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Abstract
A numerical method providing the optimal laser intensity profiles for a direct-drive inertial confinement fusion scheme

has been developed. The method provides an alternative approach to phase-space optimization studies, which can prove

computationally expensive. The method applies to a generic irradiation configuration characterized by an arbitrary

number NB of laser beams provided that they irradiate the whole target surface, and thus goes beyond previous analyses

limited to symmetric configurations. The calculated laser intensity profiles optimize the illumination of a spherical target.

This paper focuses on description of the method, which uses two steps: first, the target irradiation is calculated for initial

trial laser intensities, and then in a second step the optimal laser intensities are obtained by correcting the trial intensities

using the calculated illumination. A limited number of example applications to direct drive on the Laser MegaJoule

(LMJ) are described.
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1. Introduction

In the direct-drive (DD) inertial confinement fusion (ICF)[1, 2]

context a spherical capsule containing the deuterium–

tritium (DT) nuclear fuel is irradiated by laser beams. The

final goal is to generate energy gain via a nuclear fusion

reaction: D + T → α + n + 17.6 MeV. The external

shell of the capsule absorbs a fraction of the incoming

laser energy producing a plasma; the plasma temperature

(≈keV) increase provides the outward expansion of the

low-density corona and launches a series of inward shock

waves. These shock waves compress the DT payload in a

high-density shell that implodes and reaches stagnation. In

the classical central ignition scheme, the high-density shell

confines a small amount (≈10 μg) of DT fuel – called a hot-

spot – which is heated to high temperature (≈10 keV) and

compressed to areal densities comparable with the α-particle

range (
∫
ρ dr ≈ 0.3 g cm−2), thus providing the ignition of

the thermonuclear fusion reactions. Recently, the new shock

ignition (SI) scheme[3] has been proposed. In the SI scheme
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the fuel is first compressed by the usual DD technique, then a

high-power laser pulse (≈hundreds of TW) is used to launch

a strong shock wave which provides the fuel ignition.

In all ICF schemes the capsule irradiation must be very

uniform in order to inhibit growth of dangerous hydrody-

namic instabilities that can prevent a successful fuel com-

pression. In the promising SI scheme the requirements in

terms of irradiation uniformity are less stringent in compari-

son with the classical central ignition scheme. Nevertheless,

the irradiation uniformity represents one of the major con-

straints in ICF and a great deal of effort has been dedicated

to its optimization.

In this paper we propose a numerical method to calculate

the optimal laser intensity profiles of a generic number NB
of laser beams irradiating a spherical target. Analytical

optimization of the laser intensity profiles has been already

performed for configurations based on the geometry of the

Platonic solids[4–7]. These analyses always provide axially

symmetric laser intensity profiles where all the NB laser

intensities are equal. These solutions can be applied to

laser configurations such as Gekko XII[8] (NB = 12) or

Omega[9] (60 beams) but are not suitable for laser configura-

tions like the National Ignition Facility (NIF)[10], the Laser
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MegaJoule (LMJ)[11] or the smaller Orion[12] facility where

the locations of the beams are optimized for the indirect-

drive[13] ICF scheme. Indeed, in these latter cases the

optimal laser intensity profiles must be adapted to the laser

configuration. As a consequence, the laser intensity profiles

are not necessarily equal to each other or axially symmetric.

2. Numerical method to optimize the intensity profiles

The proposed numerical method allows us to find the laser

intensity profiles that optimize the illumination uniformity

for a given laser configuration. These calculations are

performed within an illumination model in which laser

refraction is neglected, photons propagate linearly and the

results only apply to the low-power foot-pulse that charac-

terizes the first few ns of an ICF irradiation, the so-called

imprint phase. Thus, the solution guarantees the uniformity

of the first shock wavefront[14].

In the past, optimizing methods have usually been based

on analytical or numerical parametric studies looking for the

laser parameters that minimize the illumination nonunifor-

mity. In contrast, in the present case a sort of predictor–

corrector method is used: in a first step, trial laser intensity

profiles are used to evaluate the – imperfect – irradiation of

the spherical target; in a second step, the laser intensities

are recalculated using the results of the first step in order

to provide perfect illumination uniformity.

The model problem is characterized by a spherical target

of radius r0 irradiated by NB laser beams. The target centre

is located at the origin of a Cartesian coordinate system

O(x, y, z) and the laser beam directions are characterized

by the unitary vector rn defined by their polar angles θn
and ϕn (see the details of the geometry in Figure 1). Each

given elementary surface element of the target, ds = r2
0 dΩ ,

is associated with a vector direction r(θ, ϕ) of co-latitude

θ ∈ [0− π ] and longitude ϕ ∈ [0− 2π ]. The laser intensity

profile gn(x ′, y′) of the NB beams is defined in the planes

orthogonal to the beam directions rn . In these planes we

define a secondary Cartesian coordinate system O ′(x ′n, y′n)

where the orthogonal axes are given by the two versors:

x′n = (rn ∧ z)/|rn ∧ z| and y′n = (x′n ∧ rn)/|x′n ∧ rn|.
In this way the y′n-axis is located in the meridian plane

containing the nth laser beam axis (rn), while the x′-axis

is orthogonal to both y′n and rn . Therefore, there is a one-

to-one correspondence between a position r0r(θ, ϕ) over the

target surface and the corresponding coordinate x ′n = r0r ·x′n
and y′n = r0r · y′n , on the focal plane of the nth laser beam.

The elementary surface ds, located at the polar coordinates

(θ, ϕ), is irradiated by a given number (�NB) of laser beams

and receives a total laser intensity I (θ, ϕ). This intensity

is given by the contributions of all the incoming intensities

associated with the laser profiles gn(x ′, y′) multiplied by the

scalar product (r · rn) to account for projection of the surface

area. Thus, for the NB laser beams the irradiation of the

rn
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Figure 1. Spherical target and main coordinate system [O]; vector direction

r of a generic surface element and versor of the nth laser beam, rn ;

coordinate system [x ′, y′] for the nth laser intensity profile.

spherical target surface is given by

I (θ, ϕ) =
∑

n

gn(x ′, y′)(r · rn)β, (1)

where the scalar product (r · rn) is set to zero when

it assumes a negative value. The exponent β must be

larger than or equal to one and account for the specific

assumption on the laser–capsule coupling, e.g., setting β = 2

recovers the hypothesis of the laser absorption assumed by

Schmitt[6]. Hereafter we use the standard illumination model

for which β = 1. For a given laser intensity profile gn ,

direct application of the illumination model provides the

laser intensity I (θ, ϕ) used to calculate the root-mean-square

(r.m.s.) deviation σ , which is assumed as a measure of the

target irradiation nonuniformity:

σ =
{

1

4π

∫ 2π

0

∫ π

0

[I (θ, ϕ)− Ia]2 sin(θ)dθdϕ

}1/2/
Ia,

(2)

where Ia is the average intensity calculated over the whole

sphere.

Of course, the condition to obtain σ = 0 is to generate a

perfectly uniform irradiation over the whole target surface,

i.e., to realize I (θ, ϕ) = I0, where I0 is the desired intensity

over the target surface. This could be done by a simple re-

normalization of the laser intensity profiles, by

g′n(x ′, y′) = gn(x ′, y′)[I0/I (θ, ϕ)]. (3)

Now, substituting the old intensity profiles gn with the new

ones g′n in Equation (1) will provide I (θ, ϕ) = I0 and

therefore σ = 0. A necessary condition to realize the

uniform constant intensity illumination – I (θ, ϕ)= I0 – over
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the whole target surface is that each elementary surface of the

target must be irradiated by at least one laser beam. Indeed,

if some part of the target is not irradiated at all, e.g., for

NB = 1, the method fails. Thus, the optimization is obtained

in two steps: first, by means of a set of trial laser intensity

profiles gn , the target irradiation I (θ, ϕ) is calculated, and

then these trial intensities are corrected – by using Equa-

tion (3) – to provide the optimized profiles g′n . In these

calculations the target surface is subdivided into 180 × 360

elementary elements and thus the method provides a discrete

number of coordinates (x ′, y′) where the laser intensity

profiles g′n are defined. These data are used to estimate the

intensity profiles, g′n , on the focal plane where the spatial res-

olution has been set to dx ′ = dy′ = r0/200, which provides

a total of 400 × 400 values for the laser intensity profiles.

With these values the irradiation nonuniformities σ for the

cases calculated in this paper are kept below σ = 10−4. It

is worth noticing that an increase of the resolution on the

intensity profile or a reduction of the number of elementary

surfaces on the target surface increases the precision of the

calculation, providing a smaller σ .

The optimal laser intensity profiles, solution of the cou-

pled Equations (3) and (1), depend on the choice of trial

intensities gn ; therefore, the set of solutions is not unique.

The trial intensity must be well posed in order to generate

reasonably final optimized profiles. Hereafter, we use the

trial intensity given by the scalar product: gn(x ′, y′) = |r ·
rn| = [r2

0 − x ′2 − y′2]1/2/r0; a higher intensity is assigned

to the beam centre and it vanishes at the target border; the

aim of this choice is to look for a solution g′n that maximizes

the laser–capsule coupling. It is worth noticing that although

the trial beams are axially symmetric, the final solution will

not be symmetric, as we will see later. Moreover, in these

calculations we used the same trial function – the scalar

product – for all the gn ; nevertheless, the method applies

equally well even if the trial functions are different for each

laser beam.

3. Profiles for a two-ring 2D irradiation configuration

As a first example we considered a two-dimensional (2D)

axially symmetric laser configuration where the beams can

be approximated by two annular rings at the co-latitudes

θ1 and θ2 = π − θ1; this is achieved by imposing that

I (θ, ϕ) ≡ I (θ) = [∫ I (θ, ϕ)dφ]/(2π). The two optimal

intensity profiles g′1(θ1) and g′2(θ2) have been calculated for

different values of θ1. In this perfectly symmetric case,

the two solutions are equal and are just rotated by 180◦,
g′1(x ′, y′) = g2(x ′,−y′). The laser intensity profiles g′1
normalized to one and corresponding to the annular ring of

the north hemisphere are shown in Figure 2 for different

polar angles, θ1.

In these frames the grey curves show the projection of

the equator in the focal plane, while the full grey dots

localize the projection of the north pole. In these images

the laser intensity has been normalized to 1 and the colour

scale ranges from 0 to 1. For small polar angles, e.g.,

θ1 = 10◦, the laser beams are closer to the z-axis, thus the

surfaces of the polar areas are highly irradiated with a nearly

orthogonal angle of incidence; on the contrary, for larger

angles, it is the equatorial belt that will be over-irradiated

in comparison with the polar regions. To compensate

for this unbalanced irradiation the optimal laser intensity

profile provides different intensities in correspondence to the

equatorial and polar target areas. Specifically, at smaller

angles (see, e.g., θ1 = 10◦) a maximum intensity is directed

towards the equator, while at larger angles (e.g., θ1 = 80◦)
the laser intensity is higher in proximity to the polar areas.

It is worth noticing that the laser intensity profile becomes

circular (axially symmetric) when θ1 equals the Schmitt

angle θ1 = θS = 54.7◦ (Ref. [6]). This is not surprising;

indeed, as shown by Schmitt, the angle θS is the best co-

latitude if the axisymmetric beam intensity profile is given

by I0 cos(γ ) with β = 1.

4. Optimal profile for some LMJ configurations

An LMJ configuration consisting of 40 quads has been

considered in this paper. The quad of the LMJ is composed

of a bundle of four laser beams and provides a maximum

laser energy (power) of 30 kJ (10 TW) at 3ω (λ = 351 nm).

The polar coordinates of the 40 quads are shown in Figure 3.

Here, we assume that each quad can be characterized by

a single beam with a given laser intensity profile. Four

configurations have been considered: (A) a total of four

quads (two in the second ring and two in the third ring),

labelled A in Figure 3; (B) five quads in the second ring and

five in the third ring (ten quads, labelled B); (C) a total of

eight quads, two quads in each of the four rings (red quads

for the north hemisphere); (D) five quads in each ring (blue

quads for the south hemisphere) for a total of 20 quads.

The optimization method has been applied to the four laser

configurations A–D. As above, all the NB trial intensities are

given by the scalar product: gn(x ′, y′)= (r·rn). The optimal

intensity profiles g′n provided for these configurations are

shown in Figure 4. These profiles have been normalized

to one by dividing the intensities by their maximum value:

Max[g′]A = 1.52I0; Max[g′]B = 0.62I0; Max[g′]C =
0.92I0; Max[g′]D = 0.38I0. These images correspond

to the beams of the north hemisphere, while those of the

south hemisphere are obtained by a rotation of 180◦. In

these irradiation configurations the optimal laser intensity

profiles provide an r.m.s. irradiation nonuniformity σ lower

than 10−4.

The configuration A has only two beams per hemisphere,

and their optimized intensity profile shows three zones at

higher intensity: one located below the equator and the other

two closer to the pole. The intensity profile for the ten

beams of configuration B is shown in Figure 4 (bottom left

image). In this case the higher intensity is situated between
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1 = 10°θ 1 = 20°θ 1 = 30°θ

1 = 40°θ 1 = 50°θ 1 = Sθ θ

1 = 60°θ 1 = 70°θ 1 = 80°θ

r0

Figure 2. Optimal laser intensity profiles g′1(x ′, y′) (north hemisphere) for an axially symmetric beam configuration. The intensity profiles have been

normalized to one (g′1/Max[g′1]) and the scale colour ranges from 0 to 1. Full dots correspond to the north pole and the grey curve is the equator projection

on the focal planes.

θ

Figure 3. Polar coordinates of 40 quads of the LMJ facility. Quads for the configurations A and B; red quads of the north hemisphere (C) and blue quads of

the south hemisphere (D).
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(A) (C) (D)

(B) (C) (D)

Figure 4. Optimal laser intensity profiles g′n normalized to one (north hemisphere) for the LMJ configurations A–D. The power imbalance is given by the

parameter β and the laser intensity scale colour varies linearly from 0 to 1.

the beam’s centre and the equator position and the shape

of the laser intensity is not symmetric due to the rotation

of 18◦ between the hemispheres. In the configurations C

and D the numerical method provides two intensity profiles:

one for the beams of the first ring and a second for those

of the second ring. In these two cases the calculations

provide similar shapes. Moreover, the numerical results

naturally introduce a power imbalance ratio between the

maximum beam intensities: βC = IMax(49◦)/IMax(33.2◦) =
88.4% and βD = 82.7. It is worth noticing that these

optimum intensities are located off-centre. This could be re-

garded as the application of the polar direct-drive[15] (PDD)

technique where a centred laser intensity profile moves

towards the equator to compensate the over-irradiation of the

polar zones[16]. In addition, it has been shown[17, 18] that

for the configurations C and D elliptical intensity profiles

provide a more uniform irradiation than circular ones. The

current calculations confirm this trend and show that the

optimal intensity profiles are closer to an elliptical shape –

characteristic of an indirect-drive installation – rather than

circular profiles.

The NIF configuration has been also analysed, providing

four optimal laser intensity profiles. In this case the 48

quads of the NIF facility are located at four rings in each

hemisphere: four quads at θ1 = 23.5◦, four at θ2 = 30.0◦,
eight at θ3 = 44.5◦ and eight at θ4 = 50.0◦. The method of

optimization, initialized with the trial intensity gn(x ′, y′) =
(r · rn), produces intensity profiles similar to those found for

configuration D. These calculations also supply the optimal

power imbalances β1 = 69.3%, β2 = 77.2%, β3 = 94%,

while the maximum power (β4 = 1) is assigned to the laser

beams located at the larger angle θ4 = 50.0◦.

5. Conclusions

In conclusion, we developed a general method to calculate

the optimal laser intensity profiles that optimize the illumina-

tion nonuniformity of a spherical target. The method can be

used for any DD laser configuration accounting for a general

number NB of laser beams, provided that the beams irradiate

the whole target surface. In some sense this is a kind of

predictor–corrector method that consists of two steps: firstly,

initialized by a set of NB trial laser intensity profiles, the

imperfect surface irradiation is calculated; then, the beam

profiles are recalculated in order to correct the previously

estimated nonuniform illumination.

A set of four laser configurations based on the LMJ

facility has been considered. In these cases, the opti-

mal intensity profiles have been individuated using axially

symmetric trial profiles. The resulting optimal intensity

profiles are not axially symmetric and their shapes look

like to those envisaged by the PDD technique; in addition,

these calculations also predict the optimal beam-to-beam

power imbalance. These results assume perfect beam-

to-beam power imbalance, neglecting laser pointing errors

and target positioning uncertainties; deviation from these

idealized assumptions would damage the uniformity of the

target illumination.
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