), 0, +∞, p0) (resp. Jopp(x̃(0), 0, +∞)) is finite if

and only if the system scheduled using the static scheduling

algorithm (resp. the OPP algorithm) is asymptotically stable.

Let Jopp−ss(x̃(0), l) be the cost function corresponding to an

evolution starting from the initial state x̃(0) where OPP is

applied form k = 0 to k = l and then followed by the static

scheduling algorithm (which is applied from k = l + 1 to

k = +∞). Then it is easy to see that:

Jopp(x̃(0), 0, +∞) = lim
l→+∞

Jopp−ss(x̃(0), l) (24)

Consequently, to proove (23), it is sufficient to verify that for

all p0 ∈ {0, · · · , T − 1} and for all l ∈ [0, +∞) :

Jopp−ss(x̃(0), l) ≤ Jss(x̃(0), 0,∞, p0) (25)

This proof can be done by recurrence on l. Let p0 ∈
{0, · · · , T −1} an arbitrary start position of the static schedul-

ing algorithm.

At the stage l = 0, the OPP scheduling algorithm will choose

the pointer position such that:

p∗(0) = argmin
p

Jss(x̃(0), 0, +∞, p) (26)

Knowing that Jss(x̃(0), 0, +∞, p∗(0)) = Jopp−ss(x̃(0), 0)
implies that Jopp−ss(x̃(0), 0) ≤ Jss(x̃(0), 0, +∞, p0). The

property is then valid at stage 0.

Assume that (25) is valid at stage l − 1 with l > 0. We have

to prove that (25) is also valid at stage l.
At stage l, according to the OPP strategy, the pointer position

p∗(l) will be chosen such that:

p∗(l) = argmin
p

Jss(x̃opp(l), l, +∞, p) (27)

Consequently:

Jss(x̃opp(l), l, +∞, p∗(l)) ≤ Jss(x̃opp(l), l, +∞, Ip∗(l−1)(1))
(28)

where p∗(l−1) is the optimal pointer position at instant l−1.

Adding Jopp(x̃(0), 0, l− 1) to both left and right terms of the

previous inequality, we get:

Jopp−ss(x̃(0), l) ≤ Jopp−ss(x̃(0), l − 1) (29)

Using the recurrence assumption:

Jopp−ss(x̃(0), l − 1) ≤ Jss(x̃(0), 0,∞, p0) (30)

and the inequality (29), the theorem is proved.
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VI. OPTIMAL POINTER PLACEMENT SCHEDULING:

APPLICATION TO A CAR SUSPENSION SYSTEM

In this section, the OPP scheduling algorithm is applied

to an active suspension controller. The considered controller

is based on a full-vehicle model and is implemented on a

central processor. The controller sends the control commands

to four hydraulic actuators located on the vehicle’s corners

through a bus subject to bandwidth limitations. In the follow-

ing, the considered active suspension model is described, the

control design methodology is illustrated and finally the OPP

scheduling strategy is evaluated and compared to a fair static

scheduling strategy.

A. The suspension control system

The simulated model (figure 9) was adopted from [22]. It

consists of a seven degree-of-freedom system. In this model,

the car body, or sprung mass, is free to heave, roll and pitch.

In order to obtain a linear model, roll and pitch angles are

assumed to be small. The suspension system connects the

sprung mass to the four unsprung masses (front-left, front-

right, rear-left and rear-right wheels), which are free to bounce

vertically with respect to the sprung mass. The suspension

system consists of a spring, a shock absorber and a hydraulic

actuator at each corner. The shock absorbers are modeled as

linear viscous dampers, and the tires are modeled as linear

springs in parallel to linear dampers.

x
′
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x
′

15

Vξ4
xξ4

Mu
x11

x8

x4

Mu

Vξ1
xξ1
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x10

x
′

14

xξ3x1

x7

Mu

x5

x9

x
′

13

Vξ2
xξ2

x3

x2

Vξ3

Fig. 9. Full vehicule model

In order to describe this system, fifteen variables need

to be considered. These variables are the heave, pitch and

roll velocities of the sprung mass (x1, x2, x3), suspension

deflections (x4, x5, x6, x7), unsprung mass velocities (x8,

x9, x10, x11) and tire deflections (x
′

12, x
′

13, x
′

14 and x
′

15).

Road disturbances acting on the four wheels consist of height

displacement inputs (xξ1
, xξ2

, xξ3
, xξ4

) and height velocity

inputs (Vξ1
, Vξ2

, Vξ3
, Vξ4

) defined with respect to an inertial

reference frame. The suspension model has seven degrees

of freedom. Consequently, only fourteen state variables are

needed to describe it. The extra variable car be eliminated if

the wheel deflections are expressed as a function of three state

variables x12, x13 and x14 and of the road disturbances xξ1
,

xξ4
, xξ3

, xξ4
as illustrated in [22].

Applying a force-balance analysis to the model in figure 9,

the state space equations can be derived from the equations of

motion and are given by:

ẋ(t) = Ax(t) + Bu(t) + Ld(t) (31)

where x(t) is the state vector (14 variables), u(t) is the

control vector (u(t) = [u1(t) u2(t) u3(t) u4(t)]
T ). u1, u2,

u3 and u4 represent the control forces applied respectively

by the front-left, rear-left, rear-right and front-right hydraulic

actuators. d(t) is the vector of road disturbances d(t) =
[xξ1

(t) xξ2
(t) xξ3

(t) xξ4
(t) Vξ1

(t) Vξ2
(t) Vξ3

(t) Vξ4
(t)]T

B. Active suspension control law

The control design for a vehicle’s active suspension aims to

maximize the driving comfort (as measured by sprung mass

accelerations) and the safety (as measured by tire load varia-

tions) under packaging constraints (as measured by suspension

deflections). However, comfort and safety are two conflicting

criteria. In this paper, the control design methodology of [22]

was adopted. The used controller is a linear quadratic regulator

which aims at minimizing the sprung mass accelerations

(heave, roll and pitch accelerations) as well as suspension

deflections, unsprung mass velocities and the wrap torque

acting on the sprung mass. The details of this control design

method are clearly exposed in [22].

C. Simulation setup and results

The communication network connecting the controller to

the actuators is subject to communication constraints: only a

control command can be sent to an actuator every 10 ms. A

simple approach to tackle this problem is to send the control

commands alternately according to the periodic communica-

tion sequence:

γ3 =

0BBBBBBBBB�26666666664 1
0
0
0

37777777775,

26666666664 0
1
0
0

37777777775,

26666666664 0
0
1
0

37777777775,

26666666664 0
0
0
1

377777777751CCCCCCCCCA
Using this communication sequence, the discretized model

of the controlled car suspension system becomes periodic. Ap-

plying the methodology described in section V, paragraph C,

the optimal periodic control gains
(

K̃(0), K̃(1), K̃(2), K̃(3)
)

can be derived.

The suspension system is evaluated by subjecting the left

side of the vehicle to a “chuck hole” discrete road distur-

bance [22], in which the road elevation falls linearly by 5 cm

over a distance of 76 cm, remains at that elevation for the next

76 cm, and then returns back linearly to the original level over

the next 76 cm. The vehicle speed is equal to 40 km/h. First,

the performance of the designed active suspension controller

is evaluated and compared to the passive suspension. Then,

the performance of the OPP algorithm is compared to that

obtained by the application of the static scheduling algorithm.

OPP and the static scheduling algorithm are both based on the

communication sequence and control gains described above.

Heave, roll and pitch velocity responses are illustrated in

figures 10, 11 and 12.
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Fig. 10. Heave velocity of the passive and active
suspension (controlled with the static scheduling
and the OPP algorithms)
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Fig. 11. Roll velocity of the passive and active
suspension (controlled with the static scheduling
and the OPP algorithms)
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Fig. 12. Pitch velocity of the passive and active
suspension (controlled with the static scheduling
and the OPP algorithms)

From these simulation results, it can be seen that the

active suspension induces an important improvement of the

ride performance compared to the passive suspension (smaller

and better damped velocities and thus accelerations). The

responses using the OPP algorithm show a slight improvement

with respect to the static scheduling (SS) algorithm. The

improvements in ride comfort shown by the active suspension

are obtained with suspension and tire deflection levels which

are close to those obtained with the passive suspension.

Finally, the quadratic cost functions corresponding to the

ideal continuous time LQR controller, the static scheduling

algorithm and the OPP scheduling algorithm are evaluated.

The steady state cost function values corresponding to the

static scheduling, OPP and to the ideal implementation are

respectively equal to 4459, 4122 and 3290. Consequently, the

improvements in terms of quality of control that were achieved

by the OPP algorithm are equal to 28.8%. These improvements

are significant, but not as “spectacular” as those observed in

the previous example because the different components of the

suspension system are tightly coupled: a disturbance affecting

a single wheel influences all the state variables of the system.

D. Real-time implementation aspects of the OPP over infinite

horizon algorithm

The OPP over infinite horizon algorithm requires the on-

line evaluation of T quadratic functions of the extended state

vector x̃. The computational complexity is linear with respect

to the length of the sequence, quadratic with respect to the

extended state (like a classical state-feedback control law)

and independent of the size of the horizon. In the case of

the suspension example, the additional computational require-

ments of OPP are approximately 4.3 times those required by

the state feedback operation u(k) = K(p)x̃(k). Using OPP

follows the idea of trading additional computations for a more

efficient use of network resources [23]. Further reducing the

computational requirements is a both a difficult and interesting

research issue. The application of multi-parametric program-

ming techniques to the optimal control of hybrid systems have

been recently considered [24]. In [25], an approximate solution

to the model predictive control of linear systems with input

and state constraints was proposed. This method is based on

the partitioning the state space onto hypercubes which may

be further partitioned in order to meet on the cost function

approximation error bounds and constraints violations bounds.

By imposing an orthogonal search tree on the partition, the

on-line computational requirements are significantly reduced

with respect to the true optimal explicit MPC law. The search

method is logarithmic with respect to the number of regions,

but this number may augment exponentially with respect to the

state vector size. The memory requirements, which are needed

to the storage of this partitioning information and of the state-

feedback control law parameters, are also tightly dependent

on this number of regions. This problem is tractable for low

dimensional systems but it may be problematic for problems

like that treated in this paper. The difference between this

approach and that of [25] resides in the fact that we explore

the set of pointer positions which is in general and particularly

in this application less complex than the state space. This

considerably reduces the computational complexity.

VII. CONCLUSIONS

In this paper, the problem of the optimal integrated control

and scheduling was addressed theoretically. A hybrid model

of a control system and its limited communication network

was described. In this modeling, control and scheduling are

tightly coupled in order to improve control performance.

A new on-line scheduling algorithm for networked control

systems was introduced. Using this computationally efficient

algorithm, communication resources are allocated according

to the “needs” of the controlled dynamical systems. Stability

conditions for the systems scheduled using this algorithm

were stated. Simulation results show that performance im-

provements are significant and approach those obtained using

the model predictive control algorithm, which can be seen as

an optimal on-line control and scheduling algorithm. These

improvements are due to more efficient use of the available

network resources, which are dynamically allocated as a

function of the states variables of the different systems.
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