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Optimal integration of DGs into radial
distribution network in the presence of
plug-in electric vehicles to minimize daily
active power losses and to improve the
voltage profile of the system using bio-
inspired optimization algorithms
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Abstract

Purpose: The increase in plug-in electric vehicles (PEVs) is likely to see a noteworthy impact on the distribution

system due to high electric power consumption during charging and uncertainty in charging behavior. To address

this problem, the present work mainly focuses on optimal integration of distributed generators (DG) into radial

distribution systems in the presence of PEV loads with their charging behavior under daily load pattern including

load models by considering the daily (24 h) power loss and voltage improvement of the system as objectives for

better system performance.

Design/methodology/approach: To achieve the desired outcomes, an efficient weighted factor multi-objective

function is modeled. Particle Swarm Optimization (PSO) and Butterfly Optimization (BO) algorithms are selected

and implemented to minimize the objectives of the system. A repetitive backward-forward sweep-based load flow

has been introduced to calculate the daily power loss and bus voltages of the radial distribution system. The

simulations are carried out using MATLAB software.

Findings: The simulation outcomes reveal that the proposed approach definitely improved the system performance in

all aspects. Among PSO and BO, BO is comparatively successful in achieving the desired objectives.

Originality/value: The main contribution of this paper is the formulation of the multi-objective function that can

address daily active power loss and voltage deviation under 24-h load pattern including grouping of residential,

industrial and commercial loads. Introduction of repetitive backward-forward sweep-based load flow and the modeling

of PEV load with two different charging scenarios.

Keywords: Plug-in electric vehicles (PEVs), Distributed generators (DGs), Repetitive distribution power flow, Particle

swarm optimization algorithm (PSO), Butterfly optimization (BO), Daily active power loss
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1 Introduction
DG (Distributed Generator) is characterized as a local

power source with a constrained size associated with the

distribution network. DGs Technology has turned into

the focal point of consideration for various researchers

because it is considered a proper answer for the shortage

of electric power supply. Moreover, proper installation

of DGs in the distribution system increases the efficiency

of the system, improves voltage profile and voltage sta-

bility of the system and release of line loading. However,

improvement in the above mentioned technical parame-

ters mostly depends on finding the right locations and

proper sizing of DGs which is termed as the optimal al-

location of DGs. Therefore, an optimal allocation of

DGs in a distribution system aims to determine the opti-

mal locations and optimal sizes of DGs to meet active

power loss reduction, voltage profile improvement, etc.,

subject to various constraints such as power demand,

voltage limit, DGs size, Maximum power injection by

DGs, etc.

Some authors have presented a review of the optimal

allocation of DGs in the distribution system [1, 2]. Vari-

ous researchers have developed a variety of methods for

the optimal allocation of DGs in radial distribution net-

works [3–14]. Satish Kumar et al. proposed a simulated

annealing algorithm for the sizing of multiple DGs to re-

duce system active power loss. Loss sensitivity indexes

have been used for finding locations for DGs [3]. Abu-

Mount et al. proposed an artificial honey bee colony

technique for the optimal allocation of DGs for the

minimization of active power losses in the network [11].

Martín García et al. proposed the optimal allocation of

DGs in the distribution network utilizing a modified

teaching learning-based optimization algorithm with a

goal of minimization of active power losses [8]. It has

been observed that finding locations and sizes of DGs

simultaneously yields good results rather than finds loca-

tions by sensitivity indices and then the size of DGs by

an optimization algorithm. Therefore, in this paper, the

simultaneous optimal allocation of DGs has been imple-

mented using two bio-inspired optimization algorithms.

Many researchers have developed a weighted factor

multi-objective function to gain multiple benefits due to

the optimal placement of DGs in the distribution system.

El-Zonkoly presented Particle Swarm Optimization for

the optimal sitting of various DGs in a distribution

network including voltage-dependent load models by

aggregated weighted multi-objective optimization ap-

proach [13]. Sultana et al. formulated a weighted factor

multi-objective function which addresses three benefits

of optimal placement of DGs: power loss reduction,

voltage profile improvement, and voltage stability im-

provement [12]. The quasi oppositional teaching

learning-based optimization algorithm has used for the

minimization of multi-objective function. Mohamed

et al. presented a bacterial foraging optimization algo-

rithm for minimization of multi-objective function

which comprises power loss, voltage deviation and oper-

ating cost of the system [7]. Attia El-Fergany presented a

backtracking search algorithm based on the optimal allo-

cation of DGs in the distribution network. Aggregated

weight adaptive objective function is utilized to reduce

the system’s active power losses and upgrade the voltage

profile [9].S K Injeti, presented a Pareto optimization-

based improved differential search algorithm for optimal

allocation of DGs in radial distribution networks to

minimize total operating cost, bus voltage deviation, and

active power losses simultaneously [6]. In these papers,

the authors considered the optimal allocation of DGs

under peak load condition only. It has been observed

that the minimization of a multi-objective function gives

a trade-off solution between active power loss reduction,

voltage deviation minimization, and voltage stability

improvement. So, in this paper, we have formulated a

weighted factor multi-objective function which will ad-

dresses minimization of power loss and voltage deviation

for simultaneous optimal allocation of DGs under time

varying load pattern (with different load models) of the

distribution system.

Some authors have addressed the optimal placement

of DGs by considering few load levels of the distribution

system. R. S Rao et al. presented a method for optimal

placement of DGs in different load levels under an opti-

mally reconfigured network for power loss minimization

[4]. B Poornazaryan et al. proposed a new index for opti-

mal allocation of DG units to minimize active power

losses and to enhance voltage stability margin by consid-

ering load variations. Linear load variations from 50% to

150% of base load with a step size of 1% and in each step

size optimal DGs sizes are obtained [10]. Neeraj K et al.

proposed an improved cat swarm optimization algorithm

for optimal placement of DG and distributed static com-

pensator under a multilevel load profile for power loss

minimization [15]. Neeraj Kanwar et al. proposed a new

methodology to provide an integrated solution for the

optimal allocation of distributed generators and network

reconfiguration considering load patterns of customers

for the maximization of annual energy loss reduction

[5]. In these papers, researchers have concentrated on

the optimal placement of DGs under few load levels or

linear load variations from 50% to 150% of base load.

But a practical distribution system consists of a combin-

ation of residential buses, commercial buses, and indus-

trial buses. Linear load variation is not possible for such

a distribution system. Because a particular hour in a day

if the residential bus load level is 0.8 p.u with respect to

peak level 1p.u, the commercial bus load level may be

other than 0.8 p.u. Due to uneven load level among the
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different types of buses, the optimal locations of DGs

may vary hour by hour or may not be the same, which

increases the complexity of the problem. Therefore, in

this paper, we have formulated a weighted multi-

objective function addresses daily active power loss

minimization; daily voltage profile improvement of a dis-

tribution system consists of residential, commercial and

industrial loads with 24-h load pattern.

The developing worries over CO2 emissions and the

greenhouse effect have motivated the shift towards the

zero-emission plug-in battery fueled electric vehicles

(PEVs) which are expected to play a noteworthy part in

making the road transport system. Authors [16, 17] ad-

dressed dynamic economic dispatch problem by inte-

grating PEVs charging profiles into a 24-h load demand

in an economic and environmental dispatch problem. A

detailed review of electric vehicle technologies and the

impact of PEVs electric demand on load profiles were

given in [18]. Kejun Qian et al. proposed a methodology

for modeling of PEVs battery charging load and study

the impacts of PEVs on distribution system performance

under four charging scenarios [19]. Four charging sce-

narios are modeled and simulated based on the charging

behavior of the vehicles. LI Hui-ling et al. presented the

impacts of PEVs charging behavior on distribution grid

[20]. However few papers have addressed the mitigation

of impacts of PEVs load under different charging behav-

ior via optimal placement of DGs in the distribution

system.

In this paper, two PEVs charging scenarios, off-peak

charging scenario and peak charging scenarios that are

modeled using charging time probability distribution are

considered. These two charging time probability func-

tions are measured with a certain number of PEVs and

then integrated into the daily load pattern of the distri-

bution system which consists of residential, commercial

and industrial buses. Then a detailed analysis of the im-

pacts of the PEVs behavior under two charging scenarios

is addressed. As PEVs deteriorate distribution system

performance, in this paper DGs are considered to im-

prove the performance of the distribution system with

PEVs which requires optimal allocation of DGs. Like the

aforementioned, a weighted multi-objective function is

formulated for optimal allocation of multiple DGs

(power factor-based) in a distribution system with PEVs.

Two optimization algorithms PSO and BO are very

popular and efficient chosen for optimization of the pro-

posed objective function.

The remaining of the paper is organized as follows;

section 2 formulates a mathematical model for optimal

allocation of DGs in distribution system with PEVs char-

ging followed by section 3 the implementation of PSO

and BO algorithms to the proposed optimization prob-

lem has been presented. Section 4 gives the comparative

analysis between the distribution system without PEVs

and with PEVs charging scenarios and also presented

the comparison between without DGs and with DGs on

distribution system with PEVs.

2 Problem formulation

2.1 Modeling of DGs

For load flow studies, DGs can be model as either PV

mode or PQ mode [21]. In this paper, DG is modeled as

PQ mode. In this type of modeling, DG is modeled as a

generating source (negative load model) with constant

active power output (PDG) and reactive power out-

put (QDG). In this type of modelling, active power and

power factor (PF) of the DG is mentioned. Reactive

power of the DG is calculated by using Eq. 1.

QDG ¼ PDG� tan cos−1PF
� �� �

ð1Þ

The effective load at any bus with the integration of

DG unit can be expressed as

Peff ;load ¼ Pload−PDG ð2Þ

Qeff ;load ¼ Qload−QDG ð3Þ

Where Pload, Qload active and reactive power demands

at the bus are, Peff, load, Qeff, load are the effective active

and reactive power demands at the bus after the place-

ment of DG.

2.2 Objective function

In this paper, a weighted multi-objective function (OF)

is formulated which addresses daily active power loss re-

duction and voltage deviation index reduction.

min OFf g ¼ w1�PLRIð Þ þ w2�VDIRIð Þ ð4Þ

Where, w1 and w2 are weighting factors, PLRI- Power

loss reduction index and VDIRI- voltage deviation index

reduction index. The range of weighting factors is 0 to 1,

which are user-defined. The sum of the weighting fac-

tors should always be equal to one.

2.2.1 Power loss reduction index (PLRI)

The daily power loss of the system can be reduced by

minimizing PLRI which is taken as the ratio of system

daily active power loss after placement of DGs (PDG
loss;daily)

to the system daily active power loss before placement

of DGs (Ploss, daily).

PLRI ¼
PDG
loss;daily

Ploss;daily

¼

P24
j¼1P

DG
jloss

P24
j¼1Pjloss

ð5Þ

Where Pjloss is the jth hour system active power loss

before placement of DGs [22], PDG
jloss is the j

th hour system

active power loss after placementhe t of DGs.
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2.2.2 Voltage deviation index reduction index (VDIRI)

Voltage profile through the day can be improved by

minimizing VDIRI which is the ratio of voltage deviation

index with DGs to the voltage deviation index without

DGs.

VDIRI ¼
VDIDG

VDIWODG
¼

P24
j¼1 max 1− UDG

j;i

�

�

�

�

�

�

� �

P24
j¼1 max 1− U j;i

�

�

�

�

� � i ¼ 1; 2……:nb

ð6Þ

Where, |Uj, i| the voltage magnitude of ith bus is during jth

hour in p.u before placement of DGs jUDG
j;i j is the voltage mag-

nitude of ith bus during jth hour in p.u after placement of DGs.

2.2.3 Constraints

1. Active power and reactive power balance constraints.

P j;sub þ PT ;DG ¼ P j;D þ Pjloss ð7Þ

Q j;sub þ QT ;DG ¼ Q j;D þ QDG
jloss ð8Þ

Where

P j;sub ¼ U j;sub

�

�

�

�� I j:1
�

�

�

�� cos ∠U j;sub−∠I j:1
� �

ð9Þ

Q j;sub ¼ U j;sub

�

�

�

�� I j:1
�

�

�

�� cos ∠U j;sub−∠I j:1
� �

ð10Þ

P j;D ¼
Xnb

i¼1
Pbus j;i þ PPEV j;i

� �

ð11Þ

Q j;D ¼
Xnb

i¼1
Qbus j;i

� �

ð12Þ

Where Pj, sub is the jth hour active power demand sup-

plied by sub-station in kW, Pj, D is jth hour total active

power demand of the system with PEVs in kW, Qj, sub is

the jth hour reactive power supplied by sub-station in

kVAr, Qj, D is the jth hour total reactive power demand

of the system with PEVs in kVAr, |Uj, sub| is the sub-

station bus voltage during jth hour in kV, |I1| is the 1st

branch current in amps during jth hour, Pbus j, i is the ith

bus active power demand during jth hour, PPEV j, i is the

ith bus active power demand due to PEVs in jth hour.

2. The voltage magnitude of each bus should be

within the minimum and maximum voltage limits.

Uminj j < U ij j < Umaxj ji ¼ 1; 2……::nb ð13Þ

3. The sizes of DGs to be placed should be within

minimum and maximum kW limit.

PDGmin < Pk;DG < PDGmaxk ¼ 1; 2……:ndg ð14Þ

4. Total active power compensation by DGs should be

less than or equal to the maximum total capacity of

DGs (Pmax
T ;DG) which is the user-defined variable and

minimum total active power demand throughout

the day.

PT ;DG≤P
max
T ;DG < min P j;D

� �

ð15Þ

2.3 PEVs charging scenario

Based on the charging behavior of PEVs various re-

searches modeled different types of charging scenarios

[19]. They are peak charging scenario (PCS), off-peak

charging scenario (OPCS) and stochastic charging sce-

nario (SCS). In the peak charging scenario case, all the

PEVs come home after working hours and go for char-

ging as soon as they return from the working place. This

charging behavior of PEVs leads to an increase in peak

demand of the system because the load on the system is

already peaky during those hours. In the case of OPCS,

due to electricity prices implemented by the system op-

erator the active power demand due to PEVs shift to-

wards the light demand hours generally at midnight. In

SCS, PEVs go for charging at any time in a day. In this

paper, PCS and OPCS are considered for the inclusion

of PEVs electric demand in the system. The charging

time probability distribution of PCS and OPCS are taken

from [17] and given in Fig. 1. These two charging time

probability functions are measured with a certain num-

ber of PEVs to obtain PPEV j, i and then integrated into

daily load pattern of the distribution system which con-

sists of residential, commercial and industrial buses.

3 Implemented optimization algorithms

PSO and BO bio-inspired algorithms are chosen for the

optimization of the proposed objective function. From

the literature, it has been observed that PSO was very

old (1995) and well-proven optimization algorithm for

solving engineering optimization problems because its

advantages like easy to understand and implementation

had driven the authors to choose this algorithm. In order

to check whether the PSO had given a better solution or

not, a comparative analysis has been made based on the

latest (2018) optimization algorithm BO. BO algorithm

is a newly developed optimization algorithm that has ad-

vantages like the new way of information propagation

about the agent’s fitness in the form of fragrance, no
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memory requirement i.e. no need to remember of

agent’s individual best positions reached so far.

3.1 Particle swarm optimization

The majority of heuristic and meta-heuristic algorithms

have been derived from the behavior of biological

systems and/or physical systems in nature. Kennedy and

Eberhart introduced the concept of Particle swarm

optimization (PSO) firstly in 1995for solving continuous

optimization problems [23]. The Particle Swarm

optimization algorithm is a biologically-inspired algo-

rithm motivated by the social analogy of fish or birds.

The PSO algorithm starts by generating random posi-

tions for the particles, within an initialization region.

Velocities are usually initialized within but they can also

be initialized to zero or to small random values to pre-

vent particles from leaving the search space during the

first iterations. During the main loop of the algorithm,

the velocities and positions of the particles are iteratively

updated using Eq.16 and Eq.17 until a stopping criterion

is met [24].

Vkþ1
i ¼ w�V

k

i þ C1R1 xbest;ki −xki

� �

þ C2R2 Gbest;k
i −xki

� �

ð16Þ

xkþ1
i ¼ xki þ Vkþ1

i ð17Þ

Where V
k

i is the velocity vector of ith particle at kth it-

eration and each value of the vector should between

Vi,min ≤ V k
i ≤ Vi,max, xki is the current position vector of

ith particle at kth iteration, xbest;ki is the best position vec-

tor of ith particle up to kth iteration, Gbest;k
i is the best

position vector among all the particles up to kth iter-

ation, W is the weighing function or inertia weight fac-

tor, W is the weighing function or inertia weight factor,

C1 and C2 are the acceleration constant, R1 and R2 is the

random number between 0 and 1.

3.2 Butterfly optimization

Butterfly Optimization is based on the ability of the

butterflies to locate the source of fragrance accurately.

They can also differentiate various fragrances and sense

their intensities. In BO algorithm butterflies are the

searching agents. Fitness is correlated with the intensity

of fragrance that can be generated by a butterfly. The

movement of butterflies in search space will change its

fitness. The sharing of information between butterflies is

established through the propagation of fragrance. The

searching ability of a butterfly depends on the sensing

capability of the fragrance. This property will decide the

movement of the butterfly towards a global search or

local search (random). In BOA, the fragrance is formu-

lated as a function of the physical intensity of stimulus

as follows:

f ¼ cIa ð18Þ

Where f is the perceived magnitude of the fragrance,

i.e., fragrance receiving property by other butterflies, c is

the sensory modality, I is the stimulus intensity and a is

the power exponent dependent on modality, which

Fig. 1 PEVs probability distribution of PCS and OPCS scenarios
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accounts the varying degree of absorption. Most of the

cases a & c ∈ [0, 1]. If a = 1, means there is no absorption

of fragrance, i.e., the amount of fragrance emitted by a

particular butterfly is sensed in the same capacity by the

other butterflies (fragrance propagation in an idealized

environment). Thus, a butterfly emitting fragrance can

be sensed from anywhere in the domain which in turn

helps to reach the global optimum easily. On the other

hand, if a = 0, it means that the fragrance emitted by any

butterfly cannot be sensed by the other butterflies at all.

Another important parameter c ∈ [0,∞] determines the

convergence speed. The values of a and c are crucially

affecting the convergence speed of the algorithm. For

the maximization problem, the intensity can be propor-

tional to the objective function [25].

In BO algorithm, the characteristics of butterflies are

idealized as follows:

1. Every butterfly is supposed to emit some fragrance

which enables the butterflies to attract each other

(propagation of information).

2. Every butterfly will move randomly or toward the

best butterfly emitting more fragrance.

3. The stimulus intensity of a butterfly is affected or

determined by the topography of the objective

function.

3.3 Implementation of PSO and BO algorithms to a

proposed problem

Step 1: Initialization of problem and algorithm

parameters.

In the first step, the algorithm parameters such as

population size (POP), dimension of the problem (d), the

maximum number of iterations (itermax) and for PSO

algorithm acceleration constants c1, c2 for BO algorithm

probability switch P, power exponent a and sensor mo-

dality care initialized. Initialize the problem parameters

such as maximum total capacity of DGs injection ðPmax
T ;DG

Þ , minimum and maximum bus voltage limits (|Umin|,

|Umax|), DGs minimum and maximum active power

limits (PDGmin, PDGmax), DGs location limits.

Step 2: Read the Test system Bus and Branch data, p.u

demand of different types of buses for a.

day with respect to peak demand, read the probability

distribution of PEVs charging scenarios PCS and OPCS.

From the p.u demand of the buses and probability distri-

bution of PEVs, kW and kVAr demand of each bus for

every hour are obtained.

Step 3: Run the repetitive backward-forward sweep

load flow. Calculate the daily active power.

Loss of the system without DGs (Ploss, daily), voltage de-

viation index of the system without DGs (VDIWODG) of

the system.

Step 4: Random generation of locations for DGs place-

ment, DGs sizes within the specified.

limits.

DGLOC ¼

x11 x21 ⋯ xd1
x12 x22 ⋯ xd2

⋮ ⋮ ⋮

x1pop x2pop ⋯ xdpop

2

6

6

4

3

7

7

5

ð19Þ

DGSIZE ¼

y11 y21 ⋯ yd1
y12 y22 ⋯ yd2

⋮ ⋮ ⋮

y1pop y2pop ⋯ ydpop

2

6

6

4

3

7

7

5

ð20Þ

x
j
i ¼ x min;i þ x max;i−x min;i

� �

� randðÞ ð21Þ

y
j
i ¼ y min;i þ y max;i−y min;i

� �

� randðÞ ð22Þ

Where, x
j
i , y

j
i represents locations and DGs sizes, i.e.,

jth population ith DG location and size respectively,

which is generated randomly in between the limits as

xmax, i and xmin, i are the ith DG location limits, ymax,

i and ymin, i are the ith DG size limits and rand() is a ran-

dom number in between 0 and 1.

Soln ¼ DGLOCDGSIZE½ � ð23Þ

In the PSO algorithm, Soln represents a group of parti-

cles or swarms. Each particle is a solution that contains

DGs locations and sizes. In BO, Soln represents a group

of agents.

For the PSO algorithm along with DGs locations and

sizes, generate initial velocities of particles between the

minimum and maximum velocity limits.

Step 5: Fitness evaluation (Objective function).

Run the repetitive backward-forward sweep based load

flow and calculate the fitness value for each initial solu-

tion using Eq. 4, Eq.5 and Eq.6 and record the gbest

solution in case of BO algorithm, xbest;ki , Gbest;k
i for the

PSO algorithm.

Step 6: Set iteration count = 0.

Step 7: The evolution procedure of PSO and BO algo-

rithms starts from this step.

Update iteration count by 1.

Step 8: For PSO algorithm, update the velocities of

particles using Eq.16 and then update DGs.

locations and DGs size position using Eq.17.

For BO algorithm, calculate the fragrance fN for each

agent or butterfly using Eq. 18 and then perform a global

search and local search as follows.

If rand < probability P perform global search using

Eq. 24
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solndN t þ 1ð Þ ¼ solndN tð Þ

þ r2�gbest−solndN tð Þ
� �

� f N ð24Þ

If rand > probability P perform a local search using

Eq. 25

solndN t þ 1ð Þ ¼ solndN tð Þ

þ r2�solndj tð Þ−solndk tð Þ
� �

� f N ð25Þ

Where solndj ðtÞ and solndk ðtÞ are jth and kth butterflies

from the solution space which belongs to the same

swarm and r is a random number in [0, 1].

Step 9: Fitness evaluation (Objective function).

Run the repetitive backward-forward sweep load flow

and calculate the fitness value for each new solution

using Eq. 4, Eq. 5 and Eq. 6.

Step 10: Update the gbest vector in case of BO algo-

rithm, xbest;ki , Gbest;k
i in case of PSO.

algorithm.

Step 11: Stopping criterion.

If the iteration count reaches the maximum number of

iterations, computation is terminated and prints the re-

sults. Otherwise, repeat Step 7 to Step 11.

4 Results and discussion
An IEEE 33 bus system has been taken for the ana-

lysis of the proposed method. The base values of the

system are 100 MVA and 12.66 kV. The single line

diagram of the 33-bus system is shown in Fig. 2. Out

of the 33 buses: 17 buses are residential buses; 5

buses are commercial buses and 9 buses are industrial

buses. The data of the grouping of buses is given in

Table 1. The line data and bus data of the system are

taken from [26]. Active and reactive power demands

of the buses taken from bus data are considered as

peak demands of the respective buses. Hourly active

and reactive power demands for a day for each bus is

obtained from typical daily load pattern of different

types of buses in p.u with respect to peak demand 1

p.u is shown in Fig. 3 [27]. From Fig. 3 it has been

observed that for a residential bus load demand re-

quirement is high during the period 15.00–20.00 h.

4.1 Analysis of the system without PEVs load and without

DGs

Backward/forward sweep based load flow has been used

for load flow studies [22]. The entire simulation has

been developed in MATLAB R2017a platform using

Core i5 7200U, 3.10 GHz, 8GB RAM. After the initial

load flow run i.e. before load due to electric vehicles

the following points have been observed. Daily active

power demand from all the buses is 64,510 kW. The

daily active power loss of the system is 3053 kW, the

voltage deviation of the system is 1.6984 p.u. The

voltage profile of the system for the base case is

shown in Fig. 4. From Fig. 4, it has been observed

that the lowest voltage of the system is 0.8945 p. u

at the 18th bus occurred during the 17th hour of

the day.

4.2 Analysis of the system with PEV load and without DGs

To study the effect of additional electric power de-

mand due to PEVs in the electric distribution sys-

tem, it has been assumed that 50 PEVs per

residential bus with a total of 17*50 = 850 PEVs have

been considered, where 45% of these PEVs are low

hybrid vehicles equipped with 15 kWh batteries, 25%

PEVs are medium hybrid vehicles with 25kwh batter-

ies and 30% PEVs are pure battery vehicles with 40

kWh batteries [17]. It is also assumed that all the

electric vehicles return to the home with an SOC of

50%. Therefore, total electric demand due to PEVs

per residential bus per day is 50*(15*45% + 25*25% +

40*30%) *0.5 = 625 kW and total electric demand

needed per day due to PEVs is 625*17 = 10,625 kW.

Fig. 2 Single line diagram of 33 bus test system

Table 1 Grouping of Buses data

Bus Type Bus Numbers

Residential buses 2,3,5,6,7,8,9,10,13,14,15,16,17,20,21,23,24

Commercial buses 4,11,12,18,19

Industrial buses 22,26,27,28,29,30,31,32,33
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4.2.1 Analysis of the system with PEVs peak charging and

off-peak charging scenarios

The electric demand 625 kW due to 50 PEVs for each

residential bus has been consumed from the slack bus

(bus-1) as per the probability distribution of charging

scenarios PCS and OPCS Fig. 1. The reason for not tak-

ing SCS charging scenario is that according to SCS char-

ging scenario all the PEVs go for charging during any

time in the day which means their power demand will

be there on any type (residential, commercial, industrial)

Fig. 3 Daily load pattern of different types of buses

Fig. 4 Voltage profile of the system without EV load and DGs
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of the bus, but in the paper authors considered PEVs

load modeled under Residential buses only. Figure 5

shows the hourly active power demand of the distribu-

tion system for a day without PEVs and with PEVs

under PCS and OPCS cases obtained from the daily load

pattern of buses and charging scenarios.

Table 2 shows the comparison between various pa-

rameters between without PEVs load and with PEVs

load on the distribution system and also a comparison

between PCS and OPCS. From Fig. 5, it has been ob-

served that peak active power demand of the distribution

system without PEVs load, with PEVs, load charging

under PCS and OPCS charging scenario is 4061 kW

(16th hour), 5770 kW (15th hour) and 4541 kW (22nd

hour) respectively. Therefore, it has been observed that

the peak active power demand of the system is increased

by 42.08% and 11.81% in the case of PCS and OPCS

charging scenarios respectively. Therefore, it is observed

that the percentage increase in peak active power de-

mand of the system is very less in the case of the OPCS

charging scenario which is noteworthy.

From Table 2 it has been observed that due to PEVs

electric active power demand 10,625 kW, the distribu-

tion system is overload by 16.47% with respect to daily

active power demand requirement. In case of PCS due

to extra PEVs active power demand, daily active power

loss of the system is increased to 4346 kW from 3053

kW which shows 42.35% increase in daily active power

Fig. 5 Hourly active power demand of the system without and with PEVs load

Table 2 Comparison between without and with PEVs load on

test system

Parameters Without PEV
load

With PEV load

PCS OPCS

Daily Active power loss
of the system in kWhr

3053 4346 3756

Voltage deviation index
in p.u

1.6984 2.0443 1.9743

Lowest voltage magnitude
in p.u

0.8945
(18th bus,
17th hour)

0.8398
(18th bus,
16th hour)

0.8729
(18th bus,
23rd hour)

Active power demand
from the buses for a day
in kWhr

64,510 75,135 75,135

Table 3 Parameters description of PSO and BO algorithms

Parameters for PSO

Population (pop) 150

Dimension (dim) 6 (3 DG sizes+ 3 locations)

Maximum number of iterations (maxit) 150

C1 1

C2 2

Parameters for BO

Population (pop) 150

Dimension (dim) 6 (3 DG sizes+ 3 locations)

Maximum number of iterations (maxit) 150

Modular modality ‘c’ 0.01

Power exponent ‘a’ 0.1 to 0.3

Probability switch ‘P’ 0.5

Injeti and Thunuguntla Protection and Control of Modern Power Systems             (2020) 5:3 Page 9 of 15



loss whereas in case of OPCS daily active power loss of

the system is increased to 3756 kW from 3053 kW which

shows 23.02% increase in daily active power loss. Also in

the case of PCS, the voltage deviation index is increased

to 2.0443p.u and in the case of OPCS, it has increased to

1.9743 p.u. In fact, in both the scenarios (PCS & OPCS)

there is an increase in a daily active power loss of the

system and voltage profile deterioration. But in the com-

parison between two charging scenarios, an increase in

daily active power loss is 19.33% more in PCS when

compared with OPCS and also the difference between

voltage deviation indexes of OPCS and PCS is 0.07p.u.

From the above observations, it has been concluded that

the shifting of PEVs active power demand to light elec-

tric demand hours by implementing different electricity

pricing on consumers i.e. in case of OPCS shows a

greater impact on improvement in reduction in peak ac-

tive power demand, daily active power loss, and im-

provement of the voltage profile.

4.3 Optimal placement of DGs in the distribution system

with consideration of PEVs

As concluded in the previous section the charging of

PEVs through OPCS is far better when compared to

PCS, we had considered the optimal placement of

DGs in the distribution system with PEVs electric de-

mand charging under OPCS only. It has been ob-

served that there is much change in power flows

(responsible for the improvement in technical param-

eters) in distribution lines with DGs are placed at

more than two buses. It has been also observed that

there was no significant change in technical parame-

ters improvement between DGs placed at 3 buses and

4 buses and the reason might be we had chosen 33

bus systems as our test system. Therefore it is as-

sumed that the number of DGs to be placed is fixed

3. The tuned parameters of PSO and BO algorithms

are given in Table 3. From Fig. 5 it is also observed

Table 4 Result analysis for optimal allocation of DGs at upf

Parameters BO PSO

DG (upf) size (kW)/
Bus number

309 (10) 200 (12)

493 (16) 500 (16)

699 (31) 776 (31)

Daily active Power
Loss in kw

1563 1590

% Daily active power
loss reduction

58.39 57.66

Voltage deviation
Index In p.u

0.8063 0.8091

Lowest voltage of
the system in p.u

0.9353
(18th bus,
23rd hour)

0.933
(18th bus,
23rd hour)

OF 0.4139 0.4193

PLRI 0.4161 0.4233

VDIRI 0.4087 0.4098

Time in sec 305.9 376.56

Fig. 6 Voltage profile of the test system after optima placement of DGs at upf by BO
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that the lowest active power demand with PEVs load

under OPCS case is 1527 kW occurred during the 7th

hour of the day, therefore maximum active power in-

jection by DGs into the distribution system is fixed to

1500 kW. Coming to weighting factor values in the

objective function, importance is given for power loss

reduction because it affects economic parameters.

Therefore, weighting factors are considered as w1 =

0.7 and w2 = 0.3.

4.3.1 Optimal placement of DGs (upf)

Table 4 shows the optimal locations, optimal DGs (upf)

sizes and various technical parameters yielded by BO

and PSO algorithms respectively. From Table 4 it is

Fig. 7 Voltage profile of the test system after optima placement of DGs at upf by PSO

Fig. 8 Convergence graphs of BO and PSO algorithms for optimal placement of DGs at upf
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observed that among the two algorithms, BO gives the

best result i.e. objective function value is 0.4139. BO

yield to reduce the daily active power loss of the system

to 1563 kW accounts for 58.39% daily active power loss

reduction and the voltage deviation index is reduced to

0.8063 p. u approximately. Whereas with PSO the ob-

jective function value obtained is 0.4193 with a reduced

active power loss of 1590 kW which accounts for a re-

duction in 57.66% daily active power loss and reduction

of voltage deviation index 0.8091 p.u.

That is the lowest system voltage without DGs is

0.8729p.u at the 18th bus during the 23rd hour and with

optimally located DGs it is improved to 0.9353 p.u at

the 18th bus during the 23rd hour. Voltage profile

characteristics of the system with DGs for BO and

PSO algorithms are shown in Fig. 6 & Fig. 7 respect-

ively. From Fig. 6 and Fig. 7, it is observed that ob-

tained optimal locations and sizes of DGs result in

fairly good voltage improvement at each and every

bus of the system. Convergence graphs of the pro-

posed algorithms are shown in Fig. 8. From Fig. 8 it

has been observed that objective function reaches the

global solution in 38th iteration for BO algorithm and

129th iteration for the PSO algorithm. Whereas simu-

lation time for the evolution process for the BO algo-

rithm is less than that of PSO.

4.3.2 Optimal placement of DGs at 0.9pf

Table 5 shows the optimal locations, optimal DGs at

0.9pf sizes and various technical parameters yielded by

BO and PSO algorithms respectively. The power factor

of the DGs is considered as 0.9 pf. From Table 5 it is ob-

served that the objective function values of BO and PSO

are 0.2417 and 0.2528 respectively. The percentage of

daily active power loss reduction of the system is 76%

with BO and 75% with PSO. The voltage deviation

index is reduced to 0.5238 p.u and 0.5404 from

1.9743p.u by BO and PSO algorithms respectively.

Voltage profile characteristics of the system with DGs

compensation for BO and PSO algorithms are shown

Table 5 Result analysis for optimal allocation of DGs at 0.9 pf

Parameters BO PSO

DG (0.9 pf) size (kW)/
Bus number

628 (15) 452 (17)

459 (30) 200 (10)

413 (32) 828 (31)

Daily active Power
Loss in kw

870 916

% Daily active power
loss reduction

76.84 75.61

Voltage deviation
Index In p.u

0.5238 0.5404

Lowest voltage of
the system in p.u

0.9498
(18th bus,
23rd hour)

0.9496
(14th bus,
23rd hour)

OF 0.2417 0.2528

PLRI 0.2316 0.2439

VDIRI 0.2653 0.2737

Time in sec 309.8 410

Fig. 9 Voltage profile of the test system after optima placement of DGs at 0.9pf by BO
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in Fig. 9 and Fig. 10 respectively. Convergence graphs

of the proposed algorithms are shown in Fig. 11.

From Fig. 11, it has been observed that objective

function reaches a global solution in 39th iteration

for the BO algorithm and 27th iteration for the PSO

algorithm. The computation time for the evolution

process for BO is less than that of PSO.

5 Conclusions

In this paper, a 33-bus radial distribution test system

consists of a residential, commercial, and an industrial

bus is considered. A 24-h load pattern of the whole test

system is obtained from the load pattern of different

types of buses. Two charging scenarios PCS and OPCS

had taken for the inclusion of PEVs load demand on the

Fig. 10 Voltage profile of the test system after optimal placement of DGs at 0.9pf by PSO

Fig. 11 Convergence graphs of BO and PSO algorithms for optimal placement of DGs at 0.9pf
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system. The impact of PEVs load demand on the system

has been analyzed through technical parameters. Among

the two charging scenarios PCS and OPCS, the impact

of PEVs load with the OPCS charging scenario had less

impact on the system technical parameters. A combined

24-h load pattern of the system including PEVs load de-

mand with OPCS charging scenario has been considered

for the optimal placement of the DGs in the system. A

weighted objective function has designed to reduce the

Daily active power loss and Voltage deviation index

using repetitive backward/forward sweep load flow. Two

algorithms BO and PSO have been selected and imple-

mented for the minimization of the proposed objective

function. From the obtained results it can be concluded

that the radial distribution system performance (reduc-

tion in daily active power loss and system voltage pro-

file) in the presence of PEVs loads including daily load

pattern has improved with the optimal integration of

DGs by the proposed approach. Among PSO and BO

based approaches, BO performs better in terms of solu-

tion quality and convergence. Most of the practical/en-

gineering optimization problems are multi-objective in

nature which is found to be difficult by solving using

traditional approaches. In this context, optimization al-

gorithms will pave a way to solve the most of the non-

linear engineering optimization problems.
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