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Abstract

We study the structure and learnability of sums of independent integer random variables (SIIRVs).

For k ∈ Z+, a k-SIIRV of order n ∈ Z+ is the probability distribution of the sum of n mutually

independent random variables each supported on {0, 1, . . . , k − 1}. We denote by Sn,k the set of

all k-SIIRVs of order n.

How many samples are required to learn an arbitrary distribution in Sn,k? In this paper, we

tightly characterize the sample and computational complexity of this problem. More precisely, we

design a computationally efficient algorithm that uses Õ(k/ǫ2) samples, and learns an arbitrary

k-SIIRV within error ǫ, in total variation distance. Moreover, we show that the optimal sample

complexity of this learning problem is Θ((k/ǫ2)
√
log(1/ǫ)), i.e., we prove an upper bound and

a matching information-theoretic lower bound. Our algorithm proceeds by learning the Fourier

transform of the target k-SIIRV in its effective support. Its correctness relies on the approximate

sparsity of the Fourier transform of k-SIIRVs – a structural property that we establish, roughly

stating that the Fourier transform of k-SIIRVs has small magnitude outside a small set.

Along the way we prove several new structural results about k-SIIRVs. As one of our main

structural contributions, we give an efficient algorithm to construct a sparse proper ǫ-cover for

Sn,k, in total variation distance. We also obtain a novel geometric characterization of the space of

k-SIIRVs. Our characterization allows us to prove a tight lower bound on the size of ǫ-covers for

Sn,k – establishing that our cover upper bound is optimal – and is the key ingredient in our tight

sample complexity lower bound.

Our approach of exploiting the sparsity of the Fourier transform in distribution learning is

general, and has recently found additional applications. In a subsequent work Diakonikolas et al.

(2015c), we use a generalization of this idea to obtain the first computationally efficient learning

algorithm for Poisson multinomial distributions. In Diakonikolas et al. (2015b), we build on our

Fourier-based approach to obtain the fastest known proper learning algorithm for Poisson binomial

distributions (2-SIIRVs).

Keywords: density estimation, distribution learning, sums of independent random variables, Fourier

transform, metric entropy
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1. Introduction

1.1. Motivation and Background

We study sums of independent integer random variables:

Definition. For k ∈ Z+, a k-IRV is any random variable supported on {0, 1, . . . , k− 1}. A k-SIIRV

of order n is any random variable X =
∑n

i=1Xi where the Xi’s are independent k-IRVs. We will

denote by Sn,k the set of probability distributions of all k-SIIRVs of order n.

For convenience, throughout this paper, we will often blur the distinction between a random

variable and its distribution. In particular, we will use the term k-SIIRV for the random variable or

its corresponding distribution, and the distinction will be clear from the context.

Sums of independent integer random variables (SIIRVs) comprise a rich class of distributions

that arise in many settings. The special case of k = 2, Sn,2, was first considered by Poisson Poisson

(1837) as a non-trivial extension of the Binomial distribution, and is known as Poisson binomial

distribution (PBD). In application domains, SIIRVs have many uses in research areas such as survey

sampling, case-control studies, and survival analysis, see e.g., Chen and Liu (1997) for a survey of

the many practical uses of these distributions. We remark that these distributions are of fundamental

interest and have been extensively studied in probability and statistics. For example, tail bounds on

SIIRVs form an important special case of Chernoff/Hoeffding bounds Chernoff (1952); Hoeffding

(1963); Dubhashi and Panconesi (2009). Moreover, there is a long line of research on approximate

limit theorems for SIIRVs, dating back several decades (see e.g., Presman (1983); Kruopis (1986);

Barbour et al. (1992)), and Chen and Leong (2010); Chen et al. (2011) for some recent results.

Structure and Learning of k-SIIRVs. The main motivation of this work was the problem of

learning an unknown k-SIIRV given access to independent samples. Understanding this problem

is intimately related to obtaining a refined structural understanding of the space of k-SIIRVs. The

connection between structure and distribution learning is the main thrust of this paper.

Distribution learning or density estimation is the following task Devroye and Györfi (1985);

Kearns et al. (1994); Devroye and Lugosi (2001): Given independent samples from an unknown

distribution P in a family D, and an error tolerance ǫ > 0, output a hypothesis H such that with

high probability the total variation distance dTV (H,P) is at most ǫ. The sample and computational

complexity of this unsupervised learning problem depends on the structure of the underlying family

D. The main goals here are: (i) to characterize the sample complexity of the learning problem, i.e., to

obtain matching information-theoretic upper and lower bounds, and (ii) to design a computationally

efficient learning algorithm – i.e., an algorithm whose running time is polynomial in the sample

(input) size – that uses an information-theoretically optimal sample size.

While density estimation has been studied for several decades, the number of samples required

to learn is not yet well understood, even for surprisingly simple and natural classes of univariate

discrete distributions. More specifically, there is no known complexity measure of a distribution

family D that characterizes the sample complexity of learning an unknown distribution from D.
In contrast, the VC dimension of a concept class plays such a role in the PAC model of learning

Boolean functions (see, e.g, Blumer et al. (1989); Kearns and Vazirani (1994)).

We remark that the classical information-theoretic quantity of the metric entropy van der Vaart

and Wellner (1996); Devroye and Lugosi (2001); Tsybakov (2008), i.e., the logarithm of the size of
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the smallest ǫ-cover2 of the distribution class, provides an upper bound on the sample complexity

of learning. Alas, this upper bound is suboptimal in general – both quantitatively and qualitatively

– and in particular for the class of k-SIIRVs, as we show in this paper.

Obtaining a computationally efficient learning algorithm with optimal (or near-optimal) sam-

ple complexity is an important goal. In many learning settings, achieving this goal turns out to

be quite challenging. More specifically, in many scenarios, both supervised and unsupervised, the

only computationally efficient learning algorithms known use a (provably) suboptimal sample size.

Intuitively, increasing the sample size (e.g., by a polynomial factor) can make the algorithmic task

substantially easier. Characterizing the tradeoff between sample complexity and computational

complexity is of fundamental importance in learning theory. In this work, we essentially character-

ize this tradeoff for the unsupervised problem of learning SIIRVs.

1.2. Our Results

The main technical contribution of this paper is the use of Fourier analytic and geometric tools to

obtain a refined structural understanding of the space of k-SIIRVs. As a byproduct of our techniques,

we characterize the sample complexity of learning k-SIIRVs (up to constant factors), and moreover

we obtain a computationally efficient learning algorithm with near-optimal sample complexity. Our

results answer the main open questions of Daskalakis et al. (2012b, 2013).

Along the way we prove several new structural results of independent interest about k-SIIRVs,

including: the approximate sparsity of their Fourier transform; tight upper and lower bounds on ǫ-
covers (in total variation distance and Kolmogorov distance); and a novel geometric characterization

of the space of k-SIIRVs, that is crucial for our sample complexity lower bound. Below, we state

our results in detail and elaborate on their context and the connections between them.

Learning SIIRVs via the Fourier Transform. As our first result, we give a sample near-optimal

and computationally efficient learning algorithm for k-SIIRVs:

Theorem 1 (Nearly Optimal Learning of k-SIIRVs) There is a learning algorithm for k-SIIRVs

with the following performance guarantee: Let P be any k-SIIRV of order n. The algorithm uses

Õ(k/ǫ2) samples from P, runs in time3 Õ(k3/ǫ2), and with probability at least 2/3 outputs a

(succinct description of a) hypothesis H such that dTV (H,P) ≤ ǫ.

Our algorithm outputs a succinct description of the hypothesis H, via its Discrete Fourier Trans-

form (DFT) Ĥ, which is supported on a set of small cardinality. The DFT immediately gives a fast

evaluation oracle for H. We also show how to use the DFT, in a black-box manner, to obtain an

efficient approximate sampler for the target distribution P.
We remark that the sample complexity of our algorithm is optimal up to logarithmic factors.

Indeed, even learning a single k-IRV to variation distance ǫ requires Ω(k/ǫ2) samples. For the case

of k = 2, Daskalakis et al. (2012b) gave a learning algorithm that uses Õ(1/ǫ2) samples, but runs in

quasi-polynomial time, namely (1/ǫ)polylog(1/ǫ). More recently, Daskalakis et al. (2013) studied the

case of general k, and gave an algorithm that uses poly(k/ǫ) samples and time. Notably, the degree

2. Formally, a subset Dǫ ⊆ D in a metric space (D, d) is said to be an ǫ-cover of D with respect to the metric d : X 2
→

R+, if for every x ∈ D there exists some y ∈ Dǫ such that d(x,y) ≤ ǫ. In this paper, we focus on the total variation

distance between distributions.

3. We work in the standard “word RAM” model in which basic arithmetic operations on O(log n)-bit integers are

assumed to take constant time.
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of this polynomial is quite high: the sample complexity of the Daskalakis et al. (2013) algorithm is

Ω(k9/ǫ6). Theorem 1 gives a nearly-tight upper bound on the sample complexity of this learning

problem, and does so with a computationally efficient algorithm.

Given our Õ(k/ǫ2) sample upper bound, it would be tempting to conjecture that Θ(k/ǫ2) is in

fact the optimal sample complexity of learning k-SIIRVs. If true, this would imply that learning a

k-SIIRV is as easy as learning a k-IRV. Surprisingly, we show that this is not the case:

Theorem 2 (Optimal Sample Complexity) For any k ∈ Z+, ǫ ≤ 1/poly(k), there is an algo-

rithm that learns k-SIIRVs within variation distance ǫ using O((k/ǫ2)
√
log(1/ǫ)) samples. More-

over, any algorithm for this problem information-theoretically requires Ω((k/ǫ2)
√
log(1/ǫ)) sam-

ples.

Theorem 2 precisely characterizes the sample complexity of learning k-SIIRVs (up to constant

factors) by giving an upper bound and a matching information-theoretic sample lower bound. The

sharp sample complexity bound of Θ((k/ǫ2)
√
log(1/ǫ)) is surprising, and cannot be obtained using

standard information-theoretic tools (e.g., metric entropy). We elaborate on this issue in Section 1.4.

We remark that the upper bound of Theorem 2 does not specify the running time of the corre-

sponding algorithm. This is because the simplest such algorithm actually runs in time exponential

in k. For the important special case of k = 2, we obtain a sample–optimal learning algorithm that

runs in sample–linear time:

Theorem 3 (Optimal Learning of PBDs (2-SIIRVs)) For any ǫ > 0, there is an algorithm that

learns PBDs within variation distance ǫ using O((1/ǫ2)
√

log(1/ǫ)) samples and running in time

O((1/ǫ2)
√

log(1/ǫ)).

Using the Fourier Transform for Distribution Learning. Our learning upper bounds are ob-

tained via an approach which is novel in this context. Specifically, we show that the Fourier trans-

form of k-SIIRVs is approximately sparse, and exploit this property to learn the distribution via

learning its Fourier transform in its effective support. The sparsity of the Fourier transform ex-

plains why this family of distributions is learnable with sample complexity independent of n, and

moreover it yields the sharp sample-complexity bound. The algorithmic idea of exploiting Fourier

sparsity for distribution learning is general, and was subsequently used by the authors in other re-

lated settings Diakonikolas et al. (2015c,b).

Structure of k-SIIRVs. Our core structural result is the following simple property of the Fourier

transform of k-SIIRVs:

Any k-SIIRV with “large” variance has a Fourier transform with “small” effective support.

One can obtain different versions of the above informal statement depending on the setting and

the desired application. See Lemma 7 for a formal statement in the context of the DFT. The Fourier

sparsity of k-SIIRVs forms the basis for our upper bounds in this paper. As previously mentioned,

this structural property motivates and enables our learning algorithm. Moreover, it is useful in order

to obtain sparse ǫ-covers for Sn,k, the space of k-SIIRVs, under the total variation distance.

More specifically, using the approximate sparsity of the Fourier transform of SIIRVs combined

with analytic arguments, we obtain a computationally efficient algorithm to construct a proper ǫ-
cover for Sn,k, of near-minimum size. In particular, we show:
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Theorem 4 (Optimal Covers for k-SIIRVs) For ǫ ≤ 1/k, there exists a proper ǫ-cover Sn,k,ǫ ⊆
Sn,k of Sn,k under the total variation distance of size |Sn,k,ǫ| ≤ n · (1/ǫ)O(k log(1/ǫ)) that can be

constructed in polynomial time.

The best previous upper bound on the cover size of 2-SIIRVs is n2+n·(1/ǫ)O(log2(1/ǫ)) Daskalakis

and Papadimitriou (2009, 2014). For k > 2, Daskalakis et al. (2013) gives a non-proper cover of

size n · 2poly(k/ǫ).
Our proper cover upper bound construction provides a smaller search space for essentially any

optimization problem over k-SIIRVs. Specifically, Theorem 4 has the following implication in com-

putational game theory: Via a connection established in Daskalakis and Papadimitriou (2007, 2009),

the proper cover construction of Theorem 4 (for k = 2) yields an improved poly(n)·(1/ǫ)O(log(1/ǫ))

time algorithm for computing ǫ-Nash equilibria in anonymous games with 2 strategies per player.

Our matching lower bound on the cover size implies that the “cover-based approach” cannot lead to

an FPTAS for this problem. We note that computing an (exact) Nash equilibrium in an anonymous

game with a constant number of strategies was recently shown to be intractable Chen et al. (2015).

Our cover upper bound is proved in Section 3.

We also prove a matching lower bound on the cover size, showing that our above construction

is essentially optimal:

Theorem 5 (Cover Size Lower Bound for k-SIIRVs) For ǫ ≤ 1/poly(k), and n = Ω(log(1/ǫ)),
any ǫ-cover for Sn,k has size at least n · (1/ǫ)Ω(k log(1/ǫ)).

Before our work, no non-trivial lower bound on the cover size was known. We view the inherent

quasi-polynomial dependence on 1/ǫ of the cover size established here as a rather surprising fact.

Our cover size lower bound proof relies on a new geometric characterization of the space of k-

SIIRVs that we believe is of independent interest, and may find other applications. Our tight lower

bound on the sample complexity of learning k-SIIRVs relies critically on this characterization. Our

cover size lower bound is proved in Section 4.

1.3. Preliminaries

We record a few definitions that will be used throughout this paper.

Distributions and Metrics. For m ∈ Z+, we denote [m]
def
= {0, 1, . . . ,m}. A function P : A →

R, over a finite set A, is called a distribution if P(a) ≥ 0 for all a ∈ A, and
∑

a∈AP(a) = 1.
The function P is called a pseudo-distribution if

∑
a∈AP(a) = 1. For a pseudo-distribution P over

[m], m ∈ Z+, we write P(i) to denote the value PrX∼P[X = i] of the probability density function

(pdf) at point i, and P(≤ i) to denote the value PrX∼P[X ≤ i] of the cumulative density function

(cdf) at point i. For S ⊆ [n], we write P(S) to denote
∑

i∈S P(i).
The total variation distance between two (pseudo-)distributions P and Q supported on a finite

set A is dTV (P,Q)
def
= maxS⊆A |P(S)−Q(S)| = (1/2) · ‖P −Q‖1. Similarly, if X and Y are

random variables, their total variation distance dTV (X,Y ) is defined as the total variation distance

between their distributions. Another useful notion of distance between distributions/random vari-

ables is the Kolmogorov distance, defined as dK (P,Q)
def
= supx∈R |P(≤ x)−Q(≤ x)| . Note that

for any pair of distributions P and Q supported on a finite subset of R we have that dK (P,Q) ≤
dTV (P,Q) .

5



DIAKONIKOLAS KANE STEWART

Distribution Learning. Since we are interested in the computational complexity of distribution

learning, our algorithms will need to use a succinct description of their hypotheses. A simple

succinct representation of a discrete distribution is via an evaluation oracle for the probability mass

function. For ǫ > 0, an ǫ-evaluation oracle for a distribution P over [m] is a polynomial size circuit

C with O(logm) input bits such that for each input z, the output of the circuit C(z) equals the binary

representation of the probability P′(z), for some pseudo-distribution P′ which has dTV (P
′,P) ≤ ǫ.

Another general way to succinctly specify a distribution is to give the code of an efficient algorithm

that takes “pure” randomness and transforms it into a sample from the distribution. This is the

standard notion of a sampler. An ǫ-sampler for P is a circuit C with O(logm+log(1/ǫ)) input bits

z and O(logm) output bits y which is such that when z ∼ Um, then y ∼ P′, for some distribution

P′ which has dTV (P
′,P) ≤ ǫ.

We emphasize that our learning algorithms output both an ǫ-sampler and an ǫ-evaluation oracle

for the target distribution.

Covers. Let F be a family of probability distributions. Given δ > 0, a subset G ⊆ F is said to be

a proper δ-cover of F with respect to the metric d(·, ·) if for every distribution P ∈ F there exists

some Q ∈ G such that d(P,Q) ≤ δ. If G is not a subset of F , then the cover is called non-proper.

The δ-covering number for (F , d) is the minimum cardinality of a δ-cover. The δ-packing number

for (F , d) is the maximum number of points (distributions) in F at pairwise distance at least δ from

each other.

1.4. Our Approach and Techniques

The unifying idea of this work is an analysis of the structure of the Fourier Transform (FT) of

k-SIIRVs. The FT is a natural tool to consider in this context. Recall that the FT of a sum of

independent random variables is the product of the FT’s of the individual variables. Moreover, if

two random variables have similar FT’s, they also have similar distributions. These two basic facts

are the starting point of our analysis. We now provide an overview of the ideas underlying our

results, and give a comparison to previous techniques.

Discussion & Previous Approaches for Learning SIIRVs. Let D be a family of distributions

over a domain of size N. How many samples are required to learn an arbitrary P ∈ D within

variation distance ǫ? Without any restrictions on D, it is a folklore fact that the sample complexity

learning is Θ(N/ǫ2). The optimal learning algorithm in this case is the obvious one: output the

empirical distribution. By exploiting the structure of the family D, one may obtain better results.

A very natural type of structure to consider is some sort of “shape constraint” on the probability

density function, such as log-concavity or unimodality. There is a long line of work in statistics on

this topic (see, e.g., the books Barlow et al. (1972); Groeneboom and Jongbloed (2014)), and more

recently in TCS Daskalakis et al. (2012a); Chan et al. (2013, 2014a,b); Acharya et al. (2015). Alas,

it turns out that k-SIIRVs do not satisfy any of the shape constraints considered in the literature

(see Daskalakis et al. (2013) for a discussion).

A different type of structure, based on the notion of metric entropy Yatracos (1985); Birgé

(1986); Devroye and Lugosi (2001), yields the following implication: If a distribution class D has

an ǫ/2-cover of size M, then it is learnable with O(logM/ǫ2) samples.4 In a celebrated paper

in information theory Yang and Barron (1999), Yang and Barron show that, for broad families of

4. We remark that the running time of this method is Ω(M/ǫ2), which is not necessarily polynomial in the sample size.
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(continuous) distributions, the metric entropy characterizes the sample complexity of learning. For

k-SIIRVs, however, this is not the case: Via Theorem 4, the metric entropy method implies a sample

upper bound of O((1/ǫ2) · log n+(k/ǫ2) · log2(1/ǫ)). Note that, since our cover size upper bound is

tight, this sample bound is the limit of the metric entropy method for k-SIIRVs. Thus, this method

gives a suboptimal sample upper bound for our learning problem, both qualitatively (dependence on

n), and quantitatively (dependence on ǫ).
Previous work on learning k-SIIRVs Daskalakis et al. (2012b, 2013) relies on a certain “regular-

ity” lemma about the structure of these distributions: Any k-SIIRV is either ǫ-close in total variation

distance to being L = Θ(k9/ǫ4)- “sparse”, i.e., it is supported on a set of at most L consecutive

integers, or ǫ-close to being “Gaussian like”. In the former case, the distribution can be learned

using O(L/ǫ2) samples, and in the latter case one can exploit the Gaussian structure to learn with a

small number of samples as well. Unfortunately, the sparse case is a bottleneck for this approach,

as any algorithm to learn a distribution over support L requires Ω(L/ǫ2) samples. Hence, one needs

to exploit the structure of k-SIIRVs beyond the aforementioned.

Our Learning Approach. In this paper, we depart from the aforementioned approaches. We

identify a simple condition – the approximate sparsity of the Fourier transform – as the “right”

property that determines the sample complexity of our learning problem. The Fourier sparsity

explains why the sample complexity of learning k-SIIRVs is independent of n, and allows us to

obtain the sharp sample bound as a function of both k and ǫ. We show that this is a more general

phenomenon (see Theorem 8): any univariate distribution that has an s-sparse Fourier transform, in

a certain well-defined technical sense, is learnable with Õ(s/ǫ2) samples.

Our computationally efficient learning algorithm proceeds as follows: It starts by drawing an

initial set of samples to determine the effective support of the target distribution and its Fourier

transform. This is achieved by estimating the mean and variance of our SIIRV. We remark that,

for computational purposes, our algorithm uses the Discrete Fourier Transform (DFT). For the ap-

propriate definition of the DFT, we show (Lemma 7) there exists an explicit set S of cardinality

|S| = O(k2 log(k/ǫ)) that contains all the “heavy” Fourier coefficients5. Our algorithm then draws

an additional set of samples to estimate the DFT of the target distribution at the points of the ef-

fective support S, and sets the DFT to 0 everywhere else. By exploiting the sparsity in the Fourier

domain, we show that the inverse of the empirical DFT achieves total variation distance ǫ/2 after

Õ(k/ǫ2) samples. Note that an explicit description of an accurate hypothesis for our learning prob-

lem can have an effective support of size Ω(k
√
n). While we can easily obtain such a description

(by explicitly computing the inverse DFT), this would not lead to a computationally efficient algo-

rithm. We instead output a succinct description of our hypothesis (in time that is independent of n).

In particular, our algorithm outputs the empirical DFT at the points of its effective support.

We emphasize that the implicit description of the hypothesis H, via its DFT Ĥ, is sufficient to

obtain both an approximate evaluation oracle and an approximate sampler for the target k-SIIRV P.
Obtaining an approximate evaluation oracle is straightforward: Since Ĥ is supported on the set S,
we can compute H(i) in time O(|S|). To obtain an efficient sampler, we proceed in two steps: We

first show how to efficiently compute the CDF of H, using oracle access to the the DFT Ĥ. To do

this, we express the value of the CDF at any point via a closed form expression involving the values

5. We moreover show that there exists a set of cardinality O(k log(k/ǫ)) that contains all the “heavy” Fourier coeffi-

cients, alas this smaller set is not explicitly known a priori.

7



DIAKONIKOLAS KANE STEWART

of Ĥ. Given oracle access to the CDF, we use a simple binary search procedure to sample from a

distribution Q satisfying dTV (Q,H) ≤ ǫ/2.
Finally, we note that our above-described Fourier-learning algorithm achieves a near-optimal

sample complexity (up to logarithmic factors). The basic idea to obtain the optimal sample com-

plexity is to smoothly mollify the DFT instead of truncating it. This removes some artifacts caused

by a sharp truncation and yields a hypothesis whose error from the true distribution decays rapidly

as we move away from the mean.

Cover Upper Bound. We start by commenting on previous approaches for proving cover upper

bounds in this context. The main technique for the 2-SIIRV cover upper bound of Daskalakis and

Papadimitriou (2009) is the following lemma (that is deduced in Daskalakis and Papadimitriou

(2009) using a result from Roos (2000)): If two 2-SIIRVs agree on their first Ω(log(1/ǫ)) moments,

then their total variation distance is at most ǫ. First, we show that this moment-matching lemma is

quantitatively tight: in the full version we give an example of two 2-SIIRVs over k + 1 variables

that agree on the first k moments and have variation distance 2−Ω(k).

We emphasize however that such a moment-matching technique cannot be generalized to k-

SIIRVs, even for k = 3. Intuitively, this is because knowledge about moments fails to account for

potential periodic structure of the probability mass function that comes into play for k > 2. For

example, Ω(n) moments do not suffice to distinguish between the cases that a 3-SIIRV of order n
is supported on the even versus the odd integers. More specifically, in the full version we give an

explicit example of two 3-SIIRVs of order n/2 that agree exactly on the first n − 1 moments and

have disjoint supports.

In conclusion, moment-based approaches fail to detect periodic structure. On the other hand,

this type of structure is easily detectable by considering the Fourier transform. Our cover upper

bound hinges on showing that the Fourier transform of a k-SIIRV is necessarily of low complex-

ity, i.e., it can be succinctly described up to small error. In particular, since the Fourier transform

is smooth, we show, roughly, that its logarithm can be well approximated by a low degree Taylor

polynomial on intervals of length O(1/k). (Our actual statement is somewhat more complicated as

it needs to account for roots of the Fourier transform close to the unit circle.) Therefore, provid-

ing approximations to the low-degree Taylor coefficients of the logarithm of the Fourier transform

provides a concise approximate description of the distribution.

Cover Lower Bound & Sample Lower Bound. Our lower bounds take a geometric view of the

problem. At a high-level, we consider the function that maps the set of n(k−1) parameters defining

a k-SIIRV to the corresponding probability mass function. We show that there exists a region of

the space of distributions where this function is locally invertible. For k = 2, we in fact show

that the distribution of any 2-SIIRV with distinct parameters lies in the interior of this region. This

structural understanding allows us to use certain appropriately defined expectations to extract the

effect of individual parameters on the distribution. In addition, for n = Θ(log(1/ǫ)), we show that

near a particular k-SIIRV not only is the map from parameters to distribution locally a bijection, but

that this map is actually surjective onto a ball of reasonable size. In other words, near this particular

distribution, the Ω(k log(1/ǫ)) parameters of the output distribution are effectively independent,

which intuitively implies the (1/ǫ)Ω(k log(1/ǫ)) lower bound on the cover size.

To prove our sample lower bound, at a high-level, we combine the aforementioned geometric

understanding with Assouad’s lemma Assouad (1983). We note that one might naively expect that

such a situation would lead to a lower bound of Ω(k log(1/ǫ)/ǫ2), but since the distributions under
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consideration have additional structure, it turns out that the best lower bound that can be obtained is

Ω(k
√
log(1/ǫ)/ǫ2).

1.5. Related Work

Density estimation is a classical topic in statistics and machine learning with a rich history and

extensive literature (see e.g., Barlow et al. (1972); Devroye and Györfi (1985); Silverman (1986);

Scott (1992); Devroye and Lugosi (2001)). The reader is referred to Izenman (1991) for a survey

of statistical techniques in this context. In recent years, a large body of work in TCS has been

studying these questions from a computational perspective; see e.g., Kearns et al. (1994); Freund

and Mansour (1999); Arora and Kannan (2001); Cryan et al. (2002); Vempala and Wang (2002);

Feldman et al. (2005); Belkin and Sinha (2010); Kalai et al. (2010); Daskalakis et al. (2012a,b,

2013); Chan et al. (2013, 2014a,b); Acharya et al. (2015).

Covering numbers (and their logarithms, known as metric entropy numbers) were first de-

fined by A. N. Kolmogorov in the 1950’s and have since played a central role in a number of

areas, including approximation theory, geometric functional analysis (see, e.g., Dudley (1974);

Makovoz (1986); Blei et al. (2007) and the books Kolmogorov and Tihomirov (1959); Lorentz

(1966); Carl and Stephani (1990); Edmunds and Triebel (1996)), geometric approximation algo-

rithms Har-peled (2011), information theory, statistics, and machine learning (see, e.g., Yatracos

(1985); Birgé (1986); Hasminskii and Ibragimov (1990); Haussler and Opper (1997); Yang and

Barron (1999); Guntuboyina and Sen (2013) and the books van der Vaart and Wellner (1996); De-

vroye and Lugosi (2001); Tsybakov (2008)).

A preliminary version of this paper (with a different title) was disseminated in Diakonikolas

et al. (2015a) (May 4, 2015). Since then, a number of works on SIIRVs and related families have

been announced. We briefly summarize their relation to this paper.

Concurrent Work. Concurrent work by Daskalakis et al. (2015b), using different techniques,

gives upper bounds on the metric entropy (and learning sample complexity) of Poisson Multinomial

Distributions (PMDs), i.e., sums of independent random vectors supported over the standard basis

in R
k. While metric entropy upper bounds on PMDs yield similar upper bounds for k-SIIRVs,

the implied results for k-SIIRVs are significantly weaker than ours. The Daskalakis et al. (2015b)

learning bound has sample complexity exponential in k; and running time doubly exponential in k
and super-polynomial in 1/ǫ.

Subsequent Work. In subsequent work Diakonikolas et al. (2015c), the authors generalize the

techniques of this paper to the family of PMDs. We emphasize that the results of this paper are not

subsumed by the results of Diakonikolas et al. (2015c). In particular, Diakonikolas et al. (2015c)

give an efficient learning algorithm for PMDs that uses logO(k)(1/ǫ)/ǫ2 samples and runtime, and

proves that the optimal cover size for PMDs depends doubly exponentially on k. Daskalakis et al.

(2015a) also use the Fourier transform to learn PMDs obtaining sample size logO(k)(1/ǫ)/ǫ2 and

running time (1/ǫ)O(k2). Our geometric characterization of SIIRVs that forms the basis of our tight

sample and cover lower bounds does not appear in any of the aforementioned works.

Structure of this Extended Abstract. In Section 2, we describe our learning algorithms and

provide a high-level sketch of their analysis. Section 3 presents the main ideas needed to obtain

our proper cover construction. Section 4 describes our geometric characterization that leads to our

cover and sample lower bounds. The missing proofs and statements can be found in the full version.
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2. Learning Sums of Independent Integer Random Variables

We start by presenting our sample near-optimal and computationally efficient algorithm, estab-

lishing Theorem 1. We subsequently sketch the ideas of our sample-optimal upper bound. Our

algorithms use the Discrete Fourier Transform, which we now define.

Definition 6 For x ∈ R we will denote e(x)
def
= exp(−2πix). The Discrete Fourier Transform

(DFT) modulo M of a function F : [n] → C is the function F̂ : [M − 1] → C defined as

F̂ (ξ) =
∑n

j=0 e(ξj/M)F (j) , for integers ξ ∈ [M − 1]. The DFT modulo M of a distribution

P, P̂ is the DFT modulo M of its probability mass function. The inverse DFT modulo M onto the

range [m,m+M − 1] of F̂ : [M − 1] → C, is the function F : [m,m+M − 1] ∩ Z → C defined

by F (j) = 1
M

∑M−1
ξ=0 e(−ξj/M)F̂ (ξ) , for j ∈ [m,m +M − 1] ∩ Z. The L2 norm of the DFT is

defined as ‖F̂‖2 =
√

1
M

∑M−1
ξ=0 |F̂ (ξ)|2 .

The Fourier transform Q̂ of the empirical distribution Q provides an approximation to the

Fourier transform P̂ of P. In particular, if we take N samples from P, we expect that the em-

pirical Fourier transform Q̂ has error O(N−1/2) at each point. This implies that the expected L2

error ‖Q̂−P̂‖2 is O(N−1/2), and thus by applying the inverse Fourier transform, would yield a dis-

tribution with L2 error of O(N−1/2) from P. This guarantee may sound good, but unfortunately, the

distribution P has effective support of size approximately s
√

log(1/ǫ), where s =
√

VarX∼P[X],

and thus the resulting distribution will likely have L1 error of O(N−1/2s1/2 log1/4(1/ǫ)) from P.

This bound is prohibitively large, especially when the standard deviation of P is large.

This obstacle can be circumvented by relying on a new structural result that we believe may be

of independent interest. We show that for any k-SIIRV with large variance, its Fourier Transform

will have small effective support. In particular, for any k-SIIRV with standard deviation s and

ǫ > 0 we consider its Discrete Fourier transform modulo M , and show the set of points in [M − 1]
whose Fourier transform is bigger than ǫ in magnitude has size at most O(Mks−1

√
log(1/ǫ)). By

choosing M to be approximately s
√

log(1/ǫ), i.e., of the same order as the effective support of P,

we conclude that the effective support of P̂ (modulo M ) is O(k log(1/ǫ)).
If the effective support for P̂ was explicitly known, we could truncate our empirical Dis-

crete Fourier transform Q̂ (modulo M ) outside this set and reduce the L2 error ‖Q̂ − P̂‖2 to

N−1/2k1/2s−1/2 log1/4(1/ǫ). This in turn would correspond to an L1 error of O(N−1/2k1/2
√
log(1/ǫ)).

Unfortunately, we do not know exactly where the support of the Fourier transform is, so we will

need to approximate it by calculating the empirical DFT where the support might be, and then sim-

ply truncating this empirical DFT whenever it is sufficiently small. Fortunately, we do have some

idea of where the support is and it is not hard to show that we can truncate at all of the appropriate

points with high probability.

The key ingredient for the analysis of our algorithm is the following lemma, showing that the

Fourier transform of P has appropriately small effective support.

Lemma 7 (Sparsity of DFT for k-SIIRVs) Let P ∈ Sn,k with
√

VarX∼P[X] = s, 1/2 > δ > 0,

and M ∈ Z+ with M > s. Let P̂ be the discrete Fourier transform of P modulo M . Then, we have

10
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(i) Let L = L(δ,M, s)
def
=

{
ξ ∈ [M − 1] | ∃a, b ∈ Z, 0 ≤ a ≤ b < k such that |ξ/M − a/b| <

√
ln(1/δ)

2s

}
.

Then, |P̂(ξ)| ≤ δ for all ξ ∈ [M − 1] \ L. That is, |P̂(ξ)| > δ for at most |L| ≤
Mk2s−1

√
log(1/δ) values of ξ .

(ii) At most 4Mks−1
√

log(1/δ) many integers 0 ≤ ξ ≤ M − 1 have |P̂(ξ)| > δ .

Statement (i) of the lemma exhibits an explicit set L of cardinality O(Mk2s−1
√
log(1/δ)) that

contains all the points ξ ∈ [M − 1] such that |P̂(ξ)| > δ. Note that the set L can be efficiently

computed from M , δ, s, and does not otherwise depend on the particular k-SIIRV P. Statement (ii)

of the lemma shows that the effective support L′ = L′(δ) = {ξ ∈ [M − 1] | |P̂(ξ)| > δ} is in

fact significantly smaller than L, namely |L′| = O(Mks−1
√

log(1/δ)). This part of the lemma is

non-constructive in the sense that it does not provide an explicit description for L′ (beyond the fact

that L′ ⊆ L).

Algorithm Learn-SIIRV

Input: sample access to a k-SIIRV P and ǫ > 0.

Let C be a sufficiently large universal constant.

1. Draw O(1) samples from P and with confidence probability 19/20 compute: (a) σ̃2, a factor

2 approximation to VarX∼P[X] + 1, and (b) µ̃, an approximation to EX∼P[X] to within one

standard deviation.

2. Take N = C3k/ǫ2 ln2(k/ǫ) samples from P to get an empirical distribution Q.

3. If σ̃ ≤ 4k ln(4/ǫ), then output Q. Otherwise, proceed to next step.

4. Set M
def
= 1 + 2⌈6σ̃

√
ln(4/ǫ))⌉. Let

S
def
= {ξ ∈ [M − 1] | ∃a, b ∈ Z, 0 ≤ a ≤ b < k such that |ξ/M − a/b| ≤ O(log(k/ǫ)/M)} .

For each ξ ∈ S, compute the DFT modulo M of Q at ξ, Q̂(ξ).

5. Compute Ĥ which is defined as Ĥ(ξ) = Q̂(ξ) if ξ ∈ S and |Q̂(ξ)| ≥ R :=
2C−1ǫ/

√
k ln(k/ǫ), and Ĥ(ξ) = 0 otherwise.

6. Output Ĥ which is a succinct representation of H, the inverse DFT of Ĥ modulo M onto the

range [⌊µ̃⌋ − (M − 1)/2, ⌊µ̃⌋+ (M − 1)/2].

Sparse Fourier Learning. Our algorithmic approach is not specialized to k-SIIRVs, but is appli-

cable more generally. It turns out that by using similar ideas, we can learn any probability distri-

bution with these properties. The following simple theorem provides a generalization for integer-

valued random variables. However, the approach can also be generalized to higher-dimensions and

to continuous distributions.

11
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Theorem 8 Let P be an integer-valued random variable and ǫ > 0. Let S ⊂ Z and T ⊂ R/Z
be known subsets so that:

∑
n∈Z\S P(n) ≤ ǫ/3, and

∫
ξ∈(R/Z)\T |P̂(ξ)|2dξ < ǫ2/(9|S|). Then,

there exists an algorithm which learns P to total variational distance ǫ using N = O(|S|µ(T )/ǫ2)
samples.

Sample Optimal Algorithm. The basic idea behind our sample optimal upper bound is as fol-

lows: In our previous analysis, we made critical use of the fact that essentially all of the mass of the

distribution in question lies in an explicit interval of length O(s
√
log(1/ǫ)), where s is the standard

deviation. By using the Fourier learning idea, we were able to learn a distribution that approximated

our target on this support. In order to improve this algorithm, we observe that although it is neces-

sary to move Ω(
√

log(1/ǫ)) standard deviations from the mean before the cumulative distribution

function (CDF) drops below ǫ, the CDF has already begun to decay exponentially after only a single

standard deviation from the mean.

Unfortunately, applying a sharp threshold to our Fourier transform can lead to effects that fall

off relatively slowly with distance. Note that such a thresholding in the Fourier domain is equivalent

to convolution with a Sinc function, which has tails proportional to 1/|x|. In order to correct this

issue, we will instead perform our thresholding by multiplication by a function with smooth cutoffs.

This corresponds to convolving our distribution with a function of width approximately s with

Gaussian tails. This step has the critical effect of causing our expected errors to be much smaller

at points further from the mean, since most of our samples (within a few standard deviations of the

mean) will have little effect on our output for these points. A careful analysis of the expected error

at each point will yield our final bound. For the case of 2-SIIRV, this technique gives a sample-

optimal and computationally efficient algorithm. For k > 2, our sample optimal algorithm is not

computationally efficient. Several technical complications arise in the general case, mostly from the

fact that we do not know a priori a good effective support for the Fourier transform.

3. Cover Size Upper Bound and Construction

The algorithm to construct the cover proceeds by an appropriate dynamic programming approach

relying on our upper bound existence proof. To bound the size of the cover, we proceed as follows:

We start by reducing the problem to the case that the order n of the k-SIIRV is at most poly(k/ǫ).
In the second and main step, we prove the desired upper bound for the polynomially sparse case.

Our proof for the sparse case proceeds by analyzing the Fourier transform of k-SIIRVs.

For ξ ∈ R, recall that we use the notation e(ξ)
def
= exp(−2πiξ). For a probability den-

sity function (pdf) P over R, its Fourier Transform is the function P̂ : [0, 1) → C defined by

P̂(ξ) = Ey∼P[exp(−2πiyξ)] = Ey∼P[e(yξ)]. For our purposes, we will need to analyze the cor-

responding polynomial defined over the entire complex plane. Namely, we will consider the proba-

bility generating function P̃ : C → C of P defined as P̃(z) = Ey∼P[z
y]. Note that when |z| = 1,

this function agrees with the Fourier transform, i.e., P̂(ξ) = P̃(e(ξ)).
At a high-level, our proof is conceptually simple: For a k-SIIRV P, we would like to show

that the logarithm of its Fourier transform log P̂(ξ) is determined up to an additive ǫ by its degree

O(log(1/ǫ)) Taylor polynomial. Assuming this holds, it is relatively straightforward to prove the

desired upper bound on the cover size. Unfortunately, such a statement cannot be true in general for

the following reason: the function P̃(z) may have roots near (or on) the unit circle, in which case

the logarithm of the Fourier transform is either very big or infinite at certain points. Intuitively, we
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would like to show that the magnitude of P̃(z) close to a root is small. Unfortunately, this is not

necessarily true.

We circumvent this problem as follows: We partition the unit circle into O(k) arcs each of length

O(1/k). We perform a case analysis based on the number of roots that are close to an arc. If there

are at least Ω(log(1/ǫ)) roots of P̃(z) close to a particular arc, then we show that the magnitude of

P̃(z) within the arc is going to be negligibly small. Otherwise, we consider the polynomial q(z)
obtained by P̃(z) after dividing by the corresponding roots, and show that log q(z) is determined

up to an additive ǫ by its degree O(log(1/ǫ)) Taylor polynomial within the arc. Using the above

structural understanding, to prove the cover upper bound, we define a “succinct” description of the

Fourier Transform based on the logarithm of q(z) and appropriate discretization of O(log(1/ǫ))
nearby roots.

4. Cover Size and Sample Complexity Lower Bounds

We describe our lower bound construction on the cover size of 2-SIIRVs and our sample complexity

lower bound. The more general constructions for k-SIIRVs are deferred to the full version.

Cover Size Lower Bound. Given ǫ > 0 and n ∈ Z with n = Θ(log(1/ǫ)), we define an explicit

ǫ-packing for Sn,2 as follows: Let s = ⌊ǫ−1/2⌋. For a vector a = (a1, . . . , an) ∈ [s]n, let

pai =
i

n+ 1
+

ai
√
ǫ

4n
, i ∈ {1, . . . , n} ,

be the parameters of a 2-SIIRV Pa ∈ Sn,2. We claim that the set of 2-SIIRVs
{
Pa

}
a∈[s]n is an

ǫ-packing, i.e., for all a,b ∈ [s]n, a 6= b implies dTV (Pa,Pb) ≥ ǫ.
We now sketch the proof. For a distribution P supported on [n], define rP(p) to be the polyno-

mial rP(p) = EX∼P

[
(p− 1)X · pn−X

]
. If P is a 2-SIIRV with parameters pi, it is easy to show

that rP(p) =
∏n

i=1(p− pi). Since |(p− 1)ipn−i| < 1 for all i, by a simple argument, it follows that

if P,Q ∈ Sn,2 with dTV (P,Q) < ǫ, then for any p ∈ [0, 1] it holds |rP(p)− rQ(p)| < 2ǫ.
Hence, to prove our packing lower bound, it suffices to show that for all a,b ∈ [s]n with a 6= b

there exists p = pa,b ∈ [0, 1] such that |rPa
(p)− rPb

(p)| ≥ 2ǫ.
Let a = (a1, . . . , an), b = (b1, . . . , bn). Fix i∗ ∈ [n] such that ai∗ 6= bi∗ . Noting that

rPb
(pbi∗) = 0, it suffices to show that |rPa

(pbi∗)| ≥ 2ǫ. If j = i∗ we have that, |pbi∗ − paj | =
|ai∗−bi∗ |

√
ǫ

4n ≥
√
ǫ

4n . If j 6= i∗, we have

|pbi∗ − paj | =
∣∣∣∣
i∗ − j

n+ 1
+ (bi∗ − aj)

√
ǫ

4n

∣∣∣∣ ≥
|i∗ − j|
n+ 1

− |bi∗ − aj |
√
ǫ

4n
≥ |i∗ − j|

2n
,

where the last inequality uses the fact that |bi∗ − aj | ≤ s. Therefore, we have that

∣∣∣rPa
(pbi∗)

∣∣∣ =
n∏

j=1

∣∣∣pbi∗ − paj

∣∣∣ ≥
√
ǫ

4n
·
∏

j 6=i∗

|i∗ − j|
2n

,

which can be shown to be at least 2ǫ by a sequence of elementary inequalities. This completes the

cover lower bound sketch.
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Sample Complexity Lower Bound. Ideally, we would like to prove our sample lower bound us-

ing the set of 2-SIIRVs whose parameters are explicitly described above. We remark, however, that

a cover lower bound does not generally imply any nontrivial sample lower bound. Moreover, this

particular set of distributions is not in a form that allows a direct application of Assouad’s lemma.

The difficulty lies in the fact that it is not clear how to isolate the changes between distributions in

disjoint intervals using explicit parameters.

We proceed with an indirect approach making essential use of a novel geometric result for the

space of 2-SIIRVs. Specifically, we prove the following:

Lemma 9 (i) Given any P ∈ Sn,2 with distinct parameters in (0, 1), there is a radius δ = δ(P)
such that any distribution Q with support [n] that satisfies dK(P,Q) ≤ δ is also 2-SIIRV, i.e.,

Q ∈ Sn,2.

(ii) Let P0 ∈ Sn,2 be the 2-SIIRV with parameters pi =
i

n+1 , 1 ≤ i ≤ n. Then, any distribution

Q with support [n] that satisfies dK(P0,Q) ≤ 2−9n is itself a 2-SIIRV with parameters qi such that

|qi − pi| ≤ 1
4(n+1) .

Proof [Proof Sketch.] Roughly speaking, the intuition is that the space Sn,2 is n-dimensional in a

precise sense. We consider the space of cumulative distribution functions (CDFs) of all distributions

of support [n]. Let Tn be the set of sequences 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ 1. Consider the map

Pn : Tn → Tn defined as follows: For p = (p1, . . . , pn) ∈ Tn (i.e., with ordered parameters

0 ≤ p1 ≤ . . . ≤ pn ≤ 1), let P be the corresponding 2-SIIRV in Sn,2. For i ∈ {1, . . . , n}, let

(Pn(p))i = P(< i). Namely, Pn maps a sequence of probabilities to the sequence of probabilities

defining the CDF of the corresponding 2-SIIRV.

The basic idea of the proof is that the mapping Pn is invertible in a neighborhood of a point p

with distinct coordinates. This allows us to uniquely obtain the distinct parameters of a P ∈ Sn,2

from its CDF. We will apply the inverse function theorem for Pn at the point p defining the distinct

parameters of the 2-SIIRV P in the statement of the theorem. It is easy to see that Pn is continuously

differentiable. The main part of the argument involves proving that the Jacobian matrix of Pn at p,

Jac(Pn)(p), is non-singular.

Recall that Jac(Pn)(p) is the n× n matrix whose (i, j) entry is the partial derivatives of (Pn)i
in direction j, i.e., (Jac(Pn)(p))ij =

∂(Pn(p))i
∂pj

. In the full version, we prove the following lemma:

Lemma 10 For a PBD P ∈ Sn,2 with parameters p, we have

M(p) · Jac(Pn)(p) = −diag(
∏
j 6=i

(pi − pj)) , (1)

where M(p) is the n×n matrix with entries (M(p))ij = (1− pi)
j−1pn−j

i , 1 ≤ i, j ≤ n. Here, for

x ∈ R
n, we denote by diag(x) the diagonal matrix with entries (diag(x))ii = xi.

Given the above lemma, we are ready to prove part (i) of Lemma 9. To this end, consider a

2-SIIRV P with distinct parameters p, i.e., pi 6= pj for i 6= j, such that pi ∈ (0, 1) for all i. Note

that p lies in the interior of Tn. Moreover, for all i, we have
∏

j 6=i(pi − pj) 6= 0, and therefore

the matrix diag(
∏

j 6=i(pi − pj)) appearing in (1) is non-singular. It follows from Lemma 10 that

both matrices on the LHS of (1) are non-singular. In particular, Jac(Pn)(p) is non-singular, hence

we can apply the inverse function theorem. As a corollary, there exists an inverse mapping P−1
n in
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some neighborhood of Pn(p). Specifically, there is some δ > 0 such that P−1
n is defined at every

x ∈ Tn with ‖x− Pn(p)‖∞ ≤ δ.

Let Q be a distribution over [n] satisfying dK(P,Q) ≤ δ. Equivalently, if y = (Q(< i))ni=1 ∈
Tn is the CDF of Q, then ‖Pn(p) − y‖∞ ≤ δ. Thus, P−1

n is defined at y and q = P−1
n (y) ∈ Tn

are the parameters of a 2-SIIRV with distribution Q. It follows that Q is a 2-SIIRV with parameters

q, which completes the proof of (i). Note that the proof also implies that Q in this neighborhood

can be taken to be Pn(q
′) for q′ in some small neighborhood of p.

To prove part (ii) of Lemma 9, we use a geometric argument. Recall that the parameters of

P0 are p0 = ( 1
n+1 , . . . ,

n
n+1). Let S ⊆ Tn be the set of vectors p with ‖p − p0‖∞ ≤ 1

4(n+1) .

We show in the full version that any Q in Pn(∂S) satisfies dTV (P0,Q) ≥ e−3n

4(n+1) , and therefore

dK(P0,Q) ≥ e−3n

8(n+1)2
≥ 2−9n.

Let B be the set of distributions Q on [n] so that dK(P0,Q) ≤ 2−9n. We claim that Pn(S) ∩
B = B. To begin, note that S is compact, and therefore this intersection is closed. On the other

hand, since Pn(∂S) is disjoint from B, this intersection is Pn(int(S))∩B. On the other hand, since

Pn has non-singular Jacobian on int(S), the open mapping theorem implies that Pn(int(S))∩B is

an open subset of B. Therefore, Pn(S) ∩ B is both a closed and open subset of B, and therefore,

since B is connected, it must be all of B. This completes the proof of part (ii).

Given Lemma 9, our sample lower bound proceeds as follows: Starting from the 2-SIIRV P0,
we perturb its pdf by a small amount to construct the “hypercube” distributions Pb satisfying the

conditions of Assouad’s lemma. Lemma 9 guarantees that, if the perturbation is small enough, all

these distributions are indeed 2-SIIRVs.
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