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A complete solution is provided to the infinite-horizon, discounted
problem of optimal consumption and investment in a market with one
stock, one money market (sometimes called a “bond”) and proportional
transaction costs. The utility function may be of the form ¢”/p, where
p <0o0r0 <p < 1, or may be log c. It is assumed that the interest rate for
the money market is positive, the mean rate of return for the stock is
larger than this interest rate, the stock volatility is positive and all these
parameters are constant. The only other assumption is that the value
function is finite; necessary conditions for this are given.

In the Appendix (by S. Shreve), the sensitivity of the value function
under the assumption 0 <p < 1 is shown to be of the order of the
transaction cost to the 2 /3 power. This implies that the liquidity premium
associated with small transaction costs is also of the order of the transac-
tion cost to the 2/3 power. Because this power is less than 1, the marginal
liquidity premium turns out to be infinite.

The analysis of this paper and its Appendix relies on the concept of
viscosity solutions to Hamilton—-Jacobi—-Bellman equations. A self-con-
tained treatment of this subject, adequate for the present application, is
provided.
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1. Introduction. In [54], Merton initiated the study of financial markets
via continuous-time, stochastic models. Then as now, two principal issues
were the role of financial intermediaries, such as mutual funds, and the
interaction among many agents which leads to price formation. Merton chose
to study these issues by first understanding the behavior of a single agent
acting as a market price-taker and seeking to maximize expected utility of
consumption. The utility function of the agent was assumed to be a power
function, and the market was assumed to comprise a risk-free asset with
constant rate of return and one or more stocks, each with constant mean rate
of return and volatility. Current prices, but no other information, were
available to the agent, there were no transaction costs and the assets were
infinitely divisible. In this idealized setting, Merton was able to derive a
closed-form solution to the stochastic control problem faced by the agent.

As a consequence of his work, Merton found that the stocks can be replaced
by a mutual fund such that the agent is indifferent between investing in the
risk-free asset and stocks individually or only in the risk-free asset and the
mutual fund. Moreover, this mutual fund is independent of the agent’s utility
function. Thus, the financial intermediary of a mutual fund simplifies the
model, but the mutual fund in this particular case is redundant.

In later papers [55], [56], Merton allowed the market coefficients to be
nonconstant, depending on a “state” variable. In this context, Merton ad-
dressed the issue of price formation, writing down necessary conditions for
equilibrium prices. He did not, however, resolve the question of existence of a
solution to these conditions. Recent progress on existence and uniqueness of
equilibrium can be found in [2], [13], [16], [18], [21], [35], [41], [42], [52] and
[53].

Merton’s model has been generalized in several directions. The restriction
to utility functions of power form was removed in [39]. Market coefficients
depending in an adapted way on an underlying Brownian motion were
treated in [9], [40] and [58]. The present paper treats yet another generaliza-
tion of Merton’s model: the generalization in which transactions incur costs.

The introduction of proportional transaction costs to Merton’s model was
first accomplished by Magill and Constantinides [51]. These authors were
apparently motivated by a desire to understand why mutual funds exist, and
indeed, in a companion paper, Magill [50] argues that these transaction costs
can make investment in a mutual fund preferable to investment in stocks
individually. Magill and Constantinides also expressed hope that their work
would “prove useful in determining the impact of trading costs on capital
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market equilibrium.” The analysis of transaction cost models has unfortu-
nately not yet progressed to the point where this hope can be realized.

The Merton model with proportional transaction costs has also been used
to price contingent claims. Hodges and Neuberger [34] initiated the idea of
using such a model to determine what price for a contingent claim would
make it attractive to investors. This idea has been further developed in [24],
[15] and [8]. Other papers on pricing contingent claims in the presence of
transaction costs include [28], [44], [5], [3] and [33]. Duffie and Sun [20]
studied an altogether different structure for transaction costs and informa-
tion accrual.

Grossman and Laroque [29] constructed a related model with transaction
costs. Their model is designed so that the so-called consumption-based capital
asset pricing model relation between consumption and risk premia is not
valid. They were motivated by the fact that this relation had been rejected by
empirical studies (e.g., [30] and [31]).

The present paper treats the case of a risk-free asset, which we call a
money market, and one risky asset, a stock. In the constant-coefficient model
studied by Merton, if there is only one stock, then the optimal portfolio holds
a constant proportion of wealth in the stock. This constant, which we call the
Merton proportion, depends on all the model parameters, but not on the
wealth itself. To achieve this optimal portfolio, the agent must engage in
continual trading. In the problem with proportional transaction costs, Magill
and Constantinides [51] found that “the investor trades in securities when
the variation in the underlying security prices forces his portfolio proportions
outside a certain region about the optimal proportions in the absence of
transaction costs.” Under certain model parameters, this assertion is con-
firmed by our work. We find that, regardless of model parameters, the
proportion of wealth held in the stock by the optimal portfolio remains in an
interval whose endpoints depend on all the model parameters, but not on the
wealth. It can happen, however, when one endpoint of this interval is larger
than unity (the optimal portfolio borrows at the risk-free rate in order to
invest in stock) that the Merton proportion is so large that it lies outside this
interval. In other words, when leverage is optimal, the presence of transac-
tion costs reduces the agent’s desire for leverage, and the agent should trade
to move from the Merton proportion to a less leveraged position.

The Appendix to this paper concerns the effect on the Merton model of the
presence of transaction costs. One way of studying this is to estimate the
“liquidity premium,” defined to be the amount of increase in the rate of
return for the stock which would be required to compensate the investor for
the presence of the transaction costs. Constantinides [7] computed upper
bounds for the liquidity premium in the model studied here. For transaction
costs between 0.5 and 20%, this upper bound turns out to be approximately
0.14 times the transaction cost. Fleming, Grossman, Vila and Zariphopoulou
[25] determine the asymptotic behavior of a model with transaction costs and
with consumption occurring at the final time only. In their model, they
discover that the liquidity premium is of the order of the transaction cost to
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the 2/3 power. (See [63] and [22] for the solution of models closely related to
that solved by [25]). We show in the Appendix that the 2/3 power behavior
observed by [25] is present also in the Merton model with transaction costs.
This behavior was apparently not observed in the numerical work of [7]
because it appears only for levels of transaction cost smaller than 0.5%.

The model with transaction costs and intermediate consumption was posed
in discrete time by Constantinides [6] and in continuous time by Magill and
Constantinides [51]. The continuous-time model is now understood to be one
of singular stochastic control, that is, the optimal solution can be described
only in terms of singularly continuous processes. Although [51] shows clear
insight into the nature of the optimal policy, the tools of singular stochastic
control were unavailable to these authors. The introduction of these tools to
the transaction cost problem was first accomplished by Taksar, Klass and
Assaf [63], in the context of maximization of the rate of growth of wealth, and
later by Davis and Norman [14], in the more difficult context of the Merton
model with proportional transaction costs. Shreve, Soner and Xu [61] solve
the problem for two risk-free assets paying different rates of interest.
Zariphopoulou [66], [67] applied viscosity solution analysis to continuous-time
transaction cost problems in which the randomness arises from a Markov
chain governing the interest rate of one of the assets. For a recent account of
singular stochastic control which includes a study of the transaction cost
problem for the Merton model, using the viscosity solution techniques of this
paper, we refer the reader to Fleming and Soner [26], Chapter 8.

Davis and Norman [14] provide a precise formulation and analysis, includ-
ing an algorithm and numerical computations of the optimal policy, for the
problem of this paper. Their work is a landmark in the study of transaction
cost problems, and our paper is strongly influenced by theirs. Our purpose in
revisiting this problem is threefold. First, as explained in the next two
paragraphs, the results of [14] are obtained under restrictive and not fully
verifiable assumptions. We succeed in removing these assumptions, replacing
them by the sole assumption of a finite value function. In the process, we
confirm some conjectures of [14] and refute others. Second, the approach of
this paper provides a framework in which the liquidity premium estimation
can be accomplished. Finally, this problem provides an opportunity to demon-
strate once again the power of viscosity solution analysis in mathematical
finance and singular stochastic control. In particular, because the viscosity
solution approach is designed for partial rather than ordinary differential
equations, it is well suited for an examination of the problem when more than
one stock is present; see [1]. This paper is written for the reader who is not
familiar with viscosity solutions, but wishes to be. The presentation of
viscosity solutions in this paper is sufficient for the present application. For
the reader whose appetite is whetted by this paper, we recommend the work
of Zariphopoulou et al. [15], [17], [27], [66] and [67].

In order to compare our work to [14], we introduce some notation. A more
detailed discussion appears in the next section. There is a risk-free rate or
interest rate r and a single stock with mean rate of return o and volatility o.
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The utility for consumption is ¢?/p, where p <1, p # 0,or log c if p = 0. To
make the problem nontrivial, it is assumed that « > r > 0. The utility of
consumption is discounted at rate B > 0. Letting x denote the wealth ini-
tially invested in the money market, and letting y denote the wealth initially
invested in the stock, we denote by v(x,y) the expected, discounted,
infinite-horizon utility which can be obtained from optimal consumption
when trading in the two assets incurs transaction costs.

A key insight noted by [51] and exploited in [14] is that because of
homotheticity of v (Proposition 3.3), the dimension of the problem can be
reduced from two to one. In the analysis of the Hamilton—Jacobi—Bellman
(HJB) equation for this problem, Davis and Norman consider the function
v(1, x) of the single variable x. This function is constructed as the solution to
a two-point boundary value problem for a second-order ordinary differential
equation in x. The endpoints x, and x; (x, < x4) of this problem correspond
to the endpoints of the optimal portfolio interval mentioned above, and their
determination by the so-called “principle of smooth fit” is part of the two-point
boundary problem. Because the ordinary differential equation is degenerate
at x = 0, it is not apparent that v(1, x) is smooth there. Davis and Norman
assume that the Merton proportion (« — r)/(1 — p)o? is strictly less than 1,
which guarantees that x, > 0 and the problem of degeneracy does not arise.
With additional work, it may be possible to extend the analysis of [14] to
cover the case x, < 0. In the present paper, we do not rely on the principle of
smooth fit and can thus include the case x;, < 0 with no extra work. It is in
the case x, < 0 that we discover the phenomenon mentioned earlier that the
presence of transaction costs reduces the agent’s desire for leverage. A second
issue which must be addressed is whether it is ever optimal to invest only in
the money market. If it were, then there would be no right-hand endpoint x,
required by the analysis of [14]. In order to guarantee the existence of x,
Davis and Norman impose Condition B, which is the assumption that there is
an initial point on a certain arc from which the trajectory of a two-dimen-
sional, nonlinear differential system will reach a desired point. The relation-
ship between Condition B and the model parameters is unclear. Davis and
Norman succeed in proving the validity of this condition only when a — r <
o 2(1 — p)/2 and, supported by numerical evidence, conjecture its validity in
full generality. Although we do not study Condition B directly, we do estab-
lish that it is never optimal to invest only in the money market and hence the
xp of [14] always exists (Theorem 11.6). Finally, the analysis of [14] is
performed under the assumption

11 p(a—r)’
. — > ——,
which is necessary and sufficient for the value function in the problem
without transaction costs to be finite. Even when this condition is violated, as
it is for 0 < p < 1 and small volatility o, the value function in the problem
with transaction costs can be finite. In the present paper we make only the
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assumption of a finite value function for the problem with transaction costs,
and in Section 12 we provide two sufficient conditions for this in addition to
(1.1).

In [26], the transaction cost problem is studied and the optimal strategy is
constructed for the case 0 < p < 1. Although parts of the present analysis
closely follow [26], in this paper we allow p to be zero or negative, we obtain
further regularity on the value function (Section 10), we use this regularity to
provide bounds on the location of the free boundaries which provide the basis
for the optimal strategy (Section 11) and we examine the sensitivity of the
value function to the transaction costs (Appendix).

The method of analysis of this paper depends on the newly developed
concept of viscosity solutions to Hamilton—Jacobi-Bellman (HJB) equations.
The foundational work on this subject is due to Crandall and Lions [10],
Crandall, Evans and Lions [11], and Lions [45]. All these papers deal with
first-order equations. However, the Hamilton—Jacobi-Bellman equation for a
controlled diffusion process gives rise to a second-order equation. The exten-
sion of the viscosity theory to second-order equations was obtained in a series
of papers by Lions [46]-[48], Jensen [38] and Ishii [37]. The recent survey
article by Crandall, Ishii and Lions [12] provides a good account of the
viscosity theory, and the application to stochastic control is reported in the
book by Fleming and Soner [26]. The use of viscosity solutions in mathemati-
cal finance was initiated in the Ph.D. dissertation of Zariphopoulou [66].

The classical approach to stochastic control is to construct a function by ad
hoc methods which solves the HJB equation, and then use this equation to
verify that the constructed function is the value function. As seen in [14], the
construction of this function often requires considerable ingenuity and some-
times the introduction of extraneous conditions. By contrast, the viscosity
solution approach is to begin with the value function, assuming only its
finiteness, and use the principle of dynamic programming (see Section 4) to
show that it solves the HJB equation in the viscosity sense. With this toehold
on the problem, the regularity of the value function can often be upgraded so
that the HJB equation can be interpreted in the classical sense. The upgrad-
ing of regularity is not routine, but because the function under study is
known to be the value function rather than merely a solution to the HJB
equation, both control theory and differential equation arguments can be
brought to bear. We also make heavy use of the concavity of the value
function; see Section 6. In the present problem, this upgrading is important
for two reasons. First, the optimal consumption process is obtained in feed-
back form on a partial derivative of the value function. In order to ensure
that the resulting stochastic differential equation has a solution, it is neces-
sary to obtain local Lipschitz continuity of this partial derivative. Second,
using the continuity of a second partial derivative of the value function, in
Section 11 we obtain bounds on the location of the endpoints of the interval in
which the optimal proportion of wealth lies. These bounds allow us to draw
the conclusion, mentioned above, that the Merton proportion is in this
interval whenever the Merton proportion is less than 1, but the Merton
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proportion can fall outside this interval when it is larger than 1 (the case of
leverage).

2. Formulation of the model. Except for notational changes, the model
formulation is that of [14]. The market under consideration consists of two
investment opportunities, which we call a money market and a stock. (The
money market is sometimes called a bond, but unlike a real bond, the asset
in question has no maturity date and no risk of default.) An investor avails
himself of these opportunities by purchasing shares. The price of a share of
the money market at time ¢ > 0 is

Py(t) 2 e™,

where r > 0 is a constant called the interest rate or the risk-free rate. The
price of a share of stock at time ¢ > 0 is
2

(2.1) Py(t) £ exp[(a - =

t+ o-W(t)],

where a > r and o > 0 are constants called the mean rate of return and the
volatility, respectively, of the stock. The process {W(¢); ¢ = 0} is a standard
Brownian motion on a filtered probability space (Q,F,{#(¢)},.,, P) with
W(0) = 0 almost surely. We assume that .% = F(), the filtration {F(¢)}, . o is
right-continuous and each (¢) contains all the P-null sets of .#(). Equation
(2.1) can be written in the more suggestive differential notation

(2.2) dP,(t) = P,(t)[adt + o dW(t)].

An agent is given in initial position of x, dollars invested in the money
market and y, dollars invested in the stock. The agent must choose a
consumption/investment policy consisting of three {#(¢)},. ,-adapted pro-
cesses C, L and M. The consumption process C is required to be nonnegative
and integrable on each finite time interval, that is,

C(t)20, [C(s)ds<= Viz0,as.
0

The process L and M are right-continuous with left-hand limits (RCLL),
nonnegative and nondecreasing. The cumulative dollar value of all money
market shares sold for the purpose of buying stock is recorded by L, whereas
M records the sale of stock for the purpose of investment in the money
market.

We denote by X(¢) [respectively, Y(¢)] the number of dollars invested in
the money market (respectively, stock) at time ¢, and we refer to (X(¢), Y(¢))
as the position of the agent at time ¢. We set

(2.3) X(07) =x,, Y(07) =y,

and let (X,Y) evolve according to the equations

(24) dX(t) =(rX(t) — C(¢t))dt —dL(¢) + (1 — p)dM(t),

(2.5) dY(t) =aY(t)dt + oY (¢)dW(t) + (1 — X) dL(t) — dM(¢t).
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The constants 0 < u < 1 and 0 < A < 1 appearing in these equations account
for proportional transaction costs incurred whenever wealth is moved from
one asset to the other. Note that

X(0) = x5 — L(0) + (1 - ) M(0),

(2.6) Y(0) =y, + (1 — A)L(0) — M(0)

may differ from X(07),Y(0~) because of a transaction at time zero.
Equations (2.4) and (2.5) capture the idea that investments in the money
market grow at interest rate r and investments in the stock fluctuate
according to (2.2). A heuristic argument from discrete to continuous time to
substantiate this claim appears on page 372 of [43]. More rigorous arguments
related to this point can be found in [19], [32] and [65].
Following [14], we define the (open) solvency region (see Figure 1)

yé{(x,y);x+ 1i)‘>0,x+(1—p¢)y>0}

and we partition the boundary into

y
3,72 ,¥);y<0,x+ =O},
w2 {(niys0x+ 15
972 {(x,9);y>0,x+ (1L — u)y =0}.

The solvency region is the set of positions from which the agent can move to a
position of positive wealth in both assets. If the agent’s wealth is on 9,5 and
he sells stock in order to pay his debt to the money market, the agent comes
to position (0, 0). If the agent’s wealth is on 7,.% and he uses funds from the
money market to cover his short position in the stock, the agent again arrives
at position (0, 0).

A Y
3,8 Stock
L

/ /
ENg s -

>
A\
<
é 7
A\Y
o

> X
Money
Market

75
98

Fic. 1. The solvency region.
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We assume that the agent is given an initial position (x,, y,) €%. A
consumption /investment policy (C, L, M) is admissible for (x,,y,) if
(X(2),Y(2)) given by (2.3)-(2.5) is in .& for all ¢ > 0. We denote by o(x,, y,)
the set of all such policies.

REMARK 2.1. If (x4, y,) € 0%, the only admissible policy is to jump
immediately to the origin and remain there. In particular, C must be identi-
cally zero.

To verify the assertion for (x,, y,) € 4;%, let (C,L, M) € (x,, y,) be
given and note from (2.6) that X(0)+ Y0)/Q1 -AMN=[1-p—-1/1 -
MIM(0), which is not allowed to be negative. Thus, M(0) =0 and
(X(0),Y(0)) € 9,.%#. Furthermore, (2.4) and (2.5) show that

d[e“”(X(t) o i AY(t))]

o
1-A

. ,
+11—pu— —— | dM(t)|.
(1= 0= | anrco)

Let 72 1 Ainf{t > 0; Y(¢) & (y, — 1,0)} and integrate (2.7) to obtain

0< e‘”(X(r) + 1 i )‘Y(T))

(2.7) - e“”[%Y(t) dt + Y(¢) dW(¢) — C(¢) dt

T o —r
= e*”[wY(t) dt — C(¢t) dt +
0 1-A

1
1- = ﬁ) dM(t)]

o
1-2

< 1%')‘[02-”1/@) dW(2).

However, E[Je”"'Y(¢) dW(¢) = 0, from which we conclude that

+ [ty (¢) dw(z)
0

a T
I—Afe‘”Y(t)dW(t) =0 as.
- 0

Because o > 0, this implies 7 = 0 almost surely, and because Y is right-con-
tinuous and Y(0) > y, [because M(0) = 0], we must have Y(0) > 0. It is
easily verified that because (x, y,) € 9;.%, Y(0) > 0 is incompatible with
(X(0),Y(0)) €., and we conclude Y(0) = 0 almost surely.

For the assertion concerning (x,, y,) € 95,.%, one can use a similar argu-
ment and the assumption o > 0 to obtain L(0) = 0 and

0<e ™ (X(1)+(1-p)Y(r))

<o(l- ,u)fOTe‘”Y(t)(

(24

- r
—dt + dW(t)),
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where now 72 1 Ainf {t > 0; Y(¢) € (0, y, + D}. According to Girsanov’s
theorem, there is a probability measure, mutually absolutely continuous with
respect to P, under which {(a — r)t/o + W(¢); ¢t > 0} is a standard Brownian
motion. Under this measure, the nonnegative random variable

0(1—,049-”Yu)(

has expectation zero and so is almost surely zero. This implies that 7= 0,
almost surely, from which we conclude Y(0) = 0.

(24

_rw+dwuﬁ

g

REMARK 2.2. If (x,, y,) €., it is possible to jump immediately to the
x-axis. If y, > 0, this is accomplished by setting M(0) = y,, L(0) = 0 and
then X(0) =x, + (1 — w)y,. If y, <0, one can set M(0) = 0, L(0) = —y,/
(1 — A) and obtain X(0) = x, + y,/(1 — A). After jumping to the x-axis, one
can choose consumption proportional to wealth and make no further transfers
between the assets. This results in an admissible policy. Indeed, if C(¢) =
vX(t), where y is a positive constant, then for all ¢ = 0,

(%o + (1 — p)yg)e" ™", if y5 >0,

Yo

X(t) = . .
(xo + T—:—):)e( Y)t, if Yo < 0.

We now fix a parameter p < 1 and introduce the agent’s utility function U,
defined for all ¢ > 0O by

CP
U(c) =4 p’
loge, ifp=0,

ifp<1,p#0,

where we set U,(0) 2 —w if p < 0. We also introduce a positive discount
factor B > 0.
The following condition will be in force throughout:

STANDING ASSUMPTION 2.3. For all (x, y) €.%,

sup Efwe"‘” max{U,(C(t)),0} dt < =.
(C,L,M)esfx,y) "0

If p < 0, then this Standing Assumption is clearly satisfied. We shall show
in Propostion 5.4 that it is also satisfied when p = 0. For 0 <p <1, the
Standing Assumption can fail. Some sufficient conditions for the Standing
Assumption in this case are provided in Remark 5.3 and in Section 12; a
necessary condition appears in Proposition 3.4.

We define the value function by

(28) v(x,y)= s E[ e PU(C(H)dt  Y(x,y) e
(C,L,M)ex,y) "0
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If 0 < p < 1, Standing Assumption 2.3 is equivalent to the condition v(x, y)
< o for all (x, y) €.7. B
For future reference, we introduce the function U,,: (0,) > R defined by

1-p
i - Gp/(p=D ifp<1,p#0,
(2.9) U,(é) & sup{U,(c) — cé} = p ‘ nP i

>0 -1 -1logé, if p=0,

for all ¢ > 0. The supremum in (2.9) is attained by ¢ = I,(¢), where

(2.10) I,(¢) & ¢/ Yé>0

is the inverse of the strictly decreasing function U;. We have from (2.9) that
(2.11) Ué) +cé —Uyfc)=0 Ve=0,¢>0,

and because the function ¢ — U'p(é) + c¢¢ — U,(c) is convex, we also have for
any constant £ > 0,

(2.12) U, () +cé — Uy(c) = (c —k)(é — Uy(k)) Ve>0.

3. Elementary properties of the value function. In contrast to [14],
where the principal activity is to create a solution to the Hamilton—
Jacobi—Bellman equation, our principal activity is to establish properties of
the value function v. In this section, using the definition of v as the value
function for a control problem, we establish concavity, continuity and homo-
theticity of v and provide some bounds.

ProOPOSITION 3.1. The value function v defined by (2.8) is concave.

Proor. Let (x,, y,) and (x,, y,) be in ., and let y € (0, 1), (C,, L,, M,) €
A xq, y,) and (Cy, Ly, M,) €4(x,, y,) be given. The linearity of (2.4) and
(2.5) implies that

(vCy + (1= ¥)Co, ¥Ly + (1 = ¥) Ly, yM, + (1~ v) M)
e (yx; + (1= ¥)xy, vy + (1 = ¥)y5).
Because Up is concave, we have
U(yx1 + (1 - 'Y)xzy’)’yl + (1 - ’Y)y2)

> EfowﬂtUp(ycl(t) + (1= y)Cy(2)) dt

> yE/:e-ﬂtUp(cl(t)) i + (1 — y)E/;we_ﬁtUp(Cz(t)) ds.
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Maximizing the right-hand side over (C,, L,, M,) € o(x,, y;) and
(Cz, L,, Mz) e x,, y,), We obtain

v(yx, + (L —y)xg, vy, + (1= v)yz) = yo(xy, ;) + (1 — v)v(xs,y2)-
O

COROLLARY 3.2. The value function v is continuous on .

ProOF. A concave function is continuous on the interior of its domain
(60], Theorem 10.1). O

We show in Corollaries 5.5 and 5.8 that v is continuous on 4.% as well.

ProOPOSITION 3.3. The value function v has the homotheticity property

YPu(x,y), ifp<1l,p=#0,
(1/B)logy + v(x,y), ifp=0,
forall (x,y) €% and vy > 0.

(3.1)  v(yx,yy) = {

ProOF. This follows from the fact that (C, L, M) € #(x, y) if and only if
(yC,yL,yM) € #/(yx,yy). O

PROPOSITION 3.4. Define

B—rp

1-p°

Then C, > 0 (which is a necessary condition for Standing Assumption 2.3
when 0 < p < 1). If p # 0, the value function has the lower bound

*

1 _
—C2 Y x+ (1-p)y)’, VY(xy) €F 520,

(32) v(x,y) = 1
—Cﬁ“l(x+
b

P
) , Y(x,y) €%,y <0.

If p =0, then
r—
B* "’
Y(x,y) €%,y =0,

r —

1 1
Elog(x+(1—p.)y) +Elog,3+

(33) v(x,y)=

1
)+EIOgB+ [32 ,

Y(x,y) €%,y <0.

11 y
— +
og(x T

B

On 9, U 9,.%, v coincides with these lower bounds, which are 0 if 0 <p <1
and —xifp <0.
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ProOF. Remark 2.1 gives us the claimed values of v on 3, U 9,.%. For
the lower bounds on v, let us first consider the case 0 <p < 1. Let y be a
constant satisfying y > max{0, —( 8 — rp)/p} and evaluate the consumption
process in Remark 2.2 to obtain v(x, y) = X?(0)y?/[ p( B — rp + yp)], where
X(0) is as in Remark 2.2. If (8 — rp)/p < 0, wecanlet y | — (B — rp)/p and
this lower bound on v converges to «© for all (x, y) €. Thus, C, > 01is a
consequence of Standing Assumption 2.3. Under this assumption, we note
that C,, maximizes X?(0)y?/[ p(B — rp + yp)] over y > 0, and this provides
(3.2).

For p < 0, the derivation of (8.2) is the same, except that now C, > 0
because 8 > 0 and r > 0. For p = 0, the consumption process in Remark 2.2
leads to the lower bound

(x,7) 1 X(0) + L i
v x,y Z_Og _Og’y+ s
B B B2

which is maximized by y=C, = 8. O
If (x,, y,) € and (x, y) €. satisfy [cf. (2.6)]
(3.4) x=x—1+ (1~ p)ym, y=yo+ (@A -ANl-m

for some [ > 0 and m > 0, then (x, y) can be reached from (x,,y,) by a
transaction. We have the following easy result.

PROPOSITION 3.5. If (x,y) €5 can be reached from (x,,y,) €% by a
transaction, then v(x, y) < v(xy, ¥o).

PrRoOPOSITION 3.6. Let (x,y) €% be given. If p <1, p + 0, then for all
6=0,

x+86+y/(1—A)

P
) v(x,y), ify=0,

X+ 1-A
(835) v(x+3d8,y) = ¥/( ‘ »
x+8+(1-p)y (£.3),  ify<0
v(x,y), 1 .
x+(1-p)y ' Y
If p = 0, then for all 6 > 0,
11 x+06+y/(1—A) o )i 0
—lo v(x,y), ify=0,
B Txry/1- ) Y Y
(36) v(x+6,y)>
11 x+8+(1—py ol ) Fy <0
—lo v(x,y), i .
BB\ e Ay Y ’
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Proor. We consider only the case y > 0; the case y < 0 is similar. Define
v=208y/[(1 — Mx + y] so that
x+86+y/(1—X)
(x,5)
x+y/(1—-1X)
is on the same ray from the origin as (x, y). Because (x + 8§ — vy, y + (1 — A)y)
can be reached from (x + §,y) by a transaction, we have v(x + 8,y) =

v(x + 8 — v,y + (1 — A)y). The first parts of (3.5) and (3.6) now follow from
8.D. O

(x+86—v,y+(1—=AN)y)=

COROLLARY 3.7. Let (x4, y,) €% and a differentiable function ¢: & — R
satisfying ¢(x,, ¥,) = v(x,, ¥,) be given. If ¢ > v on ¥ or ¢ < v on ¥, then

1.
pu(xg, yo)(xe +¥o/(1 = X)) °, ifp<1l,p+#0,

?.(%g, ) = %(xo T yy/(1— )‘))—1, ifp =0,
if yo = 0, and
Pv(xo’yo)(xo‘*‘(l_ﬂ«)yo)—l, ifp<1,p+0,
@ (X9, ¥0) = %(xo-i-(l—,u)yo)_l, ifp =0,
if yo <0.

Proor. We consider only the case y, > 0 and p # 0. The other cases are
similar. If ¢ > v, then (3.5) implies that

1
®( %0, ¥o) = lirlrzlsup ‘}:[U(xo +h,y0) — v(%0,¥)]
L0

1 (x0+h+y0/(1—A)
Xo + Yo/ (1 —A)

) - 1]”(’50’ ¥o)

=pv(x )(x + Y0 )_1
PU{Xo> Yol Xo T 77 -

If ¢ < v, then (3.5) implies that

1
@.(%0, ¥0) = limsup —[v( %y, ¥9) — v(xg =k, ¥,)]
no h

> lim —
=0k |\ %o~k +y/(1 - )

1 X9+ ¥o/(1—A)
0 h

) - 1}”(350 —h,¥)

= pv(x )(x + Y0 )~1 i
P X, Yo)| %o 1- 21 .
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4. Dynamic programming. The method of viscosity solutions is de-
signed to exploit the principle of dynamic programming, which we now state.
Let (x4, y,) €% be fixed. For every (C, L, M) € #(x,, y,), we have

Efxe’BSU (C(s))ds <v(x4,¥9)-
0 p

Because of our Standing Assumption, v(x,, y,) < %, it is possible, for every
£ > 0, to find a policy (C?, L?, M*) € s/(x,, y,) such that

(4.1) (%, y) < &+ Ej:e’ﬁsUp(C"“(s)) ds.

Such a policy will be called s-optimal. Using the strong Markov property, one
can replace the initial time 0 in the above assertions by an arbitrary stopping
time 7. The details of this replacement (see, e.g., [4]) involve technical
measurability issues. We simply state the result without proof.

PRINCIPLE OF DyNAMIC PROGRAMMING 4.1. Let (x,, y,) € be given and
let 7 be a stopping time for the underlying filtration {#(¢)},,,. For every
(C,L, M) € /x,, y,), we have

(4.2) E[j;we‘ﬁsUp(C(s))dslﬂT) < 1, e Pu(X(r),Y(1)) as,

where (X(-), Y(-)) are given by (2.3)-(2.5). Moreover, for each ¢ > 0, there is a
policy (C?, L?, M*®) € oA x,, y,) which agrees with (C, L, M) on [0, 7), which
satisfies

(4.3) L#(7) > L(1), M?*(1) > M(7)

and for which

(44) 1, e P v(X(7),Y(r)) <e+ E’[fwe“ﬁsUp(C”‘(s)) ds|l#(7)| as.

Note that (X(7),Y(r)) on the left-hand side of (4.4) is determined by
(C, L, M). The construction of (C#, L*, M*) takes (X(7),Y(7)) as the initial
state, from which an initial jump may occur, as allowed by (4.3). Thus, the
position process (X4(-),Y*°(:)) associated with (C?, L, M®) agrees with
(X(-),Y(-)) on [0, 7) and (X*(7), Y*(7)) can be reached from (X(r), Y(7)) by a
transaction.

COROLLARY 4.2. Let (x,, y,) €. be given and let & be an open subset of
& containing (x,,y,). For (C,L, M) € #(x,, y,), let (X,Y) be given by
(2.8)-(2.5) and define

& inflt > 0; (X(t),Y(t)) & 7).
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Then, for each t € [0, »], we have the optimality equation

v(x,y) = sup E[[MTUP(C(S)) ds
(4 5) (C,L, M)exy, yo) 0

+1(MT<°°)e_ﬁ(t“)v(X(t AT),Y(tA T))]

Proor. Let (C,L, M) € o#(x,, y,) be given and for ¢ > 0, let (C*, L, M*)
e(x,y) agree with (C,L, M) on [0,¢ A 7) and satisfy (4.4) with t A 7
replacing 7. Then

E’[fotATUp(C(S)) ds + L nrcme PN P0(X(E A T), V(2 A T))]

<e+E[ e PU(C*(s)) ds
0

< e+ v(xg,¥0)-
Letting ¢ | 0 and then maximizing over (C, L, M) € o#/(x,, ¥,), we obtain
sup B[ [ T,(C(5)) ds + Ly e 0(X(t A 1), V(2 A D))
(C,L,M) 0
< v(%g, ¥o)-

For the reverse inequality, choose (C?, L, M°) € #(x,, y,) satisfying (4.1).
Then (4.2) implies
v(xg,¥o) < €+ E[ftATUp(Ca(s)) ds
0

+ 140 cme PN D0(X(E A T),Y(EAT))| O

REMARK 4.3. Because of Proposition 3.5, (4.5) still holds if the supremum
on the right-hand side is restricted to policies (C, L, M) for which (X(7), Y(7))
€ 9@ on {1 < =}.

The infinitesimal version of the principle of dynamic programming is the
Hamilton—Jacobi—Bellman (HJB) equation (4.6). Let C*(%) denote the set of
twice continuously differentiable, real-valued functions on .%. For ¢ € C%(.%),
define a second-order differential operator by

(Zo)(x,y) = Be(x,y) — 30%y%,,(x,y) — aye,(x,y) —ree,(x,y)
V(x,y) €&

The HJB equation for the transaction cost problem of this paper is

(4.6) min{Jqo ~U(¢.), ~(L = w)e. + ¢y 0, — (1 = A)qoy} =0,
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where l7p is defined on (0, ) by (2.9) and extended to be © on (—,0]. The
expectation is that the value function v satisfies (4.6). The chief difficulty is
that the necessary derivatives of v are not yet known to exist. Thus, we first
show that v satisfies (4.6) in the viscosity sense. This gives us a toehold from
which we can obtain the more definitive result that v is twice continuously
differentiable on ., except possibly on the positive y-axis, and even here all
the derivatives of v which appear in (4.6) exist and are continuous. We will
thus see that v is a classical solution of (4.6) everywhere on .¥.

We shall use the following equation (4.7) several times. Suppose ¢ € C2(.%),
(x4, y0) €%, (C,L, M) €s/4x,, y,) and (X,Y) is given by (2.3)-(2.5). Let 7
be an almost surely finite {#(¢)},, , stopping time. Then It&’s rule for RCLL
semimartingales (e.g., [57] and [59]) applied to e A%(X(¢), Y(¢)) yields

#(%0,90) = ¢ PR(X(r),Y(7)) + [P (Lo + C(s) ) ds
- o-fOTe“ﬂsY(s)cpy dW(s)

(4.7)
+f0Te“’“[(—(1 — e, + @) dM(s) + (¢, — (1= N g,) dL(s)]

+ X e Ple(X(s —),Y(s -)) - o(X(s),Y(s))],

O<s<rt

where ¢ and is derivatives are evaluated at (X(s),Y(s)) unless otherwise
indicated and

Le(t) £ L(t) - X (L(s) - L(s -)),

O<s<t

Me(t) £ M(t) - X (M(s) - M(s—))

O<s<t

denote the continuous parts of L and M, respectively.

5. Upper bounds and continuity of the value function. Although we
have not yet related v to the HJB equation (4.6), we can apply the operators
in (4.6) to so-called supersolutions of (4.6) to obtain upper bounds on v. For
0 < p < 1, consider a function ¢: .% — [0, ) of the form

1 _
(5.1) o(x,y) = ;Ap*(x +vy)’  Y(x,y) €%,

where A > 0 and vy is a constant satisfying

1
- A

(5.2) l-p<ysy
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Note that (5.2) implies x + yy > 0 for all (x, y) €.%. Direct computation
reveals

(53) ~(1-pe,+¢, =AY x+yy)" (y-(1-1)) 20 on?,
(54) .- (1-Ne,=A"Nx+yy)" (1-y(1-2)20 onZ
and

(Zo)(x,y) — Uy(e(x,y))

B—rp (a—r)° 1-p
=Ar-1 i — — A
(5.5) (=t vy — 202(1-p)  p
1 vy a—r\? _
+——2(1—p)(0(1_p)x+yy_ - ) V(x,y) €

Regarding p as a variable, consider the equation

(5.6) Bp 2 £ - D

which has a unique solution p € (0, 1). Define

B-—m  pla-r)’  p
1-p  202(1-p) 1-p
if 0 < p < p, then A(p) > 0, and replacing A by A(p) in (5.1), we have
(5.8) Fp-Uy(ep,) >0 onZ.

(5.7) A(p) = B(p);

PROPOSITION 5.1. Assume 0 < p < p. With A(p) defined by (5.7) and v
satisfying (5.2), we have

1 _
v(x,y) < SAPN(p)(x + )" V(x,y) €Z

PrROOF. Let ¢ be given by (5.1) with A = A(p). Let (x,, y,) €% and
(C,L, M) €/x,, y,) be given. Inequalities (5.3) and (5.4) show that ¢ is
nonincreasing in the direction of jumps of the corresponding state process,
that is,

(5.9) o(X(s),Y(s)) < o(X(s —),Y(s —)) Vs=0.

Choose an increasing sequence {K,},_; of compact subsets of % containing
(x4, ¥o) and whose union in ., and define 7, 2 n A inf {t > 0; (X(¢),Y(¢)) ¢
K,}. Then

EfOT"e“ﬁSY(s)goy(X(s),Y(s)) dW(s) = 0
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for each n. From (4.7), (5.3), (5.4), (5.8), (5.9) and (2.11) and the nonnegativity
of ¢, we have

o( %0, o) = EfOT"e“BSUp(C(s)) ds.

Let n — « and then maximize the right-hand side over (C, L, M) to obtain
the desired result. O

REMARK 5.2. The function obtained by setting y = 1 in Proposition 5.1 is
the value function obtained by Merton [54] in the problem with no transac-
tion costs (A = u = 0).

REMARK 5.3. We have just shown that under the assumption 0 <p < p,
the value function is finite and continuous on % (see Proposition 3.4 and
Corollary 3.2). In particular, Standing Assumption 2.3 is satisfied.

PrROPOSITION 5.4. Assume p = 0. Then Standing Assumption 2.3 is satis-
fied, and for any v satisfying (5.2), we have

11 11 r—8 (a-r) v —
v(x,y)sE og(x+yy)+E og B+ g + 5 5% (x,y) €&

ProoF. For p <1, let us temporarily denote by v, the value function
corresponding to U,. Choose p € (0, p) and observe that log ¢ < ¢?/p for all
¢ > 0. Therefore, for any (x, y) €.% and (C, L, M) €(x, y),

E ([ e max{log(C(s)),0) ds < E [e-#*2CP(s) ds < v.(x, y) <,
A (1og(C(s)), 0} ds < E[ ™% —C?(s) ds < v,(x,5)

which establishes Standing Assumption 2.3. In fact, logc < c¢?/p — 1/p for
all ¢ > 0, from which follows v, < v, — 1/( Bp). Proposition 5.1 implies

vo(x,y) < limi AP Y p)(x + yy)’ — i
0 » _plop Yy B

1 1 r—pB (a—r)2
=Elog(x+yy)+ﬁlogﬁ+ 37 + 55% 2 " O

CoroLLARY 5.5. If p <0, then v has limit —» at 0%, that is, v is
continuous on %.

Proor. Corollary 3.2 and Proposition 3.4 show that in order to prove the
continuity of v on ., it suffices to prove that v has limit —» at 9.%. If p = 0,
this follows from Proposition 5.4 by taking y=1/(1 — A at 9, and y=1 —
u at 9,7 If p <0, the inequality ¢?/p <logc — 1/p for all ¢ > 0 can be
used in conjunction with Proposition 5.4 to obtain the desired result. O
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Finally, we examine the case 0 < p < 1, which is not fully covered by

Propostion 5.1. To do that, we need a brief digression on the manner in which
the state process can approach 4.%.

LEMMA 5.6. Forn =1,2,...,define

1 1
(5.10) Fn={(x,y);x+ 2;,x+(1—p,)yz7l-}_

1-2A

For (x4, y,) € and (C, L, M) €/(x,, y,), let (X,Y) be given by (2.3)-(2.5)
and define

(2

(5.11) Y,

n

(5.12) v

inf{t > 0; (X(¢),Y(¢)) € F,},
inf{¢ > 0; (X(2),Y(¢)) = (0,0)}.

>

Then v, 1T v almost surely as n — .

Proor. Define y, = lim, ,,v,. Then clearly 3, < v, and we have only to
prove the reverse inequality. Suppose », < . Then (X(y, — ), Y(y, — ) € 4.
The argument in Remark 2.1 shows that (X(1,),Y (%)) = (0, 0). Therefore,
v< . 0O

PROPOSITION 5.7. Assume 0 < p < 1. Choose 8 € (0,1 — u) such that

(1- w1 -p)o?
2(a—r)

0<1l1—-—u—-6<
and define

(1-p-28)°

Then A<C, and B<C, [where C, =(8—rp)/(1 —p) >0 because of
Proposition 3.4], and we have the upper bounds

AL , B2 (pv(1,0)" Y,

1 P
;A"‘l(x +(1-wy),

IA
IA
|

. X
iyx < )

p
1B”_l(x+ Y ) ,
p 1-A

ifx>0,—(1-AM)x<y=<0.

(6.13) wv(x,y) <
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Proor. From Proposition 3.4, we have

1 ) 1 )
ZAP Y1 —p—8) =u(-6,1) > SCE (1= p-8)”,
p

1 1
—BP™1 =y(1,0) = —C27 1,
p p

from which we conclude that A <C,, B<C,.
We derive only the first bound in (5.13); the proof of the second is similar.
Define

(5.14) D={(x,y);x<0,—1x

ud 7
<y< ——) C
y<-3)
and define ¢ on D by
1
(5.15) o(x,y) = ;A"_l(x +(1-wy)"  ¥Y(x,y) eD.

Note that ¢ = v on dD. Define ¢ = v on ¥\ D. Just as in (5.3) and (5.4), we
have

(5.16) —(1-we, +¢,20, ¢ —(1=X)e, >0 onD.

Furthermore, for (x, y) € D
(Ze)(x,9) — Uy(u(x,))

p-1 p|B— P (a—r)2 1-p
=A (x+(1—/.1,)y)l: > —20'2(1—}7)_ > A
1 1-p)y a-r\?

(6.17) +2(—1—T)(0(1_p)x+(1—u)y o )]

>AP Y x+ (1 - p)y)” (1 - n)y

1 o, (I—p)y
X|5 (@ —p)o m—(a—r)]

>0

because A < C, and, by the choice of 8,
y 1 2(a—-r)

> > on D.
x+(1-p)y 1-p-8" (1-p)(l-p)o?

Let (x4, ¥o) € D and (C, L, M) € #(x,, y,) be given, and define F,, », and
v by (5.10)-(5.12). Define also

H,%{(x,y) €D;y<n},
7, £ inf{t > 0; (X(t),Y(¢)) ¢ H,},
T2 inf{t > 0; (X(t),Y(¢)) ¢ D},
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so that lim, , .7, = 7 almost surely. We show that
(5.18) {r<o} = UJ{y, A1, =7=<n}.
n=1

It is clear that {r < =} contains the union. For the reverse containment,
assume 7(w) < © for some . Then 7(w) < v(w), for otherwise
(X(, w),Y(-, w)) would reach and stick at the origin before exiting D and
then 7(w) would be «. According to Lemma 5.6, we must then have 7(w) <
y,(w) for sufficiently large n. Choose n so large that 7(w) < n, (@) < y(w)
and {Y(¢, ); 0 <t < 7(w)} does not exceed n. Then 7,(w) = 7(w), we have
o € {y, A 7, = 7 < n} and (5.18) is proved.

Inequalities (5.16) show that (5.9) must hold. Moreover, for0 < s < y, A 7,,
Y(s)¢,(X(s),Y(s)) is bounded, so

Ej(;nAV"AT"e_BSY(s)cpy(X(s),Y(s)) dW(s) = 0.

From these facts, (4.7), (5.16), (5.17) and (2.11), we obtain
@(x9,50) = Eexp[—B(n Ay, A1) e(X(n A v, AT,),Y(n Ay, AT,))

nRAV, AT, _ s
+ E[O e P, (C(s)) ds
= Ell(vnA‘rn:'rsn)e_BTv(X(T)’Y(T))]

4 E‘/(’)n/\ VnATne—BsUp(C(S)) dS,

where the second inequality uses the fact that ¢ > v on .\ D. Letting
n — %, we can use the monotone convergence theorem to establish

o( %4, ¥o) = E[I{Km}e‘mv(X(r),Y(r)) + ];)Te‘BSUp(C(s)) ds|.

Maximizing the right side over (C, L, M) € o/(x,, y,) and invoking the opti-
mality equation (4.5), we derive the first part of (5.13). O

COROLLARY 5.8. If 0 <p <1, then v has limit 0 at 3%, that is, v is
continuous on .%.

Proor. Corollary 3.2 and Proposition 3.4 show that in order to prove the
continuity of v on ., it suffices to show for every (x,, y,) € 4% that

limsup v(x,y) <0.

(x, )= (20, y0)
(x,y)es

For (x,, yo) € 92\ {(0,0)}, this follows from Proposition 5.7. For (x,, y,) =
(0, 0), it follows from homotheticity (Proposition 3.3). O
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Intuition dictates that because the stock is risky and has higher rate of
return than the money market, it is never advantageous to sell the stock
short. Thus, the value function in the wedge,

Y
G= ,¥); ¥y <0, x+ >0},
{(x ¥)sy 2+ T }

below the x-axis should agree with the value function on the x-axis evaluated
at the position reached by a transaction, that is,

v(x,y)=v(x+ 1i’A,O) V(x,y) €G.
The similar result (5.19) is true in a wedge whose one boundary is ,.%. We

prove these things here under the assumption 0 < p < 1.

THEOREM 5.9. Assume 0 < p < 1. With the notation of Proposition 5.7, we
have

[+ (1 -p)y) x+(1-p)y
v(x,y) =v 1-p-05  1-p-5
(5.19) .
= SAT M x+ (1- )

ifx<0,—x/(01—w <y< —x/8, and

1 ¥y \F
o o)
0) p TN

(5.20) v(x,y)=v(x+ li/\

if (x,y) € G.

Proor. We prove (5.19); the proof of (5.20) is the same.
Let D be given by (5.14) and ¢ by (5.15). Let (x,, ¥,) € D be given and
define

— 8y, — %o —8(xo + (1 = 1))
xéx0+(1—u)(1_u_6 = - ,
A =8y, — % =x0+(1—,u)y0
CAREA T R I 1-n-56

Then (x, y) € D and (x, y) can be reached from (x,, y,) by a transaction.
Propositions 3.5 and 3.3 imply

v(%xg,¥0) 2 v(%x,y) =v(—8y,y) =yPv(-4,1)
1 )
=;Ap (1_M"‘5) ¥P = ¢(x4,50)-

The reverse inequality comes from Proposition 5.7. O
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THEOREM 5.10. Assume p = 0. Choose & € (0,1 — u) such that

1- o?
0<1—M—6<(—'Lﬂ——.
2(a—r)
Then

[+ (1 -p)y) x+(1-p)y
v(x,y) =v l-p-5  1-p-3
1 (x+(1—n)y

=Elog - )+v(—5,1)

ifx<0,—x/(1-u)<y< —x/8, and

1
,O) = —log(x+ ly

5 /\) +v(1,0)

y
= +
v(x,y) v(x Y

if (x,y) € G.

PROOF. Again, we prove only the first claim. Let D be given by (5.14), and
define ¢ on D by

(x )Ailo x4+ (1-u)y

o(x,y) £ glog| ————=

so that ¢ = v on dD. Extend ¢ to the rest of & by setting ¢ = v on S\ D. It
is easily verified that (5.16) holds and

(3¢)(x7y)_lj0(¢’x(x’y))
= —log(l —pu—98) + Bv(-46,1)
(1- )y o*(1-py
Blx+ (1—wm)y)|2(x+(1-p)y)

> —log(1l - p — 8) + Bu(—8,1) —%+1—logB V(x,y) €D

+v(-6,1),

(a—r)] —%+1—log[3

because
y 1 2(a—r)
> > 5
x+(1-p)y 1-p—-6" (1-wo
However, the first part of (8.3) shows that

in D.

—log(l—,u—é)+,8v(—6,1)—%+1—10g,820,

so we have
Fo — Uy(¢,) =0 inD.

Let (x4, ¥o) €D and &> 0 be given. Choose an s-optimal (C,L, M) €
(x4, ¥o). Then, for any stopping time p, the Principle of Dynamic Program-
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ming 4.1 implies

p
E[l(p@)e‘ﬂ”v(X( p),Y(p)) + fo e #*log C(s) ds
(5.21)
> Ef e P log C(s)ds = v(xg,¥y) — &.
0

Let F,, v,, v, H,, 7, and 7 be as in the proof of Proposition 5.7. Because -

v = —oon 4%, (5.21) implies v = © almost surely. From Lemma 5.6 we have
lim, ,, v, = « almost surely.

Just as in the proof of Proposition 5.7, we derive the inequality

o(x0,¥0) = Eexp[—B(n Ay, A Tn)]qo(X(n Ay, AT,),Y(n Ay AT,))

5.22 RAV AT
(5-22) + E/ N Ty =83 og C(s) ds.
0

We wish to conclude that ¢(x, y,) = v(x,, ¥,), but because ¢ takes negative
values, we cannot argue as in the proof of the Proposition 5.7. Instead, define
the constant
1 1 r—B (a-r)
= —v(-6,1) + Elog(l —pu—98)+ Elog B+ FE + 55%?
From Proposition 5.4 we have v < ¢ + £ on D. Furthermore, v = ¢ on %\ D.
These facts, together with (5.21), imply

Eexp[-B(n A v, A 1)]e(X(n A v, A7), Y(n Ay AT,))

+EfnA " =85 Jog C(s) ds
0

= _kE[eXp[—ﬁ(n’ Ay, A Tn)]l(n/\v AT <‘r)]
5.23 T
(5.23) +Eexp[—B(n A v, A 7)]|v(X(n Ay, AT,),Y(R A AT))

+E/nAV"M"e‘BS log C(s) ds
0

> —kE[exp[—B(n Av, A Tn)]l{n/\yn/\”<7)] +v(x9,50) — &

Asn > o, 1, ., n, < = l,_.[see(5.18)], and on this set, n A v, A 7, > .
Combining (5.22) and (5.23), we have ¢(x,, y,) > v(x,, ¥,) — . Letting ¢ | 0,
we see that ¢ > v on D.

The second part of (3.1) shows that ¢ also can be written as

—8(xp + (1 = p)ye) %o+ (1 )y,
1-p-06 T 1-pu-25
Just as in the proof of Theorem 5.9, v(x,, ¥,) = ¢(xy, ¥5). O

cp(xo,y0)=v( V(xo, %) €D.

For p < 0, the results analogous to Theorem 5.9 also hold; see Corollaries
8.7 and 8.8 and the formulas in Theorem 6.9.
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6. Convex analysis of the value function. Because the value function
v is concave on its convex domain .#, we can study it by the methods of
convex analysis. In this section we show how to partition .# into three convex
comes corresponding to the three expressions on the left-hand side of the HJB
equation (4.6).

We define the subdifferential

a0(x, ) 2 {(8,,8,) €R% v(£,m) <v(x,y) + 8,(§—x) + 8,(n—)

V(¢,m) €5

for each (x, y) €.%. Because v is concave and finite on ., dv(x, y) is a
nonempty, compact, convex set. The function v is differentiable at a point
(x, y) if and only if dv(x,y) is a singleton, and in this case Juv(x,y) =
{(v,(x, y),0,(x, y))}.

LEMMA 6.1. Let {(x,, y,)Y._; be a sequence in & with limit (x,, y,) €.
If (87, 6)) € du(x,, y,) for every n, then {(8], 8;)},_, is bounded and every

limit point of the sequence {(87, 6;)F,_; is in dv(xy, ¥).

PrOOF. Choose & > 0 so that the open ball B,(x,, y,) of radius & centered
at (x,, y,) contains the sequence {(x,, y,)f;_; and the closed ball B,(x,, y,)
is a subset of .. The boundedness of v on B,(x,, y,) can be used to establish
the boundedness of {(8.", 8;)},_;. By definition, we have for each n > 1,

v(f,n)SU(xn,yn)+8;‘(§—xn)+8§l(n—yn) V(§77’) €5
Passing to the limit, we see that every limit point of {(8}, 8;)f;_; is in
dv(xg, ¥o). O

PROPOSITION 6.2. Let @ be an open subset of .. The value function v is of
class Cl in @ if and only if dv(x, y) is a singleton for every (x,y) € O.

PrROOF. The only nontrivial part of this proposition is the claim that
dv(x,y) being a singleton for every (x, y) € & implies that v, and v, are
continuous in #. Assume the singleton property. Fix (x,, y,) €.% and let
{(x,, ¥,)f,_1 be a sequence in & converging to (x,, ¥,). According to Lemma
6.1, the sequence {(v,(x,,y,),v,(x,, y,DI,_; is bounded and
(v, (%9, ¥9), v,(x¢, ¥o)) is its only limit point. This shows continuity of v, and
v, at (xg, yo). O

Let (x, y) € and (8,, 8,) € du(x, y) be given. Define

so that ¢ > v on .%. According to Proposition 3.5, we have for each y > 0
satisfying (x + v, y, — (1 — My) €%,

e(x,y)y=v(x,y) <v(x+7v,y —(1-1)y)
<¢o(x+7v,y—(1-MN)7y)
qo(x,y) + ')’[8x - (1 - /\)Sy]’
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and so

(61) 6, -(1-2)8,20 V(5,,8) € dv(x,y),Y(x,y) €.
A similar argument involving (x — (1 — w)y, ¥ + y) shows that

(62) —-(1-pwp)s, +8,20 V(5,8 < dv(x,y),¥(x,y) €.

Finally, Corollary 3.7 shows that §, > 0, and coupling this with (6.2), we
obtain

(6.3) 85 >0, 8,>0 V(5,6)€dv(x,y),¥(x,y) S

For (x,y) €%,(8,,8,) € du(x,y) and y € R sufficiently close to 1, the
homotheticity of Proposition 3.3 implies

(v? — Do(x,y) =v(yx,vy) —v(x,y) < (y— 1D)x8, + (v - 1)y3,
if p<1, p+#0,and

1
Elog7= v(yx,vy) —v(x,y) <(y—1)x8, + (v — 1)y3,

if p = 0. In either case, divide by (y — 1) and let y approach 1, both from the
left and from the right, to obtain

puv(x,y), ifp<l,p=#0,

(6.4) x6, +yd8, = 5 ifp =0

Finally, let (x, y) €% and (§,, §,) € dv(x, y) be given. Let (¢, 7) € be
given and let y be a positive number. If p # 0, we have

n
wa(3 )

v(yx,vy) + (YP7 8. )(E— vx) + (P78, )(n — vy),
which shows that (y?~'8,,y?7'8)) € du(yx, yy). If p = 0, we have

v(€,m)

I

\d

h-1

<
———
| on
| 3
-

IA

v"[v(x,y) T8 l—-—x
y

1
v(é,m) =Elogy+v

-, —

Y

A

1 n
<—=logy+uv(x,y) +6|——x +8y(———y)
B Y Y

5, 8,
=v(yx,yy) + 7(6— yx) + 7(77 - vy),

and we reach the same conclusion. Thus, y?~! duv(x, y) C dv(yx, yy) for all
(x,y) € and vy > 0. Replacing v by 1/y, x by vx and y by vy, we obtain
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the reverse set containment:
(6.5) yp_lav(x,y) =dv(yx,vy) V(x,y) €&, Vy>0.

We now use subdifferentials to partition . into three convex cones. We
being by observing that if (x, y) and (%, ¥) are in & and (§,, 8,) € dv(x, y),
(é,, 8,) € dv(x, y), then

v(%x,y) <v(x,y) +8,(x —x) + b‘y(& - )
<v(X%,5) +8,(x—%) +3,(y —¥) +8(X—x)+8(¥—),
0
(6.6) (8, -8, )(x—%) +(8,-3,)(y—7) <0.
Let us define for (x, y) €.%,
0% (x,y) £ max{—(1—p)d, + 8,;(8,,8,) € dv(x,y)},
0 (x,y) £ min{—(1 - )8, + 8,;(5,,8,) € dv(x,y)}.

The functions % are nonnegative because of (6.2), and the above maxima
and minima are attained because dv(x, y) is compact. We parametrize a
half-line originating on ¢;.% and parallel to §,.% by

(x(p),(p)) =(1-(A=p)p,=(1=2) +p) Vp=0,
and define
po & inf{ p > 0; 67 (x(p), ¥(p)) =0},

where p, = « if this set is empty.

LEMMA 6.3. For 0 < p < p < «, we have

(6.7) 0" (x(p), y(p)) <0 (x(p),y(p))-
If py € (0,), then 6 (x(py), y(py)) = 0 and
(6.8) 0" (x(p),¥(p)) =0  Vp> p,.
ProOF. For 0 < p<p <, let (6, 6y) € dv(x(p), y(p)) and (Sx, Sy) IS

dv(x(p), y(p)) be given. From (6.6) we have
—(1-p)8,+8, < —(1-n)s, +3,.

Maximizing the left-hand side over (5, Sy) e duv(x(p), y(p)) and minimizing
the right-hand side over (3,, 8,) € duv(x(p), y(p)), we obtain (6.7).

Suppose p, € (0, ). Because - < ", (6.7) implies that p — 6 (x(p), y(p)
is nonincreasing, and we must have 6 (x(p), y(p)) = 0 for all p > p,. For
n =1, choose (87,8)) € du(x(p, + 1/n), y(py + 1/n)) such that —(1 -
w)8; + 87 = 0. According to Lemma 6.1, a subsequence of {(8;, ,)};_; con-

verges to a point (8,,8,) € dv(x(py), y(py)). We must huve —(1 — w)s,
+8, =0, s0 8 (x(py), y(py)) = 0. Equation (6.8) now follows from (6.7). O



OPTIMAL INVESTMENT AND CONSUMPTION 637

We partition .% into two open, convex (possibly empty) cones:

SS 4 {(x,y); (vx,vy) = (x(p),y(p))
for some y > 0 and some p € ( p,,®)},

FP\ES £ {(2,9); (vx,vy) = (2(p), ¥(p))
for some y > 0 and some p € (0, py)}.

PrOPOSITION 6.4. We have
—(1-w)é, +8,=0 V(5,8 €dv(x,y),V¥(x,y) €8S.
Proor. Let (x,y) €SS be given and choose y > 0, p > p, such that

(yx,vy) = (x(p), y(p)). From (6.8) we have 6" (yx, yy) = 0, and (6.5) implies
0% (x, y) = v P+ (yx, yy). O

In an analogous manner, we can parametrize a half-line originating on
097 and parallel to ¢,.% by

(£(p),5(p)) =(-(A-p)+p,1=(1=AN)p) Vp>0
and define
po & inf{p > 0; 8, — (1 — A)8, = 0 for some (8., 8,) € dv(&( p), F( p))}-
We partition .% into a different pair of open, convex (possibly empty) cones:

SMM = {(x,5); (vx,vy) = (x(p), ¥(p))
for some y > 0 and some p € ( j,,®)},

F\SMM £ {(x,y); (vx,vy) = (x(p), y(p))
for some y > 0 and some p € (0, j,)}.

Analogously to Proposition 6.4, one can show the following proposition:

PrOPOSITION 6.5. We have
8, —(1-1)8,=0 V(5,8) € dv(x,y),V¥(x,y) € SMM.

COROLLARY 6.6. SS N SMM = .

Proor. The equations (1 — u)8, + 6, =0 and 6, — (1 — AM)§, = 0 imply
8, = 8, = 0, which is inconsistent with (6.3). O

COROLLARY 6.7. The value function is C! in SS U SMM.
Proor. In SS we have —(1 — w)§, + 8, = 0 and (6.4). This pair of equa-

tions has a unique solution for (§,, §,) [in terms of v(x, y)]. Now apply
Proposition 6.2. The same argument can be used in SMM. O



638 S. E. SHREVE AND H. M. SONER

If the cone SS is nonempty, then 9,.% is a subset of its boundary. Likewise,
if SMM is nonempty, then ¢,.% is part of its boundary. Thus, %\ (SS U SMM)
is also a convex cone. We denote by NT (“no transaction”) the interior of this
cone, that is, NT =.\ (SS U SMM).

ProposITION 6.8. We have

(1—pu)s, +38,>0, 5, —(1-1)8,>0
V(8,,6,) € du(x,y),¥(x,y) € NT.
ProoF. Let (x,y) € NT and (§,,8,) € du(x, y) be given. Choose y> 0

and p € (0, p,) such that (yx,yy) =(x(p), ¥(p)). From (6.5) we have
(yP778,,vy?7%8,) € du(yx, yy). From the definition of p,, we have

(1= )8, +8,=7"P[~(1 - p)y? ™5, + vy %)

YR~ (x(p), ¥(p)) > 0.
We show similarly that §, — (1 — A)§, > 0. O

\

In conclusion, we have defined three nonintersecting, open, convex cones
SS,SMM and NT with the property that =SS U SMM U NT. We have
established that v is C! in SS U SMM, and we have obtained linear equa-
tions involving v, and v, in SS and SMM. These equations, coupled with the
homotheticity of Proposition 3.3, mandate that the form of v in SS and SMM
must be as in the next theorem.

THEOREM 6.9. Ifp < 1, p # 0, then there are constants A > 0, B > 0 such
that

1
v(x,y) = ;A"‘l(x +(1-wpy)’  V(x,y) eSS,

1 p
v(x,y)=;BP‘1(x+ ) V(x,y) € SMM.

1-2
If p = 0, then there are constants A, B such that

1
v(x,y)=Elog(x+(1—,u,)y)+A V(x,y) €8S,

v(x,y)=llog(x+ Y )+B V(x,y) € SMM.
B 1-A

REMARK 6.10. The results of Theorem 6.9 are consistent with Theorems
5.9 and 5.10. Indeed, for 0 < p < 1, Theorems 5.9 and 5.10 show that SS and
SMM are nonempty, and SMM contains {(x, y) €.%; y < 0}. The sets SS and
SMM also have these properties when p < 0, as will be shown in Corollaries
8.7 and 8.8.
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7. Viscosity solutions. In order to proceed further with the analysis of
v, we must introduce the notion of viscosity solution of a second-order
differential equation. We define this concept in n-dimensional space and use
it in one- and two-dimensional space. For more information on viscosity
solutions, we refer the reader to the survey article by Crandall, Ishii and
Lions [12] and the book by Fleming and Soner [26]. For the application of the
theory of viscosity solutions to problems in mathematical finance, see Za-
riphopoulou [66], [67], Fleming and Zariphopoulou [27], Duffie, Fleming and
Zariphopoulou [17] and Davis, Panas and Zariphopoulou [15]. This section,
which is included only for the sake of completeness, contains only known
results and slight variations of known results. In particular, the proof of
Theorem 7.7 is very similar to the proof Theorem 2 in Section 5 of [15].

Let L(R", R) denote the set of n-dimensional vectors and S(R", R") the
set of n X n symmetric matrices. For A, B € S(R", R"), we write A > B to
mean that A — B is nonnegative definite. The gradient of a function w of n
variables will be denoted by Dw and the matrix of second-order partial
derivatives will be denoted by D?w.

Let & be a connected, open subset of B” and let F: @ X R X L(R", R) X
S(R", R") —» R be continuous and have the property

(7.1) F(x,2,6,A) <F(x,2,8,B)

whenever x €&, z€ R, 6§ L(R",R), A,Be S(R",R") and A > B. We
consider the second-order differential equation

(7.2) F(x,w,Dw,D?w) =0 on@,

where w is a function from & to R.

ExamPLE 7.1. Let F: X R X L(R?, R) X S(R?, R?) - R be defined by

Qrx Quy

F{(x,5),2,(5,,8,)), 4., 4,

= max{ Bz — 30%q,, — ayd, — rxd, — U,(3,),

~(1- )8, +8,,8, - (1-138,}.
Then (7.1) is satisfied and (7.2) is the HJB equation (4.6).
DEFINITION 7.2 [10]-[12]. Let w: & — R be continuous. We say w is a

viscosity subsolution of (7.2) if, for every x, € & and for every ¢ € C%(#)
satisfying ¢ > w on O and ¢(x,) = w(x,), we have

(7.3) F(xo, (%), De(x,), D%(x,)) < 0.

We say w is a viscosity supersolution of (7.2) if, for every x, € @ and for
every ¢ € C%(#) satisfying ¢ < w on O and ¢(x,) = w(x,), we have

(7.4) F(xy, o(x,), De(x,), D%(x,)) = 0.
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We say w is a viscosity solution of (7.2) if it is both a viscosity subsolution
and a viscosity supersolution.

REMARK 7.3. If a viscosity solution w of (7.2) is in C*(&@), then w is a
solution in the classical sense. To see this, take the test function ¢ in
Definition 7.2 to be w itself and use (7.3) and (7.4) to obtain (7.2).

Moreover, if w € C%(%) is a classical solution of (7.2), then it is also a
viscosity solution. To see the subsolution property, let ¢ € C%(%) satisfy
¢ > w and ¢(x,) = w(x,). Because ¢ — w attains a global minimum at x,,
we must have Do(x,) = Dw(x,) and D%(x,) > D*w(x,). Using (7.1), we
have

F(xg, ¢(%0), De(x,), D%(xy)) < F(xq,w(xy), Dw(x,), D%w( xo)) =0.
A similar argument establishes the supersolution property. O

We see then that the notion of viscosity solution is a generalization of the
notion of classical solution to equations of the form (7.2), when (7.1) is
satisfied. In this section, without yet knowing that the value function v for
the problem of Section 2 is C2, or even C', we succeed in showing that v is a
viscosity solution of the HJB equation (4.6). Before doing this, for later use we
give a “local” form of the definition of viscosity solution.

LEMMA 7.4. Let & be an open subset of R" and let w: & - R be continu-
ous. Then there is a C* function W: @ — R such that lw| < W on &.

Proor. We recall that if A and B are disjoint, closed subsets of R", then
there is a continuous function f: R™ — [0, 1] which takes the value 1 every-
where on A and takes the value 0 everywhere on B (Urysohn’s lemma).
Indeed, for any closed set F, we can define the continuous function d(-; F) by
d(x; F) £ min{|y — x|; y € F}, and then a function f with the above proper-
ties is given by

1, Vx €A,
f(x) = { d(x; A) A d(y;B)
d(x;A) ’

Vx € AC.

Let @ and w be as in the lemma. Define
A 2 {xeR";d(x;0° =21}, By={xeR";d(x;0°) <1/2}
and for £ = 1,2,...,define

A, ={xeR"27" <d(x;0°) <27*"1},
B, ={x<€R";d(x;0°) <27* lord(x;0° = 27*"?}.
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Let f,: R™ — [0, 1] be a continuous function taking the value 1 on A, and 0
on B,. Define the continuous function w,: R” — R by

w,(x) £ {gk(x)|w(x)|, Vxeao,

s Vx € 7°.
Using the notation B,(x) £ {x € R"; |x| < &}, we can define

W, (x) £ max{w,(y); y € By-s-s(x)}.

Let ¢ be a nonnegative, C” function with support in B,-:-3(0) and satisfying
Jr{(x) ds = 1. We mollify @, by defining

W,(x) = fRnwk(y)g(x -y)dy VYxeR"

Then W, > w, and W, is C* on R". Furthermore, for £ > 1, W, has support
in the set {x; 27% 7% < d(x;@°) < 17-27%7 2},

Finally, we set W £ ©;_W,. In each compact subset of @, this sum has
only finitely many nonzero terms. Thus, W is C* on &. Because & = U%_,4A,,
we have

W>lwl- ) f, 2wl on@. O
E=0

THEOREM 7.5. Let w: & — R be continuous. Then w is a viscosity subsolu-
tion of (7.2) if and only if, for every x, € & and for every ¢ € C*(&) such that
w — ¢ has a local maximum at x,, we have

(7.5) F(xg,w(x,), Do(x,), D%(x,)) < 0.

Also, w is a viscosity supersolution of (7.2) if and only if, for every x, € @ and
for every ¢ € C%(&) such that w — ¢ has a local minimum at x,, we have

F(xq,w(%0), De(x,), D%(,)) = 0.

Proor. It is clear that the local conditions on ¢ set forth in this theorem
are satisfied by the test function ¢ in Definition 7.2. Thus, only the “only if”
part of each “if and only if” statement requires proof. We prove the assertion
concerning subsolutions; the proof of the supersolution assertion is com-
pletely analogous.

Let us suppose that w is a viscosity of (7.2), let x, € @ be given and let
¢ € C*(%) be such that w — ¢ has a local maximum at x,. We assume for
the moment that this local maximum is strict, so for some £ > 0, we have
B.(x,) c @, where B,(x,) = {x; |x — xo| < &}, and

e(x) +w(xg) — @(x0) >w(x)  Va&B(x)\{x}.

There is a C? function g: [0,%) — [0, 1] such that g =1 on [0, £/2] and
g=0on[g ). Let W be a C? function dominating w, and define

e(x) = g(lx = xo)[e(x) +w(xo) = o(x0)] + (1 — &(Ix — %)) W(x).
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Then ¢ € C% @) satisfies §>w on @ and @(x,) = w(xy). Therefore,
F(x,, p(xy), De(x,), D%p(x,)) < 0. Because De(x,) = Dé(x,) and D%p(x,)
= D?%(x,), (7.5) holds.

If w — ¢ has a nonstrict local maximum at x,, we introduce the function

0% = p(x) = de7Ix 7l
where & > 0. Then w — ¢° has a strict local maximum at x,, so
(76) F(xo,w(xo),D¢5(x0), D2¢8(x0)) <0.

However, De®(x,) = Do(x,) and D%?%(x,) = Do(x,) + 28I, where I is the
n X n identity. Letting & |0 in (7.6) and using the continuity of F in its last
argument, we obtain (7.5). O

COROLLARY 7.6. Let w: @ — R be a continuous viscosity solution to (7.2). If
w is twice differentiable at a point x, € @, then w satisfies (1.2) in the
classical sense at that point.
ProOF. For ¢ > 0, define ¢ € C%(#) by
o (%) = w(ix) + Dw(x0)(x — x,)
+ 3(D*w(xe)(x — o)) - (% — %)
+ f;IIx—xOII2 Vx € C%(o).
Then w — ¢ has a local maximum at x,, so (7.5) holds. Let ¢ | 0 to obtain
F(xg,w(x,), Dw(x,), D*w(xy)) < 0.
The reverse inequality follows from an analogous argument. O

THEOREM 7.7. The value function v defined by (2.8) is a viscosity solution
of the HJB equation (4.6) on S.

We divide the proof of this theorem into two lemmas.
LEMMA 7.8. The value function v is a viscosity supersolution of (4.6) on S.

ProoF. Let (xg, y,) €% and ¢ € C*(#) be given with

p<v on. @( %o, ¥o) = v(x0, ¥o)-
For y > 0 sufficiently small, (x, — v, y, + (1 — A)y) €.% and Proposition 3.5
implies
e(x0 — v, %0+ (1 = 1)) — (%0, ¥0)
<v(xg =7, ¥ + (1 =A)y) —v(x,¥) <O0.
Divide by v and let y | O to obtain
@ (x9550) — (L — A)e,(x9,50) = 0.
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A similar argument shows that
—(1 = w)e(x9,¥0) + @,(%9,%) 2 0.
It remains only to show that

(7.7) (o) (%0, 50) = Up(@( %0, 3)) = 0.

Choose £ > 0 so that B,(x,, y,) €% For ¢ > 0, let (C, L, M) be a policy in
A xy, yo) with L =0, M = 0 and C(s) = ¢ for 0 < s < 7., where

= g

7,2 e Ainf{t > 0; (X(¢),Y(¢)) & B,(x,, ¥0)}-

Itd’s rule [see (4.7)] implies

Te
v(%9,¥0) = ¢( %9, ¥o) = Ee_ﬂTSSD(X(Te)’Y(Te)) + E];) ekﬁs(gﬁo +cp,) ds.

Using the relationship between v and ¢ and the optimality equation (4.5), we
obtain

v(xg, ¥o) = E[Lrse_BsUp(c) ds + e‘ﬁfsv(X(rg),Y(rg))]
> E[j:se_BSUp(c) ds + e_BTSQD(X(TS),Y(TE))]

= v(x0,30) ~ B[ "e*[Fo ~ Uy(e) + cq.] ds.
It follows that

) — Uy(c) + cgox(Xs,Ys)] ds >0

8

Ef(:‘e*ﬂs[(_%)(xs,y

for all £ sufficiently small. This can happen only if

max [(f/(p)(x, y) —Uy(c) + cgox(x,y)] >0,
(x, y)eB(xq, ¥¢)

and as ¢ |0, we see that
(Zp) (%0, ¥0) — Uy(c) +co(x9,y0) = 0.

Minimization of this expression over ¢ > 0 leads to (7.7). O
LEMMA 7.9. The value function v is a viscosity subsolution of (4.6) on S.

PROOF. Let (x4, y,) €% and ¢ € C%(%) be given with ¢ > v on % and
o(xg, ¥o) = v(xgy, ¥o). We argue by contradiction.
Assume the subsolution inequality

min{Fp — Up(¢,), =(1 = 1) e, + ¢,, ¢, — (L= 1)@, } <0 at (g, %)
fails. Then there are constants y > 0, £ > 0 such that the set
Hé {(x’y); |x _xol < &, ]y _yol < 8}
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is a subset of ., and on H,

(78) Z-Ule)2v, -(Q-we.+e,2y, ¢ —(1-Ne,>7.
For (C,L, M) € #(x,, y,), define 7 2 inf{t > 0; (X(¢), Y(¢)) & H}. Accord-
ing to the optimality equation (4.5), for each ¢ € [0, x),

v(%o,¥0) = sup E[ftMe*BsUp(C(S)) ds
(79) (C,L, M)es(xy,y,) L70

+e BUADY(X(E A7), Y (¢ A T))|.
In light of Proposition 3.5, it does not reduce the above supremum to restrict
it to policies satisfying
(7.10) (X(7,),Y(7,)) € dH on {7 <},

Let (C, L, M) be such a policy. From It6’s rule [see (4.7)] and (7.8) we have
¢(%0,30) = Be PUND(X(t A7), Y (¢ AT)) +E[ e 52 - Uy(g,)) ds
0

+ Efot”e*ﬁs(Up(gox) +C(s)@,) ds

AT

+ vE A e PS(dL(s) + dM(s))

(TIN5 Be-tnny(X(t A 1),¥(¢ A 7)) + E[" e 50, (C(s)) ds
+vye PE[(t A7) + L(t AT) + M(t A7)
+ePE["0,(0) + C(s) 6. ~ U(C(s))] ds
> v(t) + E[e*BUMU(X(t AT),Y(tAT)) + j:Me_ﬁsUp(C(s)) ds],
where
v(t) = (C,L,M%l’elgf(xo,yo){’ye‘BtE[(t ATY+L(tAT)+M(t AT

(7.10) holds
+e~ﬁtEfO [Up(gox) +C(s)e, — Up(C(s))] ds}.

Maximize the right-hand side of (7.11) over (C, L, M) € o#(x,, y,) such that
(7.10) holds and use (7.9) to obtain

(%0, ¥0) = v(8) + v(x9,50) = v(t) + @( x4, ).

We obtain our contradiction by showing that for ¢ > 0 sufficiently small,
v(¢) > 0.
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Let us begin with the definitions
A(t) = max W(s), a(t) = min W(s).
O<s<t O<s<t

According to Doob’s maximal martingale inequality (e.g., [43], Theorem 1.3.8),
for 6 > 0,

1 4 4t
P{A(1) 2 8} < 3 EA*(t) < 3EW™(¢) = =3,

and similarly, P{a(t) < — 8} < 4¢/82. Therefore, for all § > 0,

) ) 32t
(7.12)  P{A(%) — a(t) > 8} sP{A(t) > 5} +P{a(t) < —5} <57
Define the decreasing family of sets

F(t) £ {max{exp[la — 0?72/t + o (A(t) - a(t)] - 1,

1—exp|—la— o2/2lt — o (A(t) — a(t))]}

£
<min{ ——, 1}, t>0.
{2(|y0|V1) }}

Inequality (7.12) shows we can choose T' > 0 so

&
<— " T<2,
2(|xol v 1)

From (2.3)-(2.5) we have the formulas

(7.13)  P{F(T)} > % eT — 1

X(t) = xpe™ + [Oterﬂ-s)[—c'(s) ds + (1 — p) dM(s) — dL(s)],
Y(t) =yoexp((a — 50°%)t + cW(t))
+j; exp((a — 302)(t — s)

+o(W(t) — W(s)))[—dM(s) + (1 — A) dL(s)],
from which follow

1X(¢) = x4l < (e — 1)lag| + e”j:C(s) ds + e™[(1 — p)M(t) + L(2)],
Y (2) — yol < IyOImax{exp(Ia — 302t + o (A(t) - a(t))) - 1,
1 —exp(—la — 302t — o (A(t) —a(?)))}

+exp(la — 302t + o (A(2) — a(8)))[M(¢) + (1 = V) L(2)].
With T > 0 chosen to satisfy (7.13), on the set F(¢) we have for0 <t < T,

(7.14)  |X(¢) - x| < g + 2[(:0(3) ds + 2[(1 — w) M(¢) + L(8)],

(7.15)  [Y(£) — yo| < g v 2[M(8) + (1 - N L(5)].
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From Corollary 3.7 we see that I p(<px) is bounded on H, where I, is defined
by (2.10). Choose k > max I,(¢,) and set n = ming¢p, — U,(k), which is
strictly positive. Then (2.12) implies

(7.16) Uy(9.) + C(s) e, — U,(C(s)) = n(C(s) — k) .
Finally, choose ¢ € (0,T A £/(16%)) and consider w € F(¢). Define
Z(w) = ye Pt A T(w) + M(t A T(@), ®) + L(t A (@), 0)]

+ e—metM(w[[jp((px(X(s, w),Y(s, »)))

+C(s, 0) @ (X(5, 0),Y(s, 0)) — U(C(s, )] ds.

We consider several cases.

Case 1: 7(w) = t. We have Z(w) > ye P't.

Case 2: 7(w) <t. In this case, either |X(7(w), ®) — x4l > & or
Y(7(w), ) — ¥l = £. We consider these possibilities separately.

Subcase 2A: 7(w) < t and | X(7(w), w) — x,| = &. In light of (7.14), we must
have either

2/0’("’)0(3, w)ds >~ or 2[(1- p)M(r(w),)+L(1(w),»)] >

e &
4 4’

In the latter case,
£
Z(w) = ye P [M(1(w), ®) + L(7(w), )] = 'ye_Btg.
In the former case,

€ (w) (w)
gsfo C(s,w)dsskH[O

(C(s,») — k) ds
<—+ ["(C(s,0) ~B)" ds.
16 0 ’
Then (7.16) implies
Z(w) = e_‘”;’—:.
Subcase 2B: 1(w) < t and |Y(7(w), w) — y,| = &. Inequality (7.15) implies
&
2[M(T(w), o) + (1 =2 L(7(w), w)] > 3
and so
VA pef
> ye Pi—.
(@) 2 ye '~
We have shown in every case that

Ye me

VA Bt mj —, — '
(w)=>e mln{yt, 3 16} >0 Yo € F(t),
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and since P(F(¢)) > 1/2, we have

1 s me
v(t) = Ee*’”min{'yt, %, %} > 0. O

8. Reduction to one variable and value function regularity. In this
section we treat the smoothness of the value function v in NT. (Theorem 6.9
establishes smoothness in SS and SMM.) The homotheticity property allows
us to compute as many derivatives of v as we like in the radial direction. We
exploit the fact that v is a viscosity solution of an HJB equation involving
o?y?v,,/2 to obtain the existence and continuity of v,,. Together these
computations allow us to show that v is C? in NT, except possibly along the
positive y- and x-axis. Along the x-axis, the term o *y®v,, /2 drops out of the
HJB equation. We eventually show, however, that the positive x-axis is in
SMM (Theorem 11.6), so this is ultimately of no concern. Along the y-axis, the
radial direction coincides with the y-direction. The best result we obtain is
that if the positive y-axis is in NT, then v,, exists and is continuous there
(Theorem 9.1).

To exploit homotheticity, we reduce the problem to one of a single variable.
Define .7 = (—(1 — A)/A, 1/p) and

(8.1) u(z) =v(l-=z,2) Vz .7
For all (x, y) €.\ {(0, 0)}, Proposition 3.3 implies

+9)° if p<1,p+0

(x y)u(x+y), iftp<1l,p#0,

v(x,5) =4 4 y
Elog(x+y)+u(x+y), if p =0.

Note that z and v have the same degree of smoothness. For z €.7, we define
1
d(z)=r+(a—r)z - 502(1 - p)z?,
dy(z) =(a—-r)z(l —2z) —a?(1 —p)z*(1 ~2),
1
dy(2) = 50°2%(1 - z)?,
1 .
dy(z) = —(1 - pz),
i’

1
dy(2) = £ (1= A(1~2)).

Direct computation shows that v is a classical solution to the HJB equation
(4.6) if and only if u is a classical solution to the second-order, ordinary
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differential equation
min{ By (2) — di(2) P¥(2) — do(2)¥'(2) = dy(2)¥"(2)
(82) —U,(p¢(2) —2z¥'(2)),
pU(2) + dy(2)¥'(2), p¥(z) — dy(2)¥/(2)} =0 ifp<1,p*0,

or

1
min{ BY(z) — Edl(Z) —dy(2)¢'(2)
{1
(8.3) —d3(2)y¥"(z) — UO(E —zll/'(z)),

1 1
i dy(2)y¥'(2), r d5(z)¢/(z)} =0 ifp=0.

PROPOSITION 8.1. On .%, u is a viscosity solution of (8.2) if p # 0 or (8.3) if
p=0.

ProoF. We prove the subsolution property when p # 0. Let z, €. and
Yy € C2(#) be given such that ¢ > u and ¢¥(zy) = u(z,). Define o(x,y) =
(x + y)PY(y/(x + y)) for all (x,y) €. Then ¢ >v on & and ¢(1 — zg,
z,) = v(1 — z,, 2). Because v is a viscosity subsolution of (4.6), we have

min{f/go— Up(<px), —(1-pe, +o,0,— (1 - A)goy} <0 at(l-—2y,2).

This is equivalent to
54 min{ By — d, pyr — dp¥' — dyt” — U, (ph — 29'),
p'1[l+d4l//,ap‘1[f_d5‘,[f,} <0 at 20 O

Because the function u is the function v evaluated along a line segment, u
inherits concavity from v. The “convex” analysis of a concave function is
particularly transparent. See, for example, [43], Problems 3.6.20, 3.6.21 and
Solution 3.6.20 for a derivation of the following facts. For fixed z €.7, the
difference quotient [u(z + A) — u(2)]/h is a nonincreasing function of A, and
so the right- and left-derivatives

1
D*u(z) & hl—i}gli z[u(z + h) —u(z2)]

exist and are finite. Furthermore, D* and D~ are right- and left-continuous,
respectively, are nonincreasing and agree except on a countable set N. We
have du(z) =[D"u(z), D u(z)] for all z €.7. On #\ N, u is differentiable.
Because v’ is defined almost everywhere and is nonincreasing, its pointwise
derivative #” is also defined almost everywhere on .# and is locally inte-
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grable. In light of Corollary 7.6, u satisfies (8.2) if p # 0 or (8.3) if p =0,
almost everywhere in the classical sense.

PROPOSITION 8.2. The function u defined by (8.1) is C' on #\{0}. If u is
not also C! at 0, then for every x > 0,

1
—Cy ™ x?, ifp#0,

(8.5) v(x,0) = 1 1 .

Elogx+glogﬁ+ FERE

where C, £ (B —rp)/(1 — p) is positive by Proposition 3.4. Furthermore,
even if u is not C! at 0, its one-sided derivatives exist and are limits of its
derivatives from the appropriate sides at 0.

ifp =0,

PrROOF. Let 9 be the subset of .# on which u is twice differentiable.
According to the preceding discussion, 9" has full measure. Let z, €.\ .9 be
given and let {z,},{z,} be sequences in 7 for which z, 1 z,, 2, | z,. Then

du(z0) = [D*(20), D" (20)] = | lim w/(z7), lim w/(2;)]-

For specificity, we take the case p # 0. Because u satisfies (8.2) in the
classical sense at each zf, we have

pu(zo) +dy(29)D7u(z0) 20,  pu(zy) — ds(z9)D7u(z) 2 0.
Now d, and d; are both positive on .7, so
(8.6) pu(zy) +dy(24)8>0, pu(zy) —ds(25)6>0
V6 € (D u(zy), D u(z,)).
We assume that D" u(z,) < D" u(z,) so there is a 8 as in (8.6), and we argue
by contradiction. With such a 8 and with & > 0, the function ¢,(2) £ u(z,) +
8(z — zy) — (2 — 2)?/(2¢) dominates u locally at z,. The viscosity subsolu-

tion property of u implies (see Theorem 7.5) that ¢, satisfies (8.4), but in
view of (8.6), we must actually have

1
(8.7) Bu(zg) — di(z9) pu(2o) — ds(20)8 + ;ds(zo)

- U'p(pu(zo) —208) <0.

If z, & {0, 1}, then d,(z,) > 0 and (8.7) cannot hold for all £ > 0. This shows
that du(z,) is a singleton when z, €. 7\ {0, 1}, so « is C! on this set.

Now suppose z, = 1. Because u satisfies (8.2) in the classical sense at each
z}, we have

Bu(z;) — dyfz)pu(2F) — da(z.8)u' (=)

(89) ~
—dy(zf)u'(2F) — Uy(pu(z}) —2tu(z7)) 2 0.
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1

The local integrability of u” at 1 implies that the sequences {z,} can be

chosen to satisfy
lim |dy(zF)u'(2f)l = 0.

n—ow

Passage to the limit in (8.8) results in

(8.9) Bu(l) — dy(1) pu(1) — U,( pu(1) — D*u(1)) = 0.

If D u(1) < D~ u(1) and 8 € (D" u(1), D~ u(1)), then (8.7) becomes
Bu(1) — dy(1) pu(1) — U,(pu(l) - 8) <0.

Letting & | D" u(1) and also 8 1 D~ u(1), we obtain equality in (8.9). However,
U, is strictly decreasing, so equality in (8.9) can hold only if D u(1) = D~ u(D).
Again we conclude that Ju(z,) is a singleton.

Finally, we consider the case z, = 0. Arguing as before, we obtain the
counterpart to (8.9):

(B — rp)u(0) — U,(pu(0)) > 0.

If D"u(0) < D u(0) and & € (D" u(0), D~ u(0)), (8.7) yields the reverse in-
equality. Solving the resulting equation, we obtain

1
v(1,0) = u(0) = —C2 L.
p
The first part of (8.5) follows from the homotheticity of v. O
COROLLARY 8.3. The value function v is C! on #\ {(x,0); x > 0}. If v is
not also C! on {(x,0); x > 0}, then (8.5) holds. Furthermore, even if v is not

C' on {(x,0); x > 0}, the partial derivative v, is defined and continuous there,
and the one-sided partial derivatives

1
v,(x,0 i)éhlir(r)lir Z[v(x,h)—v(x,O)], x>0,

are defined and satisfy the one-sided continuity conditions

v,(x,0+) = lim v,(&,m).
s ) (&, m—(x,04) y(&:m)

Proor. For p # 0, the last part of the corollary follows from the formulas

)—y(x+y>P‘2u’(m),

= + )Pt
oi(x,9) = p(x+ )" " 2

x+y)’

valid for (x, y) €%, x # 0, y # 0. The case p = 0 is similar. O

v,(%,y) =p(x+y)”‘1u( )+x(x+y)p_2u’(_

x+y
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Recall from Section 6 the construction of three open, convex, nonintersect-
ing cones SS, NT and SMM satisfying

& =8SUNT U SMM.

If we denote #* =\ {(x,0); x > 0}, the set on which we know that v is C?,
we may now characterize these cones more simply by the formulas

(8.10) S5={(x,y) e —(1 - v, +v, =0},

(8.11) NT\{(x,0); x>0} = {(x,y) €5*; —(1 — w)v, + v, > 0,
v, — (1 = Ao, > 0},

(8.12) SMM = {(x,y) €5*;v, — (1 - A)v, = 0}.

COROLLARY 8.4. NT # .

Proor. We cannot have SS =.%, for then the formulas in Theorem 6.9 are
inconsistent with the boundary condition of Proposition 3.4 on d,.%. Simi-
larly, SMM must be a proper subset of .%.

Suppose NT were empty. Then SS and SMM must each be nonempty and
these cones would share a half-line boundary H £ (9SS N ¢SMM) \ {(0, 0)} in
. There are two possibilities: v is C' on H or v is not C! on H. In the
former case, (8.10) and (8.12) imply v, = v, = 0 on H, which contradicts (6.3).
In the latter case, we must have H = {(x,0); x > 0} and v is given by (8.5).
Theorem 6.9 and the continuity of v imply

1
—C2 W (x+ (1-p)y)’, VY(x,y)esy20,
v(x,y) =

p
Sorifse5) . Mmp esy<o,

if p# 0, and

1 1 r—p
Elog(x +(1—-w)y) + Elog B+ —Bz—*,
V(x,y) €%,y 20,
U(x,y)z 1 1
Elog(x +

y r—B
1_A)+Elogﬁ+—32——,

V(x,y) €%,y <0,

if p=0.If x >0, y > 0, then v is C? at (x, ¥) and so must satisfy the HJB
equation (4.6) in the classical sense. However, if p # 0, we have [see (5.5)]

(30)(36,3’) - Up(vx(x’y))
=C (x4 (1—w)y)" (1 — )y
x[3(1 —p)o?(1— )y — (a— r)(x+ (1 — p)y)],
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which is negative for y sufficiently close to zero. A similar contradiction is
obtained when p = 0. O

Because NT # (J, there are numbers 6, < 6, in .# such that

8.13 NT = F;5 0, <
(8.13) [(r3) ezi0,< 3

y
<0,).
Y

PROPOSITION 8.5. The function u defined by (8.1) is C? on (6, 8,)\ {0, 1}
and, on this set, in the classical sense, satisfies the equation
Bu —d,pu — dyu' — du" ~ U;(pu —-z2u')=0, ifp+#0,

(8.14) 1 B}
Bu - Edl - dzu/ - dau” - UO

1
——zu')| =0, ifp=0.
5|

ProOF. We consider only the case p # 0. For this case, the first deriva-
tives of u and v are related by the formulas

v,(1—z,2) =pu(z) —zu'(z), v,(1-2,2)=pu(z)+(1-2)u(z).
From (8.11) we have
pu(z) +d(z)u'(2) >0, pu(z) —ds(z)u'(z) >0
Vz € (64, 0,)\ {0}.

We first show that u is a viscosity solution of (8.14) on (6, 6,) \ {0}. Let
2o € (84, 0,)\ {0} be given and let 4 be a C? function on the component of
(8., 0,) \ {0} containing z,, such that ¢(z,) = u(z,) and ¢ > u. Because u is
a viscosity solution of (8.2), inequality (8.4) must hold. However, «'(z,) =
¥'(2,), so from (8.15) we see that

B (zo) — di(20) P (20) — da(20) ¥ (20) — d3(20) ¥"(20)
= U,(p¥(25) = 20¥'(20)) < 0.
This shows that on (6,, 8,) \ {0}, u is a viscosity subsolution of (8.14). The

proof that « is a viscosity supersolution is easier and is left to the reader.
We define the continuous function A: (6, 0,)\ {0} = R by

h(z) = Bu(z) — dy(2)pu(z) — dy(2)u(2) — Uy(pu(z) - 2u/(2))
and consider the ordinary differential equation
(8.17) —ds(2)wi(z) + h(z) = ¢,
where ¢ is a real number, not necessarily positive. Let [a, b] be a nondegen-
erate interval contained in (6, 8,) \ {0, 1}. For z € [aq, b], define

2z ;h(v) — ¢

0.(2) :fafamdvdf,

u(b) —u(a) - 6,(b)
b—a

so w, is a C? solution to (8.17) on (a, b) and w,(a) = u(a), w (b) = u(b).

(8.15)

(8.16)

w(z) =u(a) + (z—-a)+ 6,(2),
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We use the viscosity property of u of compare w, to u. Suppose £ > 0 and
u — w, has a local maximum at some point z, € (a, b). Then the viscosity
subsolution property (8.16) would imply that
—d3(2zo)w;(2) + h(z) <0,
a contradiction to (8.17). Thus u — w, attains its maximum over [a, ] at the
endpoints, and we conclude u < w, on [a, b]. Letting &[0, we conclude
u < w,. Letting £ be negative and using the viscosity supersolution property,

we obtain the reverse inequality u > w,. Therefore, u = w,, a C? function on
(a,d). O

COROLLARY 8.6. In the set NT\{(x,y); x=0 or y=0}, v is C? and
satisfies the equation

(Zv) - Up(vx) =0
in the classical sense.

COROLLARY 8.7. SS # .

PrOOF. The case 0 < p <1 has already been treated in Remark 6.10.
Here we assume p < 0.

If SS were empty, then 3, would be part of the boundary of NT. In
particular, the number 6, in (8.13) would be b = 1/u. Let us consider the
behavior of the solution u to the equation (8.14) near 6,. The nonlinear
function U,(&) = (1 — p)é?/?~Y/p is Lipschitz on any half-line of the form
[y, ®), where y > 0. The argument pu(z) — zu'(z) = v, (1 — 2, 2) of this func-
tion in (8.14) converges to « as z 1 6, because v, (1 — z,2) = pv(1 — z,2z)(1 —
z +2z/(1 — A)~! (Corollary 3.7) and lim, ,, pv(1 — z, z) = « (Corollary 5.5).
The rest of equation (8.14) is linear and d4(8,) # 0. Therefore, lim, , , u(z)
exists and is finite, which is impossible, because u(z) = v(1 —z,zi. We
conclude that SS # J. O

COROLLARY 8.8. SMM contains the cone G = {(x, y) €.%; y < 0}.

Proor. Again we only need to consider the case p < 0. Just as in the
proof of Corollary 8.7, we show that SMM # J. We must rule out the
possibility that NT and SMM meet in G.

From Theorem 6.9 we have v(x, y) = (1/p)B? (x +y/(1 — A)? for all
(%, y) € SMM. From Proposition 3.4 we see that B !/p > C2 !/p, or
equivalently B > C,. In SMM, v?/(?~1 = Bpy and so when y < 0, (6.3) and
(6.4) imply

Bu(x,y) — ayvy(x,y) — rev(x,5) — Up(v(2,5))
> Bu(x,y) — r[yvy(x,y) + xvx(x,y)] - (1 —-p)Bv(x,y)
=[B-m - (1-p)Blu(x,y)

=(1-p)(Cy —B)v(x,y)
> 0.

(8.18)
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If (x, y) € INT N 9SMM N G, continuity of v, and v, at (x, y) implies that
(8.18) still holds. For such (x, y), the smoothness and concavity of v imply

lim  (Zv)(&,7) — U,(v, (€, 7)) >0,
(é,m)—>(=x,y)
(f,’r])ENT

which contradicts Corollary 8.6. We conclude that 4NT N dSMM N G = .
a

9. Construction and verification of the optimal policy. We saw in
the last section [(8.11) and Corollary 8.8] that

NT = {(x,5) €55 >0, —(1 — u)v, +v,> 0,0, — (1 — Mv, > 0}

and that v is C2 on NT \ {(%, y); x = 0, ¥ > 0} (Corollary 8.6). In this section
we show that even if {(x, ¥); x = 0, y > 0} is a subset of NT, v, , is continuous
on all of NT. We subsequently construct and verify the optimal policy for the
transaction cost problem:.

THEOREM 9.1. The second derivative v, is defined and continuous on NT
and v is a solution of

(9.1) Zv—U,(v,) =0
in the classical sense on NT.

Proor. We consider only the case p # 0. Assume {(x,y); x =0, y > 0} C
NT, for otherwise there is nothing to prove. Imitating the first part of the
proof of Proposition 8.5, we can easily show that v is a viscosity solution of
(9.1) on NT. To upgrade the regularity of v, we define the continuous function
h: NT - R by

h(x,y) £ Bv(x,y) — ayv,(x,y) —rxv,(x,y) — Up(vx(x, ¥))
and consider the differential equation
—%0‘2y2w3‘,‘;)(x, y) + h(x,y) =&,

where ¢ is a real number, not necessarily positive.
Choose a > 0 so that (x, alx]) € NT for all x € R. For x € (—1/a,1/a),
y € (alx|,1/(alx])) and ¢ € R, define

. y n h(x,v)—s
g )(x,y) = L|x|L|x| (1/2)0’21/2

v(x,1/(alxl)) —v(x,alxl) — 6°(x,1/(alxl))
1/(alxl) — alx|

dvdn,

w(x,y) = v(x,alxl) +

X(y —alxl) + 6¢(x, y).
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Just as in the proof of Proposition 8.5, we show that w®(x, ¥) = v(x, y), and
because wy) is defined and continuous in a neighborhood of {(x, y); x = 0,

y>0},s0isv,,. O

In the case that 0 < 6, < 6, < 1, the following theorem is proved by Davis
and Norman [14].

THEOREM 9.2. Recall the numbers 6, 8, of (8.13). We have
1
(9.2) 0<6,<,<—.
n
Furthermore, if (x,,v,) €%, then there is a triple (C,L, M) €. #(x,, y,)

such that with (X,Y) defined by (2.3)-(2.6), the following conditions hold
almost surely:

(9.3) if (x4, y0) & NT, then (X(0),Y(0)) € NT,
(94) (X(¢),Y(t)) eNT Vi=0,
t
(9.5) L(t) = /;)I(Y(s)/(X(s)+Y(s))= oy AL(s) vVt =0,
t
(9-6) M(t) = fol(Y(s)/(X(s)+Y(s))=ez) aM(s) Viz0,
(9.7 C(t) = [v (X(t),Y(t )]V P vi=o0.
This triple is optimal, that is,
(9.8) v( %4, ¥o) =Ef0 e U, (C(t)) dt.

The inequality 6, > 0 follows from Corollary 8.8. The strict inequalities in
(9.2) are restatements of Corollaries 8.4 and 8.7.

The proof of Theorem 9.2 proceeds through several lemmas. To begin this
process, we recast the claim of existence of (C, L, M) in a manner more
consistent with the literature on reflected diffusions. We shall always assume
(x4, yo) € NT; if this is not the case, an initial jump can cause (X(0), Y(0)) to
lie on dNT, and we restart the construction with initial condition (X(0), Y(0)).

Partition the boundary of NT into

9;NT £ {(x,5); ¥y =0, —0,x — (6, — 1)y = 0},
NT £ {(x,5); 3y >0,0,x + (6, — 1)y = 0}.
On JNT define the reflection direction
L [(~1,1-)), if(x,y) € d,NT,
V(59 2V (12 4, 1), if(x,y) € 9,NT,

and let y(x, y) £ (y,(x, ¥), y,(x, ¥)). The main assertion of Theorem 9.2 is
that for (x,, y,) € NT, there is solution to the following problem.
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SKOROHOD PROBLEM. Find continuous processes X, Y, £ such that X(0) =
x9,Y(0) = y,, k(0) = 0, k is nondecreasing and

(9.9) (X(¢),Y(¢)) eNT V>0,
(9.10) dX(¢) = [rX(t) ~ (v,(X(2), Y ()" ""] at

+7i(X(2),Y(t)) dk(?),
(9.11) dY(¢) = aY(¢) dt + o ¥(¢) dW(t) + yo( X(t),Y(2)) dk(t),

t
(9-12) k(t) = /(.)1((X(t),Y(t))E aNT} dk(t)-

We map (9.9)-(9.12) into (9.4)—(9.7) with the identifications

t
L(t) = /01((X(t),ya))e 3,NT} dk(t),
(9.13)

¢
M(t) = /;)1((X(t),Y(t))EaZNT) dk(t)-

Lemma 9.3. If 0 < 0, < 8, < 1, there is a solution to the Skorohod prob-
lem.

PrOOF. When 0 < 6; < 6, < 1,NT is contained in the open first quadrant,
so v is C? and v, is locally Lipschitz at every point in NT except the origin.
This fact simplifies the proof.

This lemma does not involve the utility and value functions, except for the
appearance of p in (9.10). To aid in its proof, we introduce the value function
v, corresponding to utility function U,, where g € (0, p) and p € (0, 1) is the
solution to (5.6). Proposition 5.1 guarantees the existence of a constant m,
such that

(9.14) v (x,y) <my(x+y)  VY(x,y) €Z

Homotheticity guarantees that with m; = min, _,_, v,(1 —2,2) > 0, we
also have

(9.15) miy(x+y)! <v(x,y) V(x,y) € NT.
For n > 1, we truncate NT by defining
NT, = {(x,y) e NT; n"%7 <x + y < n¥9}.

The region NT, has four corners, but we may modify NT, slightly to obtain a
larger, bounded, ice-cream-cone—shaped region @, C NT which has a smooth
(at least C?2) boundary and whose closure excludes the origin. We also extend
the definition of the reflection direction function y so that it is smooth (at
least C%) on 9¢&,. Stroock and Varadhan [62], Tanaka [64], Lions and
Sznitman [49] and Dupuis and Ishii [23] all establish existence and unique-
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ness for the Skorohod problem on #,. Let (X,,,Y,, k,) be this solution and
define

7, 2inf{t > 0; X,(t) + Y,(¢) =n"%/%}, 7% lim 7,
n—o«
p, & inf{t > 0; X, (¢t) + Y,(t) =n*9}, p% lim p,.
n—ow
The uniqueness of (X,,Y,,k,) allows us to define X(¢)=X,(¢),Y(t) =

Y,(), k() =k, (),0<t <7, Ap,,n=>1, and so (X,Y, k) is defined on [0, 7
A p).

We show that p > 7 almost surely. Fix ¢ > 0. Up to time ¢t A p, A 7,,, We
may make the identification (9.7) and (9.13) to obtain the initial part of a
triple (C, L, M) € #(x,, y,). According to the optimality equation (4.5) and
9.15)

v,(%0» ¥o) zE[j:Ap"M"e"’qu(C(s)) ds
(9.16) +e PUNIATIY (X(E A py A T), Y (EAp, A T,))

= e_BtEll(pn<t/\‘r,,)vq(X( pn)’ Y( pn))]
>e P'mn’P{p, <t A T)}.

Thus Y;P{p, <t A 7,} <=, and the Borel-Cantelli lemma implies that al-
most surely, p, >t A 7, for all sufficiently large n. Thus, p > ¢ A 7 almost

surely, and because ¢ is arbitrary, p > 1.
The triple (X,Y, k) is defined on [0, 7) and on the set {r < o},

lim X(7,) = lim ¥(r,) = 0.

Thus
(9.17) liminf X(¢) = liminf Y(¢) =0 on {7 < %}.
tTT tTrT
We show that (9.17) implies that (X, Y) is trapped at the origin, that is,
(9.18) limsup X(¢) == limsup Y(¢) =0 on {7 < «}.
t1TT t1T

If (9.18) fails, then for some £ > 0, we have
(9.19) P{T < @, limsup (X(¢) + Y(t)) > a} > 0.
ttT
Let n, = inf{¢ > 7,; X(¢) + Y(¢) = ¢}. Then 5, < 7 on the set in (9.19). On the
set {r < 0}, an argument similar to (9.16) shows that for each ¢ > 0,
vq(X(Tn) ’ Y(Tn)) = e_BtEll('r <®,p, < t)vq(X(nn) s Y(nn))] :

Using both (9.14) and (9.15), we conclude

M2 - Bt q
726 me P{T<0°,T)nSt}.
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It follows from the Borel-Cantelli lemma that almost surely on the set
{r < =}, we have 7, > ¢ for all large n. Because ¢ is arbitrary, this contradicts
the condition 7, < 7 for all n > 0, almost surely on {r < «}.

We have already defined (X, Y, k) on [0, 7). On the set {r < «}, we define

X(t) =0, Y(t) =0, k(t) =k(T) Vt = 7.

We interpret (v,(0,0))/?~Y appearing in (9.10) to be zero. This provides a
complete solution to the Skorohod problem (9.9)—(9.12). O

REMARK 9.4. If 1< 6; < 0, < 1/pu, the proof of Lemma 9.3 goes through
without modification. Difficulties can occur, however, when either the x-axis
or the y-axis is part of the boundary of NT or NT contains the positive y-axis.
This is because we do not know that v is C? on these axes, and so we do not
know that v, in (9.10) is Lipschitz.

Thus, we must consider more carefully the cases 6, =0, 8, =1, 6, =1
and 6; <1< 6,. Of these four, §;, =0 and 6, = 1 are easy to resolve. In
Theorem 11.6, we show that the case 6; = 0 cannot occur, but because the
proof of that theorem depends on the present argument, we cannot yet
eliminate this case from consideration. If 6, = 0, the solution to the Skorohod
problem can be constructed much as in Lemma 9.3, until (X, Y) arrives at the
x-axis. Thereafter, Y is held at zero, L and M are held constant and (9.10)
can be solved because homotheticity implies that v(x, 0) is a C? function of x.
When 6, = 1, again the solution to the Skorohod problem can be constructed
much as in Lemma 9.3, until (X,Y) arrives at the y-axis. Thereafter, X is
held at zero and Y is given by

dY(t) = aY(t)dt + oY (t) dW(2)
(9.20)

1/(p-1
T, (20, ¥(1))] 2

This equation has a solution because homotheticity implies [see (6.5)]
v,(0, y) = y? 'v,(0,1), which is a locally Lipschitz function of y. Note that
dL = 0 and

1 1/(p-1) _ 1
— i [Ux(O’Y(t))] / dt = mC(t) dt.

(9:21)  dM(t) = <

When 6, <1< 6,, we need to describe how (X,Y) passes across the
positive y-axis. Because no reflection occurs at the y-axis and v, is strictly
positive there, (9.10) shows that (X,Y') can approach the y-axis only from the
right. The issue is to ascertain that after (X, Y) reaches the y-axis, (9.10) and
(9.11) with dk = 0 provide a mechanism for getting off (and moving left).

If 6, =1, the issue is the same. We want to show that if the initial
condition is on the positive y-axis, then (9.10) and (9.11) with dk = 0 provide
a mechanism for moving left into the interior of NT.
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Let (x,, o) be given with x, = 0, y, > 0. For small ¢ > 0, set k(¢) = 0 and
solve (9.11) subject to Y(0) = y,. Substitute this Y(¢) into (9.10) and rewrite
as

(9.22) E(t) =f(t,€(t)), £(0) =0,
where
£(t) = e "X(t), f(t, €)= —e v (e £,Y(2)] Y.

We want (9.22) to have a solution for small ¢ > 0. We know that f is
continuous and is nonincreasing in its second variable. The continuity of f is
enough to guarantee local existence of a solution (see, e.g., [36]). Uniqueness
of this solution can be seen by observing that if £, and £, are two solutions,
then monotonicity of f(¢,-) implies

d 2
gt'[ﬁ(t) — &))" =2[&(2) - & F(2, £(8)) = F(¢t, £())] <0,
80 &) = &s.

We have completed the proof of the Theorem 9.2 except for the assertion of
optimality (9.8). We dispatch that with the following lemma.

LemMa 9.5. Let (x4,y,) €% and (C,L,M) €es/x,,y,) be given such
that (X,Y) defined by (2.3)—(2.6) satisfies (9.3)-(9.7). Then (C,L, M) is
optimal.

ProoF. We apply Itd’s formula to e #'v(X(¢), Y(¢)) [see (4.7)], but note
that —(1 — wv,(x,y) +v,(x,y) =0 when y/(x +y) = 6,,v,(x,y) - (1 -
Mv(x,y) =0 when y/(x +y) =6, and v(X(0),Y(0)) = v(xy, y,). Finally,
Theorem 9.1 implies

(ZLv)(X(s),Y(s)) + C(s)v.(X(s),Y(s))
= U, (v X(),Y(5))) + [0 X (), ¥(s))] 7"V
= U,(C(s)).
Therefore, for any almost surely finite stopping time 7,
0(x0,70) = € Pu(X(r), ¥ (7)) + [P (C()) ds

(9.23) )
- crfoe_BSY(s)vy(X(s),Y(s)) dw(s),

provided that

(9.24) fOT[e‘BSY(s)vy(X(s),Y(s))]z ds < o.
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We examine the integrand in (9.24). Homotheticity implies [see (6.5)] that

_ x y
v x’ = + p 1 —_7 H
W(x,y) =(x+y) vy(x+y x+y)

and since v, (1 - 2, z) is bounded from above and away from zero for 6, < z <
0, (6.3 and Corollary 8.3)], we have the existence of constants m4 > 0, m, > 0
such that

(9.25) my(x +y)" " <u,(x,y) <myx+y)""  V(x,y) eNT.

For later use, we observe that the same augument applies to v,, so we may
choose m3 and m, to also satisfy

(9.26) m3(x+y)p_lsvx(x,y) <my(x er)"_1 V(x,y) € NT.
Finally,
(9.27) lyl < mg(x+y)  V(x,y) € NT,

where m; = max({|0,], |6,[}. Putting this into (9.25), we see there is a constant
mg satisfying

(9.28) lyo,(%, )| <mg(x +y)"  V(x,y) eNT.
We now consider various possibilities for p. Assume first that p < 0 and

define for n > 1,

, 1
(9.29) 7, & inf{t > 0; X(t) + Y(¢) < ?{}'

n

According to (9.28), the integrand in (9.24) is bounded for 0 <s < 7,, so
replacing 7 by ¢ A 7, in (9.23) and taking expectation, we obtain

v(xg, ¥o) = Ee P ™Wu(X(t A 7,),Y(E A T,))

(9.30) + B[ e (C(9)) ds

tAT, _ s
sEfO e #U(C(s)) ds.
As n - o, 71, 17, defined by 7, £ inf{ > 0; X(¢) = Y(¢) = 0}. We show that

7, = © almost surely. On {7, < =}, we have

limlim e P¢" ™y (X(t A 1,),Y(¢ A 7,)) = e P0(0,0) = —o,

nootlT,

limlim [ "e U, (C(s)) ds < 0.

n—owtTT, Y0

Replacing 7 by ¢ A 7, in (9.23), we conclude from these observations that

(9.31) limlim [ "e *¥(s)v,(X(s),Y(s)) dW(s) = — on{, <},

noxttr, 70
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This can only happen if (9.24) is violated when 7 = 7,, but the violation of
(9.24) would imply that the limit in (9.31) did not exist, even in the extended
real numbers ([43], Problem 3.4.11 and its solution on page 232). Therefore,
Plry <=} = 0.

We now let n — « and ¢ - « in (9.30) and use the monotone convergence
theorem to conclude

v( %, ¥0) < Ef e P*U,(C(s)) ds.
0

We have proved the optimality of (C, L, M) when p < 0.
We next assume 0 < p < 1, and begin by showing that

(9.32) E’fot[e‘BSY(s)vy(X(s),Y(s))]z ds <o Vit 0.

We note from (9.28) that the integrand in (9.32) is bounded above by m2[1 +
(X(s) + Y(s)?], and so it suffices to prove

(9.33) Ef[X(s) +Y(s)]"ds < Ve 0,
0
Define Z(t) = X(¢) + Y(¢). From (2.4), (2.5) and (9.27), we have
Z(t) = Z(0) + [‘[(«—r)Y(s) +rZ(s) — C(s)] ds
0

(9.34) + a’j:Y(s) dW(s) — AL(t) — uM(2)

< Z(0) + m ['Z(s) ds + oN(¢),
0

where mq; = (a — r)mg + r and N(@¢) = [{Y(s)dW(s). For each n > 1, let
p, = inflt > 0; Z(t) = n} and define Z*(t) = max,_,_, Z(s), N*(t) =
max, _ ., |N(s). From Doob’s maximal martingale inequality applied to |N|
([43], Theorem 1.3.8), we have

E(N*(t A p,))’ < 4EN*(t A p,)
(9.35) = 4Ef0“”"Y2(s) ds

< 4m§Ef0tZ2(s A p,) ds.

Inequalities (9.34) and (9.35) and Hélder’s inequality yield for some mg > 0
and every T > 0,

E(Z*(t A p,))° < mg[zz(()) + E(fOtZ*(s A p,) azs)2 + E(N*(t A pn))2]

< mS[Zz(O) + (T + 4m§)f0tE(Z*(s A b)) ds]

Vte[0,T].
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According to Gronwall’s inequality,
E(Z*(t A p,))" < mgZ?(0)exp|tmy(T + 4m2)] Ve e[0,T].
Let n — o and take ¢ = T to obtain
E(X(T) +Y(T))* <E(Z*(T))* <mzZ?(0)exp[Tmqs(T +4m2)]  VT>0.

This proves (9.33), and hence (9.32). Because of (9.32), we can replace the
stopping time 7 in (9.23) by an arbitrary constant ¢ > 0 and then take
expectations to obtain

(9.36)  v(=xg,y,) = Ee Pu(X(t),Y(t)) + /Ote_BsUp(C(s)) ds.

Because of (9.26), the consumption process C given by (9.7) satisfies
(9.37) mY P (X(t) +Y(t)) <C(¢), t=0.
Standing Assumption 2.3 asserts that

[Ee#(X(2) + ¥(1))” dt < pmp/OPE [ e BU,(C(1)) dt < .
0 0

Therefore, we can find a sequence ¢, 1 such that

(9.38) lim Ee™#(X(¢,) + Y(t,))" = 0.
n-—-w
However, homotheticity implies that for (x, y) € NT,
v(x,y) =(x+ )pv( z Y )<(x+ Y’ max v(l -z, z2)
Y y iy iy S y)" max ,2),

and so (9.38) shows that
lim Ee *hv(X(t,),Y(¢,)) =0.

n—©

Replace ¢ by ¢, in (9.36) and let n — « to obtain the optimality condition
(9.8).

Finally, we consider the case p = 0. Inequality (9.37) holds and Standing
Assumption 2.3 asserts

meEe—Bt max{log( X(¢) + Y(t)),0} dt

log m,|

< E/me"”max{log C(t),0} dt < .
B 0

Homotheticity (3.3) implies that for (xy) € NT,
1
v(x,y) < —=log(x+y)+ max v(l-z,z),
B 0,<2<8;
and so we can find a sequence ¢, 1 such that
(9.39) lim Ee #% max{v(X(t,),Y(¢,)),0} = 0.
-0
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The monotone convergence theorem implies

lim E‘ft"e‘ﬂt max{log C(¢),0} dt
0

(9.40) roe 3
= E[ e " max{log C(¢),0} dt < =,
0
lim Eft"e“” max{ —log C(t),0} dt
(9.41) rom e .

= /we_‘” max{ —log C(t),0} dt.
0

According to (9.28), condition (9.32) holds, from which we obtain (9.36). In
particular,

v( %o, ¥o) < BeP» max{v(X(t,),Y(t,)),0} + Efot"e-ﬁsv;,(C(s)) ds.

Letting n — » and using (9.39)-(9.41), we prove the optimality of (C, L, M).
O

REMARK 9.6. In the proof of Lemma 9.5, in each case considered, we
constructed a nondecreasing sequence of almost surely finite stopping times
{ p,);_, satisfying the equations

(9.42) v(ao,30) = Be™P0(X(p,), ¥(py) + E[ e #U,(C(s)) ds,

(9.43) lim p, =% as.

n—w

In the case p < 0, take p, = n A 7, with 7, defined by (9.29), and then (9.42)
follows from (9.30). In the case 0 < p < 1, take p, = n and appeal to (9.36).

For p < 0 and 0 < p < 1, the monotone convergence theorem and the opti-
mality of (C, L, M) imply

(9.44)  v(xy, 7o) =E[O°°e-ﬂ8Up(C(s)) ds = lim Efopne‘ﬁsUp(C(s)) ds,

and so
(9.45) lim Ee™#*rv(X( p,),Y(p,)) = 0.

n -0
If p = 0, we may apply the monotone convergence theorem to
fpne_ﬁs max{log C(s),0} ds and fp"e_ﬁs max{ —log C(s),0} ds
0 0

separately and use Standing Assumption 2.3 to conclude that (9.44) and
(9.45) hold.

REMARK 9.7. For (x,, y,) €., there is a positive probability that the
optimal policy (C, L, M) causes reflection at the upper boundary of NT [i.e.,
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P(M() > 0) > 0], and if 6, > 0, there is also a positive probability of reflec-
tion at the lower boundary of NT [i.e., P(L() > 0) > 0]. Therefore, v(x,, y,)
is a strictly decreasing function of w, and if the choice of parameters is such
that 6; > 0,v(x,, y,) is strictly decreasing in A at this set of parameters. We
use this observation in the next section to show that v is C? across any
boundary of NT which does not coincide with the positive y-axis or the
positive x-axis.

Reviewing the properties of the value function v which were used to
establish Theorem 9.2, we discover the following result.

COROLLARY 9.8. Suppose #: % — R is a continuous function possessing the
homotheticity property established for v in Proposition 3.3. Suppose that on
A\ x,0); x >0}, ¥ is C and v, and v, are locally bounded above and away
from zero, even in neighborhoods of points on the positive x-axis. Suppose
there are numbers 0 < 6, < 0, <1/u so that, with open convex cones

defined by
y -
>02}:
+y
T2 {(x,y) €56, < J <6
s Y s V1 x+y 2(»
y .
y<01}’

we have that ¥ is C? on ﬁ, except possibly on the y-axis, U, is continuous on
all of NT and

SMM 2 {(x,y) €5 —

—(1 - )i, +5,=0 onSS,
0, — (1= A)o, =0 onSMM,
Z5 - U, (5,) =0 on NT.

Then, for every (x,, y,) €.7, there is a triple (C, L, M) € s/(x,, v,) satisfving
conditions analogous to (9.3)—(9.7) and

5( 24, ¥o) < E[:e-ﬁtUp(é(t))dt.

Propositions 5.1 and 5.4 provide upper bounds on v when 0 < p <p. We
extend these results to the case p < 0, and show that the upper bounds are
strict. This extension uses the existence of an optimal policy.

PropoSITION 9.9. Ifp <1, p + 0, A(p) defined by (5.7) is positive and y
satisfies (5.2), then

1
(9.46) v(x,y) < ;A”‘l(p)(x +yy)" V(x,y) €S
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If p = 0 and vy satisfies (5.2), then

1 1 — 2
v(x,y)S—log(x+.yy)+_logB+r 3+(a r)
(9.47) B B B? 2B%?*
V(x,y) €.

Moreover, the preceding inequalities are strict if
(9.48) o?(1—p)#a-—r.

Proor. Let (x,,y,) €% and (C, L, M) €(x,, y,) be given such that
(X,Y) defined by (2.3)~(2.6) satisfies (9.3)~(9.7). According to Lemma 9.5,
(C,L, M) is optimal. Define ¢(x,y) to be the right-hand side of (9.46) or
(9.47) according to whether p # 0 or p = 0. Then ¢ satisfies (5.3), (5.4), (5.8)
and (5.9). With regard to (5.8), we have for (x, y) €.%,

(Zo) — Uy(¢.(x,5)) =0
= [e*(1-p)—(a—r)]yy—(a-r)zx =0,

Applying Itd’s formula to e P%(X(¢), Y(¢)) [cf. (4.7)], we have for any almost
surely finite stopping time 7,

(9.49)

o(%0, ¥0) = e Fop( X(7),Y(r)) + fTe_ﬁs[S/go - Uy(¢,)] ds
(9.50) ) o
+ [ e=P*U,(C(s)) ds - o[ e PY(s) ¢, dW(s).
0 0

For p # 0, we have

(x )—(x+)‘°( * 2 )
eLx,y y (px+y’x+y

and thus

(x+5)" min o(1-2,2) <e(x,9) <(x+y)° max o(l-2z,2)
f1<2<8, 01<z<0,

V(x,y) € NT.

The homotheticity established in (3.1) implies that v satisfies similar inequal-
ities, and so there are positive constants n, and ngy such that, if p + 0,

(9.51) nle(x, y)l <lv(x, y) < nyle(x,y)l  V(x,y) € NT.

If p = 0, the definition of ¢ and the homotheticity of v imply that for some
positive constant n,,

(952)  le(x,5) —v(x,y)l<ng  VY(x,y) € NT\{(0,0)}.

For all p < 1, a similar argument shows that there are positive constants n 4
and n4 such that

ngley(x, ) <lv,(x, ) <ngle,(x,y)|  V(x,y) € NT.
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Replace 7 in (9.50) by p, from Remark 9.6. It was shown in the proof of
Lemma 9.5 that

fopn[e_‘“Y(s)vy(X(s),Y(s))]2 ds <

and hence this equality holds when v, is replaced by ¢,. Taking expectations
in (9.50), we obtain

e(%0,70) = Be ™ 0(X( £3),Y( ) + E[ e[ Fo ~ Uy( )] ds

p".
+E| e PU (C(s)) ds.
[aaCACIO)
Letting n — « and using (9.43)—(9.45) and either (9.51) or (9.52), we see that

o(%9, ¥o) = Efo e P Lo — Uy(o,)] ds + v(x, 30),

and because of (5.8), we have (9.46).
It remains to show that when (9.48) holds,

(9.53) E_/:e‘ﬁs[f/go(X(s),Y(s)) — U, (0,(X(s),Y(s)))] ds > 0.

If (9.53) fails, then (9.49) implies that, almost surely,

[02(1 - p) = (e —r)]yY(s) — (a —r)X(s) =0,

(9.54)
Lebesgue a.e. s > 0.

However, X(:), Y(-) are right-continuous, so (9.54) would in fact hold for every
x > 0. This implies that the process on the left-hand side of (9.54) has zero
quadratic variation, which, in light of (9.48), (2.4) and (2.5), can be the case
only if Y(s) =0 for all s > 0. This implies, in turn, that X(s) = 0 for all
s > 0. Such a result is inconsistent with the behavior of the optimal policy for
initial condition in %, and we conclude that (9.53) holds. O

COROLLARY 9.10. Ifp <1, p #+ 0, A(p) defined by (5.7) is positive and

(9.55) oc?®(1-p)=a-r,
then

1
v(x,y) = ;A"_l(p)(x +(1-u)y)’

V(x,y) € Fwithx < 0.

(9.56)

If p = 0 and (9.55) holds, then

_11 1 11 r—-B (a-r)
(9.57) v(x,y)—Eog(x+( —,u)y)+EogB+ R + 5577

V(x,y) €F withx < 0.
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Proor. We consider only the case p # 0; the case p = 0 is similar. With
xy = 0,y, > 0, we construct the triple (C, L, M) € #(x,, y,) suggested by
(9.20) and (9.21). In particular, we set L = 0,C(t) = A(p)1 — wY(¢) and
dM(t) = (1/(1 — wW)C(#)dt, so X(t)=0,Y(t) = yyexpl(a — A(p) — o2 /2)¢
+oW(#)], t = 0. Using (9.55) and the identity —8 + p(a — A(p) — 02/2) =
—A(p), we compute that

® 1
0(0,50) = B[ e U, (C(8)) di = — A7 (p)(1 = )" ¥§.
0
The reverse inequality follows from Proposition 9.9. We have shown that
1
v(0,y) = —AP " Y(p)(1 - ,u)pyp Vy > 0.
p

Now suppose (xg, yo) €% and x, < 0. We can move from (x,, y,) to
(0, /(1 — w) + ¥,) by a transaction, so
v(xg,¥0) =v{0 _To +y,| = lAI"I(p)(x +(1—-un)y )p
070/ = ’ (1 _ /-L) 0 p 0 0 ’

and again the reverse inequality follows from Proposition 9.9. O

10. Further regularity of the value function. Using convex analysis,
we showed that the value function v is C* in SS and SMM (Theorem 6.9).
Using the theory of viscosity solutions, we subsequently showed that v is C2
in NT\{(x,¥); x =0 or y =0} (Corollary 8.6). In this section, we use a
control theory argument to see that v must also be C? across each boundary

y
T = e, —— =0,},
ﬂlN {(x’y) sx+y 1}

y
3, NT = {(x,y) €. . = 62},

provided the boundary in question does not coincide with the positive x-axis
or the positive y-axis.

THEOREM 10.1. The partial derivative v, is continuous across d;NT, and
if 65 # 1, then v is C? across 3,NT. If 6, # 0, then v,, Is continuous across
9,NT, and if 0, # 0 and 0, # 1, then v is C? across ¢;NT.

Proor. Using homotheticity, we again reduce the matter to a function of
one variable, but this time we set

w(x) =v(x,1) Vx> —(1 - u),
so that for all (x, y) €. with y > 0,
x
ypw(; s
U(x,y): 1 X
—log ¥ +w(—), if p=0.
B y

ifp<l,p+#0,
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Corollary 8.3 implies that w is C'. In terms of w, the HIB equation (4.6)
becomes

min{Bw(x) + %UZ(l -p) — a)pw(x)
+(a—r—ag*(1-p)w(x)

(10.1) _%(f?x?w"(x) — G, (w'(%)),
—(x+1- ww'(x) + pw(x),

1
(x+ 1_/\)w’(ac) —pw(x)} =0, ifp<l,p#0,

or

min{ Bw(x) + %(—;—az - a) +(a—r—-oc?)w'(x)

1 ~
—Ea-zxzw” x) — Ug(w'(x)),

(e 1-mw () + o,

! ! ! =0, ifp=0
(x+1_)‘)w(x)—ﬁ}— , if p=0.

Considering first the case of regularity of v across d,NT, we define
x, 2 (1 — 6,)/6, and undertake to show that w” is continuous at x,.
If p # 0, then we know from Theorem 6.9 that for some A > 0,

1
w(z) = ~AP x4 1= Ve (=(1-w), 5,

and, in particular, w"(x, — ) £ lim,, , w"(x) is defined. From (10.1) we see
also that

Bw(xs) + (303(1 — p) — a)pw(x,)
+(a—r— o1 -p))w(xy) — (w(x,))
> 2o 2xiw"(xy —).
For x € (x45,(1 — 6,)/6,), we have
Bu(x) + (20%(1 ~ p) — a)pw(x)
+(a—r - o1 - p)w(x) - Uy(w(x))

— %0_2x2wn(x)’
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and letting x | x,, we see that lim x2w"(x) exists and

x| Xy

(10.2) xsw"(xy —) < lim x?w’(x).
x| xXg

There are two cases to consider. Assume first that 6, = 1, so x, = 0. We
must prove continuity of v,,(x,y) at x =0,y > 0, and it suffices to prove
continuity of v, (x,1) at x = 0. However,

v,,(x,1) = —(1 - p)pw(x) + 2(1 — p)xw'(x) + x?w"(x).

From (10.2) with x, =0, we have lim_ o x*w"(x) > 0, and the reverse
inequality follows from the concavity of w, inherited from the concavity of v.
Thus, lim, , x*w”(x) = 0. Because w”(0 — ) exists, we also have
lim, ,, x*w"(x) = 0, and continuity of v,,(x,1) at x = 0 is proved.

Now assume 6, # 1, s0 x, # 0. We must prove that v is C? at x = x,, y >
0, and it suffices to prove continuity of w” at x,. From (10.2) we have

(10.3) w'(xy =) <w'(xy +).

Let us assume w"(xy — ) < w"(x, + ) and work toward a contradiction. Un-
der this assumption, let &, > 0 be such that

[ x5, 25 + 8] € [25,(1 - 6,)/6,)\ {0}.

For ¢ € [0, £,], define u, and A, by

pw(xy, + &)
10.4 — — - vz 7
(0 ) (x2+8+1 /"’s) w’(x2+s)’
(10.5) ap-1o PelEate)

(g +e+1—p)""

The mappings &£+~ u, and £+~ A, are C'!, and u, = u. Differentiation of
(10.4) yields

O _ pw(xz)w" (x5 +)
seleo T [z
_ pw(xz)w"(xy =)
[ (x2)]?
- 1.

Therefore, du/del.—0 > 0, so for sufficiently small positive &, we have u, > u.
If p = 0, then Theorem 6.9 gives

1
w(x)=Elog(x+1—;L)+A Vr e(—(1— ), x,]
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for some A € R. We proceed as before, except that in place of (10.4) and
(10.5), we now define u, and A, by

1
x, +&+1— i r—
( 2 € ,LLE) Bw’(x2+e)

1
A, =w(x, +¢) - Elog(x2+a+ 1—pu,).

We come to the same conclusion: Under the assumption w’(x; —) <
w"(x4 + ), there is a small positive & such that u_ > u.

We complete the proof only for the case p # 0; the argument for p = 0 is
fully analogous. Define @:[—(1 — u;),°) - R and 0: % — R by

1
. —AP Y x4+ 1— )", i —(1— ) <x<x,+ 5,
w(x)=4p

w(x), if x >x, + &,

x -
y"w(—), if(x,y) e, y>0,
o(x,y) = y (:9)

v(x,y), if(x,y)eP, y<0.

We further define 6, = 1/(1 + x, + &), 6; = 6,. From (10.4) and (10.5), we
see that @ is C!, so ¥ is continuous on the closure of

F= <(x,y);x+ 1iA >0,x+(1—,u,§)y>0}

and ¢ is C! on S\ {(x,0); x > 0}. Indeed, 7, §;, 6, satisfy all the hypotheses
of Corollary 9.8, but with u; replacing u in that corollary. Thus, there is a
triple (C, L, M) which is feasible for the initial condition (x4, + &,1) in the
problem with u; replacing w such that

v(xg +&,1) =w(xy, + &) =w(xy + &) =0(xy +&,1)

< Ef:e—ﬁtUp(C’(t))dt.

This means that at (x, + &, 1), the value function in the problem with u,
replacing u dominates v(x, + &, 1), the value function in the original prob-
lem. Remark 9.7 contradicts this conclusion, and so equality must hold in
(10.3). This concludes the proof that v is C* across d,NT if 9, + 1.

Now assume 6; # 1 and 6, # 0, so that 6, > 0. The proof that v is C?
across d,NT is similar to the proof for 4,NT. We highlight the differences for
the case p # 0. Define x, =(1 — 6,)/60;,. In place of (10.3), one has
w'(x; +) < w"(x; — ). Assume strict inequality holds. For small ¢ > 0, define
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As, A, by

1 ) pw(x, — &)
e w'(x; - &),
B pw(x; — &)
(¢, —e+1/(1-1))°

and verify that dA_/ds|.—¢ > 0. Choose & > 0 so that A; > A and proceed as
before. O

COROLLARY 10.2. The value function v is C? in A\ {(x,y); x=0 or
y =0}

ProoF. Combine Theorem 6.9, Corollary 8.6 and Theorem 10.1. O
CoroLLARY 10.3. The functions v, v,, v, and v,, are continuous on

P\ {(x,0); x > 0} and satisfy the HJB equation (4.6) in the classical sense on
this set. In particular, for (x,y) €7 with y + 0,

Yy

(10.6) x+y <6, < v(x,y)—(1-Mv(x,5)=0,
y

(10.7) X +y 20, < —(1-pv(x,y)+v,(x,9)=0,
y -

(10.8) 6, < Py <0, = (ZLv)(x,y)-U,(v,(x,y5))=0.

ProoF. The regularity assertions are contained in Corollary 8.3 and
Theorem 10.1. The HJB equation holds in the classical sense on .\ {(x, y);
x = 0 or y = 0} because of Corollary 7.6, Theorem 7.7 and Corollary 10.2. For
(x, y) €% with x = 0, we obtain the HJB equation from continuity. Implica-
tions (10.6)—(10.8) follow from the HJB equation (4.6) and (8.10)-(8.12). O

11. Location of the free boundaries. The no transaction region NT =
{(x,y) €%; 6, <y/(x +y) < 6,} is characterized by the numbers 6, and 6,
satisfying (9.2): 0 < 6, < 0, < 1/u. In this section we provide bounds on 6,
and 6, and show that 6; > 0.

LEmMA 11.1. Ifp < 1, p # 0, then there is a positive constant A satisfying
A/p < C,/p such that

1
(11.1) v(x,y) = ;A”‘l(x +(1-wy)’  VY(x,y) €SS.
If p = 0, then there is a constant A > (log 8)/B + (r — B)/B? such that

(11.2) v(x,y) = élog(x +(1-u)y) +A V(x,y) €88S.
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ProoF. The formulas (11.1) and (11.2) are from Theorem 6.9, and the
nonstrict inequalities A/p < C, /pif p # 0, A = (log B)/B + (r — B)/B? if
p = 0, follow from Proposition 3.4.

We show that when p # 0, we cannot have A = C,; the argument for
p = 0 is similar. Assume A = C,, so that for all (x, y) € SS,

1
(11.3) o(x,9) = —CE N (x+ (L= w)y)".

We show that this equality would then hold for all (x, y) €.% with y > 0. Let
(x, y) €% be given and choose vy > 0 large enough that

(%0, %0) 2 (x — (L= p)y,y +y) €SS.
Then (x, y) can be reached from (x,, ¥,) by a transaction, so according to
Proposition 3.5 and our assumption,

1
;Ci_l(x + (1= w)y)" =v(xp, 50) = v(x, ).

The reverse inequality follows from Proposition 3.4. Thus, if (11.3) holds on

SS, then it holds on {(x, y) €.%; y = 0}. This would imply that SS contains

the latter set, or equivalently, that 6, < 0, which contradicts (9.2). O
THEOREM 11.2. For all p < 1 we have

ax—r

(14 %A we i) r a1

If 0?2(1 — p) # o — r and

A B—mD p(a—r‘)2
A(p)_ 1-p - 20'2(1—]7)2

is positive, then
) a—r

> ;
2T (1-po*(l-p) +ula-r)

if 02(1 — p) = a — r and A(p) > 0 holds, then 8, = 1. If A(p) is positive and
021 — p) > Ma —r), then

(11.5)

(1 -2 (a—r)
(11.6) % < TP —Aa=T)

ProoF. We derive the preceding bounds under the assumption p # 0; the
case p = 0 is similar.
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To obtain (11.4), we use (11.1) and the inequality A/p < C, /p to compute,
just as in (5.17), that

(,S’v)(x,y) - ﬁp(x,y)
o1 P 1-p 1 .
=AP" (2 + (1 - p)y) — (G mA) + 5071 -p)

(1-w)'"  (a-n)(1-wy
(x+(1—wy)? (x+(1-w)y)

>AP Y x+ (1-w)y)” A - p)y

(1- )y
s ]

for all (x,y) € SS. We set x =1/6,—1and y =1s0 y/(x +y) =6, and
(10.8) implies

121
X_ i
20( p)

1-pn

m—(a—r)<0.

121
50(—17)

This is equivalent to (11.4).
To obtain (11.5), recall from Proposition 9.9 that if o2(1 — p) # a — r, then
the constant A in (11.1) satisfies A/p > A(p)/p. We compute

0 < (Lv)(x,5) - U(x,y)

=AP‘1(x+(1—M)y)p[ﬁ_rp e 1) P

" 20%(1-p) »p

(1-p)y ?
- 2 _ - @ —
T | e oy )”
<AP Mx+ (1—p) )p~—1—~—
#1721 -p)
(1—p)y ?
2 _ _ Y _
X|o“(1 p)x+(1—,u)y (a r)]
for all (x, y) € SS. This shows that if (x, y) € SS, then the expression
(1—-n)y
201 _py——_ /Y
(11.7) o“(1 p)x+ T (a—r)

cannot be zero. This expression approaches + at d,.% (the left-hand bound-
ary of SS), so it must be positive everywhere in SS. Neither can the expres-
sion be zero when y/(x + y) = 6,, y > 0 (the right-hand boundary) of SS, for
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if it were, #v — Up would be negative at points in SS near this boundary.
The positivity of (11.7) when x = 1/60, — 1 and y = 1 gives us (11.5).
If 0%(1 — p) = a — r and A(p) > 0, the foregoing argument yields
o a—r
> =
2T A-w@-p)o®+u(a—r)
From Corollary 9.10 and the equivalence (10.7), we see that 6, < 1.
We turn to (11.6). Recall from Theorem 6.9 that

1.

1 14
v(x,y) = ;Bp_l(x+ 1 i /\)

for some B >0 and all (x,y) € SMM. If ¢2(1 —p) = a — r, then (11.6)
becomes 6; < 1, which follows from (9.2) and 6, = 1. Assume, therefore, that
a%(1 — p) # @ — r. Then Proposition 9.9 implies B/p > A(p)/p. We compute
as before:

0 < (2v)(x,y) — Uy,(x,)

o y V[B=m  (a-r)  1-p
- B (x+1—/\)[ » 20'(1-p)  p ©
1 , y/(1-2) :
+20'2(1—p) (U (l_p)x+y/(1—)t) —(a—r))]
b1 y \? 1 ) y/(1-2) ’
<5 (x+1—/\) 20%(1 - p) 0(1_p)x+y/(1—)\)_(a_r)]

for all (x, y) € SMM. Arguing as before, we see that the expression

y/(1-4)
2(1 — A ST —
7 p)x+y/(1—/\) (a=r)
must be negative in SMM and also at the boundary where y/(x + y) = 6,.

Taking x = 1/6, — 1,y = 1 and assuming o %(1 — p) > Ma — r), we obtain
(11.6). O

REMARK 11.3. In the problem with no transaction costs (u = A = 0),
which should not be formulated as a singular stochastic control problem, the
optimal portfolio keeps the proportion of wealth invested in the stock at

a—r
~ (1-p)o?

(see, e.g., [14]). This is the problem originally solved by Merton [54], and the
solution is obtained under the assumption

>

(11.8) 0

- pla=r)°
-p  20%1-p)

(11.9) A(p) 2 Bl > 0.
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We refer to {(x, y) €.%; y/(x +y) = 0*} as the Merton line. Note that a
necessary and sufficient condition for the Merton line to be in the first
quadrant is

(11.10) 1-p)e?>a-r.

Davis and Norman [14] assume (11.9) and (11.10) for their key Theorem 5.1,
and they ultimately show that the Merton line lies in the no-transaction
region NT, that is,

(11.11) 0, <8, <8,.

We have recovered this result: (11.11) follows immediately from (11.10), (11.5)
and (11.6). We have also discovered that when the Merton line coincides with
the positive y-axis, it coincides with J,NT, that is, (1 —plo2=a —r = 6,
= 0, = 1. This resolves part of the conjecture following Theorem 7.1 in [14].
We conjecture that if (1 — p)o? < @ — r, then 6, > 6,. The bounds in Theo-
rem 11.2 do not support the proof of this, but they allow us to construct
examples to illustrate it. For instance, if

2
then (11.4) and (11.5) imply

1
—+1)(1—p)a-2<a—r,
"

A-wA-p)olta(a-r)

For small values of o, the Merton line is close to the line {(x, y): x + y = 0,
y > 0} whereas 9,NT £ {(x, y) €.%; y/(x + y) = 0,} is close to 9,7 = {(x, y)
€% x+ (1 — p)y =0, y > 0}. This disappearance of the region SS as o
approaches zero is consistent with the results obtained in [61] for the model
with ¢ = 0.

1<6,<

0.

REMARK 11.4. We conjecture that the bounds (11.5) and (11.6) are valid
even without the assumption of positivity of A(p). Note that these bounds do
not involve B, but A(p) does.

We next show that regardless of the parameters of the model, we have
6; > 0. In other words, it is always advantageous to hold some of the stock.
We first characterize the condition 8, = 0 in terms of (8.5), and then contra-
dict this characterization. A consequence of Theorem 11.6 is that the value
function is smooth on the positive x-axis, because this half-line is contained
in SMM (see Theorem 6.9).

LEMMA 11.5. If 6, = 0, then (8.5) holds.
ProoF. Assume 60, =0, let x, > 0, y, = 0 be given and let (C,L, M) €

(x4, ¥y) be optimal for these initial conditions. According to Remark 9.4,
L =0and M =0, so C is the optimal solution for the deterministic control
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problem in which the possibility of investment in the stock is ignored. It is
easily verified that (8.5) provides the value function for this problem. O

THEOREM 11.6. We kave 6, > 0, that is, the positive x-axis is contained in
the region SMM.

ProoF. We assume 6, = 0, so (8.5) holds, and obtain a contradiction. We
proceed under the assumption p # 0; the case p = 0 similar.
From (8.5) and Theorem 6.9, we have

1 P
v(x,y)=;C§_l(x+ ) Vx>0, -(1-ANx<y=<O.

1-2A
Let u be defined by (8.1), so

lcp_l(l—)t+)tz
N e

In particular, #'(07) = AC2~! /(1 — )). We define ¢(2) £ (1/p)C2~ Y1 — uz)?
and k(2) £ u(z) — ¢(2) for all z € (—(1 — A)/A,1/u]. From Proposition 3.4
we have u(z) > ¢(2) for all z € [0,1/u), and thus k(2) > 0for0 <z < 1/u
and k(0) = 0. From these facts and the concavity of u, we have

0 <k (0+)=u/(0+) — ¢'(0) <u'(0—) — ¢'(0)

)p Vz €(—(1—-A)/A,0].

(11.12) _ (1 i - n M)Ci_l < oo,

Now 6, > 6, = 0 and u satisfies (8.14) on (0, 6, A 1), that is,
(11.13) f(z) +g(z) +h(z) =0 Vze(0,0,A1),
where

f(2) £ Bo(z) — dy(2) pe(z) — dy(2) @' (2) — ds(2) ¢"(2)
— U,(pe(z) —2¢'(2))

=(1-p)C2 Y ~(a—r)(1-pz)’ 'z

1
+5oi(1=p)(A — w1 - p2)* e,

g(2) £ Bk(2) — di(2) pk(2) — dy(2)k'(2) — dy(2)E"(2),
h(z) 2 U,(pe(2) —2¢'(2)) — U,(pe(2z) —2¢/(2) + pk(z) — 2k'(2))
1-p

II>

C: (1 - pz)”

1-p

p/(p—-1)
p

[Ca 11— )P 7" + pR(2) — 2k'(2)]
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Note that f(0+) =0 and 2(0+) = 0, and because of (11.13), we must also
have

(11.14) 0=g(0+)=—302 lm&zzk”(z)
z|

For 0 <z < 0, A 1, the derivatives f'(z) and A'(z) are defined, so g'(z) must
also be defined and

(11.15) Fi(2) +&(2) +h(z) =0 ¥z e (0,0, A1).

The existence of g'(z) implies the existence of 2”(z) for 0 <z < §, A 1.
We undertake to let z |0 in (11.15). We have easily that lim, , f'(2) =
f(0) = —(1 — ula — r)C2™ ! and, consequently,

(11.16) lim[g'(2) +H(2)] = (1~ p)(a~r)CE

Direct computation utilizing (11.12) and (11.14) reveals that

lim[g'(2) + K (2)] = —(a—r)k'(0+)

11.17
( ) —lin&[Azk”(z) +Bz2k”’(z)],
2l

where A2 C, + o2+ a—r and B £ ¢?/2. We show that the limit on the
right-hand side is nonnegative. If it were negative, then for some z, > 0 and
£ > 0 sufficiently small, we would have

AR'(¢) +BER"(L) < —§ VZ (0, 2]

Let z; € (0, z,) be given and integrate the preceding inequality from z, to z,
to obtain

(A - B)[k'(zz) - kl(zl)] + B[sz"(zz) - Zlk”(z1)] < ¢log(z,/2;).

Because lim, |, £ log(z,/2,) = —=and B > 0, we havelim, 4 2,k"(2;) = .
Thus, for sufficiently small z; > 0, the inequality £"(¢) > 1/¢ holds for all
£ € (0, z,]. Integrating from z, € (0, z,) to z,, we obtain k'(z,) — k'(z,) =
log(2;/2,), which implies lim, |, k'(zy) = —c. This violates (11.12), and we
conclude that lim, | o[ Azk"(2) + Bz?k"(2)] = 0. Omitting this term in (11.17),
we obtain the inequality

limzw[g’(z) +H(2)] < —(a—-r)k(0+) <0,
which is inconsistent with (11.16). O

12. Finiteness of the value function. As noted in Section 2, Standing
Assumption 2.8 can fail when 0 < p < 1. Its validity is equivalent to the
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finiteness of the value function. Proposition 5.1 shows that

is a sufficient condition for a finite value function. This condition, which does
not involve the transaction costs A and u, also guarantees a finite value
function in the problem without transaction costs.

If o = 0, so that the stock is really another money market, an investor who
incurs no transaction costs can arbitrage the difference between « and r.
Thus, the value function is infinite if =0 and A = u =0, and this is
reflected by the fact that with 8, p, r and « held constant, (12.1) is violated
by small o. In fact, if o is small, then A and u become important and (12.1)
is no longer a useful sufficient condition for value function finiteness.

In [61], Remark 13.1, a necessary and sufficient condition for finiteness of
the value function V in the problem with 8 > 0,0<p <1,0<r<a,oc=
0,0 <A< 1,0 < i <1 was found to be

p(a—r)(1—-A2)(1-p)
1-(1-2)1-p)

[Note that A in [61] is A/(1 — A) in this paper.] The problem in this paper
with the same parameters B8, p, r, @, A and u, but with o > 0, has a value
function v dominated by V, as we show shortly. Thus, (12.2) is another
sufficient condition for Standing Assumption 2.3, a condition involving A and
u, but not o.

To prove the claim that V dominates v, we recall from [61], Theorem 3.1,
that V is nonnegative, continuous and concave on ., C' on .% and satisfies
the HJB equation

(12.2) B— ap >

min{BV —ayV, —raxV, — ij(Vx),
(12.3)
~(1- )V, +V,,V,—(1-1V,} =0 on.

We want to apply It6’s formula to V, and for that we need the following
lemma.

LEMMA 12.1. Let @ be an open subset of R" and let ¢:[0,9) X @ — R be
continuous on [0,°) X @,C! on [0,°) X @ and, for each t > 0, let ¢(t,-) be
convex on @. Let M be an n-dimensional vector of continuous local martin-
gales with M(0) = 0 and let F be an n-dimensional vector of RCLL, finite-
variation processes with F(0) = 0. Let X(0) € @ be given and define the
semimartingale

X(t) =X(0) + M(t) + F(2), t>0.

Fork > 1andx € R", set B,(x) 2 {y € R*; |y — x|l < 1/k} and &, £ {x € &;
B,(x) C @). Define p, £ inflt > 0; X(¢) ¢ &,}. For any bounded stopping time
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7, we have the Itb inequality

o(T A pr, X(7 A )

> (0, X(0)) + [()“””@(S,X(s)) ds
(12.4) +[0””"D¢(s, X(s —)) dM(s) + j‘:/\kaqo(s, X(s -)) dF(s)

+ Z [QD(S’X(S)) — (s, X(s—))

0<s<TApy
~De(s,X(s —))(F(s) — F(s -))].

Proor. If ¢(t,-) were C2, (12.4) would be a special case of Itd’s formula
for semimartingales (e.g., [57] and [59]) and the fact that convexity of ¢(s, )
implies
92

0x,0x;

f””’“f 5 (s, X(s —))d{(M;, M;)(s) = 0,
0 i=1j=1

In the present circumstances, we mollify ¢ to obtain a C2 function to which
It6’s formula can be applied.

For k > 1, let {,: R" — [0,%) be a C* function satisfying [g.{,(x)dx =1
and having support in Bl/k(O) 2 {x € R"; lixll < 1/k)}. Define ¢,: [0,®) X
& — R by

a(tx)= [ o6,y -x)dy= [

By

e(t,x +2)(2) dz.
()

1/k
Then ¢, is continuous and C! on [0,*) X @,, ¢,(¢,)is C* on &, and

D¢k(t’ x) = f

Do(t,x+2){(2)dz Vt>0.
Bl/k(O)

We see then that ¢, —» ¢ and D¢, — D¢ uniformly on compact subsets of
[0,0) X @.

We show that ¢,(z,) is convex on &,. From Taylor’s theorem we have for
x €0,,y € R" and h > 0 sufficiently small that

e (t,x + hy) + o (t,x — hy) — 2¢,(¢, x

(12.5) r( ) + on( ) w (£, %)
=h%y-D%,(t,x)y + o(h?).
On the other hand,

o (t,x +hy) + o,(t,x — hy) — 2¢,(¢, x)

(12.6) = B(O)[go(t,x+hy+z)+¢>(t,x—hy+z)
° k

—2¢(t,x +2)]4(2)dz
>0,
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because the convexity of ¢(¢,-) implies nonnegativity of the integrand.
Equating (12.5) and (12.6), dividing by 42 and letting & |0, we see that
D%p,(¢,-) is positive semidefinite on &,.

For any bounded stopping time 7, we have from It&’s formula for C?2
functions that for m > £ > 1,

On(T A P, X(T A )
TAPg J
2 0n(0,X(0)) + [ (5, X(s —)) ds
+f()mka<pm(s, X(s—)) dM(s) + f()TAkagom(s,X(s -)) dF(s)

+ Z [¢m(S’X(8)) - qDm(s"X(s _))

0<s<TApy
—De,(s, X(s —))(F(s) - F(s-))].
Letting m — «, one can show by standard arguments that (12.4) holds. O

THEOREM 12.2. Assume (12.2). Then the value function V for the problem
with =0 (and B>0,0<p<1,0<r<a,0<A<1land 0<u<1is
finite and dominates the value function v for the problem with o > 0 (and the
same vales for B8, p, r, a, A and p).

Proor. Repeat the proof of Proposition 5.1, but with V in place of ¢ in
that proof and using (12.3) and (12.4) in place of (4.7), (5.3), (5.4) and (5.8). O

REMARK 12.3. Another sufficient condition for Standing Assumption 2.3
when 0 < p < 1, obtained by Fleming and Soner [26], Theorem 8.7.2, is that
B — pd(2) = 0 for all z €. (see the beginning of our Section 8 for defini-
tions).

APPENDIX

Sensitivity of the indirect utility to transaction costs in a consump-
tion-based model (S. E, Shreve).

A. Comparison. For the sensitivity analysis of this appendix, we need
sharp upper and lower bounds on the value function v for small but positive
values of the transaction cost parameters A and u. We obtain these bounds
by construction of super-and subsolutions to the one-dimensional HJB equa-
tion (8.2). Comparison of supersolutions and subsolutions, based on the
maximum principle, is a key part of the theory of viscosity solutions of
second-order partial differential equations ([47], [38], [37]). In the present
context, we are dealing with nearly C? functions, which enables us to obtain
comparisons without appeal to the full power of the viscosity solution machin-
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ery. This section develops the comparison result for our problem and in the
next section, the super- and subsolutions are constructed.
In this Appendix we assume

(A.1) 0<p<1, A>0, u> 0.

It is convenient to rewrite (8.2) in terms of the Merton proportion 9, of (11.8)
and A(p) of (11.9). We assume throughout that (11.9) holds, that is, that
A(p) is strictly positive. In terms of 6, and A(p), the functions d, d,, d; of
Section 8 satisfy

B - pdy(2) = (1 -p)A(p) + 3p(1 —p)a?(z — 6,)7,

dy(2) = (1 —p)o?z(1 - z)(z — 0,),

dy(2) = 3o222(1 - 2)%.
We rewrite (8.2) as

min{@lp(z) - U(pl//(z) —zy'(2)),
(A.2) ppy(z) + (1 — pz)¢'(2),
ApY(z) — (1 — A+ A2)y'(2)} =

where
(A3) 2y(2) £ (B—di(2)p)¥(2) —dy(2)¥' (2) —dy(2)¥"(2).

We shall consider this equation together with the boundary conditions

=0.

n

1-A

» (220

We shall be cons1der1ng functions : .# — R which are a class C! on the
open interval .# 2 (—(1 — A)/A, 1/p), are continuous on the closed interval .7
and are of class C? on the open interval .# except at possibly finitely many
points. One of these points may be 1, at which place we make no assumption
on the existence of one-sided second derivatives. At any of the finitely many
points 2z, # 1 in .¥ where " is not defined, we assume that the one-sided
second derivatives lim,  o[¢'(zy + &) — ¢¥'(29)l/h and lim, ,,[¢'(zy + A) —
¥'(29)l/h exist and equal the respective one-sided limits ¢"(z,+ )2
lim,,, ¥"(2) and ¢"(z,— ) £1lim,,, ¢"(2). For such a function ¢ and for
z €7, we have the integration-by-parts formula

/(4—1) (L) di=(2-1) (z—l)w(z)—zf ¢(£)d§

=o(z — 1),
and hence

(A5) lim inf(z - 1)y (2) =
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DEFINITION A.1. A function ¢ as described above is said to be a supersolu-
tion to (A.2) with boundary conditions (A.4) if

min{glp(z) - U(py(z) —2¢'(2)),
(A.6) upy(z) + (1 - nz)¢'(2),
Apy(2z) — (L= A+ Az)y'(2)} 20

and

(A7) w(—lg)‘)zo, v

7

where (A.6) is to hold at all z €.7 where "(2) is defined. We say that ¢ is a
subsolution to (A.2) with boundary condition (A.4) if ¢ satisfies (A.6) and
(A.7) with the inequalities reversed.

REMARK A.2. Letting z — 1 along an appropriate subsequence in (A.6)
and using (A.5), we see that a supersolution satisfies

(ag) Min{(8 = pdi(1)¥(1) —dy(Dy'(D) ~ U(py(1) — ¢/ (1)),
ppd(1) + (1 = )’ (1), Apy(1) — ¢'(1)} = 0.
At any 2z, # 1 where " is not defined, a supersolution satisfies
min{( 8 — pdi(20))¥(20) = da(20)¥'(20) — ds(20)¥" (20 %)
—l7(pt//(z0) —20¥'(20)),
rpY(2o) + (1 — nzo)¥'(2),
ApY(zp) = (1 - A+ )‘ZO)W(ZO)} = 0.

A subsolution satisfies (A.8) and (A.9) with the inequalities reversed.

(A.9)

COMPARISON THEOREM A.3. Assume (A.1) and A(p) > 0. If ¢, is a super-
solution to (A.2), (A4) and ¢, is a subsolution, then §, = ¥,. In particular,
any supersolution majorizes the function u defined by (8.1), and any subsolu-
tion minorizes u.

PrOOF. We first argue that u is both a supersolution and a subsolution to
(A.2) and (A.4). The boundary behavior (A.4) for u was established in Proposi-
tion 3.4. The function u is of class C? at 0 because of Theorems 6.9 and 11.6;
u is of class C! elsewhere in .# because of Proposition 8.2; u is of class C?
except possibly at 1 because of Corollary 10.2; and u is a classical solution of
(A.2) because of Proposition 8.1 and Corollary 7.6. Thus, the second assertion
in the theorem will follow from the first.

We now prove the first assertion. Let ¢; and i, be as described, and
assume that i, > ¢, does not hold. Then ¢, — ¢, attains its minimum at
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some point z, €.7, where we necessarily have
P1(20) < Pa(29), ¥1(2) = ¥3(20)-
Consequently,
(A.10) 0 < upPy(29) + (1 — p2o)¥i(20) < mpia(29) + (1 — pzo) ¥2(20),
0 <Apydy(zy) — (1= A+ Azg)i(2zg)
< ApPa(20) — (1 — A+ Azg) ¥5(29).

If z, = 1, we may also use the facts that 8 — pd,(z) > 0 and U is decreasing
to obtain

(A.11)

0 < (B —pdi(20))¥1(20) — d2(20) ¥1(20)
- Ij(PlPl(zo) — 2091(20))

< (B~ pdy(20))¥2(20) — da(20) ¥2(20)
- Ij(ple(Zo) — 2o¥3(20))-

Taken together, (A.10)—(A.12) contradict the assertion that ¢, is a subsolu-
tion. If 2z, is a point where ¥{(z,) and ¢4(z,) are defined, then ¥7(z,) >
5(2,) because ¢; — ¢, has a minimum at z,. Therefore,

0 <DYy(20) — U(p¥y(20) — 2o¥1(20))
<DPy(20) — U(p¥a(20) — 20%4(20)),

and again the subsolution property for ¢, is contradicted. If ¢{(z,) or ¥5(z,)
is not defined, we still have ¢](z,+ ) > ¢¥5(z, + ), (A.13) holds with ¢/ (z,)
replaced by /(24 + ), i = 1,2, and the subsolution property for ¢, is violated.

|

(A.12)

(A.13)

B. Construction of a subsolution and a supersolution. In order to estab-
lish the dependence of the function u on the parameters A and u, we
construct a supersolution and a subsolution to (A.2) and (A.4). We shall prove
the following result.

THEOREM B.1. Assume (A.1), A(p) >0 and 0< 8, < 1. Fix n € (0,)
and let u and A be related by the equation u = mA. There exist constants
ky, >k, > 0, depending on n, p, 8, and A(p), but not depending on A, such
that for all A > 0 sufficiently small,

1 1
(B.1) ;Ap_l(p) — ko A3 < u(0,) < —AP Y p) — kA¥3.
p

For g > 0, we shall use the symbol O(A?) to denote a function of A with the
property that 0 < 2,17 < O(A?) < kyA? < o for all sufficiently small A > 0.
By contrast, o(A?) is a function satisfying lim,  A"%|o(A%)| = 0. Thus (B.1)
may be restated as u(8,) = (1/p)AP~(p) — O(A?¥®).
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REMARK B.2. Before proving Theorem B.1, we discuss its consequences for
the liquidity premium associated with transaction costs. With 7 fixed as in
the theorem, let us indicate the dependence of the function u on both «, the
mean rate of return of the stock, and on A, by writing u(z; a, A). We denote
also the dependence of A(p) and 6, on « by writing A(p; a) and 6, (a). For
A > 0, the liquidity premium is defined to be that positive number p()) for
which

u(0.(a+ p(A);a+p(r),r) =u(8,(a);a,0).
Note in this connection that u(z; @,0) = (1/p)AP~(p; ) (Remark 5.2).

A careful examination of the proof of Theorem B.1 shows that it can be
extended to imply the equality

u(8.(a+ p(A)); a+ p(A),A)
=u(0,(a+ p(A));a+ p(A),0) — O(A¥3).
From the definition of A(p; a) we have
u(0,(a+p(r));a+p(r),0) —u(0,(a);a,0)

(B.3) p 2
= ———2(a—r A) + A)].
2071y 2@ 1P +pA()]
Adding (B.2) and (B.3), we conclude that p(A) = O(A*®). In particular,
lim, , o p(A)/A = o,

(B.2)

ProoF OF THEOREM B.1. We observe first that the convex function
g:[0, AP~ X(p)/2] - [0, ) defined by g(x) 2 (1 — pX( AP~} (p) — x)V/(P~D hag
derivative g'(x) = (AP~ Y(p) — x)@~P/(>-D pounded below by g'(0) =
A?7P(p) and above by g'(A?~Y(p)/2) = 2¢-P/1-P)A2-P( p). The mean value
theorem implies that for 0 < x < A?~1(p)/2 [recall (2.9)],

. 1
U(AP~(p) —x) = —(AP"!(p) —x)g(x)
(B.4) P

1
_ ;(Ap_l(p) —x)[(1 - p)A(p) +xg'(£(x))],

where £(x) takes values in [0, AP~ 1(p)/2] and

(B.5) A P(p) <g'(&(x)) < 2@ PY/1-PAZ-P(p).
Step 1. Choice of the constants and the variables. We define
o dn 1) pAP~1( p) , (1Vn)pAP~!
4 ’ 6, AN(1—-06,)"

For the supersolution construction, we choose positive constants y, and vy, to
satisfy

y, > 2C-P/A-p) A(P) =
(B.6) a?0,*(1 = 0.)
1/3

¥y < [26722YC-Dp(1 — p)a?m?AP 2 (p)y,| .
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For the subsolution construction, we instead choose

8p(1 —p)a*M?A?"(p)y,
16A(p) — 110°

1/3
(B7) 0<y, <16A(p)/o?, 72>

We simplify notation by defining the variable & £ y,A%/2/y,.
For fixed A, consider the quadratic functions of §:

fi(8) £ (2 —p)ysA8% — 2y,(1 — A + A0,)8 + p(AP"(p) — £)A3,
f2(8) 2 (2 = p)y2mrd® = 275(1 — 1A6,) 8 + np( AP~ (p) — ) A/2.
We have for sufficiently small A > 0,

p(AP~1(p) — &)Al/?
27,(1 — A + A0,)

p(Ap—l(p) _ 6‘))\1/3

< 0.
ya(1— A+ A8,)

>0’ fl

f1

There is a number §, between these two arguments satisfying f1(8,) = 0. In
particular, 8, depends on A and satisfies

m M
(B.8) —AY3 <8 < —AV3,

Y2 Y2
provided that A is small enough to ensure that & < A?~(p)/2. Similarly, if A
is small enough that A < 1 and & < A?~(p)/2, then there is a number §,,
depending on A, which satisfies f,(8,) = 0 and

(B.9) T s < 8, < £A1/3.
Y2 Y2
We choose A small enough to ensure that z; £ 6, — 8, and z, 2 9, + 4,
both lie in (0, 1).
Step 2. Definition of the super/subsolutions. We define the continuous
function w: .7 [0, ©) by

1—A+az\’

1_/\+/\Zl

2

1
;(Ap‘l(p) —&- 718612)(

1-2A

<z <2z,

1 i ,
(B.10) w(z) = ;(Ap (p) —e—vie(z—06,) ),

1—uz
1_MZ2

1
;(A”‘l(p) - £ 718522)(
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where A is chosen small enough to ensure that &+ y,£62 < AP (p)/2,
i = 1,2. We have the derivative formula

Ap 1-2A
T aara?(® Ty sE=E
2v,&
(B.11) wi(z) =" p (z—04), 2, £z <2z,,
—up 1
w(z), Z, <z < —.
1-pz 7

The equations f1(8;) = 0 and f,(8,) = 0 guarantee that w’ is defined and
continuous at z; and z,. Finally,

Ap(1 - 1-2
____p(_p—)zw(z)’ — <Z<Zl,
(1—2Ar+A2)
2y,8
(B12) w"(z) =1 — > 2z, <z <2zy,
2p(1-p 1
—Lz)w(z), 2o <z < —.
(1 - pz) M

The function w is C? on .7 except at z; and z,, and at these two points, the
one-sided second derivatives exist and are the appropriate one-sided limits of
the second derivative.

Step 3. Comparison. Note that

1 1 y
w(e*)=';(Ap‘%10-—8)=j;AP‘%10-—ngW?

Theorem B.1 will follow from Comparison Theorem A.1 once we show that w
is a supersolution to (A.2) and (A.4) under condition (B.6) and w is a
subsolution under condition (B.7). Now w was constructed to satisfy (A.4), so
it remains only to examine the inequality versions of (A.2) in the three
intervals (—=(1 — M /A, z9), (24, 25) and (25, 1/ ).

Step 3D [-(1 — M/A <z <z]. Wehave Apw(z) — (1 — A + A2)w'(2) =0,
which gives us the subsolution inequality

min{@w(z) - ﬁ(pw(z) —zw'(2)),

(B.13) ppw(z) + (1 - pz)w'(z),
Apw(z) — (1 — A+ Az)w'(2)} <0,
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in the interval (—(1 — A)/A, z,). To verify the supersolution inequality

min{Pw(z) — U(pw(z) — zw'(2)), ppw(z)

(B.14)
+(1 — p2)w'(2), Apw(z) — (1 — A+ Az)w'(2)} = 0,
we note that both w and w’ are positive in (—(1 — A)/A, z,), so upw(z) + (1
— uz)w'(z) = 0.
It remains only to show that under (B.6),

~ 1
(B.15) 2w(z) —U(pw(z) —zw'(z)) 20, — <z <z

In this interval,

pw(z) —zw'(z) = (Apfl(p) —&—- ’)’18612)

1-2A 1-A+ Az
X
1-A+Arz )1 —A+ Az

p—-1

b

and (B.14) and (B.15) imply

U(pw(z) — zw'(z))
1-A VPP V1 _r+2z
1A+ Az 1-A+ Az,

p
U(AP Y (p) — &~ 1128})

1 _ A p(p*l)
s(———l_HAZl) w(z)[(1 - p)A(p)
+2(2—p)/(17p)A27p(p)(8 + ’)’18612)].

Now —dy(2)w"(z) 20, and if —(1 — A)/A <z <0, then —dy(2)w'(z) >0
also. Thus, —(1 — A)/A < z < 0 implies

Fw(z) — U(pw(z) —2w/(2))

1— A p/(p—1)
1- (m) * gp(L—p)otd

> {(1 - p)A(p)

1—A p/(p-1 Yo
S — 922-p)/(L-p)pAZ-p Z222/3(1 + v, 82
(1—)t+/\zl) (p)Yl ( 187 ) jw(z)

2

1 m Y
Ep(l —p)0'2—2 - 2(2—p)/(1p)A2—p(p)_3)A2/3 + o /\2/3)}w(z),
Y2 Y1

|
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which is nonnegative for small A > 0 because of the second part of (B.6). For
0 <z <z, we have

Fw(z) - U(pw(z) — zw'(z))

l_A p/(p—1)
1_(1—A+Azl) tgpt=p)otey

> {(1 - p)A(p)

1 Ap
——(1 - 2 —
4( p)o-o*l—)t

1-A p/(p—-1)
1—-A+ )‘21)

X2(2—p>/(1fp>A2—p(p)2)3/3(1 + y1612)}w(2),
Y1

and we conclude as before.

Step 3(ii) (z, < z < 1/p). This is completely analogous to the argument in
Step 3@).

Step 3(iii) (z; < z < z,). We claim that in this interval, upw(z) + (1 —
pz)w'(z) = 0 and Apw(z) — (1 — A + Az)w'(2) = 0 for all A > O sufficiently
small. We establish the latter inequality; the proof of the former uses the
relation u = mA and is completely analogous.

Direct computation reveals that

Apw(z) — (1 — A+ Az)w'(2)

Y1EA 5 1 1-2 5
= (2—p)z +2p0*—1—9*+x 2—20*—/\——p0*

p
+ MAPY(p) — &),

and this quadratic function in z is minimized at 2 =(—p6, + 1+ 6,
—1/A)/(2 — p), which is negative for small A > 0. Therefore,

Apw(z) — (1 — A+ Az)w'(2) = Apw(z;) — (1 — A+ Azw'(2,))
=0 Vz € (2, 2,).
It follows from these considerations that w is a supersolution if and only if
(B.16) Gw(z) — U(pw(z) — z2w'(2)) = 0, 2z, <z <z,

and w is a subsolution if and only if the reverse inequality holds.

For z, <z < z,, we have pw(z) — zw'(z) = AP p) — x, where x 2 ¢ +
vi6(z — 0,)% — Qy,e/p)2(z — 6,) = & + 0(A¥?). Tt follows from (B.4) and
(B.5) that

U( pw(z) — zw'(z))

1
- ;(Ap_l(p) —x)[(1 —p)A(p) + xg'(é(x))]

1
(1 -p)A(p)w(z) + ;A"’l(P)ag’(f(x)) +o(X*?).
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Therefore,
Fw(z) — U(pw(z) — zw'(z))
1 2 — 2
=5 (1=p)o?(z = 6,)° (AP (p) — & — v18(2 - 0,)7)

2v,¢e &
DE (1 —p)ote(l-z)(z - 6,) + 2 020(1 — 52
p p

B.17
(51D —%A”l(P)eg’(ﬂx)) +o(A¥?)

1
= 5(1-p)o%(2 - 6,)°A77(p) + 2o22(1 - 2)' N2/
p
— L APt ) g (£(x)) AP + 0(A2/5).
F 2841
We see from (A.8), (A.9) and (A.5) that
Pw(z) - U(pw(z) — zw'(z))
M2 ,y20_2

1 Y2
<|=( -p)o?AP~Yp + — ——A(p)|A*® + o(A¥/3).
3 (1= P) oA (o) o+ 2= () s 4 o7

Under condition (B.7), this expression is negative for all sufficiently small
A > 0, and thus w is a subsolution to (A.2) and (A.4).

For the final step of the proof, we assume (B.6) and establish (B.16). Note
that for z; < z < z,, we have

zZ(1-z)=[z-06, + 0*][(1 —04) — (2 - 0*)] =0,(1-0,) +0(1).
Therefore, (B.17) and (B.5) imply

Pw(z) — U(pw(z) — z2w'(z))

1
> 21 522(1 - 6,)7 - —2e-2/a-ma(p) a2 4 o123,
p Y1

which is positive for sufficiently small A > 0. O /

REMARK B3. We have shown that the value function decreases like A%/3
near A = 0. The definition of z, and z, used in the construction of w in the
proof of Theorem B.1 suggests that the width of the no-transaction interval
6, — 0, should be O(A'/?) [see (8.13) for the definition of 8, and 6,]. This is
the order of the width of the no-transaction interval obtained in [25] for their
transaction cost problem without intermediate consumption. It is also consis-
tent with the numerical results of [7] and [14], both of which found a rapid
opening of the no-transaction interval as A increases from zero.
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