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Optimal Least-Squares FIR Digital Filters

for Compensation of Chromatic Dispersion

in Digital Coherent Optical Receivers
Amir Eghbali, Member, IEEE, Håkan Johansson, Senior Member, IEEE, Oscar Gustafsson, Senior Member, IEEE,

and Seb J. Savory, Senior Member, IEEE

Abstract—This paper proposes optimal finite-length impulse re-
sponse (FIR) digital filters, in the least-squares (LS) sense, for com-
pensation of chromatic dispersion (CD) in digital coherent optical
receivers. The proposed filters are based on the convex minimiza-
tion of the energy of the complex error between the frequency
responses of the actual CD compensation filter and the ideal CD
compensation filter. The paper utilizes the fact that pulse shaping
filters limit the effective bandwidth of the signal. Then, the filter
design for CD compensation needs to be performed over a smaller
frequency range, as compared to the whole frequency band in the
existing CD compensation methods. By means of design examples,
we show that our proposed optimal LS FIR CD compensation
filters outperform the existing filters in terms of performance, im-
plementation complexity, and delay.

Index Terms—Chromatic dispersion (CD), digital filter, fiber
optics, optimal least-squares (LS) FIR filter.

I. INTRODUCTION

I
N optical fibers, the group velocity of the propagating signal

is frequency dependent and optical pulses hence spread in

time. This results in CD [1]–[5] thus limiting the transmission

distance and/or data rate [6]. The CD is traditionally compen-

sated using optical devices with opposite dispersion [5] but such

approaches cannot be easily tuned/improved to accommodate

different fiber spans/properties and quality measures [6].

With coherent detection schemes, richer constellations, and

fast analog to digital converters (ADCs), digital signal process-

ing is playing a growing role in CD compensation [4], [6], [7]. In

digital coherent optical receivers, CD is modeled as a frequency

response given by [1]–[5]

C(ejωT ) = e−jK (ωT )2

, K =
Dλ

2z

4πcT 2
. (1)

Here, D, λ, z, and c are the fiber dispersion parameter, wave-

length, propagation distance, and the speed of light, respec-

tively. This paper uses ωT = 2πfT to represent the “digital

frequency” with a sampling period of T thus corresponding to a
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sampling frequency of F = 1
T

. The CD can be compensated by

designing a filter H(ejωT ) to approximate a desired frequency

response as

HDes(e
jωT ) =

1

C(ejωT )
= ejK (ωT )2

. (2)

This is also referred to as static channel equalization [2] for

which FIR or infinite-length impulse response (IIR) filters1 can

be used [1], [2], [4]. This paper uses FIR filters because they

(i) are unconditionally stable [8], (ii) can efficiently be im-

plemented in the frequency domain [2], and (iii) do not have

limitations on the maximal sampling frequency, as opposed to

their IIR counterparts [9].

A. Contribution of the Paper and Relation to Previous Work

In [1] and [2], an FIR CD compensation filter was derived

with a complex impulse response given by

h(n) =

√

j

4Kπ
e−j n 2

4 K , −
⌊

N

2

⌋

≤ n ≤
⌊

N

2

⌋

(3)

where the length of the filter h(n) is odd and given2 as [1]

N = 2 ⌊2Kπ⌋ + 1. (4)

To decrease the hardware cost, it is generally of interest to reduce

N which in turn reduces the number of arithmetic operations re-

quired for implementation [8]. Besides hardware cost, a smaller

N decreases the overall delay of the filter which is an important

issue, especially, in high-speed communications.

A drawback of (3) is that it does not utilize the effects

of pulse shaping filters in limiting the bandwidth of signals.

With band-limited signals, at the output of pulse shaping filters,

we do not need to compensate CD over the whole frequency

band of ωT ∈ [−π, π]. In other words, and as we will see in

Section III-B2, the band-limiting properties of pulse shaping

filters allow us to compensate CD in a smaller frequency band

thereby reducing the filter length and the implementation cost.

As discussed later in Section III-A2, (3) has another drawback

because it does not necessarily improve the CD compensation

quality if we increase the filter length. As we will also describe

in Sections III-A1 and III-B2, a third drawback of (3) is that it

has suboptimal performance, especially for modulation formats

with higher spectral-efficiencies.

1The FIR filter is also called feed-forward equalizer or transversal tap filter [2].
2Note that (4) does not guarantee a desired performance, e.g., bit error rate

(BER), for a given K .

0733-8724 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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With the ever increasing demands on optical communica-

tion systems, to move towards high-speed traffic using high-

spectral-efficiency modulation formats, previous CD compen-

sation approaches need to be revisited so as to (i) improve the CD

compensation quality, (ii) relax the demands on the subsequent

adaptive equalizers, and (iii) overcome the above-mentioned

drawbacks.

This paper proposes optimal FIR filters, in the LS sense,

which outperform (3). Our proposed filters can be designed to

compensate CD in either a small frequency band or the whole

frequency band. By increasing the filter length, our proposed

filters can obtain arbitrarily good CD compensation, even with

modulation formats having high spectral-efficiencies. As will

be seen in Section III-B2, considering the effects of pulse shap-

ing filters, in our proposed method, we can further reduce the

implementation cost. Even without considering the effects of

pulse shaping filters, i.e., for the whole frequency band and the

same filter length, our proposed filters still outperform (3), as

we will see in Sections III-A1 and III-A2.

In Section IV-A, we will also compare our proposed filters

to those obtained by the frequency sampling method (FSM).

We will show that our proposed filters require fewer number

of taps, than those of FSM, in order to obtain the same BER

performance. Further, we will show that the superiority, of our

proposed filters, becomes more pronounced at modulation for-

mats with a high spectral-efficiency.

B. Paper Outline

Section II introduces the proposed optimal LS FIR filters for

CD compensation whereas the numerical results are discussed

in Section III. Some design and implementation issues are dis-

cussed in Section IV. Finally, the concluding remarks are given

in Section V.

II. PROPOSED CD COMPENSATION FILTERS

Consider a complex FIR filter of length Nc , which like N is

assumed to be odd here, with a frequency response as [8]

H(ejωT ) =

N c −1
2

∑

n=−N c −1
2

h(n)e−jnωT . (5)

To measure the accuracy of the designed filter H(ejωT ), which

approximates HDes(e
jωT ) in (2), we define the energy of the

complex error as, for ωT ∈ [Ω1 ,Ω2 ],

E =
1

2π

∫ Ω2

Ω1

∣

∣H(ejωT ) − HDes(e
jωT )

∣

∣

2
d(ωT ). (6)

To obtain h(n), we formulate an LS problem to find an FIR filter

ĥ which minimizes E as [10]

ĥ = argmin E (7)

where ĥ is defined by (8) as shown at the bottom of the page.

With signals having a flat frequency spectrum, (7) amounts to

minimizing the error vector magnitude. The solution of (7) is

unique and globally optimal in the LS sense.3 It is given by

ĥ = Q−1D (9)

where Q is an Nc × Nc matrix with elements as

Q(n,m) =
1

2π

∫ Ω2

Ω1

ej (n−m )ωT d(ωT )

=
e−j (−n+m )Ω1 − e−j (−n+m )Ω2

2jπ(−n + m)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ω2 − Ω1

2π
n = m

e−j (−n+m )Ω1 − e−j (−n+m )Ω2

2jπ(−n + m)
n �= m

(10)

for 0 ≤ n ≤ Nc − 1 and 0 ≤ m ≤ Nc − 1. Note that Q is a

Hermitian Toeplitz matrix and it thus suffices to only compute

its first row with n = 0 in (10). This property of Q reduces

the design complexity by reducing the number of computations

required in (10). Further, D is defined as in (11) as shown at the

bottom of the page, with

D(n) =
1

2π

∫ Ω2

Ω1

HDes(e
jωT )ejnωT d(ωT )

=
1

2π

∫ Ω2

Ω1

ejωT (K ωT +n)d(ωT ). (12)

After some manipulations, (12) gives the closed form solution

of (13) as shown at the bottom of the page, in which erf(α) is

3By optimality, we mean that for a given filter length Nc , no other filter
(having the same length) will result in an E which is smaller than that obtained

by ĥ in (9).

ĥ =

[

ĥ

(

−Nc − 1

2

)

ĥ

(

−Nc − 1

2
+ 1

)

. . . ĥ

(

Nc − 1

2
− 1

)

ĥ

(

Nc − 1

2

)]T

(8)

D =

[

D

(

−Nc − 1

2

)

D

(

−Nc − 1

2
+ 1

)

. . . D

(

Nc − 1

2
− 1

)

D

(

Nc − 1

2

) ]T

(11)

D(n) =
e
−j

(

n 2

4 K
+ 3 π

4

)

4
√

πK

(

erf

(

ej 3 π
4 (2Kπ − n)

2
√

K

)

+ erf

(

ej 3 π
4 (2Kπ + n)

2
√

K

)

)

,−Nc − 1

2
≤ n ≤ Nc − 1

2
(13)
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(a)

(b)

Fig. 1. Interpolation and decimation by L. (a) Interpolation. (b) Decimation.

defined as

erf(α) =
2√
π

∫ α

0

e−t2

dt. (14)

Note that if α, in (14), is an imaginary term, we obtain the

imaginary error function erfi(α) which is related to erf(α) as

erfi(α) =
erf(jα)

j
=

1

j

2√
π

∫ jα

0

e−t2

dt. (15)

There exist efficient numerical methods to evaluate (15), e.g.,

[11]. As discussed earlier, (3) targets the whole frequency band

where Ω2 = −Ω1 = π. Utilizing the properties of pulse shaping

filters, the values of Ω2 and Ω1 (and hence Nc ) can be reduced

as will be discussed in Section II-A, below.

A. Effects of Pulse Shaping

Pulse shaping comprises interpolation (decimation) at the

transmitter (receiver) side and it reduces the inter-carrier in-

terference and inter-symbol interference. In Fig. 1(a) [1(b)], in-

terpolation [decimation] by the integer factor L > 1 requires an

upsampler [a downsampler] and an anti-imaging [anti-aliasing]

filter GT X (ejωT ) [GRX (ejωT )] [12]. These filters usually have

lowpass characteristics4 with a roll-off of 0 < ρ < 1 leading

to a stopband edge at ωsT = π 1+ρ
L

. They are designed so that
∑L−1

l=0 GT X (ej (ωT − 2 π l
L

))GRX (ej (ωT − 2 π l
L

)) ≈ 1 [13]. A typical

solution is the square-root raised cosine filter as [14]

gT X (t) = gRX (t) =
sin

(

πt
T

(1 − ρ)
)

+ 4ρt
T

cos
(

πt
T

(1 + ρ)
)

πt
T

(

1 −
(

4ρt
T

)2
) .

(16)

This paper deals with digital filters and we will hence use t = nT
L

in (16). As the interpolated signals have limited bandwidths, one

does not actually need to compensate CD in the whole frequency

band of ωT ∈ [−π, π]. It suffices to design ĥ for the frequency

band of ωT ∈ [−ωsT , ωsT ] by using Ω2 = −Ω1 = ωsT in (6)–

(12).

With Ω2 = −Ω1 = ωsT , one should however add a proper

nonzero term to Q so as to avoid ill-conditioned matrices. One

way to do so is to rewrite (9) as

ĥ = (Q + ǫIN c
)−1

D (17)

4Pulse shaping filters generally belong to a class of filters called Lth-band
filters for which the transition band includes π

L
and the passband/stopband edges

are equally distanced from π
L . Therefore, having passband/stopband edges as

π
1∓ρ
L is a customary way of defining these edges so that they, with 0 < ρ < 1

and integer L > 1, are guaranteed to be smaller than π which is necessary for
digital filters [8], [12].

TABLE I
SIMULATION PARAMETERS USED IN EXAMPLES 1 AND 2

Here, c = 3×108 m/s, D = 17 ps/nm/km, λ = 1553 nm, and L = 2.

Fig. 2. Simulation chain composed of pulse shaping, CD model, and CD
compensation filter.

where IN c
is an Nc × Nc identity matrix which corresponds

to the (approximately) unit energy of the CD compensation

filter. By using ǫ, we add a penalty term which is proportional

to the unit energy of the CD compensation filter. Without this

penalty term, the frequency response of the CD compensation

filter can have undesired behaviors in the frequency range of

ωT ∈ [ωsT, π]. For each ǫ, (17) gives an optimal filter but the

best solution is dependent on ǫ as we will see in Section III-B1.

III. NUMERICAL RESULTS

We here assume the same parameters5 given in Table I. Note

that Example 1 uses the same parameters as in [1]. However,

for Example 2, we have increased the symbol rate F , while us-

ing the same oversampling ratio L, to show that our proposed

filters can actually be used for future high-speed communica-

tions requiring longer CD compensation filters. In Example 1,

(4) gives N = 251 whereas for Example 2, we get N = 875.

Based on these parameters, we will compare the existing CD

compensation filter, defined by (3), with our proposed filters in

(9) or (17). This comparison is carried out using a simulation

chain, shown in Fig. 2, where e(n) represents the additive white

Gaussian noise (AWGN) channel. In Section IV-A, we will also

compare our proposed filters with those obtained by FSM.

We can add other noise sources to this simulation setup, e.g.,

laser phase noise [16] or impairments of ADCs and digital to

analog converters (DACs). However, the CD compensation fil-

ters are independent of such effects [1] and we have therefore

not considered them6. In (16), we use ρ = 0.25 and we have

chosen high orders for GT X (ejωT ) and GRX (ejωT ) so that

the errors, arising from pulse shaping, are negligible. Then, the

only error sources are those due to (i) the CD model, (ii) the CD

compensation filter, and (iii) the AWGN channel.

Our Monte Carlo simulations use quadrature amplitude

modulation (QAM) symbols. In the BER plots, the term

“BTB” stands for the back-to-back propagation obtained with

C(ejωT ) = 1 and H(ejωT ) = 1. In other words, BTB stands

5We can further reduce the implementation complexity by choosing 1 < L <
2 but this would require interpolation/decimation by rational factors [15] and
is beyond the scope of this paper. The main focus of this paper is to compare
the performance of different filter design methods and as long as the simulation
chain is the same, the choice of L is not crucial.

6This paper compares different digital filters which compensate the same
amount of CD and we assume other parts of the system to have a negligible
effect. If we add other impairments, like laser phase noise or ADC/DAC errors,
the system performance may ultimately be limited by other factors.
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Fig. 3. Simulated uncoded BER for QAM data with K = 19.9227, L =
2, Ω2 = −Ω1 = π , and the filters in (9) and (3).

for the matched filter performance without the CD effects. In

our Monte Carlo simulations, we model C(ejωT ) by solving a

problem like (7) with HDes(e
jωT ) = C(ejωT ) but (as for the

pulse shaping filters) we have chosen a high order so that the

corresponding error becomes negligible.

A. Fullband Case

In this section, we will compare the filters in (9) and (3) using

Ω2 = −Ω1 = π and L = 2.

1) BER Performance With the Same Filter Lengths: In this

case, (10) becomes

Q(n,m) =

⎧

⎨

⎩

1 n = m
sin ((n − m)π)

(n − m)π
n �= m

=

{

1 n = m

0 n�=m.
(18)

The matrix Q is thus an identity matrix and (9) hence amounts

to only finding D in (11) and (12). This simplifies the design

complexity, associated with (9), as it gives

ĥ(n) = D(n) (19)

which is given by (13). Figs. 3 and 4 respectively compare the

simulated uncoded BER of Examples 1 and 2 over an AWGN

channel. As noted earlier, we use the parameters in Table I

along with (4) to estimate N . With the same number7 of taps

per 1000 ps/nm of CD, our proposed filter, in (9), gives a smaller

BER as compared to that of (3).

Figs. 3 and 4 show that beyond certain values of E b

N0
and for

modulations with a high spectral-efficiency, the BER curves,

7In Example 1 and with N = Nc = 251, we need N
z = 3.7 taps per

1000 ps/nm of CD [1].

Fig. 4. Simulated uncoded BER for QAM data with K = 69.605, L =
2, Ω2 = −Ω1 = π , and the filters in (9) and (3).

Fig. 5. Simulated uncoded BER values of 16-QAM data with different values
of N = Nc in (3) and (9) for Ω2 = −Ω1 = π, L = 2, K = 19.9227, and

some values of
E b
N 0

dB.

for (3), tend to obtain a floor8. These plots also show that for

simpler modulation schemes and with large BER values, the

filters obtained by (9) and (3) result in roughly similar BER

curves. For much simpler modulation schemes, e.g., 4-QAM,

the BER curves of (9) and (3), are very similar and we have thus

not plotted them. However, with modulation formats having

higher spectral-efficiencies and if a small BER is desired, the

filter obtained by (9) clearly has a better performance.

2) Comparison With Different Filter Lengths: As noted ear-

lier, a drawback of (3) is that CD compensation does not nec-

essarily improve if we increase the filter length. Fig. 5 shows

the uncoded BER values of 16-QAM data where we have con-

sidered different values of N = Nc in (3) and (9) as well as

8The BER curves of (9) will also become flat if
E b
N 0

further increases. How-

ever, with (3), the BER curves become flat at much lower values of
E b
N 0

.
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Fig. 6. The real parts, the imaginary parts, and the absolute values of the im-

pulse responses h(n) and ĥ(n) with N = Nc = 31 and z = 500 km along
with the parameters of Example 1. The plot with circles represents h(n).
(a) Real part. (b) Imaginary part. (c) Absolute value.

different values of E b

N0
. As can be seen, if we increase Nc in

(9), the value of BER decreases. This means that we can ob-

tain arbitrarily good CD compensation filters by increasing Nc .

However, this does not apply to (3) and the value of BER may

even increase if we increase N .

In conclusion, the filters given by (9) not only can be designed

to obtain arbitrarily good CD compensation but they also re-

quire fewer taps for the same BER performance. The reason is

two-fold with the first being that (9) gives a smaller E, than (3),

for the same filter length. This is a direct result (see Footnote

3) of optimality of (9). The second reason is that (this is easy

to verify using, e.g., MATLAB) the value of E decreases if the

length of the filter, given by (9), is increased. However, this does

not necessarily apply to the filter in (3). Note that if E becomes

very small, i.e., smaller than the noise of the AWGN channel,

the BER curve does not improve even if we increase Nc . The

BER curves, of (9), hence asymptotically reach the BER curve

of BTB propagation. According to Fig. 5, such a phenomenon

does not happen for the BER curves of (3) and beyond certain

values of N , the BER even degrades.

3) Relationships Between Closed Form Impulse Responses:

A comparison of (3) and (9) [with its closed form solution in

(19)] reveals that the impulse response values are partly similar.

For example, the term e−j n 2

4 K appears in both (3) and (19). To

compare the values of h(n) and ĥ(n), Fig. 6 shows the real parts,

the imaginary parts, and the absolute values of these impulse re-

sponses. For illustration purposes, we have considered a smaller

value of N = Nc = 31, obtained from z = 500 km and the pa-

rameters of Example 1. Note that the absolute value of h(n), in

(3), has a constant value as |h(n)| = 1
2
√

K π
. However, this does

not apply to ĥ(n). Also, Fig. 7 shows the magnitude responses

and the group delays of the impulse responses in Fig. 6. As can

be seen, ĥ(n) results in fewer overshoots in the magnitude re-

Fig. 7. Magnitude response and group delay of the filters obtained by (9)
and (3) with N = Nc = 31 and z = 500 km along with the parameters of
Example 1. The solid line represents the filter obtained by (3).

Fig. 8. The values of E , in (6), obtained from (17), L = 2, Ω2 = −Ω1 =
π (1+ ρ )

L , K = 19.9227, and ǫ = 10−k .

sponse and the group delay. Therefore, the group delay of ĥ(n)
tends to be more constant as opposed to that of h(n). This is

another explanation for the superiority of (9) over (3).

B. Band-Limited Case

In this section, we will compare the filters in (17) and (3)

using Ω2 = −Ω1 = π (1+ρ)
L

and L = 2.

1) Choice of Penalty Factor: As discussed earlier, the

penalty factor ǫ, in (17), should have a small nonzero value

but very small values of ǫ may result in numerical problems and

must be avoided. Based on our experiments, in MATLAB, Fig. 8

depicts the values of E, in (6), where we have used (17) along
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Fig. 9. Simulated uncoded BER for QAM data in Example 1 and 2 along with

Ω2 = −Ω1 =
π (1+ ρ )

L
, L = 2, and ǫ = 10−14 . Here, K1 and K2 stand for

the values of K in Example 1 and 2, respectively.

with L = 2, K = 19.9227, and ǫ = 10−k , k = 0, 1, . . . , 25 for

some values of Nc . Our numerical results show that if ǫ < 10−15 ,

the value of E may be degraded as numerical problems occur

due to the software precision limits. For any set {Nc ,K, L},

one must however find the best value of {ǫ, E} so as to improve

the CD compensation quality. For a given set {Nc ,K, L}, the

best value of {ǫ, E} can be determined by a simple exhaustive

search which amounts to designing ĥ(n) for different values of

ǫ and selecting the one which gives the lowest E. Note that we,

here, only illustrate the trend of E for some choices of ǫ and

Nc . To obtain a desired performance, say a given BER, and if

K is large, we would require a longer filter. Our simulations

in Fig. 8, however, aim to show how to choose ǫ and how the

software (MATLAB in this case) precision affects this choice.

For very small values of E, the performance of the system,

e.g., BER, is anyhow mainly determined by other factors like the

AWGN channel. Therefore, minor changes in ǫ and Nc will not

be crucial although small values of Nc and E are always desired.

Our experiments show that below certain9 small values of ǫ, say

when moving from ǫ = 10−12 to ǫ = 10−14 , the lowest possible

Nc may vary by a small value, e.g., two. In our simulations, we

have therefore used ǫ = 10−14 and we have ignored such minor

changes in Nc .

2) BER Performance With Different Filter Lengths: In this

case, Q is a general Hermitian Toeplitz matrix. Fig. 9 compares

the simulated uncoded BER of Examples 1 and 2 over an AWGN

channel where we have assumed ǫ = 10−14 . In these figures, we

report the lowest possible length, i.e., Nc in (17), whose BER

is smaller than or equal to the BER of N in (3). For example,

in Fig. 9 and with a 16-QAM data, we can select Nc = 119
in (17) and still obtain a smaller BER as compared to the case

with N = 251 in (3). In case of Example 1 and with 16-QAM

9In general, for high-spectral-efficiency modulation formats with small BER
values, the values of ǫ and E must be smaller.

data, this shows a reduction of about 1 − N c

N
= 52 percent in

the number of taps per 1000 ps/nm of CD.

IV. DESIGN AND IMPLEMENTATION COMPLEXITY

In digital filters, one generally has to consider two issues:

design complexity and implementation complexity. The design

complexity refers to the required (numerical) effort to obtain the

filter coefficients. Here, we have two cases for comparison of

the design complexity. If Ω2 = −Ω1 = π, (9) leads to a closed

form solution as in (19). Therefore, for the same filter length

and with Ω2 = −Ω1 = π, the design complexities of (3) and (9)

are comparable.

For the case with Ω2 = −Ω1 = π (1+ρ)
L

, (17) requires to com-

pute D, Q, and (Q + ǫIN c
)−1

. For the same filter length along

with Ω2 = −Ω1 = π (1+ρ)
L

, our proposed method thus has a

higher design complexity than (3). However, as can clearly be

seen from Fig. 9, the choice of Ω2 = −Ω1 = π (1+ρ)
L

allows to

reduce Nc which in turn reduces the overall design complex-

ity. Our numerical results (not reported here) also show that if

L increases, the value of Nc will be much smaller because, in

such a case, the value of Ω2 = −Ω1 = π (1+ρ)
L

becomes smaller.

Then, the design complexity of (17) will be even smaller. It is

generally desired to derive accurate formulas for estimation of

Nc so as to guarantee a desired performance, e.g., BER. This

requires many Monte Carlo simulations in a design space com-

prised of ǫ, E b

N0
, K, L, and the desired BER value and is beyond

the scope of this paper. However, as can be seen from Fig. 9,

Nc can roughly be estimated as N
L

. This corresponds to the

band ωT ∈ [0, ωsT ], over which the CD needs to actually be

compensated.

Generally, CD compensation filters need not be designed very

often. Thus, the major complexity-burden comes from their im-

plementation rather than their design. By means of numerical

examples, we have shown that our proposed filters, in (9) and

(17), clearly require fewer number of taps [to obtain a given

BER performance], than the filter in (3). Especially for mod-

ulation formats with severe requirements, the implementation

complexity of our proposed filters will thus be lower than that

of (3).

This paper deals with optimization-based filter design and we

differentiate between filter design and filter implementation. In

other words, we optimize the impulse response of the filter with

constraints in the frequency domain. This is a common practice

in the design of digital filters [8], [12]. For a given impulse

response, one can generally implement the filter (or equiva-

lently, the linear convolution) either in the time domain (e.g.,

see [8, Sec. VIII.3]) or in the frequency domain (e.g., see [8, Sec.

V.10]). In the latter method, one can use, e.g., the overlap-add or

overlap-save methods, to reduce the implementation complex-

ity [8], [17], [18]. The implementation complexity can also be

reduced in the time domain using, e.g., polyphase realizations

or multiple constant multiplication methods [8], [12]. Here, we

do not discuss such implementation issues as they (i) can be

applicable to any given impulse response and (ii) do not affect

the filtering performance. Instead, this paper has focused on the
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Fig. 10. Simulated uncoded BER for 4-QAM data in the example of

Section III-A3 with Ω2 = −Ω1 =
π (1+ ρ )

L
, L = 2, and ǫ = 10−14 .

number of filter taps per 1000 ps/nm of CD. Regardless of how

the filter is implemented, it is always beneficial to reduce the

filter length from the design/implementation as well as the delay

points of view.

A. Comparison With Filters Designed Using FSM

A straightforward alternative, to our proposed optimization-

based filter design method, is to use the inverse CD func-

tion at N predefined uniformly-spaced frequencies ωkT

corresponding to those of a length-N discrete Fourier

transform (DFT), i.e., ωkT = 2kπ
N

, k = 0, 1, . . . , N − 1. Then,

CD equalization is typically performed in the frequency

domain with a filter frequency response represented as

HFSM (k) = ejK (ωk T )2
, k = 0, 1, . . . , N − 1. Still, there exists

an underlying impulse response hFSM (n) where HFSM (k) =
∑N −1

n=0 hFSM (n)e−jnωk T , k = 0, 1, . . . , N − 1. This method

corresponds to the so-called FSM which has a low design com-

plexity. However, a drawback of FSM is that the CD is only (per-

fectly) equalized at N predefined uniformly-spaced frequencies

ωkT . In such methods, there is an exact control of the system be-

havior over these N predefined uniformly-spaced frequencies

ωkT . Between these frequencies, the behavior of the system

cannot be controlled. This is in contrast to our proposed method

which covers all frequencies through the integral in (6).

To illustrate this, let us revisit the example in

Section III-A3. In this case, we can optimize our proposed fil-

ters, as in (17). For FSM, we can obtain the underlying impulse

response hFSM (n) through the inverse DFT of HFSM (k). Then,

we can compute E, in (6), in the frequency band of interest.

With N = Nc = 31, our proposed method gives E = −220 dB

whereas the filter obtained by FSM gives E = −63 dB. As can

be seen, our proposed method gives a smaller E which then al-

lows Nc to be reduced to obtain the same BER performance as

that of FSM. Fig. 10 compares the simulated uncoded BER for

filters obtained by our proposed method and FSM in the exam-

ple of Section III-A3. As can be seen, with a simple modulation

Fig. 11. Simulated uncoded BER for QAM data in the example of

Section III-A3 with Ω2 = −Ω1 =
π (1+ ρ )

L
, L = 2, and ǫ = 10−14 .

format, like 4-QAM, both filters have a very good performance

although our proposed method needs fewer number of taps to

obtain the same BER as that of FSM. As discussed earlier, future

optical communication systems will move towards high-speed

traffic using high-spectral-efficiency modulation formats thus

necessitating efficient CD compensation filters. Fig. 11 com-

pares the simulated uncoded BER for filters obtained by our

proposed method and FSM where we have considered some

very high-spectral-efficiency modulation formats. As can be

seen, our proposed method (with fewer number of taps) has

clearly a better performance than FSM.

V. CONCLUSION

Optimal FIR digital filters, in the LS sense, for compensation

of CD were derived. For the same amount of CD, our proposed

filters outperform (especially for modulation formats having

high spectral-efficiencies) the exiting ones as they require fewer

taps giving a lower implementation cost and delay. Design ex-

amples were provided for illustration and comparison. It was

shown that considering the effects of pulse shaping filters, in

our proposed method, we can further reduce the implementa-

tion cost.
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