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1 Introduction
In a continuous-time framework, we consider the problem of de…ned con-
tribution pension funds contracts in the presence of a minimum guarantee.
The problem of the fund manager is to invest the initial wealth and the (sto-
chastic) contribution ‡ow into the …nancial market, in order to maximize
the expected utility function of the terminal wealth, which should exceed the
minimum guarantee. In exchange, the fund manager keeps back a percentage
of the surplus. Since we are interested in a long-term investment problem of
typically 30 or 40 years, it is crucial to allow for a stochastic term structure
for the interest rates. We investigate the case in which interest rates follow
the a¢ne dynamics of Du¢e & Kan (1996), which includes as special cases
the CIR (Cox, Ingersoll and Ross 1985) model and the Vasiµcek (1977) model.
Optimal consumption-investment problems are studied in the literature

since a long time (see e.g. Merton 1971 where the interest rates are constant).
Afterwards, many authors have introduced a stochastic term structure for the
interest rates.
On one hand, some papers like Karatzas, Lehoczky and Shreve (1987),

Karatzas (1989) or El Karoui and Jeanblanc-Picqué (1998) do not specify the
stochastic process which leads to very general results. However, the general
feature of the interest rates does not permit to test the results of those papers
by comparing them with reality, since their solutions are not explicit.
On the other hand, papers by Bajeux-Besnainou, Jordan and Portait

(1998, 1999) or Lioui and Poncet (2000) choose a Vasiµcek speci…cation of the
term structure. This choice permits to obtain a closed-form solution, and to
analyse its behaviour.
In Deelstra, Grasselli and Koehl (2000), we investigated the case where

interest rates follow the Cox-Ingersoll-Ross dynamics. Assuming complete-
ness of the markets and power utility function, we obtained by the use of
the Cox-Huang methodology closed-form solutions for a utility maximization
problem of terminal wealth, without considering contributions or a positive
guarantee.
In this paper, we stress the pension fund problem and we therefore include

a contribution ‡ow and a minimum guarantee. Moreover, we concentrate on
the a¢ne term structure model in order to include both the CIR model and
the Vasicek model. To the opposite of the Vasiµcek one, the CIR speci…cation
does not permit negative interest rates. This is the main reason why Rogers
(1995) recommends to choose the CIR rather than the Vasiµcek speci…cation.
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However, the literature on pension funds or long-term investment problems
only considers the Vasiµcek model.
Boulier, Huang and Taillard (2001) study the optimal management of a

de…ned contribution plan where the guarantee depends on the level of interest
rates at the …xed retirement date. Jensen and Sørensen (1999) measure the
e¤ect of a minimum interest rate guarantee constraint through the wealth
equivalent in case of no constraints and show numerically that guarantees
may induce a signi…cant utility loss for relatively risk tolerant investors. Both
the papers by Boulier, Huang and Taillard (2001) and Jensen and Sørensen
(2000) choose a Vasiµcek speci…cation of the term structure in the spirit of
Bajeux-Besnainou, Jordan and Portait (1998, 1999).
The paper is organized as follows: in Section 2, we de…ne the market

structure and introduce the optimization problem under consideration. We
show also how this problem is related to the pension fund management. In
Section 3, we transform the initial problem into an equivalent one, which
we solve explicitely in the power utility case. In Section 4, we come back
to the solution of the initial problem and we …nd it explicitely by specifying
the form of the contribution process in some interesting cases. Section 5
concludes the paper.

2 The model
In this section, we present:
(i) the …nancial market, that is the assets available and their equilibrium

dynamics, given exogenously,
(ii) the optimization program, that is the characteristics of the agent and

his optimization criteria.
We interpret also this modelization in terms of our pension fund problem.

2.1 The …nancial market

Randomness is described by a 2-dimensional Brownian motion

z(t) =
©
(z(t); zr(t))

0 ; t 2 [0;+1[ª
de…ned on a complete probability space (;F ; P ), where P is the real world
probability. The …ltration F = (Ft)t¸0, represents the information struc-
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ture generated by the Brownian motion and is assumed to satisfy the usual
conditions.
Hereafter Et stands for E(: j Ft), the conditional expected value under

the real world probability.
The market is composed of three …nancial assets, that the agent can

buy or sell continuously without incurring any restriction as short sales con-
straints or any trading cost.
The …rst asset is the riskles asset (i.e. the cash). Its price, denoted by

S0(t); t ¸ 0, evolves according to:
dS0(t)

S0(t)
= rtdt; S0(0) = 1;

where the dynamics of the short rate process rt are described by the following
stochastic di¤erential equation:

drt = (a¡ brt)dt¡
p
´1rt + ´2dzr(t); t ¸ 0; (1)

r0; a; b; ´1 and ´2 being positive constants.
These dynamics have been studied by Du¢e and Kan (1996). Their paper

shows that, under these dynamics, the term structure of the interest rates is
a¢ne. Moreover, the converse is true under a regularity hypothesis.
Note that these dynamics recover, as special cases, the Vasiµcek (1977)

(resp. Cox-Ingersoll-Ross 1985) dynamics, when ´1 (resp. ´2) is equal to
zero.
The second asset is the stock, whose price is denoted by S(t); t ¸ 0: The

dynamics of S(t) are given by:

dS(t)

S(t)
= rtdt+¾1 (dz(t) + ¸1dt)+¾2

p
´1rt + ´2

¡
dzr(t) + ¸2

p
´1rt + ´2dt

¢
;

(2)
with S(0) = 1 and ¸1; ¸2 (resp. ¾1; ¾2) being constant (resp. positive con-
stants).
Notice that Merton (1971) considered in a constant interest rate frame-

work only the …rst volatility term in the risky asset. As the stock prices also
will be in‡uenced by the stochastic interest rates, we introduce the term with
the Brownian motion of the short-term interest rates with the corresponding
a¢ne market price of risk (see Deelstra et al. 2000 in a Cox-Ingersoll-Ross
framework). This is equivalent to assuming that the market price of risk
vector equals ¸ = (¸1; ¸2

p
´1rt + ´2)

0.
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The third asset is a zero-coupon bond with maturity T , whose price at
time t is denoted by B(t; T ); t ¸ 0.
The following proposition …xes the dynamics of the zero-coupon bond

price.

Proposition 1 Let us denote B(t; T ) the price at date t of the zero coupon
bond maturing at date T . Then:

dB(t; T )

B(t; T )
= rtdt+ ¾B(T ¡ t; rt)

¡
dzr(t) + ¸2

p
´1rt + ´2dt

¢
; B(T; T ) = 1

(3)
where

¾B(T ¡ t; rt) = h(T ¡ t)
p
´1rt + ´2

with

h(t) =
2(e±t ¡ 1)

± ¡ (b¡ ´1¸2) + e±t(± + b¡ ´1¸2)
; t ¸ 0; (4)

± =
p
(b¡ ´1¸2)2 + 2´1:

The proof of this proposition is based upon the following Lemma, which
will be crucial in the sequel:

Lemma 2 If the interest rates follow (1), then there exist two deterministic
functions K´1

1 (®; ¯; T ¡ t), K´1
2 (®; ¯; T ¡ t) such that for ® 2 R;¯ > 0

Et
h
e¡®rT¡¯

R T
t rsds

i
= K

´1
1 (®; ¯; T ¡ t)e¡rtK

´1
2 (®;¯;T¡t): (5)

Proof See Appendix.

Proof of the proposition
It is well-known that the dynamics of the bond follow a SDE of the

form (3), where (dzr(t) + ¸2
p
´1rt + ´2dt) forms a Brownian motion under

the risk-neutral measure and where we have to specify the volatility term.
Stressing the Brownian motion under the risk-neutral measure, we see that
the dynamics of the short term interest rates are given by

drt = (a+ ¸2´2 ¡ (b¡ ¸2´1)rt) dt¡
p
´1rt + ´2

¡
dzr(t) + ¸2

p
´1rt + ´2dt

¢
:
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Noticing that the bond price is given by

B(t; T ) = EQt
h
e¡

R T
t rsds

i
= K

´1
1 (0; 1; T ¡ t)e¡rtK

´1
2 (0;1;T¡t);

we …nd that

dB(t; T )

B(t; T )
= rtdt+K

´1
2 (0; 1; T ¡ t)

p
´1rt + ´2

¡
dzr(t) + ¸2

p
´1rt + ´2dt

¢
;

whereK´1
2 (0; 1; t) =

2(e±t¡1)
±¡(b¡´1¸2)+e±t(±+b¡´1¸2) = h(t) with ± =

p
(b¡ ´1¸2)2 + 2´1:

At last, we assume that the parameters are such that the …nancial market
is arbitrage-free and complete. Then, for any t ¸ 0, we can de…ne the de‡ator
price process

H(t) = exp

½
¡
Z t

0

rsds¡
Z t

0

¸0(s)dz(s)¡ 1

2

Z t

0

j ¸(s) j2 ds
¾
; (6)

with ¸0(s) = (¸1; ¸2
p
´1rs + ´2).

2.2 The optimization program

We consider a …nancial agent who is the manager of (and is confounded with)
a pension fund.
On one hand, the pension fund is endowed with a strictly positive initial

wealth W0; and receives a non-negative, progressive measurable and square-
integrable process, at a rate denoted by c(t); t ¸ 0, which represents the
contributions elarged at any time by participants to the pension fund.
On the other hand, the pension fund must in any case (and thus ignoring

death) provide at date T , at least the minimum guarantee GT , a strictly
positive square-integrable FT¡measurable random variable; it can be the
value at time T of a benchmark portfolio or an annuity.
We denote by W (t) the wealth of the fund at date t 2 [0; T ].
From now on, we assume that

E [H(T )GT ] < W0 + E
·Z T

0

H(t)ctdt

¸
; (7)

which means that the manager can always choose a strategy such that, at
date T , the surplus W (T )¡GT is (strictly) positive.
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We assume moreover that the manager is controlled by a regulator and
will e¤ectively choose a strategy such that W (T ) ¡ GT ¸ 0 almost surely.
The surplus is then shared according to the following rule:
- the manager takes ¯ (W (T )¡GT ), where ¯ (:) is a strictly increasing

concave function such that ¯ (0) = 0,
- the contributors receive W (T )¡GT ¡ ¯ (W (T )¡GT ).

The manager’s preferences are described by a CRRA utility function de-
…ned by:

º(y) =
y°

°
; ° 2 (¡1; 1)nf0g; (8)

The program of the manager is then to maximize the expected utility of
his terminal wealth under feasibility constraints, namely:

max
(ut)t2[0;T ]2A

EU (W (T )¡GT ) (9)

where:
- U := º ± ¯ is strictly increasing, strictly concave and satis…es the Inada

conditions U 0(+1) = 0 and U 0(0) = +1,
- the wealth process fW (t)gt¸0 is de…ned by the following dynamics (re-

member that (ct)t¸0 is the contribution process):

dW (t) = W (t)u0tdiag [S(t)]
¡1 dS(t) + ctdt (10)

= W (t)(1¡ uBt ¡ uSt )
dS0(t)

S0(t)
+W (t)uBt

dB(t; T )

B(t; T )
+W (t)uSt

dS(t)

S(t)
+ ctdt;

W (0) = W0 > 0;

with ut =
¡
(1¡ uBt ¡ uSt ); uBt ; uSt

¢0
and S(t) = (S0(t); B(t; T ); S(t))

0,
- A is the set of admissible controls, that is

A = ©(ut)t2[0;T ] : ut 2 Ft, W (t)ut is square integrable, and W (T )¡GT ¸ 0 a.e.ª :
(11)

From equation (7), it is easy to see that A 6= ;.
The quantity

¡
1¡ uBt ¡ uSt

¢
; (resp. uBt ; resp. u

S
t ) denotes the proportion

of wealth invested into the riskless asset, (resp. the bond, resp. the stock).
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3 Transformation of the initial problem
Since the wealth process (10) is not a self-…nancing process, the optimization
program (9) has no standard solution method. In this section, we introduce
an auxiliary process in order to obtain an equivalent program which turns
out to be easier. Indeed, we de…ne the surplus process and we prove that it
is self-…nancing.

De…nition 3 The surplus process Y (t), t ¸ 0 is de…ned by:

Y (t) = W (t) +D(t)¡G(t); (12)

where

D(t) = Et
Z T

t

H(s)

H(t)
csds; G(t) = Et

·
H(T )

H(t)
GT

¸
:

This process can be interpreted as a surplus process, in the sense that, at
date t, it is equal to:

² the value of the portfolio W (t)
² plus the discounted value of the future engagements coming from the
contributor D(t),

² minus the discounted value of the pension fund future engagement (that
is the guarantee) G(t).

Note also that the value of the process at date T is equal to the surplus
W (T )¡GT , while

Y (0) = W0 + E
Z T

0

H(s)csds¡ E [H(T )GT ] = Y0 > 0: (13)

Proposition 4 i) The surplus process is self-…nancing, that is there exists
a progressive measurable random process (yt)t2[0;T ] =

¡
(1¡ yBt ¡ ySt ); yBt ; ySt

¢
denoting the proportions of Y (t) invested into resp. (S0(t); B(t; T ); S(t)),
such that

dY (t) = Y (t)yt
0diag[S(t)]¡1dS(t) (14)

Y (0) = Y0:
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ii) Let AY = ©(yt)t2[0;T ] : yt 2 Ft; Y (t)yt is square integrable and (14) holds
almost surelyg denotes the set of admissible controls of the problem

max
(y
t
)t2[0;T ]2AY

EU (Y (T )) (15)

Then the problem (9) is equivalent to (15).

Proof. i) For a given process Kt let denote eKt := HtKt. Then:

deYt = dfWt + d eDt ¡ d eGt
From (2), (6), and (10), easy computations lead to:

d
³fWt

´
= fWt

¡bu0t¾(t; rt)¡ ¸0(t)¢ dzt + ectdt
where bu0t = ¡uBt ; uSt ¢ and ¾(t; rt) = µ 0 ¾B(T ¡ t; rt)

¾1 ¾2
p
´1rt + ´2

¶
.

Using the martingale representation theorem for the Brownian motion,
(Karatzas and Shreve 1990), it turns out that there exists a unique square
integrable process (³t)t2[0;T ] with ³t = (³t; ³

r
t )
0, satisfyingZ T

0

j ³
t
j2 dt < +1 P ¡ a:e: (16)

such that
d
³ eDt´ = ¡ectdt+ ³t0dzt (17)

Analogously, there exists a unique square integrable process (½t)t2[0;T ]
with ½

t
= (½t; ½

r
t )
0, satisfyingZ T

0

j ½
t
j2 dt < +1 P ¡ a:e: (18)

such that
d
³ eGt´ := d³Et h eGTi´ = ½t0dz(t)

Finally, we get:

deY (t) = ³fW (t) ¡bu0t¾(t; rt)¡ ¸0(t)¢+ ³ t0 ¡ ½t0´ dz(t)
9



and therefore the process Y (t) is self-…nancing. Indeed, in order to prove
(14), it su¢ces to de…ne by0

t
=
¡
yBt ; y

S
t

¢
as follows:

Y (t)by
t
=W (t)but + (Dt ¡Gt) [¾(t; rt)0]¡1 ¸(t) +H¡1(t) [¾(t; rt)0]

¡1
³
³t ¡ ½t

´
(19)

which ends the proof of i).
ii) Since all terms in the right hand of (19) are square integrable, it follows

that the strategy (yt)t2[0;T ] (resp. (ut)t2[0;T ]) de…ned in (19) is admissible for
(15) (resp. for 9). This in turns implies that the optimal values of (9) and
(15) are equal.

If we explicit the expression (14), we obtain

dY (t)

Y (t)
= rtdt+ y

B
t ¾B(T ¡ t; rt)

¡
dzr(t) + ¸2

p
´1rt + ´2dt

¢
+

ySt
£
¾1 (dz(t) + ¸1dt) + ¾2

p
´1rt + ´2

¡
dzr(t) + ¸2

p
´1rt + ´2dt

¢¤
;

Y (0) = Y0 > 0; (20)

where (yt)t2[0;T ] =
¡
(1¡ yBt ¡ ySt ); yBt ; ySt

¢
is linked by (19) with (ut)t2[0;T ].

4 Explicit solution in the power utility case
We noticed in equation (19) that the optimal strategies (ut)t2[0;T ] of the initial
optimization progam (9) are linked with the controls (yt)t2[0;T ] of program
(15). In this section; we therefore derive the explicit expressions of (yt)t2[0;T ]
of program (15) with a CRRA utility function U as de…ned in (8). In the
following section, we will fully determine the optimal strategies (ut)t2[0;T ] for
di¤erent choices of contributions and guarantees.
In order to determine the solution (yt)t2[0;T ] of program (15), we …rst need

the explicit expression of the following quantity:

Et

"µ
H(t)

H(T )

¶ °
1¡°
#
;

which will be done by using Lemma 5.

Lemma 5 Suppose that c is a real number such that c´1
³
1+ ¸22´1

2
¡ ¸2b

´
·

0, then there exist two deterministic functions k1(t; c); k2(t; c) such that

Et
·µ

H(t)

H(T )

¶c¸
= k1(T ¡ t; c) exp f¡rtk2(T ¡ t; c)g . (21)
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Proof. We adapt the reasoning of Deelstra et al. (2000). For c = 0 the
statement is obvious, so we concentrate on c 6= 0. From (6) it turns out that

Et
·µ

H(t)

H(T )

¶c¸
= Et

·
exp

½
c

Z T

t

µ
rs +

1

2

¡
¸21 + ¸

2
2 (´1rs + ´2)

¢¶
ds

+c

Z T

t

¸1dz(s) + c

Z T

t

¸2
p
´1rs + ´2dzr(s)

¾¸
= f(T ¡ t; rt; c)Et

·
exp¡®rT ¡ ¯

Z T

t

rsds

¸
; (22)

where

f(T ¡ t; rt; c) = exp c

½
(T ¡ t)

µ
c
¸21
2
+
¸21
2
+ ¸2a+

¸22´2
2

¶
+ ¸2rt

¾
;(23)

¯ = ¡c
µ
1+

¸22´1
2
¡ ¸2b

¶
> 0; (24)

® = c¸2: (25)

We now apply Lemma 2 to (22) and obtain:

Et
·µ

H(t)

H(T )

¶c¸
= f(T ¡ t; rt; c)K´1

1 (®; ¯; T ¡ t) exp¡rtK´1
2 (®; ¯; T ¡ t) :

(26)
From (26) and (23) we obtain the result, with

k1(t; c) = K
´1
1 (®; ¯; t) exp c

½µ
c
¸21
2
+
¸21
2
+ ¸2a+

¸22´2
2

¶
t

¾
; (27)

k2(t; c) = ¡¸2c+K´1
2 (®; ¯; t) : (28)

Notice that with c = ¡1 we obtain the bond price. In the sequel we will
use that indeed

k2(t;¡1) = h(t);
with h(t) as de…ned in (4).
Equipped with (21), we are now able to solve the purely investment prob-

lem (15).
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Proposition 6 Under the hypotheses of Lemma 5, the trading strategy which
solves (15) is given by

yS0t = 1¡ yBt ¡ ySt ;

yBt =
k2

³
T ¡ t; °

1¡°
´

h(T ¡ t) +
1

1¡ °
¾1¸2 ¡ ¾2¸1
¾1h(T ¡ t) ; (29)

ySt =
1

1¡ °
¸1
¾1
:

Proof. Following Deelstra et al. (2000), the optimal surplus process is given
by

Y (t) = Et
·
H(T )

H(t)
I (µH(T ))

¸
;

where I(x) = (U 0)¡1 (x) = x
1

°¡1 , while µ is determined by Y0 = E [H(T )I (µH(T ))].
By applying the previous Lemma, we obtain

Y (t) = µ
1

°¡1H(t)¡1Et
h
H(T )

°
°¡1
i

= µ
1

°¡1H(t)
1

°¡1Et

"µ
H(t)

H(T )

¶ °
1¡°
#

= (µH(t))¡
1

1¡° k1

µ
T ¡ t; °

1¡ °
¶
exp

½
¡rtk2

µ
T ¡ t; °

1¡ °
¶¾

:

Now we di¤erentiate both sides and by grouping the locally deterministic
factors into [:]dt, we have

dY (t)

Y (t)
=

1

1¡ °
dH(t)¡1

H(t)¡1
¡ k2

µ
T ¡ t; °

1¡ °
¶
drt + [:]dt

=
1

1¡ °
dH(t)¡1

H(t)¡1
+ k2

µ
T ¡ t; °

1¡ °
¶p

´1rt + ´2dzr(t) + [:]dt

=
1

1¡ °
dH(t)¡1

H(t)¡1
+ k2

µ
T ¡ t; °

1¡ °
¶
¾B(T ¡ t; rt)
h(T ¡ t) dzr(t) + [:]dt

=
1

1¡ °
dH(t)¡1

H(t)¡1
+
k2

³
T ¡ t; °

1¡°
´

h(T ¡ t)
dB(t; T )

B(t; T )
+ [:]dt; (30)

which says that there exists a (dynamic) combination of the processesH(t)¡1,

B(t; T ) and S0(t) with weights resp. 1
1¡° ,

k2(T¡t; °
1¡° )

h(T¡t) and 1¡ 1
1¡°¡

k2(T¡t; °
1¡° )

h(T¡t) ;
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which allows to replicate Y (t) P ¡ a:e. In fact, in (30), since the di¤usion
terms are equal, then also the drifts are, for arbitrage arguments. Finally, it
is easy to see that the strategy which replicates the processH(t)¡1 is given by³³

1¡ ¸1
¾1
¡ ¾1¸2¡¾2¸1

¾1h(T¡t)
´
; ¸1
¾1
; ¾1¸2¡¾2¸1
¾1h(T¡t)

´
, and we obtain the statement (29).

5 Solution of the initial problem: examples
The solution (yt)t2[0;T ] =

¡
(1¡ yBt ¡ ySt ); yBt ; ySt

¢
of the auxiliary problem

(15), given by (29), is linked with the solution (ut)t2[0;T ] of the initial problem
(9) by (19).
The aim in this section is to come back to the solution (ut)t2[0;T ], given

by

W (t)but = Y (t)byt¡(Dt¡Gt) [¾(t; rt)0]¡1 ¸(t)¡H(t) [¾(t; rt)0]¡1 (³t¡½t); (31)
and to show a methodology for …nding explicitly the solution of the pension
fund problem (but)t2[0;T ) = ¡

uBt ; u
S
t

¢
t2[0;T ), when the contribution process ct

and the guarantee GT assume some interesting stochastic features. This will
permit the fund manager to quantify the impacts on his investment strategy
due to variations of the contribution policy and guarantee.
In order to …nd (but)t2[0;T ) = ¡uBt ; uSt ¢t2[0;T ), it su¢ces to …nd the processes³

Dt; (³t)
´
t2[0;T ]

and
³
Gt; (½t)

´
t2[0;T ]

.

Let us consider the following quite general (stochastic) contribution process:

ct = c0 exp

½Z t

0

(®1(s) + ®2rs) ds+

Z t

0

®3dz(s) +

Z t

0

®4
p
´1rt + ´2dzr(s)

¾
;

(32)
with ®1(:) being a deterministic function and ®2; ®3; ®4 being real constants.
Notice that the speci…c form of the contributions is similar to the one of the
risky asset: this is quite natural, since in this complete market model contri-
butions must be generated by the market. That is, we make the hypothesis
that the contributions at time t can depend on the entire past salary history.
Moreover, let us consider an interest rate guarantee (see e.g. Jensen and

Sørensen 2000): the pension fund assures a deterministic positive interest
rate (gt)t2[0;T ], so that the guarantee GT becomes

GT =W0 exp

½Z T

0

gtdt

¾
+

Z T

0

ct exp

½Z T

t

gsds

¾
dt: (33)
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Obviously, there must be some admissibility constraint on (gt)t2[0;T ] in
order to avoid arbitrage opportunities: for notational reasons we will show
this condition at the end of the section.
First, let us consider the problem of …nding

³
Dt; (³t)

´
t2[0;T ]

.

Proposition 7 Suppose that the contribution process is given by (32) and
that the following relation holds:

´1

µ
1+

1

2
¸22´1 ¡ ®2 + (®4 ¡ ¸2)b

¶
¸ 0: (34)

Then there exist two deterministic functions A1(t; s); A2(t; s) such that

Dt =
1

H(t)
Et
Z T

t

H(s)csds

= ct

Z T

t

A1(t; s) exp f¡A2(t; s)rtg ds: (35)

Proof. From (6), by independence of z(t) and (rt; zr(t))it results that

Dt = ct

Z T

t

Et
·
exp

½Z s

t

µ
®1(u)¡ 1

2
¸21 ¡

1

2
¸22´2 + ru

µ
®2 ¡ 1¡ ¸

2
2´1
2

¶¶
du+

+

Z s

t

(®3 ¡ ¸1)dz(u) +
Z s

t

(®4 ¡ ¸2)
p
´1ru + ´2dzr(u)

¾¸
ds

= ct exp f(®4 ¡ ¸2)rtg
:

Z T

t

½
exp

½Z s

t

µ
®1(u)¡ 1

2
¸21 ¡

1

2
¸22´2 + (®4 ¡ ¸2)a+

(®3 ¡ ¸1)2
2

¶
du

¾
:Et
·
exp

½
¡(®4 ¡ ¸2)rs ¡

µ
1+

¸22´1
2
+ b(®4 ¡ ¸2)¡ ®2

¶Z s

t

rudu

¾¸¾
ds:

We apply now (5) and we obtain the result, with

A1(t; s) = K
´1
1 (®

c; ¯c; s¡ t) (36)

exp

½Z s

t

µ
®1(u)¡ 1

2
¸21 ¡

1

2
¸22´2 + (®4 ¡ ¸2)a+

(®3 ¡ ¸1)2
2

¶
du

¾
;

A2(t; s) = K
´1
2 (®

c; ¯c; s¡ t)¡ (®4 ¡ ¸2); (37)

¯c = 1+
1

2
¸22´1 + (®4 ¡ ¸2)b¡ ®2; (38)

®c = ®4 ¡ ¸2; (39)

and » =
p
b2 + 2¯c:

14



Proposition 8 Under the hypotheses of the previous proposition, the process
(³
t
)t2[0;T ] = (³t; ³

r
t )
0 is given by

³t = H(t)Dt (®3 ¡ ¸1) ;
³rt = H(t)

p
´1rt + ´2

½
Dt(®4 ¡ ¸2) + ct

µZ T

t

A1(t; s)A2(t; s) exp f¡A2(t; s)rtg ds
¶¾

:

Proof. From (35) it turns out that ³t (resp. ³
r
t ) is the coe¢cient of dz(t)

(resp. dzr(t)) in the development of d eDt = d (H(t)Dt), so that we can group
the (locally) deterministic factors into [:]dt and focus on the others:

d eDt = [:]dt+H(t)dDt +DtdH(t)

= [:]dt+H(t)dDt ¡H(t)Dt¸0(t; rt)dz(t)
Now we have

dDt = [:]dt+Dt
dct
ct
+ct

µZ T

t

A1(t; s)A2(t; s) exp f¡A2(t; s)rtg ds
¶p

´1rt + ´2dzr(t);

so from (32), we obtain

dDt = [:]dt+Dt®3dz(t)

+

·
Dt®4 + ct

µZ T

t

A1(t; s)A2(t; s) exp f¡A2(t; s)rtg ds
¶¸p

´1rt + ´2dzr(t):

Finally,

d eDt = [:]dt+H(t)Dt(®3 ¡ ¸1)dz(t) +H(t)Dt(®4 ¡ ¸2)
p
´1rt + ´2dzr(t)

+H(t)ct

µZ T

t

A1(t; s)A2(t; s) exp f¡A2(t; s)rtg ds
¶p

´1rt + ´2dzr(t)

which proves the result.
By the same methodology, we can determine the processes

³
Gt; (½t)

´
t2[0;T ]

for the guarantee GT given by (33):

Proposition 9 Suppose that the guarantee GT is de…ned by (33) and (34)
holds. Then there exist two deterministic functions eA1(t; s; T ) and eA2(t; s)
such that

Gt =

·
W0 exp

½Z T

0

gtdt

¾
+

Z t

0

cs exp

½Z T

s

gudu

¾
ds

¸
B(t; T )

+ct

Z T

t

eA1(t; s; T ) exp½Z T

s

gudu¡ eA2(t; s)rt¾ ds; (40)
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while the process (½
t
)t2[0;T ] is given by

½t = H(t)ct®3

Z T

t

eA1(t; s; T ) exp½Z T

s

gudu¡ eA2(t; s)rt¾ ds¡H(t)Gt¸1;
½rt =

p
´1rt + ´2H(t)

½
B(t; T )

·
W0 exp

½Z T

0

gtdt

¾
+

Z t

0

cs exp

½Z T

s

gudu

¾
ds

¸
h(T ¡ t)

+ct®4

µZ T

t

eA1(t; s; T ) exp½Z T

s

gudu¡ eA2(t; s)rt¾ ds¶
+ct

µZ T

t

eA2(t; s) eA1(t; s; T ) exp½Z T

s

gudu¡ eA2(t; s)rt¾ ds¶¡ ¸2Gt¾ :
Proof. We have

Gt = Et
·
H(T )

H(t)
GT

¸
=

·
W0 exp

½Z T

0

gtdt

¾
+

Z t

0

cs exp

½Z T

s

gudu

¾
ds

¸
B(t; T )

+

Z T

t

exp

½Z T

s

gudu

¾
Et
·
H(T )

H(t)
cs

¸
ds:

Now,

Et
·
H(T )

H(t)
cs

¸
= Et

·
H(s)

H(t)
csB(s; T )

¸
= ctEtK

´1
1 (0; 1; T ¡ s) exp

½
¡
Z s

t

µ
ru +

1

2
j¸(u)j2

¶
du¡

Z s

t

¸0(u)dz(u)

+

Z s

t

(®1(u) + ®2(´1ru + ´2)) du+

Z s

t

®3dz(u) +

Z s

t

®4
p
´1ru + ´2dzr(u)

¡rsh(T ¡ s)g

= ctK
´1
1 (0; 1; T ¡ s) exp

(Z s

t

Ã
®1(u)¡ 1

2
¸21 ¡

1

2
¸22´2 +

(®3 ¡ ¸1)2
2

!
du

)
: exp fa (®4 ¡ ¸2) (s¡ t) + (®4 ¡ ¸2)rtg
:Et exp

½
¡e®crs ¡ ¯c Z s

t

rudu

¾
;

with e®c = ®c + h(T ¡ s)
= ®4 ¡ ¸2 + h(T ¡ s);
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where ¯c is given by (38). We apply (5) and we obtain the result, witheA1(t; s; T ) and eA2(t; s) de…ned by analogy with (36) and (37) with ®c replaced
by e®c:
eA1(t; s; T ) = K

´1
1 (e®c; ¯c; s¡ t)K´1

1 (0; 1; T ¡ s)
exp

½Z s

t

µ
®1(u)¡ 1

2
¸21 ¡

1

2
¸22´2 + (®4 ¡ ¸2)a+

(®3 ¡ ¸1)2
2

¶
du

¾
;

eA2(t; s) = K
´1
2 (e®c; ¯c; s¡ t)¡ (®4 ¡ ¸2):

Finally, in order to …nd the process (½
t
)t2[0;T ], it is enough to di¤erenziate

the process H(t)Gt.

Remark 1 For the particular case of deterministic contributions (i.e. with
®2 = ®3 = ®4 = 0), it turns out that:

dDt = ¡ctdt+
Z T

t

cs (dB(t; s)) ds

and that the process (³
t
)t2[0;T ] = (³ t; ³

r
t )
0 is given by

³t = ¡H(t)Dt¸1;
³rt =

Z T

t

csB(t; s)¾B(s¡ t; rt)ds¡H(t)Dt¸2
p
´1rt + ´2;

while, when the guarantee GT is a strictly positive constant, it is easy to check
that the process (½

t
)t2[0;T ] = (½t; ½

r
t )
0 is given by

½t = ¡H(t)GTB(t; T )¸1;
½rt =

¡
¾B(T ¡ t; rt)¡ ¸2

p
´1rt + ´2

¢
H(t)GTB(t; T ):

As mentioned above, we end this section by showing the admissibility
condition on the interest rate gt: from (7) it follows

W0e
R T
0 gtdtB(0; T ) +

Z T

0

e
R T
t
gsdsE [ctH(t)B(t; T )] dt < W0 +D0;

then

W0e
R T
0 gtdtB(0; T ) + c0

Z T

0

eA1(0; t; T )eR Tt gsds¡ eA2(0;t)r0dt < W0 +D0;

which de…nes an upper bound for the possible values of the deterministic
process (gt)t2[0;T ].
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6 Conclusion
We considered a model for a De…ned Contribution Pension Fund: we studied
the problem of a fund manager to invest some given initial wealth and a
contribution ‡ow into the …nancial market in such a way that the expected
utility of the terminal wealth is maximized and a minimum guarantee is
satis…ed at the …nal date. We investigated the case of a¢ne interest rates
and we supposed the markets to be complete. By introducing an auxiliary
process, called surplus process, we reduced to a purely investment-problem.
This problem has been explicitly solved under the assumption that the utility
function of the fund manager belongs to the CRRA family. Finally we came
back to the solution of the initial problem by specifying the contribution
process and the guarantee.
There are several directions for future research.
First, it would be interesting to extend our approach to the case of in-

complete markets, since the contribution process is not necessarly generated
by the market.
We further notice that the constraint on the surplus does not imply that

the wealth at date t, Wt, is positive almost surely. In fact, closed-form
solution can be negative with a strictly positive probability. It would be
interesting to study also the constrained case (W (t) ¸ 0; 8t ¸ 0). In
a consumption-investment framework such problem has been solved by El
Karoui and Jeanblanc-Picqué (1998). In a pension fund context, however,
the fund manager could be more interested in constraints on the surplus
process or he could be interested in ways to diversify the risk that the global
wealth becomes negative over the fund population. It would therefore be
interesting to …nd some actuarial hypotheses on the fund population under
which this implication is valid for the global fund wealth.
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7 Appendix
In this appendix, we give the proof of Lemma 2. For the reader’s convenience,
we recall Lemma 2:

Lemma 2 If the interest rates follow

drt = (a¡ brt)dt¡
p
´1rt + ´2dzr(t);

with ´1 ¸ 0; ´2 ¸ 0, then there exist two deterministic functions

K
´1
1 (®; ¯; T ¡ t) and K´1

2 (®; ¯; T ¡ t)
such that for ® 2 R;¯ > 0

Et
h
e¡®rT¡¯

R T
t rsds

i
= K

´1
1 (®; ¯; T ¡ t)e¡rtK

´1
2 (®;¯;T¡t):
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Proof. Let us consider …rst the case ´1 = 0, i.e. the Vasiµcek dynamics

drt = (a¡ brt)dt¡p´2dzr(t):

Since I(®; ¯; T ¡ t) := ¡®rT ¡ ¯
R T
t
rsds is Gaussian, it follows that

Et
h
e¡®rT¡¯

R T
t
rsds
i
= eEt[I(®;¯;T¡t)]+

1
2
Vt[I(®;¯;T¡t)]:

For s ¸ t,

rs = e
¡b(s¡t)rt + a

Z s

t

e¡b(s¡u)du¡p´2
Z s

t

e¡b(s¡u)dzr(u);

then

Et [rT ] = rte
¡b(T¡t) +

a

b

¡
1¡ e¡b(T¡t)¢ ;

Vt [rT ] =
´2
2b

¡
1¡ e¡2b(T¡t)¢ ;

while fromZ T

t

rsds = rt

Z T

t

e¡b(s¡t)ds+ a
Z T

t

Z s

t

e¡b(s¡u)duds¡p´2
Z T

t

Z s

t

e¡b(s¡u)dzr(u)ds

=
1¡ e¡b(T¡t)

b
rt +

a

b
(T ¡ t)¡ a

b2
¡
1¡ e¡b(T¡t)¢¡p´2 Z T

t

1¡ e¡b(T¡u)
b

dzr(u);

we obtain

Et
·Z T

t

rsds

¸
=

1¡ e¡b(T¡t)
b

rt +
a

b
(T ¡ t)¡ a

b2
¡
1¡ e¡b(T¡t)¢ ;

Vt
·Z T

t

rsds

¸
= ´2

Z T

t

µ
1¡ e¡b(T¡u)

b

¶2
du;

Covt

µ
rT ;

Z T

t

rsds

¶
= ´2

Z T

t

e¡b(T¡u)
µ
1¡ e¡b(T¡u)

b

¶
du:

Finally

Et
h
e¡®rT¡¯

R T
t
rsds
i
= e¡®Et[rT ]¡¯Et[

R T
t rsds]+®2

2
Vt[rT ]+¯2

2
Vt[

R T
t rsds]+®¯Covt(rT ;

R T
t rsds)

= K0
1(®; ¯; T ¡ t)e¡rtK

0
2 (®;¯;T¡t);
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with

K0
1(®; ¯; T ¡ t) = exp

½
a

b

µ
¯

b
¡ ®

¶¡
1¡ e¡b(T¡t)¢¡ ¯a

b
(T ¡ t)

+
®2´2
4b

¡
1¡ e¡2b(T¡t)¢+ ¯2´2

2

Z T

t

µ
1¡ e¡b(T¡u)

b

¶2
du

+®¯´2

Z T

t

e¡b(T¡u)
µ
1¡ e¡b(T¡u)

b

¶
du

¾
;

K0
2(®; ¯; T ¡ t) = ®e¡b(T¡t) +

¯

b

¡
1¡ e¡b(T¡t)¢ :

On the other hand, for ´1 > 0, let us consider the process

Rt = ´1rt + ´2;

with
dRt = (a´1 + b´2 ¡ bRt)dt¡ ´1

p
Rtdzr(t):

From Pitman and Yor (1982) (see also Lamberton and Lapeyre 1991), it
follows

Et
h
e¡®rT¡¯

R T
t rsds

i
= e

´2
´1
(®+¯(T¡t))Et

h
e
¡ ®
´1
RT¡ ¯

´1

R T
t
Rsds

i
= K

´1
1 (®; ¯; T ¡ t)e¡rtK

´1
2 (®;¯;T¡t);

with

K
´1
1 (®; ¯; T ¡ t) = exp

½
´2
´1
(®+ ¯(T ¡ t))¡ (a´1 + b´2)© ®

´1
; ¯
´1

(T ¡ t)¡ ´2ª ®
´1
; ¯
´1

(T ¡ t)
¾
;

K
´1
2 (®; ¯; T ¡ t) = ´1ª ®

´1
; ¯
´1

(T ¡ t);

where

©¸;¹(u) =
2

´21
ln

Ã
2°e

°+b
2
u

´21¸ (e
°u ¡ 1) + ° ¡ b+ e°u(° + b)

!

ª¸;¹(u) =
¸ (° + b+ e°u(° ¡ b)) + 2¹ (e°u ¡ 1)

´21¸ (e
°u ¡ 1) + ° ¡ b+ e°u(° + b) ;

° =
q
b2 + 2´21¹:
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