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Optimal inversion of the Anscombe transformation
in low-count Poisson image denoising

Markku Mäkitalo and Alessandro Foi

Abstract�The removal of Poisson noise is often performed
through the following three-step procedure. First, the noise vari-
ance is stabilized by applying the Anscombe root transformation
to the data, producing a signal in which the noise can be treated
as additive Gaussian with unitary variance. Second, the noise is
removed using a conventional denoising algorithm for additive
white Gaussian noise. Third, an inverse transformation is applied
to the denoised signal, obtaining the estimate of the signal of
interest.

The choice of the proper inverse transformation is crucial in
order to minimize the bias error which arises when the nonlinear
forward transformation is applied. We introduce optimal inverses
for the Anscombe transformation, in particular the exact unbi-
ased inverse, a maximum likelihood (ML) inverse, and a more
sophisticated minimum mean square error (MMSE) inverse. We
then present an experimental analysis using a few state-of-the-
art denoising algorithms and show that the estimation can be
consistently improved by applying the exact unbiased inverse,
particularly at the low-count regime. This results in a very
ef�cient �ltering solution that is competitive with some of the
best existing methods for Poisson image denoising.

Index Terms�denoising, photon-limited imaging, Poisson
noise, variance stabilization.

I. INTRODUCTION

Poisson noise is characteristic of many image acquisition
modalities, and its removal is of fundamental importance for
many applications and particularly in astronomy and medical
imaging. As the noise variance equals the expected value of
the underlying true signal, Poisson noise is signal dependent,
which makes the premise for Poisson denoising very different
from the case of additive white Gaussian noise with constant
variance typically assumed by signal processing �lters.
Although denoising algorithms speci�cally designed for

Poisson noise have been proposed (e.g., [1], [2], [3], [4], [5],
[6], [7]), often the removal of Poisson noise is performed
through the following three-step procedure. First, the noise
variance is stabilized by applying the Anscombe root trans-

formation [8] f : z 7�! 2
q
z C 3

8 to the data. This produces a
signal in which the noise can be treated as additive Gaussian
with unitary variance. Second, the noise is removed using a
conventional denoising algorithm for additive white Gaussian
noise. Third, an inverse transformation is applied to the
denoised signal, obtaining the estimate of the signal of interest.
This paper focuses on this last step and aims at identifying

and emphasizing the role that the inversion plays in ensuring
the success of the whole procedure.
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project no. 129118, Postdoctoral Researcher's Project 2009-2011).

In the recent years, variance stabilization has often been
questioned as a viable method for Poisson noise removal
because of the poor numerical results achieved at the low-
count regime, i.e. for low-intensity signals, which corresponds
to the case of low signal-to-noise ratio (SNR). We show
that this disappointing performance, reported in many earlier
works (e.g., [1], [2], [3]), is not due to the stabilization itself
(i.e. to the forward transformation), but rather to the inverse
transformation.

The choice of the proper inverse transformation is crucial
in order to minimize the bias error which arises when the
nonlinear forward transformation is applied. Both the algebraic
inverse and the asymptotically unbiased inverse proposed
by Anscombe [8] lead to a signi�cant bias at low counts.
In particular, the latter inverse provides unbiasedness only
asymptotically for large counts while at low counts it leads
to a larger bias than the former one.

This work extends our preliminary paper [9] by considering
more general optimal inverses for the Anscombe transforma-
tion. First we introduce the exact unbiased inverse and show
that it coincides with a form of maximum likelihood (ML)
inverse, and then we consider a more sophisticated minimum
mean square error (MMSE) inverse. After that, we present
an extensive experimental analysis using a few state-of-the-
art denoising algorithms and show that the results can be
consistently improved by applying the exact unbiased inverse.
In particular, the combination of BM3D [10] and the exact
unbiased inverse outperforms some of the best existing algo-
rithms speci�cally targeted at Poisson noise removal, while
maintaining low computational complexity.

The rest of the paper is organized as follows: Section II
introduces some preliminaries about Poisson noise, variance
stabilization and the conventional inverses of the Anscombe
transformation. In Section III we consider optimal inverse
transformations: �rst we propose the exact unbiased inverse,
which can be interpreted as a maximum likelihood inverse,
and �nally we discuss the minimum mean square error in-
verse. Section IV consists of various experiments, followed
by discussion and conclusions in Section V.

II. PRELIMINARIES

A. Poisson noise

Let zi ; i D 1; : : : ; N , be the observed pixel values obtained
through an image acquisition device. We consider each zi to be
an independent random Poisson variable whose mean yi � 0
is the underlying intensity value to be estimated. Explicitly,
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the discrete Poisson probability of each zi is

P .zi j yi / D
y
zi
i e

�yi

zi !
: (1)

In addition to being the mean of the Poisson variable zi , the
parameter yi is also its variance:

Efzi j yi g D yi D varfzi j yi g: (2)

Poisson noise can be formally de�ned as

�i D zi � Efzi j yi g; (3)

thus, we trivially have Ef�i j yi g D 0 and varf�i j yi g D
varfzi j yi g D yi . Since the noise variance depends on
the true intensity value, Poisson noise is signal dependent.
More speci�cally, the standard deviation of the noise �i
equals

p
yi . Due to this, the effect of Poisson noise increases

(i.e. the signal-to-noise ratio decreases) as the intensity value
decreases.

B. Variance stabilization and the Anscombe transformation

The rationale behind applying a variance-stabilizing trans-
formation is to remove the data-dependence of the noise
variance, so that it becomes constant throughout the whole
data zi , i D 1; : : : ; N . Moreover, if the transformation is also
normalizing (i.e. it results in a Gaussian noise distribution),
we can estimate the intensity values yi with a conventional
denoising method designed for additive white Gaussian noise.
Neither exact stabilization nor exact normalization are possible
[11], [12], therefore, in practice, approximate or asymptotical
results are employed.
One of the most popular variance-stabilizing transforma-

tions is the Anscombe transformation [8]

f .z/ D 2
r

z C 3
8
: (4)

Applying (4) to Poisson distributed data gives a signal whose
noise is asymptotically additive standard normal.
The denoising of f .z/ produces a signal D that can be

considered as an estimate of Ef f .z/ j yg. We need to apply
an inverse transformation to D in order to obtain the desired
estimate of y. The direct algebraic inverse of (4) is

IA.D/ D f �1.D/ D
�
D

2

�2
� 3
8
; (5)

but the resulting estimate of y is biased, because the nonlin-
earity of the transformation f means we generally have

Ef f .z/ j yg 6D f .Efz j yg/; (6)

and, thus,
f �1.Ef f .z/ j yg/ 6D Efz j yg: (7)

Another possibility is to use the adjusted inverse [8]

IB.D/ D
�
D

2

�2
� 1
8
; (8)

which provides asymptotical unbiasedness for large counts.
This is the inverse typically used in applications.

III. OPTIMAL INVERSE TRANSFORMATIONS

While the asymptotically unbiased inverse (8) provides good
results for high-count data, applying it to low-count data leads

to a biased estimate, as can be seen, e.g., in [1]. Here we
consider three types of optimal inverses.

A. Exact unbiased inverse

Provided a successful denoising, i.e. D is treated as
Ef f .z/ j yg, the exact unbiased inverse of the Anscombe
transformation f is an inverse transformation IC that maps
the values Ef f .z/ j yg to the desired values Efz j yg:

IC : Ef f .z/ j yg 7�! Efz j yg: (9)

Since Efz j yg D y for any given y, the problem of �nding
the inverse IC reduces to computing the values Ef f .z/ j yg,
which is done by numerical evaluation of the integral corre-
sponding to the expectation operator E :

Ef f .z/ j yg D
Z C1

�1
f .z/p.z j y/ dz; (10)

where p.z j y/ is the generalized probability density function
of z conditioned on y. In our case we have discrete Poisson
probabilities P .z j y/, so we can replace the integral by
summation:

Ef f .z/ j yg D
C1X

zD0
f .z/P.z j y/: (11)

Further, since here f .z/ is the forward Anscombe transforma-
tion (4), we can write (11) as

Ef f .z/ j yg D 2
C1X

zD0

 r

z C 3
8
� y

ze�y

z!

!

: (12)

Figure 1 shows the plots of the inverse transformations IA,
IB and IC . Since IC is unbiased, we see that at low counts
the asymptotically unbiased inverse actually leads to a larger
bias than the algebraic inverse.
Let us remark that if the exact unbiased inverse (9) is applied

to the denoised data D with some errors (in the sense that
D 6D Ef f .z/jyg), then the estimation error in Oy D IC .D/ can
include variance as well as bias components. In general, the
unbiasedness of IC holds only provided that D D Ef f .z/jyg
exactly, as it is assumed when de�ning (9).

B. ML inverse

In the previous Section III-A we assumed that the denoising
is successful (i.e. we can treat the denoised signal D as
Ef f .z/ j yg), which then lead us to the concept of the exact
unbiased inverse. Now we consider a more general scenario,
where this assumption does not necessarily hold: instead of
the strict equality, we assume that the pointwise mean square
error of D as an estimate of Ef f .z/ j yg is

"2 D E
n
.D � Ef f .z/ j yg/2

o
: (13)

In practice the distribution of D is unknown. For simplicity,
we assume that D is normally distributed around Ef f .z/ j yg
with variance "2:

D � N
�
Ef f .z/ j yg; "2

�
: (14)

While formally (14) implies that D is an unbiased estimate of
Ef f .z/ j yg, in fact also unknown estimation-bias errors can
be considered as contributors of "2, with the symmetry of the
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distribution about Ef f .z/ j yg re�ecting our uncertainty about
the sign of the bias.
By treating D as the data, the maximum likelihood (ML)

inverse is de�ned as

IML.D/ D argmax
y

p.D j y/; (15)

where, according to (14),

p.D j y/ D 1p
2�"2

e
� 1
2"2
.D�Ef f .z/jyg/2

: (16)

Under the above assumptions, this equals to (see Appendix
for details)

IML.D/ D
�
IC .D/, if D � 2

p
3=8

0, if D < 2
p
3=8:

(17)

Thus, the exact unbiased inverse coincides with this form of
ML inverse. Note also that IML.D/ is independent of ". The
obtained result (17) holds for any unimodal distribution whose
mode is Ef f .z/ j yg.

C. MMSE inverse

Under the same hypotheses of Section III-B, we de�ne
the minimum mean square error (MMSE) inverse, which is
parametrized by ", as

IMMSE.D; "/ D argmin
Oy

Ef.y � Oy/2 j Dg

D argmin
Oy

Z C1

�1
p.y j D/

�
y � Oy

�2
dy: (18)

It is worth reminding that we assume D to be normally
distributed according to (14); if this assumption does not hold,
the obtained inverse is not necessarily the true minimum MSE
inverse.
Additionally assuming that the true signal y is uniformly

distributed, solving for Oy (see Appendix for details) produces
the following formula for computing the inverse:

Oy D
R C1
0 p.D j y/y dy
R C1
0 p.D j y/ dy

; (19)

where p .D j y/ is given by (16). Note that the exact unbiased
inverse can be considered a limit case of the MMSE inverse,
obtained when " D 0, because p .D j y/ becomes a Dirac
impulse centered at that particular value of y such that
Ef f .z/ j yg D D. In other words,

IMMSE.D; 0/ D IC .D/ D IML.D/: (20)

Figure 2 shows the MMSE inverse transformations for some
values of ", including the case " D 0.

IV. EXPERIMENTS

All of our experiments consist of the same three-step
denoising procedure: First we apply the forward Anscombe
transformation (4) to a noisy image. Then we denoise the
transformed image (assuming additive white Gaussian noise
of unit variance) with either BM3D [10], SAFIR [13] or BLS-
GSM [14], and �nally we apply an inverse transformation in
order to get the �nal estimate. We do not provide comparisons
against the Haar-Fisz algorithm [4] or platelets [6], [7], as both
the MS-VST [1] and PURE-LET [3] algorithms have been
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Fig. 1. Inverse Anscombe transformations IA (algebraic), IB (asymptotically
unbiased) and IC (exact unbiased). For the exact unbiased inverse, D
coincides with Ef f .z/ j yg, hence its bias is zero.
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Fig. 2. MMSE inverse transformations (18) for some values of ". The case
" D 0 corresponds to the exact unbiased inverse transformation (9) and the
ML inverse transformation (17).

shown to outperform them, and we further compare these two
algorithms against ours.
To implement the exact unbiased inverse IC in practice, it

is suf�cient to compute (12) for a limited set of values y; for
arbitrary values of y we then use linear interpolation based
on these computed values of (12), and for large values1 of
y we approximate IC by IB . In similar fashion, the MMSE
inverse can be obtained based on numerical evaluation of the
two integrals in (19).
Matlab functions implementing these two optimal

inverse transformations are available online at
http://www.cs.tut.�/~foi/invansc.
We evaluate the performance either by normalized mean

integrated square error (NMISE) or by peak signal-to-noise

1In our implementation, we consider y to be large if y > 2500.
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ratio (PSNR). The NMISE is calculated using the formula
1
NN
X

i :yi>0

�
. Oyi � yi /2=yi

�
; (21)

where Oyi are the estimated intensities, yi the respective true
values, and the sum is computed over the NN pixels in the
image for which yi > 0. The PSNR is calculated using the
formula

10 log10

0

@ maxi .yi /2�P
i

�
Oyi � yi

�2
=N
�

1

A ; (22)

where N is the total number of pixels in the image.
In Section IV-A we consider the exact unbiased inverse, and

Section IV-B consists of experiments with the MMSE inverse.
Section IV-C addresses the computational complexity of the
inverse transformations and the denoising algorithms.

A. Exact unbiased inverse

We consider three sets of experiments in order to compare
against the three recent works [1], [2] and [3], each of
which proposes an algorithm speci�cally designed for Poisson
noise removal (MS-VST, PH-HMT and Interscale PURE-LET,
respectively).
1) NMISE comparison against MS-VST [1] and PH-HMT

[2]: For the �rst set we proceed in the same way as in [1]
in order to produce comparable results: The above-mentioned
three-step denoising procedure is performed �ve times for each
image, each time with a different realization of the random
noise. We evaluate the performance by using NMISE, and the
obtained NMISE values are �nally averaged over these �ve
replications. This metric was chosen because of the available
results for comparison in [1] and [2]. The authors of [1] also
kindly provided us with their set of test images (all of them
256�256 in size), shown in Figure 3.
The denoising is done with either BM3D, SAFIR or BLS-

GSM, and for the inversion of the denoised signal we use the
exact unbiased inverse. The same experiments are also done
for the asymptotically unbiased inverse (8), whose results serve
as a point of comparison.
The numerical results of our experiments are presented in

Table I, where we also compare them to the state-of-the-art
results obtained with the PH-HMT and MS-VST algorithms
proposed in [2] and [1], respectively. In addition, we have
included the results obtained in [1] with the asymptotically
unbiased inverse Anscombe transformation combined with
various undecimated wavelet transforms (here collectively
denoted as WT). Table I shows not only that the exact unbiased
inverse produces signi�cantly better results at low counts than
the asymptotically unbiased inverse, but also that the method
is competitive with both PH-HMT and MS-VST. In particular,
the combination of BM3D and the exact unbiased inverse
outperforms both of them in terms of NMISE.
Figures 4�5 illustrate the improvement that is achieved

(especially at low counts) by applying the exact unbiased
inverse instead of the asymptotically unbiased inverse, while
Figure 6 compares the different algorithms for the denoising
of the Cells image (the exact unbiased inverse combined with

BM3D, SAFIR and BLS-GSM, and the best MS-VST result
from [1]). In addition, we present a chosen cross-section (i.e.
one row) of some of the test images in Figure 7. These
plots also clearly demonstrate that at low counts the exact
unbiased inverse provides a signi�cant improvement over the
asymptotically unbiased inverse, whereas at high counts the
difference is expectedly negligible.
For additional �gures we refer to our preliminary paper [9].
2) PSNR comparison against PH-HMT [2]: In the second

part of the experiments we use the test images shown in
Figure 8 and evaluate the performance in terms of PSNR,
thus enabling us to compare against the PH-HMT results in
[2]. This time we scale each image to seven different peak
intensity levels (1, 2, 3, 4, 5, 10 and 20), and for each of
them we perform the denoising procedure ten times, with ten
different realizations of the random noise.
As above, we use either BM3D, SAFIR or BLS-GSM for

the denoising, and the inversion is done with either the exact
unbiased inverse or the asymptotically unbiased inverse.
The results, which are averages of ten PSNR values, are

reported in Table II. We see again that at low peak intensities
we get a substantial improvement by applying the exact un-
biased inverse instead of the asymptotically unbiased inverse,
regardless of the used denoising algorithm. Indeed, the best
results of the table mainly correspond to algorithms combined
with the exact unbiased inverse. In particular, the best overall
performance is obtained with BM3D, although both SAFIR
and PH-HMT provide competitive results especially at the
lowest peak intensities. The different performance at low
counts is possibly explained by SAFIR exploiting adaptive
window sizes, as opposed to BM3D, which uses �xed-size
blocks.
Note that the average PSNR values of the noisy images in

Table II have minor differences to those reported in [2] due
to different realizations of the random noise.
3) PSNR comparison against PURE-LET [3]: The third

part of our experiments is very similar to the second one,
with the following differences: Now we use the four test
images shown in Figure 9 and compare our results against the
best results obtained with the Interscale PURE-LET (with two
cyclic shifts) [3]. Each image is scaled to the peak intensity
levels 1, 5, 10, 20, 30, 60 and 120, so we do not focus at low
counts as much as earlier.
As in [3], the denoising performance is evaluated in terms

of PSNR. Table III presents the obtained results (averages of
ten values), which are consistent with the results in Table II:
the overall performance of BM3D is strong, but it is often
outperformed by SAFIR at the lower peak intensity levels.
It is interesting to note that for an image like Moon, which
presents a large black background area that is completely
�at, the performance gap between multiscale (BLS-GSM and
PURE-LET) and patch-based (BM3D and SAFIR) methods is
reduced, in as much as in a few cases the former methods are
producing slightly better numerical results than the latter ones.
4) Summary: All three sets of experiments produce consis-

tent results, showing that at low intensities we obtain signif-
icantly better results by applying the exact unbiased inverse
instead of the asymptotically unbiased inverse, whereas at high
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Spots (256�256) Galaxy (256�256) Ridges (256�256) Barbara (256�256) Cells (256�256)
Fig. 3. The �ve test images used in the experiments of Sections IV-A1 and IV-B.

TABLE I
AVERAGE NMISE VALUES FOR THE ASYMPTOTICALLY UNBIASED INVERSE AND THE EXACT UNBIASED INVERSE, AND A COMPARISON TO THE RESULTS
OBTAINED IN [2] AND [1] WITH ALGORITHMS SPECIFICALLY DESIGNED FOR POISSON NOISE REMOVAL. THE INTENSITY RANGE OF EACH IMAGE IS

INDICATED IN BRACKETS.

Asymptotically unbiased inverse Exact unbiased inverse Other algorithms
WT [1] BM3D SAFIR BLS-GSM BM3D SAFIR BLS-GSM PH-HMT [2] MS-VST [1]

Spots [0.03, 5.02] 2.34 1.7424 1.7495 2.0370 0.0365 0.0384 0.1871 0.048 0.069
Galaxy [0, 5] 0.15 0.1026 0.1110 0.1253 0.0299 0.0301 0.0385 0.030 0.035
Ridges [0.05, 0.85] 0.83 0.7025 0.7252 0.7694 0.0128 0.0173 0.0331 - 0.017
Barbara [0.93, 15.73] 0.26 0.0881 0.1178 0.1122 0.0881 0.1178 0.1123 0.159 0.17
Cells [0.53, 16.93] 0.095 0.0660 0.0683 0.0718 0.0649 0.0671 0.0707 0.082 0.078

(a) (b) (c) (d) (e)

Fig. 4. (a) Original Spots image (intensity range [0.03, 5.02]), (b) Poisson-count image, (c) image denoised with BM3D and the asymptotically unbiased
inverse (average NMISE = 1.7395), (d) image denoised with BM3D and the exact unbiased inverse (average NMISE = 0.0365), (e) image denoised with
SAFIR and the exact unbiased inverse (average NMISE = 0.0384). The images shown here are gamma-corrected ( D 0:6) for improved visibility of the
darker areas. A cross-section of images (a), (c) and (d) is shown in Figure 7(a).

(a) (b) (c) (d) (e)

Fig. 5. (a) Original Galaxy image (intensity range [0, 5]), (b) Poisson-count image, (c) image denoised with BM3D and the asymptotically unbiased inverse
(average NMISE = 0.1025), (d) image denoised with BM3D and the exact unbiased inverse (average NMISE = 0.0299), (e) image denoised with SAFIR and
the exact unbiased inverse (average NMISE = 0.0301). The images shown here are gamma-corrected ( D 0:6) for improved visibility of the darker areas. A
cross-section of images (a), (c) and (d) is shown in Figure 7(b).

intensities there is expectedly no signi�cant improvement.
The results also show that combined with a state-of-the-

art Gaussian denoising algorithm, the exact unbiased inverse
is competitive with some of the best algorithms targeted at
Poisson noise removal.

B. MMSE inverse

Assuming that (14) is valid, the use of the MMSE inverse
IMMSE (18) requires knowledge of the pointwise mean square

error (13) for the estimate D produced by the denoising
algorithm. In other words, for each pixel, a pair .D; "/ is
used as an argument for IMMSE. First, in order to illustrate
the full potential of this inverse, we show results obtained
by employing an oracle estimate of the MSE computed by
Monte-Carlo simulations. Second, as an example of the actual
performance that can be achieved in practice, we compute
an estimate of the MSE using Stein's unbiased risk estimate
(SURE) [15].
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(a) (b) (c) (d) (e)

Fig. 6. (a) Noisy Cells image, denoised with (b) BM3D and the exact unbiased inverse (average NMISE = 0.0649), (c) SAFIR and the exact unbiased
inverse (average NMISE = 0.0671), (d) BLS-GSM and the exact unbiased inverse (average NMISE = 0.0707), (e) MS-VST + curvelets (average NMISE =
0.078) [1]. The original image is shown in Figure 3.
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(a) Spots (row 247).
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(b) Galaxy (row 130).
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(c) Ridges (row 40).
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(e) Cells (row 145).

Fig. 7. Cross-sections of some of the images denoised with BM3D. For Cells the intensities are large enough for the two inverses to practically coincide.

Cameraman (256�256) Lena (512�512) Boat (512�512) Barbara (512�512) Fingerprint (512�512)
Fig. 8. The �ve test images used in the experiments of Section IV-A2.
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TABLE II
AVERAGE PSNR VALUES (DB) FOR VARIOUS PEAK INTENSITIES FOR THE ASYMPTOTICALLY UNBIASED INVERSE AND THE EXACT UNBIASED INVERSE,
AND A COMPARISON TO THE RESULTS OBTAINED IN [2] WITH PH-HMT, AN ALGORITHM SPECIFICALLY DESIGNED FOR POISSON NOISE REMOVAL.

Asymptotically unbiased inverse Exact unbiased inverse Other algorithms
Image Peak Noisy BM3D SAFIR BLS-GSM BM3D SAFIR BLS-GSM PH-HMT [2]

1 3.27 14.90 14.97 14.37 19.89 20.37 18.44 20.03
2 6.26 20.49 20.21 18.94 22.10 21.88 20.11 21.41
3 8.05 22.30 22.12 20.69 23.07 22.87 21.22 22.31

Cameraman 4 9.28 23.40 23.25 21.67 23.86 23.71 21.98 22.90
5 10.27 24.12 24.01 22.36 24.42 24.31 22.57 23.37
10 13.26 26.03 25.83 24.52 26.08 25.89 24.57 24.97
20 16.29 27.65 27.31 26.49 27.65 27.31 26.49 26.61

1 2.96 16.13 16.26 15.79 22.22 23.41 21.52 22.66
2 5.99 22.88 23.00 21.98 24.07 24.77 23.42 23.91
3 7.75 24.91 25.28 24.24 25.23 25.74 24.67 24.69

Lena 4 9.00 25.96 26.32 25.43 26.06 26.45 25.59 25.29
5 9.96 26.53 26.88 26.15 26.56 26.91 26.21 25.78
10 12.97 28.31 28.51 28.03 28.31 28.51 28.03 27.21
20 15.98 29.99 30.03 29.60 29.99 30.03 29.59 28.66

1 2.93 15.88 15.87 15.56 20.97 21.41 20.49 21.76

2 5.95 21.80 21.57 20.90 22.74 22.76 21.98 22.77

3 7.71 23.36 23.28 22.69 23.67 23.62 23.04 23.45
Boat 4 8.96 24.15 24.07 23.63 24.28 24.20 23.79 23.90

5 9.92 24.71 24.63 24.33 24.77 24.70 24.42 24.31
10 12.94 26.27 26.06 25.93 26.28 26.07 25.94 25.57
20 15.94 27.83 27.44 27.41 27.83 27.44 27.41 26.96

1 3.20 15.28 15.33 14.95 20.43 20.78 19.64 20.48
2 6.23 20.88 20.50 19.87 21.91 21.67 20.93 21.27
3 7.99 22.74 21.88 21.31 23.07 22.18 21.62 21.72

Barbara 4 9.24 23.71 22.38 21.90 23.84 22.48 22.01 22.07
5 10.21 24.42 22.68 22.57 24.48 22.72 22.62 22.33
10 13.21 26.35 24.22 24.67 26.35 24.22 24.67 23.45
20 16.22 28.18 26.91 26.50 28.18 26.91 26.50 24.92

1 2.55 14.61 14.28 13.89 17.12 16.61 15.98 17.39

2 5.57 19.55 19.23 18.87 19.86 19.59 19.36 18.55
3 7.34 20.93 20.80 20.52 20.98 20.85 20.64 19.36

Fingerprint 4 8.58 21.68 21.54 21.34 21.69 21.54 21.39 19.94
5 9.54 22.22 22.03 21.89 22.22 22.03 21.91 20.42
10 12.56 23.80 23.35 23.38 23.80 23.35 23.38 21.91
20 15.57 25.37 24.62 24.94 25.37 24.62 24.94 23.46

Peppers (256�256) Cameraman (256�256) MIT (256�256) Moon (512�512)
Fig. 9. The four test images used in the experiments of Section IV-A3.

For both cases, due to space limitation, we present only the
results corresponding to Table I produced using the BM3D
algorithm.

1) Oracle Monte-Carlo MSE: Here we compute the mean
square error (13) from 50 independent replications of the
denoising experiment. This estimate, denoted as "2MC, is an
oracle estimate which cannot obviously be produced if y is
unknown. Note that very �ne structures of the image are
visible in "MC, as shown in the leftmost images in Figures
10�11. The corresponding MMSE estimate of y is obtained
as IMMSE .D; "MC/. The average NMISE and PSNR results
over 5 independent replications of z are reported in Table IV.

For some images, the improvement is dramatic (up to almost
2.7 dB PSNR difference for Spots). However, for those images

where already the exact unbiased inverse did not provide sub-
stantial improvement over the asymptotically unbiased inverse
(see Table I), the differences are much smaller. In the case
of Barbara the results are even slightly worse. This can be
attributed to the failure of the normal model (14) in describing
the actual estimation errors for this particular image dominated
by repeated texture.

2) Empirical SURE estimate: Stein's unbiased risk estimate
(SURE) [15] can be used to provide a surrogate for the mean
square error (13) for an arbitrary denoising algorithm without
needing y to be known and without resorting to multiple
realizations of the noise. Assuming that the noise corrupting
f .z/ is zero-mean Gaussian with diagonal covariance matrix
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TABLE III
AVERAGE PSNR VALUES (DB) FOR VARIOUS PEAK INTENSITIES FOR THE ASYMPTOTICALLY UNBIASED INVERSE AND THE EXACT UNBIASED INVERSE,

AND A COMPARISON TO THE BEST RESULTS OBTAINED IN [3] WITH THE INTERSCALE PURE-LET, AN ALGORITHM SPECIFICALLY DESIGNED FOR

POISSON NOISE REMOVAL.

Asymptotically unbiased inverse Exact unbiased inverse Other algorithms
Image Peak Noisy BM3D SAFIR BLS-GSM BM3D SAFIR BLS-GSM PURE-LET [3]

1 3.16 15.20 15.30 14.67 19.98 20.34 18.44 19.33
5 10.13 24.59 24.89 23.47 24.70 25.03 23.57 22.52
10 13.15 26.41 26.49 25.39 26.43 26.51 25.41 24.29

Peppers 20 16.15 28.05 28.02 27.00 28.05 28.03 27.00 26.18
30 17.92 29.05 28.93 27.97 29.05 28.93 27.97 27.27
60 20.92 30.75 30.48 29.62 30.75 30.48 29.62 29.07
120 23.94 32.47 32.10 31.36 32.47 32.10 31.36 30.79

1 3.27 14.90 14.97 14.37 19.89 20.37 18.44 19.67
5 10.26 24.07 23.99 22.39 24.36 24.28 22.59 22.76
10 13.26 26.05 25.87 24.52 26.11 25.93 24.57 24.32

Cameraman 20 16.26 27.65 27.30 26.49 27.65 27.30 26.49 25.89
30 18.06 28.56 28.14 27.51 28.56 28.14 27.50 26.87
60 21.05 30.04 29.41 29.10 30.04 29.41 29.10 28.56
120 24.07 31.66 30.76 30.78 31.66 30.76 30.78 30.36

1 5.00 13.41 13.14 12.28 19.17 17.90 15.67 17.82
5 11.97 23.81 24.19 21.19 24.43 24.88 21.52 21.63
10 14.98 25.99 26.20 23.32 26.16 26.37 23.41 23.49

MIT 20 18.01 27.88 27.76 25.62 27.93 27.80 25.64 25.34
30 19.78 28.96 28.64 26.84 28.98 28.65 26.84 26.55
60 22.78 30.81 30.18 28.80 30.81 30.18 28.80 28.41
120 25.77 32.63 31.89 30.71 32.63 31.89 30.71 30.47

1 5.46 13.96 14.03 13.98 22.64 23.34 23.08 23.19
5 12.46 23.66 23.45 23.17 24.33 24.11 23.79 24.28
10 15.48 24.85 24.58 24.21 25.05 24.76 24.38 24.99

Moon 20 18.47 25.86 25.56 25.50 25.92 25.62 25.56 25.97

30 20.24 26.50 26.18 26.35 26.53 26.21 26.38 26.70

60 23.25 27.80 27.36 28.00 27.81 27.37 28.01 28.09

120 26.25 29.45 28.82 29.80 29.45 28.83 29.80 29.77

TABLE IV
AVERAGE NMISE AND PSNR (DB) VALUES FOR THE EXACT UNBIASED INVERSE, MMSE INVERSE WITH THE ORACLE MONTE-CARLO ESTIMATE "MC ,

AND MMSE INVERSE WITH THE SURE ESTIMATE "SURE . THE INTENSITY RANGE OF EACH IMAGE IS INDICATED IN BRACKETS.

NMISE PSNR (dB)
Exact unbiased inverse MMSE "MC MMSE "SURE Exact unbiased inverse MMSE "MC MMSE "SURE

Spots [0.03, 5.02] 0.0365 0.0324 0.0362 31.96 34.65 32.81
Galaxy [0, 5] 0.0299 0.0241 0.0308 28.05 30.06 28.16
Ridges [0.05, 0.85] 0.0128 0.0129 0.0129 25.89 25.98 25.94
Barbara [0.93, 15.73] 0.0881 0.0971 0.0911 25.92 25.80 25.91
Cells [0.53, 16.93] 0.0649 0.0686 0.0668 30.19 30.23 30.18

� 21, the SURE for D is

SURE .Di / D .Di � f .zi //
2 C � 2

�
2
@Di

@ f .zi /
� 1

�
, (23)

where i D 1; : : : ; N . The Anscombe variance-stabilizing
transformation ensures that these assumptions approximately
hold with � 2 D var f f .z/ jyg ' 1. We compute the partial
derivative @Di

@ f .zi /
in (23) as the �nite difference

�
D�i � Di

�
=�,

where D� is the denoised output obtained after perturbing
f .zi / with a �nite increment � D 1:5 (this value is chosen
so that the perturbation can compete with the noise). Thus,
calculating (23) requires N individual denoising procedures.
Although these can be �rst accelerated by processing only a
neighborhood of the perturbed sample and then parallelized,
the computational cost of this SURE approach remains obvi-
ously very high. Depending on the particular denoising �lter,
more sophisticated approaches to empirically estimate (23)
exist (see, e.g., [16]).

As this risk estimator is unbiased, it is reasonable to smooth
SURE.D/ in order to approximate its expectation. Also for this

smoothing we use the BM3D �lter. Further, since var f f .z/ jyg
is constant only approximately, we replace the factor � 2 in
(23) by var f f .z/ jIC .D/g (this conditional variance of f .z/
can be computed numerically as it is done for its conditional
expectation). We denote the obtained MSE estimate as "2SURE.
In Figures 10�11 we compare "SURE estimates with oracle
Monte-Carlo estimates "MC. The average results obtained from
the MMSE estimate IMMSE .D; "SURE/ are given in Table
IV. On a very simple image, such as Spots, "2SURE can
provide a reasonable approximation of the mean square error,
and thus a noticeable improvement in the PSNR. However,
for all other images this approximation is too coarse and
the results do not differ on average from the results of the
exact unbiased inverse. Figures 12�13 compare the results
of the three inverses IC .D/ D IML .D/, IMMSE .D; "MC/
and IMMSE .D; "SURE/ for Spots and Barbara, respectively.
While visually the three estimates of Barbara are virtually
indistinguishable, one can observe that for Spots the MMSE
inverses, particularly IMMSE .D; "MC/, provide sharper details
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Fig. 10. Oracle Monte-Carlo estimate "MC for Spots (left) compared with
the respective SURE estimate "SURE (right).

Fig. 11. Oracle Monte-Carlo estimate "MC for Barbara (left) compared with
the respective SURE estimate "SURE (right).

than the exact unbiased inverse.

C. Computational complexity

As our Matlab implementation of the exact unbiased inverse
takes advantage of precomputed values of Ef f .z/ j yg and
Efz j yg, the inverse transformation can be executed quickly.
Thus, the computation time of the whole denoising procedure
mainly depends on the execution time of the chosen denoising
algorithm. Table V shows average computation times of the
denoising of Lena (512 � 512, peak 10) and Cameraman
(256 � 256, peak 10) with the exact unbiased inverse, for
two different CPUs. It is worth noting that for SAFIR we
do not use the default parameters, but the ones that should
give the best results (no subsampling, patch radius=3, itera-
tions=8, lambda=66, eta=3.7). This signi�cantly increases the
computation time by a factor of about 580, but provides an
improvement of about 0.6 dB (see [17] for details about the
complexity/performance scaling of the algorithm). Also for
BLS-GSM we use its full steerable pyramid implementation.
Note that the faster execution times for the dual core T8300

are rather explained by the fact that the CPU is much newer
than the Pentium 4, as at least the Matlab implementation of
BM3D does not take advantage of more than one CPU core.
In comparison, the authors of [1] report that the MS-VST

+ curvelet denoising of Cells (see Figure 6(e)) required 1287
seconds on a 1.1 GHz PC. The authors of [2] do not specify
their hardware, but they report the PH-HMT denoising of
Cameraman (peak 20) taking 92 seconds with unoptimized
Matlab code. Finally, the authors of [3] report the Interscale
PURE-LET denoising of Cameraman at 17.25 dB taking only
0.37 seconds with two cyclic shifts and 4.6 seconds with 25

cyclic shifts (hardware not speci�ed). Note that in Table III we
compare our results against the PURE-LET with two cyclic
shifts, as similar results for 25 cyclic shifts are not presented
in [3].
Regarding our MMSE inverse, even with exploiting some

acceleration, the time needed for computing the empirical
MSE estimate "2SURE is hundreds of times higher than that
of a single denoising run. Therefore, based on the minor
improvements over IC D IML shown in Table IV, the practical
use of the MMSE inverse appears extremely limited.

V. DISCUSSION AND CONCLUSIONS

In this paper we showed that the three-step procedure of
�rst stabilizing the noise variance by applying the Anscombe
transformation, then denoising with an algorithm designed for
Gaussian noise, and �nally applying an inverse transformation,
can still be considered a viable approach for Poisson noise
removal. In particular, the poor performance of the asymp-
totically unbiased inverse at low counts can be overcome by
replacing it with the exact unbiased inverse. The excellent
performance achieved through the exact unbiased inverse is
justi�ed by the fact that this inverse can be interpreted as a
maximum likelihood inverse under rather generic hypotheses.
Further, when combined with a state-of-the-art Gaussian

denoising algorithm, this method is competitive with some
of the best Poisson noise removal algorithms, such as PH-
HMT [2] and MS-VST [1]. While most of the improvement
is due to the exact unbiased inverse, the choice of the denoising
algorithm does also matter, and of the methods considered here
BM3D seems to be the best choice due to its overall strong
results combined with low complexity.
We have also proposed an MMSE inverse parametrized by

the pointwise MSE of the denoised stabilized data. While
this inverse is not suitable for practical applications with
generic �lters, we argue that it can be relevant within speci�c
implementations where more knowledge about the statistics of
the estimates is available.
In connection with our contributions, we would like to

mention the work of Neyman and Scott [18] on the unbiased
inversion of transformed and stabilized variables, and highlight
the aspects that make their results different than ours. First, in
[18] it is assumed that the transformed variables are exactly
stabilized and normalized, which (as the authors also point out)
is not possible for Poisson distributed variables stabilized by
a root transformation. In our paper we instead always provide
a fully accurate statistical modelling of the distribution of the
stabilized Poisson variables f .z/. Second, in the case when the
estimation is inaccurate, even though we and they both assume
a normal distribution of the estimate D, the inverse sought
by them is an unbiased one (minimum variance unbiased
estimate) whereas we address this case by the ML and MMSE
inverses.
In this paper we contemplated only imaging, but it is worth

noting that the same procedure can be applied to data of any
dimension, including 1-D signals and volumetric data.
Let us also remark that even though our focus is on

the Anscombe transformation, there exist a variety of other
variance-stabilizing transformations for Poisson data, such as
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(a) (b) (c) (d) (e)

Fig. 12. (a) Original Spots image (intensity range [0.03, 5.02]), (b) Poisson-count image, (c) image denoised with BM3D and the exact unbiased inverse
(average NMISE = 0.0365 and PSNR = 31.96 dB), (d) image denoised with BM3D and the MMSE inverse with the oracle Monte-Carlo estimate "MC (average
NMISE = 0.0324 and PSNR = 34.65 dB), (e) image denoised with BM3D and the MMSE inverse with the SURE estimate "SURE (average NMISE = 0.0362
and PSNR = 32.81 dB). The images shown here are gamma-corrected ( D 0:6) for improved visibility of the darker areas.

(a) (b) (c) (d) (e)

Fig. 13. (a) Original Barbara image (intensity range [0.93, 15.73]), (b) Poisson-count image, (c) image denoised with BM3D and the exact unbiased inverse
(average NMISE = 0.0881 and PSNR = 25.92 dB), (d) image denoised with BM3D and the MMSE inverse with the oracle Monte-Carlo estimate "MC (average
NMISE = 0.0971 and PSNR = 25.80 dB), (e) image denoised with BM3D and the MMSE inverse with the SURE estimate "SURE (average NMISE = 0.0911
and PSNR = 25.91 dB).

TABLE V
AVERAGE COMPUTATION TIMES OF THE DENOISING PROCEDURES AND TRANSFORMATIONS FOR THE LENA (512 � 512) AND CAMERAMAN (256 � 256)

IMAGES, FOR TWO DIFFERENT CPUS. FOR SAFIR WE USE THE PARAMETERS GIVING THE BEST DENOISING RESULTS, WHICH SIGNIFICANTLY
INCREASES THE COMPUTATION TIME, AND FOR BLS-GSM WE USE ITS FULL STEERABLE PYRAMID IMPLEMENTATION.

Forward Anscombe Exact unbiased inverse
CPU Image BM3D SAFIR BLS-GSM (transformation only) (transformation only)

Intel Pentium 4 HT 560 Lena 6.3 s 60 min 68 s 0.07 s 0.22 s
(single core) @ 3.6 GHz Cameraman 1.6 s 14 min 17 s 0.014 s 0.063 s

Intel Mobile Core 2 Duo Lena 4.1 s 43 min - 0.025 s 0.15 s
T8300 @ 2.4 GHz Cameraman 1.0 s 9.5 min - 0.006 s 0.044 s

the Freeman-Tukey transformation [19], or more optimized
ones discussed in [20] and [21]. However, the emphasis of
this paper is on the improvement gained through applying
a suitable inverse, rather than on the improvement gained
through optimized variance stabilization. We chose to use
the Anscombe transformation because it is in wide use, but
the proposed method is in no way limited to this particular
transformation.
Finally, we wish to note that the concept of optimal inverse

transformations is of course not restricted to the Poisson
distribution. As a notable example, in our recent paper [22], we
have studied the stabilization and the exact unbiased inverse
transformation for the raw data from digital imaging sensors,
modelling these data by a doubly censored heteroskedastic
normal distribution.
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APPENDIX

Here we present the derivations of the maximum likelihood
inverse (17) and the MMSE inverse (19).

A. Derivation of the ML inverse

To prove (17), let us consider two cases. First, if D �
2
p
3=8, (15) can be maximized by choosing y in such a way

that the maximum of the probability density function (PDF)
of D given y (16) coincides with D, i.e. Ef f .z/ j yg D D.
Thus, from (9) we obtain the �rst half of (17). Second,
if D < 2

p
3=8, it is not possible for the maximum of

the PDF (16) to coincide with D, since y � 0; however,
because this PDF is monotonically increasing between �1
and Ef f .z/ j yg, and variations of y correspond to translations
of the PDF, argmax

y
p.D j y/ is achieved with the smallest

possible y, i.e. y D 0.
Note that this proof relies only on the fact that the distrib-

ution of D is unimodal with mode at Ef f .z/ j yg.

B. Derivation of the MMSE inverse

Equation (19) in Section III-C is derived as follows: We
de�ne our MMSE inverse transformation by

IMMSE.D; "/ D argmin
Oy

Z C1

�1
p.y j D/.y � Oy/2 dy: (24)

According to Bayes' theorem,

p.y j D/ D p.D j y/p.y/
p.D/

: (25)

Thus, (24) is equivalent to

IMMSE.D; "/ D argmin
Oy

Z C1

�1

p.y/

p.D/
p.D j y/.y � Oy/2 dy:

D argmin
Oy

Z C1

�1
p.y/p.D j y/.y � Oy/2 dy:

(26)

Assuming y has an improper uniform distribution over RC

(uninformative prior), we can further write

IMMSE.D; "/ D argmin
Oy

Z C1

0
p.D j y/.y � Oy/2 dy: (27)

The Oy minimizing the integral in (27) is found by differentia-
tion, giving us

Oy D
R C1
0 p.D j y/y dy
R C1
0 p.D j y/ dy

: (28)

In practice, the same result can be obtained by equivalently
assuming y to be uniformly distributed between 0 and M ,
where M > 0 is a constant much larger than any of our
observations zi , becauseZ C1

0
p.D j y/.y � Oy/2 dy �

Z M

0
p.D j y/

�
y � Oy

�2
dy:

The difference between the two integrals is negligible due to
our choice of M and the exponential decay of p.D j y/.


