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Abstract

Purpose The aim of the current study was to evaluate the
relationship between the site of latest mechanical activation
as assessed with gated myocardial perfusion SPECT
(GMPS), left ventricular (LV) lead position and response
to cardiac resynchronization therapy (CRT).

Methods The patient population consisted of consecutive
patients with advanced heart failure in whom CRT was
currently indicated. Before implantation, 2-D echocardiog-
raphy and GMPS were performed. The echocardiography
was performed to assess LV end-systolic volume (LVESV),
LV end-diastolic volume (LVEDV) and LV ejection fraction
(LVEF). The site of latest mechanical activation was
assessed by phase analysis of GMPS studies and related
to LV lead position on fluoroscopy. Echocardiography was
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repeated after 6 months of CRT. CRT response was defined
as a decrease of >15% in LVESV.

Results Enrolled in the study were 90 patients (72% men,
67+10 years) with advanced heart failure. In 52 patients
(58%), the LV lead was positioned at the site of latest
mechanical activation (concordant), and in 38 patients
(42%) the LV lead was positioned outside the site of latest
mechanical activation (discordant). CRT response was
significantly more often documented in patients with a
concordant LV lead position than in patients with a
discordant LV lead position (79% vs. 26%, p<0.01). After
6 months, patients with a concordant LV lead position
showed significant improvement in LVEF, LVESV and
LVEDV (p<0.05), whereas patients with a discordant LV
lead position showed no significant improvement in these
variables.

Conclusion Patients with a concordant LV lead position
showed significant improvement in LV volumes and LV
systolic function, whereas patients with a discordant LV
lead position showed no significant improvements.

Keywords Site of latest mechanical activation-LV lead -
SPECT - Phase analysis - CRT

Introduction

Cardiac resynchronization therapy (CRT) is an established
therapeutic option for patients with drug-refractory advanced
heart failure and ventricular conduction delay [1, 2]. The
merits of CRT have been demonstrated in terms of morbidity
and mortality in several randomized clinical trials which
have currently included more than 4,000 patients diagnosed
with moderate-to-severe heart failure [3-6]. Even though
promising results have been reported, individual response to
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CRT varies with up to one-third of patients with heart failure
showing no response to CRT [5, 7].

Different mechanisms play an important role in the
response to CRT, such as preexisting mechanical dyssyn-
chrony, location and extent of scarred myocardium and the
position of the left ventricular (LV) pacing lead [7, 8]. The
region of LV pacing and the area of latest mechanical
activation, seem to be important factors in the prediction of
outcome to CRT [9-14]. To date, the LV pacing lead is
usually positioned in the lateral or posterolateral vein of the
coronary sinus, since the largest haemodynamic response is
observed when pacing the free lateral wall [9]. However,
recent studies have also demonstrated that the region of
latest mechanical activation may vary significantly in
patients eligible for CRT [10, 14—16]. In previous studies
using echocardiography patients with the LV lead posi-
tioned at the site of latest mechanical activation (concordant
LV lead) have shown a superior response to CRT when
compared to patients with the LV lead positioned outside
the area of latest mechanical activation (discordant LV lead)
[10, 14-16].

Phase analysis on gated myocardial perfusion single
photon emission computed tomography (SPECT) (GMPS)
has been developed to evaluate the presence and extent of
mechanical dyssynchrony using an automatic and standard-
ized approach [17, 18]. Recent developments have resulted
in an integrated evaluation of mechanical dyssynchrony, the
regional mechanical activation pattern and the site of latest
mechanical activation using the same SPECT dataset.
Hence, GMPS with phase analysis may provide important
information for assessment of optimal LV lead position in
patients referred for CRT. Currently, no study has been
performed evaluating the use of GMPS to assess the
preferred LV lead position. Moreover, the relationship
between the site of latest mechanical activation as derived
from GMPS, LV lead position and CRT response is
unknown. Accordingly, in the current study we sought to
evaluate the feasibility of GMPS for assessing the preferred
LV lead position. In addition, we also aimed to evaluate the
relationship between the site of latest mechanical activation,
LV lead position and CRT response in patients with CRT.

Materials and methods
Patient population and protocol

Patients with advanced drug-refractory heart failure (New
York Heart Association, NYHA, functional class II-1V),
reduced LV systolic function (LV ejection fraction, LVEF,
<35%), and prolonged QRS interval (=120 ms) and sinus
rhythm were consecutively included for implantation of a
CRT device [1, 2]. Patients with decompensated heart

failure, recent myocardial infarction (within 3 months of
CRT device implantation) or who died during 6 months of
follow-up were excluded. Ischaemic cardiomyopathy was
defined as the presence of >50% stenosis in one or more of the
major epicardial coronary arteries and/or previous myocardial
infarction or percutaneous coronary intervention.

Prior to CRT device implantation, resting GMPS with
99mTe-tetrofosmin and transthoracic 2-D echocardiography
were performed in all patients. Clinical status was evaluated
by assessment of NYHA functional class. Resting myocar-
dial perfusion imaging was performed to assess the
presence and extent of myocardial infarction, and phase
analyses of GMPS studies was used to assess the site of
latest mechanical activation. Resting transthoracic 2-D
echocardiography was performed to measure LVEF and
LV volumes. Additionally, speckle tracking radial strain
analysis on 2-D echocardiography was performed in a
subset of 50 patients to validate the assessment of the site of
latest mechanical activation as derived from GMPS studies.

After 6 months of CRT, assessment of clinical status and
resting 2-D transthoracic echocardiography was repeated.
Patients with a decrease of >15% in LV end-systolic volume
(LVESV) were classified as responders to CRT, whereas
patients without a decrease in LVESV (<15%) were classified
as nonresponders to CRT [19]. Consecutively, the relation-
ship between the site of latest mechanical activation on
GMPS, LV lead position and CRT response was evaluated.

Gated myocardial perfusion SPECT

Acquisition GMPS imaging with °*™Tc-tetrofosmin (500
MBq, MYOVIEW; General Electric Healthcare, UK) was
performed at rest using a triple-head SPECT camera system
(GCA 9300/HG; Toshiba Corporation, Tokyo, Japan)
equipped with low-energy high-resolution collimators. A
20% window was used around the 140-keV energy peak of
99MTe-tetrofosmin and 90 projections (step and shoot
method, 35 s/projection, 64x64 matrix, total imaging time
23 min) were obtained over a 360° circular orbit.
Acquisition involved 16 frames per cardiac cycle. Data
were reconstructed by filtered back projection and reor-
iented into long- and short-axis projections perpendicular to
the heart axis [20]. The short-axis slices were displayed in
polar map format and they were normalized to maximal
myocardial activity (100%). No attenuation correction was
used in this study. Two experienced observers who were
blinded to other study data evaluated the SPECT studies.
Cardiac segments with <50% tracer uptake were considered
as segments with a perfusion defect. The extent of
myocardial perfusion defects (<50% tracer uptake) was
expressed as the percentage of the myocardium. Consecu-
tively, reoriented gated short-axis images were submitted to
the Emory Cardiac Toolbox (Emory University, Atlanta,
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GA) for phase analysis processing. Phase analysis measure-
ments were performed at Emory University (blinded to
echocardiographic and clinical data).

Phase analysis Phase analysis of GMPS studies was used
to obtain the site of latest mechanical activation. Phase
analysis of GMPS studies is based on the partial-volume
effect wherein alterations in regional maximum counts are
relative to myocardial wall thickening [21, 22]. A 3-D
sampling algorithm is used to determine regional maximal
counts per cardiac frame and is used to generate count-
based wall thickening curves by approximation of first
Fourier harmonics function. The phase angle represents the
onset of mechanical activation per segment. The distribu-
tion of phase angles within the LV can be displayed in polar
map or histogram format and provides quantitative param-
eters of global LV dyssynchrony, histogram bandwidth
(includes 95% of the phase angles) and phase standard
deviation (SD, standard deviation of phase distribution)
[17, 18]. In addition, phase analysis provides information
on regional mechanical activation. For the current study, the
area of latest mechanical activation was determined on
GMPS studies using the six-segment model (septal, ante-
roseptal, anterior, lateral, posterior and inferior) [23].
Regions of interests (ROI) corresponding to the six-segment
model were automatically placed on the phase polar map as
shown in Fig. 1. Each ROI covered 45° and six short-axis
slices starting from the middle slice toward the base. As the
3-D sampling algorithm collected one sample for every 9°,
each ROI contained 5x6=30 samples. The mean phases of
the six segments were calculated by averaging the phases of
their 30 samples and then compared. The latest mechanically
activated segment had the largest phase angles.

The intra- and interobserver reproducibility of phase
analysis for assessment of the site of latest mechanical
activation was determined in a subset of 30 patients,
randomly selected from the patient population.

Fig. 1 The site of latest mechanical activation was assessed on GMPS
studies (b) and related to the LV lead position on fluoroscopy (a). a
LV lead positioned in the lateral cardiac region. b The region of latest
mechanical activation was automatically calculated using phase
analysis of GMPS studies. The region of latest mechanical activation
was located on the phase polar map using the six-segment model [23]
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Resting transthoracic echocardiography

Echocardiographic images were obtained with a commer-
cially available system (Vivid Seven, General Electric-
Vingmed, Milwaukee, WI) in patients in the left lateral
decubitus position. Data were acquired with a 3.5-MHz
transducer at a depth of 16 cm in the parasternal and apical
views (standard long- and short-axis, two- and four-
chamber images). Conventional 2-D images were obtained
during breath-hold and saved in cine-loop format from
three consecutive beats for off-line analysis (Echopac
version 7.0.0; General Electric-Vingmed, Milwaukee, WI).
From apical two- and four-chamber views, LVESV and LV
end-diastolic volume (LVEDV) along with LVEF were
measured using the biplane Simpson’s approach [24].
Mitral regurgitation was assessed semiquantitatively from
colour-flow Doppler images using the apical four-chamber
views. Severity was scored according to the following
scale: / mild jet area/left atrial area <20%), 2 moderate (jet
area/left atrial area 20-45%) and 3 severe (jet area/left atrial
area >45%) [25].

In 50 patients, the site of latest mechanical activation
was assessed using 2-D speckle tracking radial strain
analysis on baseline midventricular short-axis images.
Images were recorded at a frame rate of at least 30 frames
per second and time-frame curves were generated for six
cardiac segments (Echopac version 7.0.0; General Electric-
Vingmed, Milwaukee, WI) in a similar manner to the
GMPS studies. Finally, the time between QRS onset and
peak radial strain of the cardiac segments was used to
assess the site of latest mechanical activation [23].

CRT implantation

All leads were placed via the subclavian route and the right
atrial and ventricular leads were placed conventionally [26].
With the use of a balloon catheter, a sinus venogram was
obtained after occlusion of the coronary sinus. Subsequently,
the LV pacing lead was inserted with an 8F guiding catheter
into the coronary sinus, preferably in the lateral or postero-
lateral vein. The LV pacing lead was positioned by an
electrophysiologist who was blinded to other data. The V-V
interval was not adjusted during the first 6 months of CRT.

LV lead position and the site of latest activation

LV lead positions were determined by an independent
observer who was blinded to other data. The LV lead position
was assessed on biplane fluoroscopy (which was obtained
during the implantation procedure) using the left anterior
oblique (60°) and right anterior oblique (30°) views. For this
analysis, LV pacing leads that were positioned in the basal or
mid-region of the LV were included and LV leads positioned
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at the cardiac apex were excluded from further analysis. Using
the six-segment model [23], the LV lead positions were
scored as anterior, lateral, posterior or inferior. Subsequently,
the LV lead positions were related to the area of latest
activation (six-segment model) as assessed by phase analysis
of GMPS studies.

The LV lead position was considered concordant if the
lead was positioned at the area of latest activation, and was
considered discordant if the lead was positioned outside the
area of latest activation.

Intra- and interobserver reproducibility for assessment of
LV lead position was evaluated in a randomly selected
subset of 30 patients. To assess intraobserver reproducibil-
ity, the position of the LV lead on biplane fluoroscopy was
assessed twice by the same observer. To assess interob-
server reproducibility, a second blinded observer assessed
the LV lead position on biplane fluoroscopy.

Statistical analysis

Continuous data are presented as means+standard deviation
and categorical data are presented as numbers and percen-
tages. Differences in baseline characteristics between
patients with concordant and those with discordant LV lead
positions were evaluated with the unpaired Student’s ¢ test
(continuous data) and the chi-squared or Fisher’s exact tests
(categorical data). During follow-up, changes in continuous
data were evaluated using the paired Student’s ¢ test for
both study groups. Agreement between GMPS with phase
analysis and 2-D speckle tracking radial strain analysis for
assessment of the site of latest mechanical activation was
evaluated using Cohen’s kappa statistics, and k values were
categorized as poor (<0.40), moderate (0.40-0.75) or good
(>0.75) agreement. In addition, Cohen’s kappa statistics
were used to evaluate intra- and interobserver reproducibil-
ity for the assessment of the site of latest mechanical
activation using phase analysis in a subset of 30 randomly
selected patients. Similarly, Cohen’s kappa statistics were
used to evaluate the intra- and interobserver reproducibility
for assessment of the LV lead position on biplane
fluoroscopy in 30 randomly selected patients. All tests
were two-sided and for all analyses a p values of <0.05
were considered statistically significant. Statistical analyses
were performed with the SPSS software package, version
16.0 (SPSS, Chicago, IL).

Results

Patient population

A total of 95 consecutive patients were obtained from our
ongoing clinical heart failure registry, of whom 50 had

participated in previous work. Five patients were excluded
because of (1) apical LV lead position (n=3) or (2) cardiac
death during 6 months of follow-up (n=2). The baseline
characteristics of the 90 heart failure patients (72% men,
mean age 67+10 years) are listed in Table 1. The mean
NYHA functional class was 3.0+0.4. Of the 90 patients, 62
(69%) were diagnosed with ischaemic cardiomyopathy, and
28 (31%) had nonischaemic cardiomyopathy. Patients
showed reduced LV systolic function, with a mean LVEF
of 26+8%. The extent of the myocardial perfusion defect
was 26+16% on average. Medication consisted of diuretics
(90% of patients), angiotensin-converting enzyme inhib-
itors or angiotensin II antagonists (88% of patients) or beta-
blockers (69% of patients).

GMPS with phase analysis and LV lead position

The mean values of histogram bandwidth and phase SD were
139477° and 41+421°. The region of latest mechanical
activation as assessed with GMPS was located in the posterior
(42.2%)), lateral (23.3%), inferior (13.3%), anterior (15.6%),
anteroseptal (3%) and septal (2.3%) regions. Furthermore,
good agreement was found between GMPS and 2-D speckle
tracking radial strain analysis for assessment of the site of
latest mechanical activation (k =0.79, total agreement of

Table 1 Baseline characteristics of the patient population (2=90).
Data are presented as means+standard deviation or as numbers (%)

Characteristic Value
Age (years) 67+10
Male gender 65 (72%)
Ischaemic heart failure 62 (69%)
NYHA functional class 3.0+0.4
QRS duration (ms) 161+£36
Echocardiographic parameters

LVEDV (ml) 214+64

LVESV (ml) 160+57

LVEF (%) 26+8
Scintigraphic parameters

Perfusion defect in LV pacing region 17 (19%)

Extent of perfusion defect (%) 26£16

Histogram bandwidth (°) 139477

Phase SD (°) 41421
Medication

Diuretics 81 (90%)

Angiotensin-converting enzyme 79 (88%)

inhibitors/angiotensin II antagonists

Beta-blockers 62 (69%)

Spironolactone 40 (44%)

Statins 55 (61%)
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86%). Good intraobserver (k=0.96, total agreement of 93%)
and interobserver (k=0.92, total agreement of 87%)
reproducibility of the phase analysis was observed for
assessment of the site of latest mechanical activation. CRT
device and LV lead implantation were successful in all
patients without major complications. The LV pacing lead
was positioned in the lateral (44.4% of patients), posterior
(50.0% of patients) or anterior (5.6% of patients) regions.
Good intraobserver (k=0.82, total agreement of 90%) and
interobserver (k=0.76, total agreement of 87%) reproduc-
ibility for assessment of LV lead position on fluoroscopy
was observed. LV lead position was concordant in 52
patients (58%) and discordant in 38 (42%), as shown in
Table 2. No significant differences were observed in
demographic, clinical or echocardiographic variables
between patients with concordant or discordant LV lead
position. In addition, no differences were found for
histogram bandwidth and phase SD between the two
groups. Patients with concordant and discordant LV lead
positions showed no significant differences in perfusion
defects located in the LV pacing region (13% vs. 26%, p=
NS). Additionally, no differences were found between
patients with concordant and discordant LV lead positions
in the extent of myocardial perfusion defects (22.9+14.1%
vs. 29.3+18.1%, p=NS). The extent of myocardial
perfusion defects was significantly smaller in patients
with a CRT response than in those without a CRT response

Table 2 Baseline characteristics of patients with concordant and
discordant LV lead positions. Data are presented as means+standard
deviation or as numbers (%)

Baseline Concordant LV~ Discordant LV p
characteristics lead position lead position value
(n=52) (n=38)

Age (years) 68+10 66£11 0.5

Male gender 37 (711%) 28 (74%) 0.8

Ischaemic heart failure 38 (73%) 24 (63%) 0.4

NYHA functional class 3.0£0.4 3.0£0.4 1.0

QRS duration (ms) 168+35 153+33 0.1

LVEDV (ml) 214467 213462 1.0

LVESV (ml) 16057 161457 0.9

LVEF (%) 2748 26+8 0.7

Mitral regurgitation 19 37%) 19 (50%) 0.2
(moderate/severe)

Histogram bandwidth (°)  126+67 157486 0.1

Phase SD (°) 38420 45421 0.1

Perfusion defect LV 7 (13%) 10 (26%) 0.2
pacing region

Extent of perfusion 23+14 29+18 0.1
defect (%)

CRT response after 41 (79%) 10 (26%) <0.01

6 months
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(21.1+£12.3% vs. 31.6+18.7%, p<0.05). Furthermore, the
percentage of CRT responders was significantly higher
among patients with a concordant LV lead position than
among those with a discordant LV lead position (79% vs.
26%, p<0.01). Patient examples with a concordant and a
discordant LV lead position are shown in Fig. 2. Of note,
11 patients with a concordant LV lead position showed no
response to CRT after 6 months. Of these patients, seven
showed severe perfusion defects at the region of LV
pacing.

Baseline and 6 months follow-up

The total patient population showed a significant improve-
ment in NYHA functional class from 3.0+0.4 to 2.5+0.7
(»<0.05). In addition, patients showed a significant
improvement in echocardiographic variables, including
LVESV (160£57 ml vs. 137455 ml, p<0.05), LVEDV
(214+64 ml vs. 197464 ml, p<0.05) and LVEF (26+8%
vs. 32+11%, p<0.05). After 6 months of CRT, patients
with a concordant LV lead position showed significant
improvement in LVESV (159457 ml vs. 125£54 ml, p<
0.05), LVEDV (214£67 ml vs. 188+£62 ml, p<0.05) and
LVEF (27+8% vs. 35+12%, p<0.05), as illustrated in
Fig. 3. Additionally, an improvement in NYHA functional
class was observed in patients with a concordant LV lead
position (3.0+0.4 vs. 2.3+0.7, p<0.05). However, patients
with a discordant LV lead position showed no improve-
ment in NYHA functional class (3.0+0.4 vs. 2.7+0.7, p=
NS). In addition, LVESV (161+57 ml vs. 15353 ml, p=
NS), LVEDV (213+£62 ml vs. 210£65 ml, p=NS) and
LVEF (26+8% vs. 28+9%, p=NS) showed no significant
improvement after 6 months of CRT in patients with a
discordant LV lead position, as shown in Fig. 3.

Discussion

The main findings of this study can be summarized as
follows: patients with a concordant LV lead position
showed significant LV reverse remodelling and improve-
ment in LV systolic function, whereas patients with a
discordant LV lead position showed no significant improve-
ments. Accordingly, GMPS with phase analysis is a feasible
technique to identify the preferred LV lead position in
patients referred for CRT.

The rationale for CRT is based on improving the
intrinsic electrical ventricular conductance by pacing the
ventricles in a synchronized manner [1, 2]. To optimize
synchronicity of the LV contraction, the LV pacing lead
should be targeted at the region of latest mechanical
activation [9—13]. It is important to note that the region of
latest mechanical activation may vary significantly in
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Frequeney (%)

Fig. 2 Area of latest mechanical activation as assessed by phase
analysis of GMPS studies. a LV lead positioned at the area of latest
activation (concordant LV lead position). The area of latest activation
Is located in the lateral segment. The patient showed a significant
improvement in LVESV (139 ml vs. 86 ml) and LVEF (32% vs. 44%)

patients with heart failure, with the posterolateral region as
the most common site of latest activation [10, 14—16]. The
study by Becker et al. [16] determined the effect of LV lead
position on reverse remodelling and LV function as
assessed by echocardiography in 47 patients with heart
failure and found that the site of latest mechanical
activation differed significantly among the patients. The
site of latest mechanical activation was predominantly
located in the posterolateral region of the ventricle (60%
of patients). Likewise, the current study showed that the

A 50, N

40

o
o

LVEF (%)

»
i

o

Discordant
LV lead position

Concordant
LV lead position

Fig. 3 Response to CRT in patients with concordant (n=52) and
discordant (n=38) LV lead positions. Baseline (white bars) and 6-
month follow-up (black bars) echocardiographic measurements are
shown. a Patients with a concordant LV lead position showed
significant improvement in LVEF (27£8% vs. 35+12%, p<0.05),
and patients with a discordant LV lead position showed no significant

B 300-

LV ESV (mL)

180 225 270

f contraction (degrees)

180 225
contraction (degrees)

270

after 6 months of CRT. b LV lead positioned outside the area of latest
activation (discordant LV lead position). The area of latest activation
is located in the anterior segment, whereas the LV lead is positioned in
the posterior segment. The patient showed no improvement in LVESV
(124 ml vs. 153 ml) or LVEF (27% vs. 22%) after 6 months of CRT

posterolateral cardiac segments were the most common site
of latest mechanical activation (66% of patients).
Additionally, the relationship between LV lead position,
the site of mechanical delay and CRT outcome has been
evaluated in several studies [9—-16]. An important study was
performed by Becker et al. [16] who evaluated the efficacy
of CRT in patients with optimal (n=28) or suboptimal (n=
19) LV lead position. The position of the LV lead was
considered optimal if it was concordant with (one segment
or less between the LV pacing region and the segment with

2501

n
[=3
o

-
(4.
o

-
(=3
o

(4.
o

Discordant
LV lead position

Concordant
LV lead position

improvement in LVEF (26+8% vs. 2849%, p=NS). b Patients with a
concordant LV lead position showed significant improvement in
LVESV (159457 ml vs. 125454 ml, p<0.05), whereas patients with a
discordant LV lead position showed no significant improvement in
LVESV (161£57 ml vs. 153+£53 ml, p=NS)
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latest mechanical activation) the cardiac segment showing
the latest mechanical contraction. Circumferential strain
analysis on echocardiography was used to assess the site of
delayed mechanical activation. After 10 months of follow-
up, patients with an optimal LV lead position showed a
significantly greater decrease in LVESV and LVEDV as
well as a significant improvement in LVEF, as compared to
patients with a suboptimal LV lead position (all, p<0.01).

Recently, Ypenburg et al. [14] evaluated 6-month
echocardiographic response to CRT as well as long-term
outcome in patients with concordant (n=153) and discor-
dant LV lead (n=91) position. Speckle tracking radial strain
analysis on 2-D echocardiography was used to determine
the region of latest mechanical delay. After 6 months of
CRT, patients with a concordant LV lead position showed a
significant decrease in LV volumes as well as a significant
improvement in LVEF as compared to patients with a
discordant LV lead position (all, p<0.01). Importantly, a
concordant LV lead position was an independent predictor
of combined endpoint of hospitalization and all-cause
mortality. Similarly, the current study demonstrated that
patients with a concordant LV lead position showed greater
improvement in LVEF after 6 months of CRT (27+8% vs.
35+12%, p<0.05) than patients with a discordant LV lead
position (26+8% vs. 28+9%, p=NS). Additionally, consid-
erable reverse remodelling, as reflected by a significant
decrease in LVESV and LVEDV, was observed in patients
with the LV lead positioned at the site of latest activation as
derived from GMPS with phase analysis. The findings
demonstrate that CRT response is related to LV lead
position and the region of latest mechanical contraction.
More specifically, these observations support the hypothesis
that resynchronization of the LV, induced by pacing at the
region of latest mechanical activation, exerts positive
effects on ventricular geometry and function.

Of interest, a small number of patients with the LV lead
placed outside the region of latest activation responded
positively to CRT. In these patients, the distance between
the region of latest activation and the LV lead position (as
reflected by the number of cardiac segments in between)
was minimal (up to two cardiac segments). As a conse-
quence, the contraction pattern may have become less
dyssynchronous in these patients. Additionally, 11 patients
(21%) did not show a response to CRT despite the fact that
the LV lead was positioned at the latest activated area. This
observation may be explained by the fact that extensive
perfusion defects were located at or near the site of latest
mechanical activation in this subset of patients. It has been
demonstrated that the extent and location of scarred
myocardium play an important role in response to CRT
[26-28]. Bleeker et al. [26] performed an important study
evaluating the effect of posterolateral scar tissue on
response to CRT in 40 consecutive patients with advanced
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heart failure. The study showed that patients with postero-
lateral scar tissue on MRI showed a significantly lower
response rate than patients without posterolateral scar tissue
(14% vs. 81%, p<0.05). Similarly, the current study
demonstrated that severe perfusion defects at or adjacent
to the region of latest mechanical activation were associated
with lack of response to CRT. Patients with a concordant
LV lead position but with severe perfusion defects at the
region of LV pacing showed no response to CRT.
Furthermore, the study showed that the extent of myocar-
dial perfusion defects was significantly smaller in patients
with response to CRT than in patients with no response to
CRT. Accordingly, location and extent of scarred myocar-
dium play an important role in the likelihood of response to
CRT.

At present, a lack of response to CRT has been
associated with an absence of preexisting mechanical
dyssynchrony, location and extent of scarred myocardium
(particularly at the LV pacing region) and a suboptimal LV
lead position [7, 8, 26-28]. For this reason, phase analysis
of GMPS studies has attracted increasing interest for the
evaluation of CRT patients as it allows an integrated
evaluation of mechanical dyssynchrony, regional activation
pattern and myocardial infarction [17, 18]. More specifi-
cally, the presence of infarcted myocardium at or adjacent
to the region of maximal mechanical delay can be evaluated
using SPECT datasets. Accordingly, phase analysis of
GMPS studies is a feasible technique to identify the
preferred LV lead position.

At present, different noninvasive imaging techniques are
available for the evaluation of patients referred for CRT,
including echocardiography, MRI as well as nuclear
imaging. A comprehensive evaluation of patients with
CRT can be performed by each of these imaging techniques
as they provide information on preexisting LV mechanical
dyssynchrony, the presence and location of myocardial
infarction as well as the site of latest mechanical activation.
As they all provide useful information, the choice of one of
these techniques is eventually determined by local expertise
and availability.

Some study limitations need to be acknowledged. First,
the study findings were based on a relatively small number
of patients who were referred for CRT. The current study,
however, was only a feasibility study evaluating the role of
phase analysis of GMPS studies in the assessment of
optimal LV lead position in patients with advanced heart
failure. The novelty of the present study relates to the
evaluation of response to CRT in patients with concordant
and discordant LV lead position as assessed by phase
analysis of GMPS studies. A second limitation is the fact
that long-term effects of CRT on mortality and/or morbidity
rates were not reported in the current study as the patient
population was too small for long-term outcome analysis.
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Conclusion

Patients with a concordant LV lead position showed signifi-
cant improvement in LV volumes and LV systolic function,
whereas patients with a discordant LV lead position showed
no significant improvement in LV volumes or LV systolic
function. Accordingly, phase analysis of GMPS studies is a
feasible technique that can be used to identify the preferred LV
lead position in patients referred for CRT.
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