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In this paper, we study the optimal retentions for an insurer with a compound fractional Poisson surplus and a layer reinsurance
treaty. Under the criterion ofmaximizing the adjustment coe�cient, the closed form expressions of the optimal results are obtained.
It is demonstrated that the optimal retention vector and the maximal adjustment coe�cient are not only closely related to the
parameter of the fractional Poisson process, but also dependent on the time and the claim intensity, which is di�erent from the case
in the classical compound Poisson process. Numerical examples are presented to show the impacts of the three parameters on the
optimal results.

1. Introduction

In various geophysical applications, it is observed that the
interarrival times between extreme events are power-law
distributed, and the exponentially distributed interarrivals
cannot be applied [1].Musson et al. [2] studied the earthquake
interarrival times for several regions in Japan and Greece
and found that a lognormal distribution provided a good t.
Salim and Pawitan [3] investigated the hourly rainfall data
in the southwest of Ireland by a generalized Bartlett–Lewis
model with Pareto storm interarrival time. Stoynov et al.
[4] proposed an approach for modeling the �ood arrivals
on Chinese rivers Yangtze and Huanghe by switch-time
distributions, which can be considered as distributions of
sums of random number exponentially distributed random
variables.

Considering the importance of quantifying the stochastic
behavior of extreme events in actuarial sciences, Beghin and
Macci [5] deal with a fractional Poisson model for insurance,
in which the interarrival times between claims are assumed
to have Mittag-Le�er distribution instead of the exponential
distribution as in the classical Poisson model. Inspired by
this work and motivated by the use of the fractional Poisson
process in modeling extreme events, such as earthquakes
and storms, Biard and Saussereau [6] initiatively described
surplus processes of insurance companies by compound

fractional Poisson processes, and some results for ruin prob-
abilities are also presented under various assumptions on the
distribution of the claim sizes. Di�erent from the case in the
classical compound Poisson process (CPP), the compound
fractional Poisson process (CFPP) becomes nonstationary [6]
and is no longer Markovian [7]. 
e long-range dependence
and the short-range dependence of the CFPP are studied in
[6, 8], the estimation of parameters is given by [9], and the
convergence of quadratic variation is investigated by [10]. To
complete the review of the existing literature on the CFPP, we
refer the reader to [11–18].

In this paper, we model the surplus process of an insur-
ance company by the abovementionedCFPP proposed by [6],
which can be expressed as

� + �� − �ℎ(�)∑
�=1

��, � ≥ 0, (1)

where � is the initial capital, � is the constant premium
rate, and ��, � = 1, 2, 3, ⋅ ⋅ ⋅ represents the size of the �th
claim and the claim sizes are assumed to be independent and
identically distributed nonnegative variables with a common
distribution function 
. 
e counting process �ℎ(�) is the
fractional Poisson process that was rst dened in [11, 19] as a
renewal process withMittag-Le�erwaiting time. Specically,
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it has independent and identically distributed interarrival
times (��) between two claims with distribution given by

Pr (� > �) = ℎ (−��ℎ) (2)

for � > 0 and 0 < ℎ ≤ 1, where
ℎ (�) = ∞∑

�=0

��Γ (1 + ℎ�) (3)

is the Mittag-Le�er function (Γ denotes the Euler gamma
function) dened for any complex number �. With �� =�1+�2+⋅ ⋅ ⋅ ��, the time of the �th jump, the process (�ℎ(�))�≥0
dened by�ℎ (�) = max {� ≥ 0 : �� ≤ �} = ∑

�≥1
1{
�≤�} (4)

is the so-called fractional Poisson process of parameter ℎ. It
includes the usual Poisson process when ℎ = 1.


is paper supposes the insurer reinsures his or her risk
by a layer reinsurance treaty. As in [20, 21], we assume
that the common distribution function 
(�) of �� is such a
continuous function that 
(0) = 0, 0 < 
(�) < 1 for 0 < � <� and 
(�) = 1 for � ≥ �, here� = inf{� : 
(�) = 1, and0 < � ≤ +∞; that the moment generating function of 
(�),��(�), exists for � ∈ (−∞, �∞) for some 0 < �∞ ≤ ∞; and
that lim�→∞��(�) = +∞. Let � be the expected value of��.
Denote the decision variables representing the layer retention
by  1 and  2. 
e ceded loss function is the layer reinsurance
in the form of! (�) = min {(� −  1)+ ,  2 −  1}= (� −  1)+ − (� −  2)+ , (5)

where {�}+ = max{�, 0}, and 0 <  1 ≤  2 ≤ �. 
us, the
insurer will retain from the ith claim�� ( 1,  2) = (�� ∧  1) + (�� −  2)+ ,� = 1, 2, ⋅ ⋅ ⋅ , �ℎ (�) . (6)


en {��( 1,  2)} are i.i.d. strictly positive random variables
and independent of the claim counting process�ℎ(�).

Assume that the reinsurance premium is charged by
the expected value principle, and denote the expected value
of ��( 1,  2) by �( 1,  2). 
en the premium income rate
becomes

� ( 1,  2 ) = �ℎ�ℎ−1Γ (1 + ℎ)� (1 + %)
− (1 + &) �ℎ�ℎ−1Γ (1 + ℎ) (�� − �� ( 1,  2))

= (% − &) �ℎ�ℎ−1Γ (1 + ℎ)�
+ (1 + &) �ℎ�ℎ−1Γ (1 + ℎ)� ( 1,  2)

= �ℎ�ℎ−1Γ (1 + ℎ) ((% − &) � + (1 + &) � ( 1,  2))

(7)

where % = (�/�)(Γ(1 + ℎ)/�ℎ�ℎ−1) − 1 denotes the security
loading of the insurer, and & is the security loading of the
reinsurer. As usual, we assume that & > %. Note that the
following inequality should be held,(% − &) � + (1 + &) � ( 1,  2) > 0. (8)

Otherwise, the insurance company faces ruin with probabil-
ity one.


us, the reserve process of the insurer with the layer
reinsurance policy can be represented by

'�1 ,�2� = � + � ( 1,  2) � − �ℎ(�)∑
�=1

�� ( 1,  2) . (9)

Now dene the ruin time by

��1 ,�2 = inf {� ≥ 0 : '�1 ,�2� < 0} , (10)

and dene the ruin probability by

4 (�) = 4�1 ,�2 (�) = Pr {��1 ,�2 < ∞ | '�1 ,�20 = �} . (11)

2. Optimal Results

In this section, we devote to get the explicit expressions for the
optimal retentions in the layer reinsurance treaty. It is di�cult
to derive the explicit expression of the ruin probability in
the CPP and even more di�cult in CFPP. We consider the
optimal retentions to maximize the adjustment coe�cient,
i.e., tomaximize the coe�cient5which satises the following
inequality

4 (�) ≤ 6−��. (12)

Lemma 1. If 5 = 5�( 1,  2) ≥ 0 satisfies the equation
�∫∞
0

6� 8��(�1 ,�2) (�) = � + (� ∙ � ( 1,  2))ℎ , (13)

which is an implicit equation with respect to �; then the
inequality (12) follows.

Proof. Assume (13) holds; we prove the inequality (12) by
mathematical induction (see [22] for the CPP case). Let4�(�)
be the probability that ruin occurs on the nth claim or before
with an initial surplus u. Clearly,0 ≤ 40 (�) ≤ 41 (�) ≤ ⋅ ⋅ ⋅ ≤ ⋅ ⋅ ⋅ 4� (�) ≤ ⋅ ⋅ ⋅ (14)

and

lim��→∞4� (�) = 4 (�) . (15)

Furthermore, from

40 (�) = {{{
1, � < 00, � ≥ 0 (16)
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we have 40 (�) ≤ 6−��. (17)

To complete the nontrivial part of the mathematical induc-
tion, we apply the total probability formulawith respect to the
arrival time and the size of the rst claim. 
en, we obtain

4� (�) = ∫∞
0

∞∑
�=1

(−1)�−1
⋅ �ℎ���ℎ�−1Γ (1 + ℎ�) ∫∞0 4�−1 (� + � ( 1,  2) � − �)  8��(�1 ,�2) (�)  �
≤ ∫∞
0

∞∑
�=1

(−1)�−1 �ℎ���ℎ�−1Γ (1 + ℎ�)6−��−�∙�(�1 ,�2)� �
⋅ ∫∞
0

6�� 8��(�1 ,�2) (�) = 6−�� ∙  [6−�∙�∙�(�1 ,�2)]
∙ ∫∞
0

6�� 8��(�1 ,�2) (�) = 6−�� ∙ �� + (5 ∙ � ( 1,  2))ℎ
∙ ∫∞
0

6�� 8��(�1 ,�2) (�) ,

(18)

where the last equation is obtained from equation (4.15) in
[23]. 
us, the inequality (12) follows immediately from (13).

Since���(�1 ,�2)(�) = ∫∞0 6� 8��(�1 ,�2)(�), (13) is equiva-
lent to (� ∙ � ( 1,  2))ℎ = � (���(�1 ,�2) (�) − 1) . (19)

Substituting (7) into (19) yields

( �ℎ�ℎ−1Γ (1 + ℎ) ((% − &) � + (1 + &) � ( 1,  2)))ℎ �ℎ− � (���(�1 ,�2) (�) − 1) = 0. (20)

Our goal is to maximize 5�( 1,  2), i.e., to nd the optimal
retention ( ∗1 ,  ∗2 ), such that5� fl 5� ( ∗1 ,  ∗2 ) = sup

�1 ,�2
5� ( 1,  2) . (21)

Note that the le�-hand side of (19) is a concave function and
the right-hand side is a convex function, with respect to r.

erefore, there are at most two solutions to (19), and the
le�-hand side of (20) is nonpositive at � = 5�, i.e., 5� is the
solution to

sup
�1 ,�2

{( �ℎ�ℎ−1Γ (1 + ℎ) ((% − &) � + (1 + &) � ( 1,  2)))ℎ �ℎ
− � (���(�1 ,�2) (�) − 1)} = 0, (22)

or, equivalently,

sup
�1 ,�2

{! ( 1,  2)} = 0, (23)

where

! ( 1,  2) = ( �ℎ�ℎ−1Γ (1 + ℎ) ((% − &) �
+ (1 + &) � ( 1,  2)))ℎ �ℎ
− ��(∫�1

0
(1 − 
 (�)) 6� �

+ ∫�
�2
(1 − 
 (�)) 6(�+�1−�2) �) .

(24)

Next we adopt the method used by [21] to determine the
optimal retention level ( ∗1 ,  ∗2 ).
Lemma 2. Denote the maximizer of !( 1,  2) with  1 and  2
being  1 and  2, respectively. �en,  1 is the solution to the
following equation with respect to  1,

ℎ (1 + &)( ℎ�ℎ−1Γ (1 + ℎ))ℎ (��((% − &) �
+ (1 + &)∫�1

0
(1 − 
 (�))  �))ℎ−1 = 6�1 , (25)

and  2 = �.

Proof. By di�erentiating !( 1,  2)with respect to  1, we have
H! ( 1,  2)H 1 = ℎ�ℎ (1 + &)( �ℎ�ℎ−1Γ (1 + ℎ))ℎ⋅ (((% − &) � + (1 + &) � ( 1,  2)))ℎ−1 (1 − 
 ( 1)
− ��((1 − 
 ( 1)) 6�1
+ �∫�
�2
(1 − 
 (�)) 6(�+�1−�2) �) ,

(26)

which means that

(ℎ (1 + &)( ℎ�ℎ−1Γ (1 + ℎ))ℎ
⋅ (�� ((% − &) � + (1 + &) � ( 1,  2)))ℎ−1 − 6�1)
⋅ (1 − 
 ( 1)) = �∫�

�2
(1 − 
 (�))

⋅ 6(�+�1−�2) �,

(27)

for any xed  2.
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en, di�erentiating !( 1,  2) with respect to  2 and
combining with (27), we obtain

H! ( 1,  2)H 2 = ℎ�ℎ (1 + &)( �ℎ�ℎ−1Γ (1 + ℎ))ℎ
⋅ (((% − &) � + (1 + &) � ( 1,  2)))ℎ−1 (
 ( 2) − 1)
− ��(6�1 (
 ( 2) − 1)
− �∫�
�2
(1 − 
 (�)) 6(�+�1−�2) �) = ��(ℎ (1 + &)

⋅ ( ℎ�ℎ−1Γ (1 + ℎ))ℎ
⋅ (�� ((% − &) � + (1 + &) � ( 1,  2)))ℎ−1 − 6�1)
⋅ (
 ( 2) − 1) + �2�∫�

�2
(1 − 
 (�))

⋅ 6(�+�1−�2) � = ��
⋅ � ∫��2 (1 − 
 (�)) 6(�+�1−�2) �1 − 
 ( 1) (
 ( 2) − 1)
+ �2�∫�

�2
(1 − 
 (�)) 6(�+�1−�2) �

= �2�(
 ( 2) − 11 − 
 ( 1) + 1)∫�
�2
(1 − 
 (�))

⋅ 6(�+�1−�2) �.

(28)

Note that


 ( 2) − 11 − 
 ( 1) + 1 ≥ 0 (29)

holds for any  2 ≥  1, and we have

�2�(
 ( 2) − 11 − 
 ( 1) + 1)∫�
�2
(1 − 
 (O)) 6(�+�1−�2) O

≥ 0, (30)

and thus

 2 = �. (31)

By replacing  2 = � back into (27), we can derive

ℎ (1 + &)( ℎ�ℎ−1Γ (1 + ℎ))ℎ(��((% − &) �
+ (1 + &)∫�1

0
(1 − 
 (�))  �))ℎ−1 − 6�1 = 0, (32)

which completes the proof of Lemma 2.

Since

� ( 1,  2) = ∫�1
0
(1 − 
 (�)) d� + ∫�

�2
(1 − 
 (�)) d� (33)

and  2 = �, by (8), we have

� ( 1,�) = ∫�1
0
(1 − 
 (�))  � > (& − %)1 + & � > 0. (34)

Denote  1 = inf{ 1| 1 satises (34)}.
According to Lemma 2, we know that to solve the opti-

mization problem (23) is equivalent to solving the equation:

( �ℎ�ℎ−1Γ (1 + ℎ) ((% − &) �
+ (1 + &)∫�1

0
(1 − 
 (�))  �))ℎ �ℎ − ��∫�1

0
(1

− 
 (�)) 6� � = 0,
(35)

or, alternatively,

Q( 1) fl ( �ℎ�ℎ−1Γ (1 + ℎ) ((% − &) �
+ (1 + &)∫�1

0
(1 − 
 (�)  �)))ℎ − �

⋅ ∫�10 (1 − 
 (�)) 6� ��ℎ−1 = 0,
(36)

where � = �( 1) is a univariate function of  1 determined by
(32). In fact, we have Lemmas 3–5.

Lemma 3. Equation (32) has a unique positive root � = 5� for
any given  1 ∈ ( 1,�).
Proof. For any given  1 ∈ ( 1,�), dene the le�-hand side
of (32) byR(�), i.e.,

R(�) = ℎ (1 + &)( ℎ�ℎ−1Γ (1 + ℎ))ℎ(��((% − &) �
+ (1 + &)∫�1

0
(1 − 
 (�))  �))ℎ−1 − 6�1 . (37)
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It is not di�cult to see that

lim
↓0

R(�) = +∞
and lim
↑∞

R(�) = −∞. (38)

Moreover, note that 0 < ℎ ≤ 1; we know that R(�) is a
strictly decreasing function in �. 
us, it completes the proof
of Lemma 3.

Lemma 4. �e function � = �( 1) is strictly decreasing in  1
and H�/H 1 < 0.
Proof. Rewrite (32) as

ℎ (1 + &)( ℎ�ℎ−1Γ (1 + ℎ))ℎ(�((% − &) �
+ (1 + &)∫�1

0
(1 − 
 (�)  �)))ℎ−1 = 6�1�ℎ−1 .

(39)

By di�erentiating both sides of (39) with respect to  1, we
have

ℎ (ℎ − 1) (1 + &)2 �ℎ−1 ( ℎ�ℎ−1Γ (1 + ℎ))ℎ
⋅ ((% − &) � + (1 + &)∫�1

0
(1 − 
 (�)  �))ℎ−2

⋅ (1 − 
 ( 1)) − 6�1�ℎ−2 =  16�1 − 6�1 (ℎ − 1) �−1�ℎ−1
⋅ H�H 1 .

(40)


en, we nd that

H�H 1 = −(ℎ (1 − ℎ) (1 + &)2 �ℎ−1 ( ℎ�ℎ−1Γ (1 + ℎ))ℎ

⋅ ((% − &) � + (1 + &)∫�1
0
(1 − 
 (�)  �))ℎ−2

∙ (1 − 
 ( 1)) 6−�1 + 1�ℎ−2) ∙ �ℎ� 1 + (1 − ℎ) < 0.
(41)

Lemma 5. �e equation Q( 1) = 0 has a unique positive root 1� ∈ ( 1,�).
Proof. Di�erentiating Q( 1) with respect to  1, by (39), we
have

Q� ( 1)= ℎ( �ℎ�ℎ−1Γ (1 + ℎ))ℎ((% − &) � + (1 + &)∫�10 (1 − 
 (�)  �))ℎ−1 (1 + &) (1 − 
 ( 1)) − � H�H 1
∙ (∫�10 � (1 − 
 (�)) 6� � + (1 − 
 ( 1)) 6�1) �ℎ−1 − (ℎ − 1) (∫�10 (1 − 
 (�)) 6� �) �ℎ−2�2ℎ−2

= ℎ( �ℎ�ℎ−1Γ (1 + ℎ))ℎ((% − &) � + (1 + &)∫�10 (1 − 
 (�)  �))ℎ−1 (1 + &) (1 − 
 ( 1))
− �(∫�10 � (1 − 
 (�)) 6� � (H�/H 1) + (1 − 
 ( 1)) 6�1)�ℎ−1
+ �(ℎ − 1) (∫�10 (1 − 
 (�)) 6� �) �−1�ℎ−1 H�H 1

= ℎ( �ℎ�ℎ−1Γ (1 + ℎ))ℎ((% − &) � + (1 + &)∫�10 (1 − 
 (�)  �))ℎ−1 (1 + &) (1 − 
 ( 1))
− �(∫�10 � (1 − 
 (�)) 6� ��ℎ−1 − (ℎ − 1) (∫�10 (1 − 
 (�)) 6� �) �−1�ℎ−1 ) H�H 1
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− �(1 − 
 ( 1)) 6�1�ℎ−1
= � (1 − 
 ( 1)) 6�1�ℎ−1 − �(1 − 
 ( 1)) 6�1�ℎ−1
− �(∫�10 � (1 − 
 (�)) 6� ��ℎ−1 − (ℎ − 1) (∫�10 (1 − 
 (�)) 6� �) �−1�ℎ−1 ) H�H 1

= −�(∫�10 � (1 − 
 (�)) 6� ��ℎ−1 + (1 − ℎ) (∫�10 (1 − 
 (�)) 6� �) �−1�ℎ−1 ) H�H 1 .
(42)

Hence, from Lemma 4 we know that Q�( 1) > 0. Moreover,

we have lim�1↓�1
�( 1) = +∞ and lim�1↑��( 1) = 0, which

can be seen from (39). 
us, for any ℎ ∈ (0, 1), it is held
that

lim
�1↓�1

Q( 1) ≤ − lim
�1↓�1

��1−ℎ ∫�1
0
1 − 
 (�)  � = −∞, (43)

and

lim
�1↑�

Q( 1) = lim
�1↑�

[[[(
�ℎ�ℎ−1Γ (1 + ℎ) ((% − &) � + (1 + &)∫�10 (1 − 
 (�)  �)))ℎ − �∫�10 (1 − 
 (�)) 6� ��ℎ−1 ]]]

= ( �ℎ�ℎ−1Γ (1 + ℎ) ((% − &) � + (1 + &)  [�1 ∧�]))ℎ − lim
�1↑�

[��1−ℎ ∫�
0
(1 − 
 (�)) 6� �]

= ( �ℎ�ℎ−1Γ (1 + ℎ) ((% − &) � + (1 + &) �))ℎ > 0.
(44)

If ℎ = 1, it is easy to see that lim�1↓�1
Q( 1) ≤−lim�1↓�1�∫�10 1 − 
(�) � < 0 and lim�1↑�Q( 1) = �%� > 0.


erefore, the proof of Lemma 5 is completed.

Now, we can conclude the main result of this paper.

�eorem6. Let  1� be the unique positive root of the equationQ( 1) = 0. �en the optimal layer reinsurance retention level
of the compound fractional Poisson surplus (1) to maximize

the adjustment coefficient is ( 1�,�), and the maximal
adjustment coefficient 5� is the unique positive root of (32).

Since the CFPP degenerates into the classical CPP whenℎ = 1, we immediately obtain the following corollary from
�eorem 6.

Corollary 7. Let  1� be the unique positive root of the
equation

(% − &) � + (1 + &)∫�1
0
(1 − 
 (�)  �)

− ∫�1
0
(1 − 
 (�)) 6� � = 0. (45)

�en the optimal layer reinsurance retention level of the clas-
sical compound Poisson surplus to maximize the adjustment

coefficient is ( 1�,�), and the maximal adjustment coefficient
is the unique positive root of (32), i.e.,

5� = ln (1 + &) 1� . (46)

Remark. It is not di�cult to see that Corollary 7 is in fact

eorem 4.3 of [21]. By comparing the obtained
eorem 6 in
this paper forCFPPwith those in [21] forCPP,we nd that the

optimal retention level ( 1�,�) and themaximal adjustment
coe�cient 5� here not only depend on the parameter ℎ of
the fractional Poisson process, but also depend on the claim
intensity � and are both relevant to time t, which should be
more realistic. In fact, the claim intensity is a very important
parameter for estimating the ruin probability and by the
dynamic reinsurance strategy the change of the insurer’s best
risk position is re�ected with respect to time.

To illustrate the impact of replacing the exponential dis-
tributed interarrivals by the generalMittag-Le�er distributed
interarrivals, as well as the claim intensity � and the time
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Table 1: Optimal retention levels and the upper bounds with di�erent parameters.

�=1
�=2  1�5� 6−��� h=0.5

�=2  1�5� 6−��� h=0.5
�=1  1�5� 6−���

ℎ � �0.1 0.1489
0.0001 0.6 0.2508

0.0162 1.6 0.2514
0.0166

1.8234 0.8241 0.80210.2 0.1659
0.0014 0.7 0.2521

0.0210 1.7 0.2523
0.0220

1.3195 0.7728 0.76290.3 0.1878
0.0063 0.8 0.2531

0.0259 1.8 0.2532
0.0263

1.0144 0.7308 0.72730.4 0.2163
0.0174 0.9 0.2540

0.0309 1.9 0.2540
0.0310

0.8099 0.6955 0.69460.5 0.2548
0.0360 1.0 0.2548

0.0360 2.0 0.2548
0.0360

0.6650 0.6649 0.66490.6 0.3084
0.0606 1.1 0.2555

0.0411 2.1 0.2555
0.0412

0.5606 0.6383 0.63770.7 0.3861
0.0876 1.2 0.2561

0.0462 2.2 0.2562
0.0467

0.4870 0.6150 0.61280.8 0.5002
0.1088 1.3 0.2567

0.0513 2.3 0.2569
0.0525

0.4436 0.5940 0.58950.9 0.6557
0.1109 1.4 0.2572

0.0564 2.4 0.2574
0.0584

0.4399 0.5752 0.56821 0.8053
0.0807 1.5 0.2576

0.0613 2.5 0.2579
0.0644

0.5035 0.5583 0.5486

�, on the optimal results, we give some numerical examples
and compare the optimal retention levels and the maximal
adjustment coe�cient with di�erent parameters ℎ, �, and �.
3. Examples

Assume that the insurer has an initial capital � = 5, that the
claim size�� has a uniform distribution on the interval [0, 4],
and that % = 0.4, & = 0.5. We compute the values of  1�,5� and the upper bound of ruin probability with di�erent
parameter values of ℎ, �, and �. To this end, we need to solve
the following equations:

1.5ℎ( ℎ�ℎ−1Γ (1 + ℎ))ℎ
⋅ (�5�(−0.2 + 1.5( 1� −  21�8 )))ℎ−1
− 6��∙�1� = 0,

( �ℎ�ℎ−1Γ (1 + ℎ) (−0.2 + 1.5( 1� −  21�8 )))ℎ − �
⋅ −1 − 45� + 6��∙�1� (45� − 5�∙ 1� + 1)451+ℎ� = 0,

(47)

for di�erent given (ℎ, �, �) with  1� ∈ ( 1,�) =(0.1356, 4.0000) and 5� > 0.
By applying numerical method, the results for di�erent

cases are given in Table 1.
From Table 1, it is not di�cult to see that the impacts of

the parameter ℎ on the optimal retention level and the upper
bound of ruin probability are signicant, and the impacts of
the parameters � and � are also obvious. Specically, if the
risk process of the insurance company obeys the compound
fractional Poisson model and the compound Poisson model
is used, then the insurer may take more risk and the ruin
probability is overestimated or underestimated. Evenwith the
CFPP, the optimal strategy should vary timely and according
to the change of the claim intensity.

4. Conclusion

To characterize and to disperse the extreme event risk that
the insurer may face in practice, this paper models the
underwriting risk as a compound fractional Poisson process
and studies the optimal retentions with a layer reinsurance
treaty. At rst, the equation that the adjustment coe�cient
of the compound fractional Poisson process should satisfy
is given and proved. Secondly, to overcome the di�culties
caused by the newly adopted model, some lemmas are given,
and the closed form expressions of the optimal retention
levels are obtained. It is found that the optimal retention
level and the maximal adjustment coe�cient here relate to
the parameter ℎ of the fractional Poisson process, the time �,
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and the claim intensity �, which are all absent in the optimal
results for the classical compound Poisson process. Finally,
numerical examples demonstrate the impacts of the three
parameters on the optimal results, respectively. 
e obtained
results in this paper may help the insurers, especially the
ones who underwrite extreme risk, tomakemore appropriate
decisions in reinsurance contracts.
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upon request by contact with the corresponding author.
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