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OPTIMAL LINEAR EXTENSIONS

BY INTERCHANGING CHAINS

IVAN RIVAL

Abstract. For a finite ordered set P how can a linear extension L = Cx ® C2

© • • • © C„, be constructed which minimizes the number m of chains C, of PI While

this question remains largely unanswered we show that a natural "greedy" algorithm

is actually optimal for a far wider class of ordered sets than was hitherto suspected.

The most fundamental and yet far-reaching results in the theory of ordered sets

are the following:

(R. P. Dilworth [1950]) In a finite ordered set P, the minimum number of disjoint

chains whose set union is all of P equals the maximum number of pairwise noncompara-

ble elements of P.

(E. Szpilrajn [1930]) Every ordered set has a linear extension.

Let C,, C2,...,Cm be any minimum family of disjoint chains of a finite ordered set

P whose set union is P. The linear sum C, © C2 © • • • © Cm of these chains need not

be a linear extension of P. On the other hand, any linear extension L of a finite

ordered set P can be expressed as the linear sum C, © C2 © • • • © Cm of chains C, in

P (so chosen that sup^C, ^ infPCi+x for each i) and, while Uf=1 C, = P, this family

of chains need not be the minimum number whose set union is P (see Figure 1).

How can these two fundamental results about ordered sets be reconciled? Indeed,

until recently there seemed little reason even to consider such a question.

Figure 1

Suppose we are to schedule a set of jobs for processing, one at a time, by a single

machine. Precedence constraints, due perhaps to technological dictates, prohibit the

start of certain jobs until certain other jobs are already completed. A job which is

performed immediately after a job which is not constrained to precede it requires a
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"setup"—entailing some additional cost. We consider the simplest variation:

"schedule the jobs to minimize the number of setups". In the language of ordered

sets this is commonly rendered as follows. Let P be a finite ordered set and let t(P)

stand for all of its linear extensions. For L E t(P) let s(P, L) count the number of

pairs (a, b) of elements a, b of P such that a covers b in L (that is, a > x > b implies

x = b), and a $* b in P. Each such pair (a, b) is called a setup of L. Put

s(P) = min{s(P, L)\LEt(P)}

the setup number of P (see Figure 2). The problem is this: Construct L E £(P) for

which s(P, L) — s(P). It is considered in several recent articles (cf. G. Chaty and M.

Chein [1979], M. Chein and M. Habib [1980], O. Cogis and M. Habib [1979], D.

Duffus, I. Rival, and P. M. Winkler [1982], G. Gierz and W. Poguntke [1982], M.

Habib [1981], W. R. Pulleyblank [1982]). The purpose of this note is to prove that a

natural "greedy" linear extension is actually optimal for a far wider class of ordered

sets than was hitherto suspected.

L-1 L2 L3 L4 L5

s(N,L,)=2 î(N,L2)=2s(N,Lj)=2 s(N,L4)=3 s(N,L5)=1

Figure 2

Theorem. Let P be a finite ordered set. Then, for any greedy linear extension L of P,

s(P) = s(P, L) whenever P is N-free.

N stands for the ordered set illustrated in Figure 2; that is, N = [a, b, c, d)

subject to a < c, d < c, d < b, a «£ b, b <fc c, d <£ a (see also Figure 3(d)). The

"diagrams" of the ordered sets illustrated in Figure 3 should clarify just when an

ordered set is "N-free": each of the ordered sets (a), (c), (e), (g) is N-free while none

of (b), (d), (f) is. An ordered set P is called IS-free if it contains no cover-preserving

subset isomorphic to N. Examples of N-free ordered sets abound. For instance, any

series-parallel ordered set is N-free. A reason for this is that a series-parallel ordered

set contains no subset isomorphic to N at all (cf. J. Valdes [1978], J. Valdes, R. E.

Tarjan and E. L. Lawler [1982], W. R. Pulleyblank [1982]). So, for example, the

ordered set in Figure 3(e) is N-free although it is not series-parallel. The series-paral-

lel character of an ordered set P is determined by examining the directed compara-

bility graph of P for N's while the N-free character of P is determined by examining

its directed covering graph (that is, its diagram) for N's. But N-free ordered sets

constitute a much wider class of ordered sets than series-parallel ordered sets. For

instance, while every subset of a series-parallel ordered set must itself be series-paral-

lel, every finite ordered set can be embedded in an N-free ordered set!
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(a)

The other ingredient of our theorem is a "greedy" linear extension. Loosely

speaking, this is any linear extension constructed as follows. Choose ax E P maximal

such that C, = {x E P \ x < ax) is a chain in P; choose a2 E P — C, maximal such

that C2 = {x E P — C, | x < a2) is a chain in P — Cx; in general, choose a, S P —

Uj<iCj maximal such that C,■ = {x E P — U<(Cy|jc < a,} is a chain in P —

Uj^Cj. Eventually P = LT=1 C] for some m and L = C, © C2 © • ■ • © Cm is a

linear extension of P. For example, for the ordered set N, as illustrated in Figure 2,

each of the linear extensions Lx, L2, L5 is greedy, while neither L3 nor L4 is. A linear

extension L of P is a greedy linear extension if, for some m,L = Cx © C2 © ■ ■ • ffi Cm,

where each C; is a chain in P, each supPC, ^ infPC,+1, and for each i and for any

x E P with suppC, < x in P, there is a _y G U™=/+1 Cy such that ^ < x in P. (For

each i and any linear extension L' of P with initial segment / = Cx ffi C2 © • • • © C¡,

(supL. /, infL,(P — /)) is a setup of L'.) O. Cogis and M. Habib [1979] have observed

that, for any series-parallel ordered set P and any greedy linear extension L of P,

s(P) = s(P, L). Actually, for any finite ordered set P there is a greedy linear

extension L of P satisfying s(P) = s(P, L). For some ordered sets greedy linear

extensions are far from "optimal": the setup number for the direct product of the

two-element chain with an n — element chain is 1, yet there is a greedy linear

extension with n — 1 setups. For some ordered sets there are "optimal" linear

extensions which are not greedy (see Figure 4). On the other hand there are ordered

sets P for which s(P) — s(P, L) for every greedy linear extension, yet P is not N-free

(see Figure 5) (cf. O. Cogis [1982]).

5(P)=s(P,L1) = 5(P,L2) but L1 is

not a greedy linear extension.

Figure 4 Figure 5

A final remark will be made before we get to the proof of the theorem. There are

several scheduling problems for which efficient algorithms are known provided the

precedence constraints satisfy certain special conditions. The most common such

condition is series-parallel. Insofar as the class of N-free ordered sets constitutes a

far broader class than the class of series-parallel ordered sets, and insofar as the
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greedy linear extension is efficient and optimal for each N-free ordered set—at least

for the setup number problem—it may be that efficient algorithms for some other

scheduling problems will work even for N-free ordered sets. The efficiency of

algorithms for series-parallel ordered sets is usually linked to the simple decomposi-

tion rules associated with "series" and "parallel" constructions. While there seems

to be no obvious analogue of these constructions for N-free ordered sets it may be

worth recalling this result of P. Grillet [1969]: a finite ordered set is N-free if and

only if each maximal chain intersects each maximal antichain (cf. B. Leclerc and B.

Monjardet [1973]).

The proof. Here is our approach. Let L0—{xx<x2< ■ ■ ■ < xn} be any optimal

linear extension of P; that is, s(P, L0) = s(P). Let Lg — {yx <y2 < ■ • ■ <y„} be

any greedy linear extension of P. Let i be the least index such that y, =£ x¡; put

a = x¡. Then for some k > i, yk = a. Let b = yk_x. If a > b in P then, for some

r < i, xr = b — yk_x and, as k — 1 > i > r, xr ^yr which contradicts the assump-

tion that xr = yr for each r = 1,2,...,/— 1. Therefore a ^ b in P and (a, b) is a

setup of Lg. Now, let A — [a = yk <yk+x < ■ ■ ■ <y¡} be a chain of P and of Lg

and maximal such that b •£ y¡ in P. Dually, let B — [b — yk_, > yk_2 > • • • >yj)

be a chain of P and of Lg and maximal such that a ^ >>y in P. Set

Lg(a/b) = {yx<y2< ■••<#-,} © A © B ® {yl+x <yl+2 < ■■■<y„},

a "chain interchange" of Lg (cf. Figure 6). Then Lg(a/b) satisfies these conditions:

(i) Lg(a/b) is a greedy linear extension of P;

(Ü) s(P, LJa/b)} = s(P, LA

a=yk

2

yj-1

l1

Lg (a/b)

a = Xj

x2

M

.... L

Figure 6
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Also, once we relabel Lg(a/b) = [wx < w2 < ■ ■ ■ < wn] then a = wk, for i < k' < k.

This means that a sequence of "chain interchanges" will transform Lg into L'g — {zx

< z2 < • • • < zn) for which the least index s such that zs ¥= xs is strictly greater than

/. It follows that a sequence of "chain interchanges" will transform Lg into L0 and,

in view of (ii), s(P, Lg) — s(P, L0) = s(P), which is our claim.

It will be convenient to use some additional abbreviations. Let a, b E P and let

L E £(P). If a > b in P we can also write a > b(P) and so if a ^ b in P but a > b

in L we write a 4* b(P) and a > b(L). For a covers b we write a > b, as is the

custom. Let N(P) stand for the set of all cover-preserving N's in P with the

additional convention that members of N(P) are written as ordered four-tuples

(a, c, d, b), where a < c(P), c > d(P), d < b(P), a <£ b(P), b <£ c(P), d <£ a(P)

(cf. Figure 2).

The idea which inspired our theorem is contained in this lemma.

N-Lemma. Let P be a finite ordered set, let a, b E P, and let L E £(P) such that

a > b(L) but a ^ b(P). Then either there is an L' E £(P) satisfying a < b(L') and

s(P, L') < i(P, L) or else (a', c, d, b') E N(P) for some a =£ a' < c and b> b' > d.

Proof. Let A be a chain in P n L with least element a and maximal so that x E A

implies x 3p b(P). Let B be a chain in P n L with greatest element b and maximal so

that y E B implies y =£ a(P). If we write Las£>©P©,4©C then we construct

L' = D®A®B®C.

Is L' E £(P)? If not, there must be x E A and y E B such that x > y(P). In this

case let

c — infP{x E A \x >y(P) somej G B)    and    d ~ supP{y E B\y < c(P)}.

According to the construction of A and B, c > a(P) and d < b(P). If c > z > d(P)

then, according to the construction of c,z G A. But then z E B and, according to the

construction of d, z — d. This shows that c > d(P). Let a' E A satisfy a' < c(L)

and let b' E B satisfy d < b'(L). Then (a',c, d, b') G N(P).

Let us suppose then that L' E £(P). Is s(P, L') «= s(P, L)? To analyse this let

a' > supL^(L) and let b' < infLB(L). Then, apart from the setup (infLP, supL^)

in L' (which corresponds to the setup (a, b) in L) the only possible setups in L',

which can be different from those in L, are (a', b) and (a, b'). Suppose a' $> b(P)

but a' > supL A(P). From the construction of A, it must be that a' > b(P). It

follows that if (a', b) is a setup in L' then (a', supLA) is a setup in L. Similarly, if

(a, b') is a setup in L' then (infL B, b') is a setup in L. Therefore, s(P, L') < s(P, L).

D

Suppose L is a linear extension of an ordered set P and (a, b) is a setup of L. If

there is no (a', c, d, b') E N(P), where a < a' < c(P) and b> b' > d(P), then the

linear extension L' constructed in the N-lemma is said to be obtained from L by

interchanging chains; we denote it by L(a/b). (Such a linear extension L(a/b), if it

exists, is uniquely determined by the setup (a, b).) According to the N-lemma

s(P, L(a/b)) < s(P, L) and, actually, this inequality can be strict. For example, the
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linear extension L3 of N illustrated in Figure 2 has the setup (b, c). L5 is obtained

from L3 by interchanging chains (Ls = L3(b/c)) and j(N, L5) < s(N, L3). However,

L3 is not a greedy linear extension of N!

Lemma 2. Let P be a finite ordered set and let L be a greedy linear extension of P.

Let a > b(L) but a $> b(P) and let L(a/b) E £(P) be obtained from L by interchang-

ing chains. Then either s(P, L(a/b)) = s(P, L) or else (b, a', c, c') E N(P) where

a' > supL A(L) and a < c < c' < supL A(P).

Proof. Let us write L = C, ffi C2 ffi • • • © Cm where each C, is a chain in P and

each suppCj ^ infPCi+x(P). Suppose s(P, L(a/b)) < s(P, L). From the construc-

tion in the N-lemma this means that either (a', supL A) is a setup in L, where

a' > supL A(L) and a' > b(P), or else (infLB, b') is a setup in L, where infLB >

b'(L) and a > b'(P).

Suppose first that (a', supL A) is a setup in L and a' > ¿?(P). As L is a greedy

linear extension and a' > b = sup¿ C,(P) for some /, there must be c < a'(P) such

that c G U «¡,-Cy. Then c E A. Also, c < supL A(L) (since c = supL^4 implies c •£

a'(P)). Then it is easy to verify that (b, a', c, c') E N(P) where c < c' « sup¿ /1(P).

Suppose now that (infL P, ¿?') is a setup in L and a > b'(P). (Note that this is not

excluded on grounds of duality because greedy linear extension is not a self-dual

concept.) As L is a greedy linear extension and b' = supL Ck •£ inf¿ B(L), for some

k, there must be y < a(P) such that y G UJttk Cj. Then y E B, which, however, is

impossible in view of the construction of B for L(a/b).    D

Lemma 3. Let P be a finite, IS-free ordered set. If L is a greedy linear extension of P

and (a, b) is a setup in L then the linear extension L(a/b) obtained from L by

interchanging chains is greedy.

Proof. Again we express the linear extensions L and L(a/b) as linear sums of

chains in P, that is,

L = CX®C2® • • • © Cm

where each C, is a chain in P and each supP C, =£ infP C,+ ,(P) and

L(a/b) = CX®C2® ---ffiQ

where each C[ is a chain in P and each supPC,' ^ infPC¡+x(P). (Note that

s(P, L(a/b)) — s(P, L) is a consequence of Lemma 2.) Suppose now that L(a/b) is

not a greedy linear extension. Then, for some /, and for some v E P — Uj^Cj,

v > supPC'j(P) and each x < v(P) satisfies x E UJ<t CJ.

Suppose supP C¡ < b'(L(a/b)) where b' < infL B(L). Then, according to the

construction of L(a/b), CJ — Cj for each j = 1,2,...,/. This is impossible, though,

since L is a greedy linear extension. Therefore supPC¡ > b'(L(a/b)).

Suppose suppC'i — b'. Then a ^> b'(P) although, of course, a > b'(L(a/b)). As

s(P, L(a/b)) = s(P, L), infLP 4> b'(P) although infLB > b'(L). This implies that

C[ — C, again, and this too contradicts the choice of L as a greedy linear extension.

Then supP C/ > b'(L(a/b)).
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Suppose supPC[ = supLA. Then as L is a greedy linear extension a' > supL A(P)

where a' > supLA(L). As s(P, L(a/b)) = s(P, L) this means that a' > b(P). Now,

v ¥= a' and v ^ b(P) (Right?). Then (b, a', sup¿ A, v) E N(P) which is impossible.

Suppose then that supPC- > supLA(L(a/b)). Again, supPC- > b(L(a/b))

violates the assumption that L is a greedy linear extension. So there remains the case

that suppC/ = b. Then a' > b(L(a/b)) but a' %■ b(P) where a' > supLA(L). As

s(P, L(a/b)) = s(P, L), a' +• sup¿/l(P). Now v^a'(L) and as L is a greedy

linear extension there is x < v(P) such that x *j: ¿?(L) although x < b(L(a/b)).

Therefore, jcGjL If x<sup¿^4(P) then (b, v, x, c) E N(P) where x -< c <

supL A(P). Otherwise, x = supLA. As L is a greedy linear extension there must be

x' < v(P) such that x' > sup¿ /1(L) although, by assumption x' E U «., CJ.    D

The proof of the theorem is now an immediate consequence of the N-lemma and

Lemma 3.

ôd      d<

P L1 L2

Figure 7

Two final remarks are in order. The first is that for a finite, N-free ordered set

every optimal linear extension must be greedy. This follows from Lemma 3. As we

have observed earlier (cf. Figure 4) this is not true of an arbitrary finite ordered set.

The next remark is concerned with the potential use of this procedure of

interchanging chains. For a finite, N-free ordered set any "optimal" linear extension

can be obtained from any other "optimal" linear extension by a sequence of linear

extensions each constructed by interchanging chains. This is no longer true for an

arbtrary finite ordered set. For the ordered set P in Figure 7 both Lx and L2 are

optimal linear extensions: s(P, Lx) = s(P, L2) — s(P) = 2. Still neither L, nor L2

can be constructed from the other by any sequence of linear extensions each

constructed by interchanging chains. Nonetheless, at this writing there is no counter-

example to this conjecture. For any finite ordered set P and any L E £(P) there is an

integer k and a sequence of linear extensions L = Lx, L2,...,Lk such that each L¿ is

obtained from L,_, by interchanging chains and s(P, L) = s(P, Lx)> s(P, L2)^>

■>s(P,Lk) = s(P).
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