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Abstract

We study optimal liquidity trading in a framework where trade size has a price impact. A liquidity

trader wishes to trade a Þxed number of shares within a certain time horizon and to minimize the

mean and variance of the costs of trading. Explicit formulas for the optimal trading strategies show

that risk-averse liquidity traders reduce their order sizes over time and execute a higher fraction

of their total trading volume in early periods when price volatility increases or price sensitivity

decreases. In the presence of transaction fees, numerical simulations suggest that traders want to

trade more frequently when price volatility or price sensitivity goes up. In the multi-asset case,

price effects across assets have a substantial impact on trading behavior, as does continuous-time

trading.



What is the optimal trading sequence of a person who wishes to buy (or sell) a certain portfolio

within a certain time, and knows how trades affect prices? Bertsimas and Lo (1998) show that to

minimize the expected costs of trading a Þxed number of shares, a trader should split his orders

evenly over time. They introduce an autocorrelated news process and consider different price

processes to study how the even-split result changes in a risk-neutral world. We extend Bertsimas

and Lo in several other directions by allowing risk aversion, nonstationary price-impact functions,

transaction fees, and continuous trading. We focus exclusively on linear price-impact functions

following Huberman and Stanzl (2000), who argue that in the absence of arbitrage opportunities,

price-impact functions are linear.

The trader wishes to minimize the mean and variance of total trading costs. A time-consistent

solution of this optimization problem exists and is unique if arbitrage opportunities are ruled out.

The most important feature is that the optimal trades are independent of past random shocks such

as the arrival of new information. If the price-impact function is stationary, trade sizes decline over

time. The comparative statics show that lower aversion to risk, lower price volatility, and higher

sensitivity of price changes to trade size all lead to less aggressive initial trading, i.e., to more

evenly distributed trade sizes. If price-impact functions are not stationary, more aggressive trading

is desired when price sensitivity is lower.

In practice, multiple assets are traded simultaneously. In this case, the traded volume of one

asset presumably affects not only its own price but also the prices of other assets. To account for

cross-price impacts, we extend the analysis to allow for trading a portfolio of securities and derive

dynamic trading rules that describe how to optimally rebalance a portfolio.

If the time between trades shrinks to zero, the discrete-time solution of the liquidity trader�s

problem with risk aversion does not exhibit a well-deÞned continuous-time limit: the trader would

like to trade with inÞnite speed in the beginning, for he only cares about the variance of his trading
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costs when the time between trades is small. However, by incorporating an additional temporary

price impact we obtain a well-behaved convergence of the discrete-time solution to its continuous-

time limit.

Another modiÞcation that allows continuous-time modeling is the incorporation of a Þxed per-

transaction fee. In the absence of transaction costs, a trader who could select the frequency of

his transactions would trade continuously. In the presence of Þxed per-transaction costs, a higher

price volatility or higher price sensitivity with respect to trade size increases the optimal trading

frequency. When the trader transacts more often, he can submit smaller orders in each period,

which lessens the total impact of his trades on the prices. In addition, the more frequent the

transactions, the smaller is the price volatility between trades.

An alternative to the mean-variance minimization is the objective to minimize the mean and the

total (quadratic) variation of the trading costs over time. In this case, the trader cares more about

the instantaneous volatilities of the costs accumulated over the whole trading horizon than only

about the volatility of the total trading costs. Traders who face cash constraints during trading

may prefer this objective to the mean-variance minimization. We prove, however, that the optimal

trading strategy has similar qualitative properties as the mean-variance optimal trading strategy.

The remainder of this paper is structured as follows. The liquidity trader�s minimization prob-

lem is introduced in Section 1, together with examples of speculative and insider trading that boil

down to liquidity trading when the number of shares in the portfolio is Þxed. Section 2 estab-

lishes the existence and uniqueness of the liquidity trader�s optimization problem and discusses the

properties of the optimal trading behavior. Section 3 examines portfolio trading. Section 4 studies

the optimal trading frequency in the presence of Þxed transaction costs. Section 5 investigates

the convergence behavior of the discrete-time solutions and Section 6 generalizes the discrete-time

framework to continuous time. Section 7 contains concluding remarks. All proofs are in the Ap-
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pendix.

1 The Optimization Problem

Consider a market in which a single asset is traded over N periods. At each period, traders submit

their orders simultaneously, and the price change from one period to the next depends on the

aggregate excess demand. (Presumably, there is a market maker outside the model who absorbs

this excess demand.) Orders are placed before the price change is known. Only market orders are

considered.

From the perspective of an individual trader, the total trading volume at time n is given by

qn + ηn, where qn denotes the trader�s order size and ηn is a random variable representing the

unknown volume of the others. (Negative quantities are sales.) We assume that {ηn}∞n=1 is an i.i.d.

stochastic process with zero mean and Þnite variance σ2η, deÞned on the probability space (Ω,F ,ϕ).

The initial price of the asset at time n, �pn, which is observed by each trader before choosing

his quantity qn, is the last price update computed after the trades in the previous period n − 1.

Given the initial price, an individual trader faces the transaction price pn = �pn + λn(qn + ηn),

where the real number λn > 0 measures the price sensitivity with respect to trading volume.

Hence, a trader expects to pay (�pn + λnqn)qn if he wants to buy the quantity qn. After all trades

have been executed at time n, the new price update for the next period is calculated according to

�pn+1 = α�pn + (1− α)pn + εn+1, where 0 ≤ α ≤ 1 and εn+1 incorporates news into the price.

The updating weight α determines the size of the price updates. The lower the α, the stronger

is the impact. If α = 0, expected price updates and transaction prices coincide, and the price

dynamics reduce to

pn = pn−1 + λn(qn + ηn) + εn. (1)
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Trade size has only a temporary price impact if α = 1. The stochastic process {εn}∞n=1, deÞned on

(Ω,F ,ϕ), is i.i.d. with zero mean and variance σ2ε, and it is independent of {ηn}∞n=1. Note that the

zero-mean assumptions are not made for convenience; if one of the two stochastic processes exhibited

a nonzero mean, then arbitrage opportunities as discussed in Huberman and Stanzl (2000) would

arise.

To deÞne the information set of an individual trader we introduce the vector

Hn , [{qj}n−1j=1 , {εj}nj=1, {ηj}n−1j=1 ]
T containing the variables known to the trader before he submits

his order in period n, and the sigma-algebra σ(Hn) that it generates. Then, the set M(Hn) of all

σ(Hn)-measurable functions thus comprises all information available to the trader before his trade

at time n. Note that unlike ηn, the trader does know the news εn. Furthermore, the trader can

only choose a trading strategy qn that is an element ofM(Hn). This setup should best capture real

trading activity where the latest news is known before submitting an order, while others� trades

are not.

To make later references easier, the price dynamics are summarized by

�pn = α�pn−1 + (1− α)pn−1 + εn (2)

pn = �pn + λn(qn + ηn),

for n ≥ 1 and given an initial price p0 = �p0 > 0, with the special case (1) when α = 0.

The liquidity trader�s optimization problem, then, can be formulated as

L(Q) , inf
{qn∈M(Hn)}Nn=1

E[
NX
n=1

pnqn] +
R

2
V ar[

NX
n=1

pnqn] (3)

subject to
NX
n=1

qn = Q and (2),
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where Q > 0 (Q < 0) denotes the number of shares he wants to buy (sell) and R ≥ 0 is the

risk-aversion coefficient. Expectation and variance are evaluated at time 0 before any of the ran-

dom price elements are realized. The liquidity trader, aware of the price impact of his trades

summarized in (2), minimizes the mean and variance of the total trading costs that must be

incurred to enlarge (reduce) his portfolio by Q shares. Note that the Þrst line in (3) reads

sup{qn∈M(Hn)}Nn=1 −E[
PN
n=1 pnqn] − R

2 V ar[
PN
n=1 pnqn] for the seller, i.e., he maximizes revenues

from trading minus its variance. We will refer to E[
PN
n=1 pnqn] +

R
2 V ar[

PN
n=1 pnqn] as the loss

function, with (q1, . . . , qN) being the argument of this function.

Problem (3) can also be employed to study speculative or insider trading as in the Kyle (1985)

framework provided the total trading volume is Þxed or announced before trading (e.g., a new

S.E.C. rule on insider trading stipulates that potential insiders have to announce their trades

before they actually trade and that they are obliged to commit to their announced trades). A

speculator (insider) believes (knows) that eventually the security will trade at a price v, and tries

to proÞt from the discrepancy between that eventual price and the prices at which he can trade

over the next N periods. Assume that in each period the Þnal price, v, becomes public information

with probability 1 − ρ and that prices stay constant at v thereafter (in Kyle (1985), ρ = 1 and

the equilibrium price process is given by (1)). Further, no updates on v are made during trading.

Buying qn at price pn thus yields a proÞt of E[ρn(v − pn)qn]. The objective is therefore

π(Q) , sup
{qn∈M(Hn)}Nn=1

E[
NX
n=1

ρn(v − pn)qn] (4)

subject to
NX
n=1

qn = Q and (2).

Since the revelation of the value v is assumed to be independent of all random price elements in

(2), E[
PN
n=1 ρ

n(v−pn)qn] = Eρ[
PN
n=1(v−pn)qn] holds after an appropriate change of the probability
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measure (Eρ is the expectation with respect to this measure). Hence, π(Q) = supE[
PN
n=1 ρ

n(v −

pn)qn] subject to
PN
n=1 qn = Q is equivalent to L(Q) = inf Eρ[

PN
n=1 pnqn] subject to

PN
n=1 qn = Q,

and π(Q) = vQ− L(Q). But this is, apart from the underlying probability measure, the liquidity

trader�s minimization problem in (3) if R = 0. Hence, speculators or insiders who Þx the number

of shares they trade are risk-neutral liquidity traders.

2 Minimizing the Mean and Variance

of the Trading Costs

This section formulates a recursive version of the problem in (3), provides proofs for the existence

and uniqueness of the solution, and presents explicit formulas for the optimal trading policy. The

optimal trading path is independent of the resolution of uncertainty, and the traded amounts decline

with time. To provide the basic intuition, we begin with a stripped-down version of (3), with α = 0

and two periods. The focus is only on the buyer�s problem, because the seller�s problem is similar.

2.1 The Two-Period Problem

With the price process pn = pn−1 + λn(qn + ηn) + εn, n = 1, 2, the costs of trading q1 in period 1

and q2 = Q− q1 in period 2 amount to

C2 = [p0 + λ1(q1 + η1) + ε1]q1

+[p0 + λ1(q1 + η1) + λ2(Q− q1 + η2) + ε1 + ε2](Q− q1). (5)

The pair (q1, q2) that minimizes E[C2] + R
2 V ar[C2] is
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q1 =
2λ2 − λ1 +R(λ22σ2η + σ2ε)
2λ2 +R(λ

2
2σ
2
η + σ

2
ε)

Q, (6)

q2 =
λ1

2λ2 +R(λ
2
2σ
2
η + σ

2
ε)
Q.

The stochastic term ε1 is a sunk cost by the time the Þrst (and only) decision is made, and therefore

does not affect the optimal trades in (6).

To understand how optimal trading is affected by risk aversion, set λ1 = λ2 = λ for the moment.

Then, q1 = q2 = Q/2 if R = 0, i.e., the risk-neutral trader splits his total quantity evenly across

the two periods. These amounts are not optimal for a risk-averse trader, because the marginal loss

at these quantities is −1/2R(λ2σ2η + σ2ε)Q < 0. In other words, the risk-averse trader is willing to

incur higher expected costs in return for a lower variance. In fact, he always wants to equate the

marginal change in the expected value of the trading costs, λ(2q1 −Q), to the marginal change in

its variance weighted with the coefficient R, R(λ2σ2η + σ
2
ε)(Q− q1). Thus, optimality requires that

q1 > q2 and that a buyer purchases shares in each period. (Note that the trader chooses q1 = Q if

he aims at minimizing the variance only.)

The ratio q1/q2 = 2λ2/λ1 − 1 + R(λ22σ2η + σ2ε)/λ1 enables us to perform comparative statics.

The optimal trade size at time 1 increases when λ1 decreases, or when λ2, R, σ2η, or σ
2
ε rises. Hence

the trader purchases less in price-sensitive periods and shifts his trading volume in the Þrst period

when price volatility or the level of risk aversion goes up.

2.2 Existence and Uniqueness of Optimal Trading

To solve problem (3) we deÞne a recursive version of (3) and apply dynamic programming arguments

to Þnd a time-consistent solution. Again, we consider here only α = 0; the Appendix tackles the
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more general case 0 ≤ α ≤ 1.

The state at time n consists of the price �pn−1 , pn−1+ εn which is to be paid for zero quantity,

and Qn, the number of shares that remain to be bought. The control variable at time n is qn, the

number of shares purchased in period n. Randomness is represented by the εk�s (n+ 1 ≤ k ≤ N)

and the ηk�s (n ≤ k ≤ N). The objective is the weighted sum of the expectation and variance of

the trading costs, and the law of motion is governed by (1) and the following state equations which

describe the dynamics of the remaining number of shares to be purchased:

Q1 = Q, Qn+1 = Qn − qn, and QN+1 = 0 (7)

for 1 ≤ n ≤ N . Note that Q1 = Q and QN+1 = 0 represent the restriction that Q shares must be

traded within the next N periods.

Since the objective function in (3) is not additive-separable, it is not obvious at Þrst sight

whether there exists an equivalent dynamic program for (3). (A dynamic program is equivalent to

(3) if it produces the same solutions as (3).) In what follows, we show that an equivalent dynamic

program indeed exists. Consider

Ln(�pn−1, Qn) = inf
qn∈M(Hn)

En[pnqn + Ln+1(�pn,Qn+1)]

+
R

2
V arn[pnqn + Ln+1(�pn,Qn+1)] (8)

subject to (1) and (7). En and V arn denote the conditional expectation and variance in period

n. Beginning at the end in period N and applying the recursive equation above and the price-

impact curve (1) and (7), the functional equation can be solved backwards as a function of the

state variables. The procedure ends when we reach the Þrst period in which we know the whole
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optimal trading sequence and the value of its loss.

The equivalence of (3) and (8) can be demonstrated by looking at the case N = 3, where the

main ideas of the proof can be illustrated. (For the general case consult the Appendix.) Let us begin

by solving the recursive problem in (8). In the last period the trader has no choice but trading the

amount q3 = Q3 = Q−q1−q2. Further, his loss is given by L3(�p2,Q3) = (�p2+λ3Q3)Q3+ Rσ2η
2 λ

2
3Q

2
3

because uncertainty, represented by ε3, has been resolved before the order Q3 is submitted. In the

second period, the trader faces the loss function

L2(�p1, Q2) = min
q2
E2[p2q2 + L3(�p2,Q3)] +

R

2
V ar2[p2q2 +L3(�p2, Q3)] (9)

which he minimizes with respect to q2. It is not hard to verify that the optimal qDP2 satisÞes

[2λ3 +R(λ
2
3σ
2
η + σ

2
ε)]q

DP
2 − [2λ3 − λ2 +R(λ23σ2η + σ2ε)]Q2 = 0. (10)

Note that qDP2 does not explicitly depend on the random shock ε2. History only enters through

Q2, the remaining shares to be traded. This fact can be interpreted as follows. The total costs of

trading in periods 2 and 3 can be written as the difference between p3Q2, the costs of buying all

the remaining shares in the last period, and (p3 − p2)q2, the �cost savings� of trading at time 2

(p3 ≥ p2 always holds). From (1), however, it follows that the conditional expectation and variance

of the price differential, p3− p2, are not a function of ε2, and that Q2ε2 is the only term contained

in E2[p3Q2] and V ar2[p3Q2] that includes ε2. Therefore, the shock ε2 has no impact on the optimal

qDP2 .

Finally, at time 1, the liquidity trader computes L1(�p0,Q) = minq1 E1[p1q1 + L2(�p1, Q− q1)] +
R
2 V ar1[p1q1 + L2(�p1,Q− q1)] where all uncertainty is captured by the terms η1 and ε2, which are
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contained in p1q1 and L2(�p1,Q− q1). The optimal qDP1 is obtained from

(2D +Rσ2ε)q1 − (2D − λ1 +Rσ2ε)Q = 0, (11)

where

D , λ2
"
4λ3 − λ2 + 2R(λ23σ2η + σ2ε)
2[2λ3 +R(λ

2
3σ
2
η + σ

2
ε)]

+
R

2
λ2σ

2
η

#
.

The same decomposition argument used to explain that qDP2 is independent of ε2 can be applied

to verify that qDP1 is not affected by ε1. Furthermore, the residual trades enter the optimal solution

only through their variance, because they are unknown before orders are submitted and have a zero

conditional mean. Thus, the whole optimal trading sequence, {qDPn }3n=1, is deterministic. Observe

that this is also true for any arbitrary N > 3 (see Propositions 2, 3, and 4 below). Consequently,

the variance formula (50) in the Appendix can be used to derive

Ln(�pn−1, Qn) = min
{qj}3j=n

En[
NX
j=n

pjqj ] +
R

2
V arn[

NX
j=n

pjqj ] for n = 1, 2, (12)

proving that {qDPn }3n=1 constitutes a time-consistent solution to (3).

On the other hand, a time-consistent solution to (3), {q∗n}3n=1, satisÞes

q∗2 = argminq2 E2[
P3
n=2 pnqn]+

R
2 V ar2[

P3
n=2 pnqn], which implies q

∗
2 = q

DP
2 andminq2 E[

P3
n=2 pnqn]+

R
2 V ar[

P3
n=2 pnqn] = L2(�p1, Q2). Thus, from q∗1 = argminq1 E1[

P3
n=1 pnqn] +

R
2 V ar1[

P3
n=1 pnqn] it

follows that q∗1 = qDP1 and that the value of the minimal loss induced by q∗1 coincides with L1(�p0, Q).

Hence, we conclude the equivalence between (3) and (8) for the case N = 3, and that, due to (10)

and (11), the solution must be unique.

The question of the existence of a solution to (3) and (8) is closely related to whether arbitrage

as studied in Huberman and Stanzl (2000) is possible. In an environment like here, where prices are
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unknown when trades are submitted, Huberman and Stanzl require expected costs, E[
PN
n=1 pnqn],

to be nonnegative for any N when
PN
n=1 qn = 0 to rule out arbitrage. They show that the price

process (1) is arbitrage-free if and only if the matrices

ΛN ,



2λ2 λ2 λ2 . . . λ2

λ2 2λ3 λ3 . . . λ3

λ2 λ3 2λ4 . . . λ4

...
...

...
. . .

...

λ2 λ3 λ4 . . . 2λN


(13)

are positive semideÞnite for all N ∈N.

Now, the existence of a solution to (3) and (8) is guaranteed by (1) being arbitrage-free whenever

traders are risk-averse. In the case of risk neutrality, a slightly stronger condition is needed to ensure

the existence of a solution. The proposition below, which is a special case of Corollary 2 in the

Appendix, documents these facts.

Proposition 1 Suppose one of the following conditions is met:

i. R > 0 (trader is risk-averse) and the price process (1) is arbitrage-free or

ii. R = 0 (trader is risk-neutral) and the matrices {ΛN}∞N=1 are all positive deÞnite.

Then, the liquidity trader�s problem (3) has a unique, time-consistent solution for all N ∈ N

that can be derived by solving the dynamic programming problem in (8).

To give an example of arbitrage-free Λn�s where (3) is inextricable in the case R = 0, consider

N = 3, Q > 0, λ1 = λ2, and λn = λ2/4 for n ≥ 3. Expected costs become

C3(q2, q3) = λ1[q
2
2 +

q23
4
+ q2q3 −Q(q2 + q3)]
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due to the constraint
P3
n=1 qn = Q. Clearly, all {Λn}n≥2 are all positive semideÞnite, but C3

attains no minimum on R2, even though it is bounded from below.

Obviously, if the price-impact slopes are constant and positive, then the ΛN �s are positive deÞ-

nite. Thus, according to Proposition 1, a solution to the liquidity trader�s problem exists, regardless

of the trader�s type. If the λn�s change over time, the ΛN �s have to be evaluated numerically to

apply Proposition 1. Huberman and Stanzl (2000) derive a recursive formula for the determinant of

ΛN that can be used for this computational evaluation. Note that empirical studies imply varying

price-impact slopes (for example, see Chordia et al.).

2.3 Optimal Trading Behavior

Having established the equivalence between (3) and the corresponding dynamic program, we turn

now to the optimal solution itself. If α = 0 and the price-impact function is time-stationary, i.e.,

the λn�s are constant, then the solution to (3) is summarized as follows:

Proposition 2 If the price-impact sequence is constant, then the optimal trading quantities of a

risk-averse trader are given by

qn = D
³
A+r

N−2−n
+ −A−rN−2−n−

´
Q (14)

for 1 ≤ n ≤ N − 1, and

qN = Dλ
2 (r+ − r−)Q

where

r± , 1+
σ

2λ

h
Rσ ±

p
R(4λ+Rσ2)

i
, (15)

A± , [λ2 + 3λRσ2 +R2σ4]r± − λ(λ+Rσ2),
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D−1 , rN−3+ − 1
1− r− A+ − r

N−3
− − 1
1− r+ A− +

¡
3λ+Rσ2

¢ ¡
λ+Rσ2

¢
(r+ − r−) > 0,

and σ2 , λ2σ2η + σ
2
ε. All quantities are strictly positive and the sequence of trades is strictly

decreasing. If R = 0, then qn =
Q
N for 1 ≤ n ≤ N.

Therefore, it is optimal for a buyer to purchase shares in each period. The intuition behind

declining trade size is as in the two-period example. Due to the price dynamics (1), the variance

of the trading costs at time n depends only on the remaining shares to be traded, Qn − qn, and is

increasing in Qn − qn. Given the risk-averse utility, the variance that is produced by distributing

trades evenly across time is too high. Thus, the risk-averse trader wants to reduce the variance by

submitting a larger order in period n than in n+ 1. The formulas in (14) and (15) also show that

the optimal trades are not directly a function of the ηn�s and the εn�s, a property explained in the

three-period example above.

To illustrate the shape of the solution to (3) given in Proposition 2, we conduct some numerical

analysis. Figures 1-3 show the form and the basic comparative-static properties of the formulas.

In the simulations we divide a trading day into 30-minute intervals to get 13 trading periods (the

NYSE is open from 9:30am to 4:00pm). The amount to be traded is 100,000 shares and the

initial price of the Þnancial asset is $40. A reasonable value for λ is 0.00001 (see Hausman et al.

(1992) or Kempf and Korn (1999)); if 1,000 shares are traded, then the price moves by one cent

(provided that the price is measured in dollars). The range for the risk-aversion coefficient, R, is

assumed to be between zero and Þve percent. Randomness is quantiÞed by the magnitudes of the

variances of the news revelation and the residual trades, which are set at one percent and 1,000

shares, respectively. The graphs below show that the trajectory of the optimal trades is typically

a geometrically decreasing function of n.
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Figure 1a computes the sequence of optimal trades for different values of the risk-aversion factor.

The horizontal line (at 7692 =100,000/13) shows the strategy of a risk-neutral trader. As can be

seen from this Þgure, higher risk aversion causes the trades to be shifted to early periods. For

example, if R = 0.01, then almost all of the 100,000 shares are bought in the Þrst two periods. The

smaller R becomes, the more closely it approaches the risk-neutral horizontal. The sensitivity of

trades to R is also reßected in the price changes. Figure 1b illustrates that volatility varies more

in the early periods when trading strategies differ signiÞcantly for different levels of R.

Figures 2a and 2b look at the reaction of optimal trades to various levels of the variance σ2ε.

Like larger values of R, a higher σ2ε causes traders to redistribute their trades from later to earlier

periods (Figure 2a). The change in price is very sensitive to the level of σ2ε (Figure 2b). Besides

the direct effect of variance on the price dynamics, it also alters the optimal trades. This further

increases the price ßuctuation. Different levels of σ2η show the same effect; a numerical illustration

is therefore omitted here.

Figures 3a and 3b consider different values of λ (price sensitivity to trading volume). The higher

the λ, the smaller are the orders in the Þrst periods (Figure 3a). When λ is big, large trades in the

beginning of trading would drive up prices too much, so that the succeeding purchases would take

place at too high a price. Figure 3b demonstrates the sensitivity of price changes to different levels

of λ.

If the price slopes, λn, are time-dependent, then one cannot derive a closed-form solution to

(3), but at least a recursive solution can be obtained by solving the dynamic program in (8).

Proposition 3 For an integer N > 0, let ΛN in (13) be positive semideÞnite if R > 0 and positive

deÞnite if R = 0. The optimal trading sequence of (3) is given by

qn =

·
1− λn

2µn+1 +Rσ
2
ε

¸
Qn (16)
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for 1 ≤ n ≤ N − 1, and

qN = QN

where

µn = λn

·
1+

R

2
λnσ

2
η −

λn
2(2µn+1 +Rσ

2
ε)

¸
(17)

with initial condition

µN = λN(1+
R

2
λNσ

2
η),

and the Qn�s satisfy (7). The minimal loss evolves according to

Ln(�pn−1,Qn) = �pn−1Qn + µnQ
2
n (18)

for 1 ≤ n ≤ N , and L(Q) = E[L1(�p0,Q)].

Figure 4 demonstrates that nonincreasing optimal trades like in Proposition 2 need no longer

occur. Again the simulations are for a whole trading day and with λn constant but at different

levels for even and odd periods. In odd periods where the slope is higher, fewer shares are traded

than in even periods. Note that if the price slopes in odd periods are increased sufficiently, a

buyer will even sell in these periods (not shown in Figure 4). Other than these two differences, the

qualitative properties of the solution given in Proposition 3 is the same as that in Proposition 2; a

further discussion of the recursive solution is thus unnecessary.

2.4 Trading under a Price Rule with Convex Updating

The focus of this subsection is on (3) with a positive updating weight α in (2). In this case, the

transaction price is higher than the price update after a trade, i.e., trades also have a temporary

price impact.
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Consider the two-period problem with λ1 = λ2 = λ. Trading costs are given by

C2 = [p0 + λ(q1 + η1) + (1− α)ε1]q1

+[p1 + λ(Q− q1 + η2)− αλ(q1 + η1) + (1− α)ε2](Q− q1).

Minimizing the loss function L(C2) = E[C2] +
R
2 V ar[C2] yields the ratio of the unique optimal

solution

q1
q2
= 1+

R(1− α)2(λ2σ2η + σ2ε)
(1+ α)λ+Rαλ2σ2η

. (19)

The effect of α on the optimal trades is now easily seen from (19). More trading is postponed to the

second period when α increases, with the right-hand side of (19) decreasing in α. This is because

the variance of the trading costs is declining in α. However, q1 ≥ q2 always.

The previous analysis follows through. In particular, analogues of Propositions 1, 2, and 3 can be

derived, although with more complicated expressions (see Theorem 1, Proposition 9, and Corollary

2 in the Appendix). Since the results are qualitatively the same, only the analogue of Proposition

3 is presented here. For convenience, we will use the more general deÞnition �pn , pn+(1−α)εn+1.

Proposition 4 Under an arbitrage-free price process (2) (case R > 0), or for positive deÞnite

{ΛαN}∞N=1 as deÞned in (47) (case R = 0), the optimal trades are

qn =

"
1− λn(1+ α+Rαλnσ

2
η)

ξn

#
Qn (20)

for 1 ≤ n ≤ N − 1, and

qN = QN
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where the Qn�s obey (7) and Q0 , 0,

µn =
2µn+1 − 2α(1+ α)λn +R(1− α)2σ2ε

ξn

R

2
λ2nσ

2
η

+λn

·
1+ α− (1+ α)

2λn
2ξn

¸
(21)

for 1 ≤ n ≤ N − 1, with

µN = αλN−1 + λN(1+
R

2
αλNσ

2
η),

and

ξn = 2µn+1 +R
£
α2λ2nσ

2
η + (1− α)2σ2ε

¤
for 1 ≤ n ≤ N − 1. The minimal loss is given by

Ln(�pn−1,Qn−1, ηn−1) = [�pn−1 − αλn−1(Qn−1 + ηn−1)]Qn + µnQ2n, (22)

1 ≤ n ≤ N , η0 , 0. If R = 0 and all λn�s are constant, then qn = Q
N for all n.

Note that Proposition 4 boils down to Proposition 3 when α = 0. In addition, as in the case

α = 0, the optimal trades depend on the history only through the deterministic state variables Qn.

Past random shocks do not enter the formulas.

Figures 5a and 5b depict numerical evaluations for these equations. With the numbers from the

original example in the section above: Q = 100, 000, p0 = 40, λ = 10−5, and R = 0.01. Figure 5a

shows the optimal trading sequence for different levels of the updating weight α, including the case

α = 0. As the Þgure illustrates, higher α�s postpone trading to later periods. The result for the

two-period example is thus conÞrmed by the general case. Trading volume appears to be sensitive

to the updating weight. The bigger α gets, the ßatter becomes the trading curve. In the limiting
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case where α = 1 and volume has a temporary but not a permanent effect on the price, trades are

split evenly across all periods. The reason is clear: since today�s quantity has no impact on future

prices, the optimal trading policy must require that the same be done in each period. Figure 5b

shows the corresponding price ßuctuations.

3 Portfolio Trading

In most applications, portfolio managers trade whole portfolios. In fact, in many cases they merely

rebalance a portfolio and the aggregate value of their purchases is approximately equal to the

aggregate value of their sales. To examine optimal portfolio trading we extend the setup in a

straightforward manner. Individuals are now allowed to trade a portfolio of at most M ≥ 1

securities. Prices, trades, and the stochastic variables in (2) and (3) then become M-dimensional

vectors. Note that although the ηn�s are i.i.d., the components of ηn can be intratemporally

correlated; the same applies to εn. We consider here only α = 0, where trades have only a permanent

price impact. The price-impact slopes λn are replaced by M ×M , positive deÞnite matrices Φn

that incorporate all prices and cross-price impacts. The price dynamics are thus described by

pn = pn−1 +Φn(qn + ηn) + εn, (23)

and the liquidity trader�s problem (3) reads

L(Q) , inf
{qn∈M(Hn)}Nn=1

E[
NX
n=1

pTnqn] +
R

2
V ar[

NX
n=1

pTnqn] (24)

subject to
NX
n=1

qn = Q ∈RM and (23).
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The vector Q summarizes the number of shares to be traded for each asset. It can include both

purchases and sales. The covariance matrices of εn and ηn are Σε and Ση, respectively, and IM×M

is the M ×M identity matrix.

Similar to the single-asset case, sufficient conditions for the existence of a time-consistent solu-

tion to (24) can be found; the solution is unique when it exists and can be obtained by solving the

dynamic program in (8). For the risk-averse case, the absence of arbitrage guarantees the existence

of a solution, while a more technical condition is required for the risk-neutral case, whose details

are not presented here.

Proposition 5 The optimal trading sequence of (24) (if a solution exists) is

qn =
£
IM×M − (2Ψn+1 +RΣε)−1Φn

¤
Qn (25)

for 1 ≤ n ≤ N − 1, and

qN = QN

where

Ψn = Φn

·
IM×M +

R

2
ΣηΦn − 1

2
(2Ψn+1 +RΣε)

−1Φn
¸

(26)

with initial condition

ΨN = ΦN(IM×M +
R

2
ΦNΣη),

and the Qn�s satisfy (7). The minimal loss evolves according to

Ln(�pn−1,Qn) = �pTn−1Qn +Q
T
nΨnQn (27)

for 1 ≤ n ≤ N , and L(Q) = E[L1(�p0,Q)].
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Again, as for the single-asset case, the optimal trades are a deterministic function of the history.

Evidently, the optimal trading strategy for one security depends on the parameters and state

variables of all the other securities, unless the Φn�s and the covariance matrices are all diagonal.

Diagonal Φn�s mean that trading one asset has no impact on the prices of the other assets, and

diagonal covariance matrices imply that the stochastic terms are uncorrelated.

If the price-impact matrix in (23) is time-stationary, any sequence of N portfolio trades can be

replicated by splitting the individual amounts of the assets in the portfolio over MN periods with

no change in the expected trading costs. For example, if the price-impact matrix is also diagonal,

then trading the portfolio (Q1N ,
Q2
N , . . . ,

QM
N ) in each period minimizes expected costs. The same

costs would be incurred by trading Q1
N in each of the Þrst N periods, Q2N in each of the next N

periods, ..., and QM
N in each of the last N periods. Hence, a risk-neutral trader will be indifferent

between portfolio trading and trading the assets individually if he has MN periods. It is only the

time constraint that induces him to prefer portfolios. A risk-averse trader, on the contrary, has in

addition a time preference (more trades imply higher volatility of the costs) which makes portfolio

trading even more favorable.

The formulas (25)-(27) can be conveniently used to do comparative statics to assess how the

sign and the magnitude of the cross-price impacts affect the optimal portfolios and what optimal

portfolio rebalancing looks like if the number of shares to be bought and sold changes. We do not

present numerical simulations here, but only note that risk aversion causes trades to diminish over

time for each individual security, as in the single-asset case.

4 Optimal Frequency of Trades

With Þxed, positive transaction costs, the frequency of trades emerges endogenously. For simplicity,

assume that the price-impact sequence, λn, is constant and set α = 0, and consider only a single
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asset. Calendar time is a Þxed number τ and trades are equally spaced in time. Hence, if the trader

chooses to transact N times, the time between trades is τ/N .

The arrival of news (represented by {εn}∞n=1) and other people�s trades (represented by {ηn}∞n=1)

are both i.i.d. processes. Their per-unit-of-time variances over the whole trading intervals are σ2ητ

and σ2ετ , respectively. Therefore, the per-interval variances, σ
2
η(N) and σ

2
ε(N), satisfy σ

2
η(N) =

τσ2ητ/N and σ2ε(N) = τσ
2
ετ/N .

The risk-aversion coefficient, however, is not assumed to change with the trading frequency.

The trader�s dislike of price volatility is independent of how short the time between trades is. This

is a reasonable premise, since the declining variance per period already decreases the risk part of

the trader�s utility function, taking into account the desired effect that volatility matters less to

the trader if the time between trading becomes smaller.

When the trader has to pay a Þxed fee for each of his orders, not only does he decide on the

quantity but also on how often he trades within a certain time interval. Without Þxed costs the

trader would always want to trade at any instant in time. This is because total costs are decreasing

in the number of trades, as veriÞed below.

The loss function L1(N), originally given by (18), is now an explicit function of N , the number

of transactions. Moreover, the per-transaction fee is k > 0; thus, the total loss is the sum of the

losses induced by the variable trading costs and the total Þxed costs, kN .

For the risk-neutral trader the loss function takes a simple expression, namely L1(N) =
NP
n=1
(�p0+

λnQN )
Q
N + kN = �p0Q + λ

N+1
2N Q2 + kN . The unique optimal solution for this problem is N∗ =q

λQ2

2k . Hence, the optimal frequency of trades increases in Q and λ, and decreases in k. The more

sensitive the price reaction to trades (the higher the λ), the more often the trader chooses to trade.

For the risk-averse case, the loss function is considerably more complicated. The difference

equation given in (17) is a Riccati equation when all λn�s are constant. By solving (17) (see (55)
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in the Appendix), we obtain a closed-form expression for the total loss L1(N,
λ2σ2ητ+σ

2
ετ

N/τ ), namely,

kN + �p0Q

+
λ

2

"2 +Rλ σ2ητ
N/τ

#
−
r+(N,

λ2σ2ητ+σ
2
ετ

N/τ )2N−1 − r+(N, λ
2σ2ητ+σ

2
ετ

N/τ )

r+(N,
λ2σ2ητ+σ

2
ετ

N/τ )2N − 1

Q2 (28)

where r+ is deÞned in Proposition 2. Both r+ and L1 are functions of N as well as of the total

variance,
λ2σ2ητ+σ

2
ετ

N/τ .

It is easily checked that the third term in (28) is decreasing in N and that it tends to λ
2 as

N →∞. It can then be seen that (28) cannot be minimized with respect to N unless k > 0 (Þxed

costs are introduced).

The Þrst-order condition of minimizing the loss function with respect to the number of trades

renders

d

dN

Rλ σ2ητ
N/τ

−
r+(N,

λ2σ2ητ+σ
2
ετ

N/τ )2N−1 − r+(N, λ
2σ2ητ+σ

2
ετ

N/τ )

r+(N,
λ2σ2ητ+σ

2
ετ

N/τ )2N − 1

 ≥ − 2k

λQ2
(29)

This inequality is met by an appropriate N unless k is too small. If this inequality holds for all N ,

then the loss function is increasing in N , implying that trading once is optimal. On the other hand,

if there exists a number N such that the left-hand side of (29) is strictly smaller than the right-hand

side, then there exists a number N∗ that equates the two sides. This follows from the smoothness

of all functions involved in (29) and the mean-value theorem. It can therefore be concluded that a

solution to the loss-minimization problem above always exists when the transaction fee k is large

enough.

However, the uniqueness of the solution cannot be determined. Depending on the parameters

there can be multiple solutions. Only if R is small enough is the loss function strictly convex,

providing a global minimum. In general, we have to take a stance on numerical values for the
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parameters to evaluate the Þrst- and second-order conditions. The Appendix contains the details

of the numerical analysis. We summarize here only the main Þndings.

First, for all the computations Þnd local convexity of the loss function for the periods under

consideration, thereby ensuring a local unique solution for the risk-averse trader. This suggests

numerical analysis to be a powerful practical tool to determine the optimal number of trades.

Second, the optimal frequency of trades is increasing in the level of risk aversion. The more the

trader dislikes volatility, the more often he wants to split his orders: smaller trades move the price

less and a higher frequency of trades reduces the price volatility between trades. Third, the optimal

frequency also goes up when the price sensitivity rises. If the price-volume elasticity is large, the

trader wishes to submit smaller orders in each period, resulting in a higher trading frequency.

5 Convergence Behavior

This section asks where the discrete-time solution of (3) converges when the time between trades

tends to zero. We prove that the discrete solution does not have a well-deÞned continuous-time limit

when trades have only a permanent and time-stationary price impact. Only when a temporary price

impact of trades is introduced, does the discrete-time solution have a proper limit in continuous

time. However, the main challenge of going to continuous time is to Þnd a reasonable deÞnition

of the trading costs. We address this issue in the next section and propose how continuous-time

liquidity trading can be approached in a more general context.

At the start, some new terminology must be introduced. To make continuous-time variables

clearly distinguishable from discrete-time ones, we denote the former with a tilde, while the latter

keep their notation from the previous sections. In this sense, �Qt represents the remaining shares

to be traded at continuous time t, and −d �Qtdt is the rate of trading. More precisely, �Qt is assumed

to be a continuously differentiable function from [0, τ ]×Ω to R with boundary values �Q0 = Q and
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�Qτ = 0. The set of all these functions shall be denoted by Θ[0,τ ](Q). For convenience, only the

single-asset case is tackled here; the extension to the multi-asset case is straightforward. Moreover,

α in (2) is set to zero throughout.

We now study the limiting behavior of the solution to (3). If bxc denotes the smallest integer

greater or equal to x, then the asymptotics of the optimal trades given in Proposition 2 is as follows:

Corollary 1 Suppose that the price-impact sequence is constant. Letting N →∞ gives

qb t
τ
Nc → 0 for R ≥ 0, and

qb t
τ
Nc

τ/N
→∞ for R > 0, for all t ∈ [0, τ ].

In the risk-neutral case, R = 0, we trivially have
qb tτ Nc
τ/N = Q

τ for all N ∈N and t ∈ [0, τ ].

Hence, optimal behavior requires the trading sequence to converge to zero if the number of

trading opportunities increases to inÞnity, what ever the risk type of the trader. In contrast, the

difference between the trade pattern of a risk-neutral trader and that of a risk-averse one becomes

more pronounced when N goes up. While the trade size per unit of time stays constant throughout

for the risk-neutral case, it rises without bound in the case of risk aversion.

This result suggests that in the limit the risk-averse trader only cares about the volatility of

trading costs. The mean of trading costs does not matter, because continuous trading allows the

trader to split his trades in such tiny pieces that the total price impact is a Þxed number. To

see that this is so, consider the loss function l(CN) , E[CN ] + R
2 V ar[CN ] with the trading costs

CN =
PN
n=1 pnqn. Due to the price dynamics in (1) this loss function is

l(CN) = p0Q+ λ
NX
n=1

Qn(Qn −Qn+1) + R
2

λ2σ2ητ + σ
2
ετ

N/τ

NX
n=1

Q2n. (30)
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For sufficiently large N , l(CN) can be approximated by

l[0,τ ](Q) , p0Q+
λ

2
Q2 +

R

2
(λ2σ2ητ + σ

2
ετ )

Z τ

0

�Q2tdt, (31)

ϕ− a.e. (ϕ almost everywhere), where �Qt ∈ Θ[0,τ ](Q) approximates the Qn�s (the last part of the

proof of Proposition 6 in the Appendix shows that such a function can be found; in particular see

equations (64)-(66) there). Then, as is evident from (31), the expected trading costs play no role in

the limit; only the variance does. The approximation l[0,τ ](Q) also explains why risk-averse traders

want to trade an inÞnite amount per unit of time, as documented in Corollary 1. To minimize

l[0,τ ](Q) on the set Θ[0,τ ](Q), one would like to choose L-shaped functions with steeper and steeper

negative derivatives at zero. Hence, no minimum exists and the continuous-time limit of problem

(3) is not well deÞned.

In the following we sketch how to change the price dynamics to obtain a well-deÞned relation

between the discrete-time and the continuous-time solution of the liquidity trader�s problem. For

this purpose, we introduce the price process

�pn = �pn−1 + λqn + εn (32)

pn = �pn + θ
qn
τ/N

,

where pn denotes the transaction price and �pn the quote. The Þrst equation in (32) describes the

quote dynamics reßecting the permanent price impact of a trade. More formally, this equation

resembles (1) with the difference that, for convenience, the residual trades and news are subsumed

in one variable, εn. This can be done if news occurs at the same time that trades take place. The

second equation in (32) shows the temporary price impact of a trade. It penalizes high trading

25



volume per unit of time. The temporary price impact is the driving force for Proposition 6 stated

below.

Proposition 6 Consider the problem

�l[0,τ ](Q) ,

inf
�Qt∈Θ[0,τ ](Q)

p0Q+
λ

2
Q2 +

Z τ

0

"
θ(
d �Qt
dt
)2 +

R

2
(λ2σ2ητ + σ

2
ετ )
�Q2t

#
dt. (33)

The solution to the (discrete) liquidity trader�s problem (3) with the price dynamics in (32),

{qn}Nn=1, converges to the solution of (33), �Qt, in the sense that the optimal rate of trading,

�qt , limN→∞
qb tτ Nc
τ/N , satisÞes �qt = −d �Qt

dt , for t ∈ [0, τ ]. The explicit formulas for the risk-averse

trader are

qn =
sinh

£
ψNτ

N+1−n
N

¤− sinh £ψNτ N−nN ¤
sinh(ψNτ)

Q for 1 ≤ n ≤ N , (34)

where

ψN =
N

τ
cosh−1

"
τ2

2N2

R(λ2σ2ητ + σ
2
ετ )

2θ + λ τN

#
, (35)

and

�qt =

s
R(λ2σ2ητ + σ

2
ετ )

2θ

cosh

·q
R(λ2σ2ητ+σ

2
ετ )

2θ (τ − t)
¸

sinh

µq
R(λ2σ2ητ+σ

2
ετ )

2θ τ

¶ Q for t ∈ [0, τ ]. (36)

The risk-neutral trader again splits trades evenly: qn =
Q
N for all n, and �qt =

Q
τ for all t. Further-

more, we have �l[0,τ ](Q) = limN→∞ L(Q,N).

This proposition proves that the liquidity trader�s problem always has a well-deÞned continuous-

time limit when trades have permanent as well as temporary price impacts. To see why (33) is

the right problem to look at for Þnding the continuous-time limit, just add the costs caused by the
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temporary price impacts

NX
n=1

θ
qn
τ/N

qn = θ
NX
n=1

Qn+1 −Qn
τ/N

(Qn+1 −Qn) ≈ θ
Z τ

0

d �Qt
dt
d �Qt

to l[0,τ ](Q) in (31).

The solution to the liquidity trader�s problem (3) using the price process (32) has basically the

same shape and properties as the solution given in Proposition 2. In particular, the optimal trading

strategy is deterministic and trade size is reduced over time. (Note that (34) and (35) give the

same optimal trades as Proposition 2 when θ = 0.) Therefore, a further discussion of the formulas

in Proposition 6 is unnecessary.

6 Liquidity Trading in Continuous Time

In this section we introduce a general continuous-time version of the liquidity trader�s problem

in (3). The Þrst step is to deÞne the price dynamics and the cost function. The multi-asset,

continuous-time analogue to (1) is

d�pt = Λ�qt + Γd �Bt, p0 > 0, (37)

where �q : [0, τ ]×Ω→ RM is the instantaneous rate of trading, Λ is a M ×M-dimensional positive

deÞnite matrix, Γ is aM×M-dimensional, instantaneous variance matrix, and �B : [0, τ ]×Ω→ RM

is M-dimensional Brownian motion that represents news and residual trades.

The costs are more subtle to deÞne. As mentioned above, the limit of the discrete-time trading

costs is not a good candidate for the costs in continuous time because the mean of the trading

costs is a Þxed number under the constraint
R τ
0 �qsds = Q. Following Back and Pedersen (1998) and
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deÞning costs here as pT0Q+
R t
0 d
�QTs d�ps does not work either, because the missing volatility term

in d �Qt = −�qtdt lets
R t
0 d
�QTs d�ps vanish.

In contrast, the cost function we propose is

�Ct , pT0 (Q− �Qt) +
1

2
[QTΛQ− �QTt Λ �Qt] +

Z t

0
�qTs Λ�qsds+

Z t

0

�QTs Γd �Bs. (38)

The deÞnition in (38) can be justiÞed as follows. Straightforward computations reveal that the

trading costs in discrete time are given by

Cn = p
T
0

nX
j=1

qj +
n−1X
j=1

qTj Λ
nX

i=j+1

qj +
nX
j=1

qTj Λqj +
nX
j=1

εTj

nX
i=j

qj

up to period n when the price obeys (1). This motivates to deÞne the trading costs by

�Ct = p
T
0

Z t

0
�qsds+

Z t

0
�qTs Λ

�Qsds+

Z t

0
�qTs Λ�qsds+

Z t

0

�QTs Γd
�Bs

in continuous time. The last expression, however, reduces to (38) because of �Qt = Q−
R t
0 �qsds andR t

0 �q
T
s Λ �Qsds =

1
2 [Q

TΛQ− �QTt Λ �Qt]. In view of (38), the total costs of trading, �Cτ , are decomposed

of pT0Q, the costs of trading the portfolio Q if price impacts were absent, and the costs of the

accumulated price impacts of the trades.

Denote by �M [Θ[0,τ ](Q)] the set of all ϕ−a.e. continuous M(Ht)-Markov controls �qt that satisfy

�Qt = Q − R t0 �qsds ∈ Θ[0,τ ](Q). In this case { �Ct}t∈[0,τ ] is a semimartingale. The continuous-time
version of (3) for an arbitrary loss function V : R[0,τ ] × (R[0,τ ])M → R (R[0,τ ] is the set of all

functions mapping from [0, τ ] into R) then becomes

�L(Q) , inf
�qt∈ �M [Θ[0,τ](Q)]

E
h
V
³
{ �Ct, �Qt}t∈[0,τ ]

´i
(39)
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subject to (37).

The state variables here are �Qt and �Ct (the price is impounded in the costs and therefore need not

be considered here explicitly), whereas the control variable at time t is �qt.

The analysis of (39) for general loss functions is quite difficult. Note that (39) falls into the

category of Þnite-fuel stochastic control problems (see Bene� et al. (1980), Karatzas and Shreve

(1986), or Karatzas et al. (2000)). Unfortunately, none of the techniques in the stochastic control

literature can be applied to (39) for general V . Perhaps, extensions of the convex duality methods

as described in Cvitanic and Karatzas (1992) will lead to a general solution of (39). However, (39)

can be solved for speciÞc loss functions V . We present two examples in the following.

The Þrst example is V (f, g) = f(τ) for all f ∈ R[0,τ ] and g ∈ (R[0,τ ])M . In this case, (39)

becomes �L(Q) = inf �qt∈ �M [Θ[0,τ ](Q)]E[
�Cτ ] subject to (37). This is the objective of a risk-neutral

liquidity trader.

Proposition 7 Let V (f, g) = f(τ) for all f ∈ R[0,τ ] and g ∈ (R[0,τ ])M (risk-neutral preferences).

Then the solution to (39) is given by

�qt =
1

τ
Q for t ∈ [0, τ ] (40)

and

�L(Q) = pT0Q+ [
1

2
+
1

τ
]QTΛQ (41)

We have thus obtained the same solution as for the discrete-time liquidity trading problem (3).

Since �Qt = (1− t
τ )Q, optimality implies that the remaining shares to be traded decline linearly with

time for all assets, or equivalently, that the aggregate trading volume for each asset rises linearly

with time.
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As second example we could study the (mean-variance) problem �L(Q) = inf �qt∈ �M [Θ[0,τ ](Q)]E[
�Cτ+

R
2
�C2τ ] subject to (37), which is implied by the loss function V (f, g) = f(τ) + R

2 f(τ)
2. Since

the analytical solution of it�s Þrst-order conditions is unknown, we propose a different risk-averse

objective. The main motivation for our approach is the fact that the quadratic variation process

h �Cit∈[0,τ ] of the semimartingale { �Ct}t∈[0,τ ] satisÞes

h �Cit = lim
max(|tn−tn−1|: n=1,...,N ,
0=t0≤t1≤...≤ tN=t)→0

NX
n=1

¯̄̄
�Ctn − �Ctn−1

¯̄̄2

for all t ∈ [0, τ ], in probability (for example, see Protter (1990)). Hence, the quadratic variation

is a measure of the volatility of the trading costs. Moreover, h �Cit has a simple expression, namelyR t
0
�QTs Γ

2 �Qsds.

Unlike hitherto we allow now the trader to have an inÞnite horizon. After having deÞned

�C∞ , limt→∞ �Ct and h �Ci∞ , limt→∞h �Cit, let us investigate the problem

�L(Q) , inf
�qt∈ �M [Θ[0,∞)(Q)]

E

·
�C∞ +

R

2
h �Ci∞

¸
(42)

subject to (37), where �M [Θ[0,∞)(Q)] denotes the set of all ϕ − a.e. continuous M(Ht)-Markov

controls �qt that satisfy
R∞
0 �qtdt = Q, and R > 0 is a risk-aversion coefficient. Since �C∞+ R

2 h �Ci∞ =

limt→∞ �Ct +
R
2

R∞
0
�QTt Γ

2 �Qtdt the loss function V representing the objective in (42) is V (f, g) =

limt→∞ f(t)+ R
2

R∞
0 g(t)TΓ2g(t)dt for suitable f ∈ R[0,∞) and g ∈ (R[0,∞))M . The liquidity trading

problem in (42) implies that the trader cares about the instantaneous volatilities of the costs

accumulated over the whole trading horizon. This constrasts the mean-variance objective where

the risk-averse trader is concerned about the volatility of the total trading costs. Traders who face

cash constraints during the trading period may compute (42). They appreciate a smooth dynamics

of the trading expenditures, because they prefer to have smooth cash outßows.
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Proposition 8 The optimal trading behavior of a risk-averse trader who solves (42) is

�qt =

r
R

2
Λ−1ΓΛ1/2 exp

"
−
r
R

2
Λ−1ΓΛ1/2t

#
Q, (43)

�Qt = exp

"
−
r
R

2
Λ−1ΓΛ1/2t

#
Q, (44)

for t ∈ [0,∞), inducing the loss function

�L(Q) = pT0Q+
1

2
QT [Λ+

√
2RΓΛ1/2]Q. (45)

Hence, a risk-averse liquidity trader diminishes his trade sizes over time to minimize the mean

and the total volatility of the trading costs. This perfectly reproduces the results given in Propo-

sitions 2 and 6. We thus arrive at the conclusion that optimal liquidity trading requires the same

behavior in discrete and in continuous time.

7 Concluding Remarks

This paper studies the optimal behavior of a trader who wishes to buy (or sell) a given quantity

of a security within a certain number of trading rounds. He is constrained to submit only market

orders and his trades affect current and future prices of the security. He therefore breaks up his

trades into a sequence of smaller orders. Risk neutrality implies that these smaller orders are equal.

If the trader is risk averse, though, the magnitude of his trades declines over time.

On the theoretical level, this paper does not study the optimal policy of a trader who can

submit limit orders in addition to market orders, nor does it study the circumstances under which

the intertrading intervals are chosen in a continuous-time setup. It would be desirable to empirically

estimate the price-impact function.
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In addition, liquidity, which is measured by the price-impact slopes, may be random. One way

to take into account the uncertainty of the market�s liquidity is to model the price-impact slopes

as stochastic process and study the optimal trading behavior in the same spirit as in this paper.
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Appendix

A.1 Existence of a time-consistent Solution

We Þrst establish a theorem that states a sufficient and a necessary condition for the existence

of a solution to problem (3). We then characterize the absence of arbitrage as deÞned in Huberman

and Stanzl (2000) for the price process (2). This characterization constitutes a generalization of

Huberman and Stanzl�s no-arbitrage condition for linear, time-dependent price-impact functions.

The absence of arbitrage implies the existence of a time-consistent solution to (3) if R > 0. In

the risk-neutral case, a slightly stronger condition than the absence of arbitrage can be imposed to

guarantee the solvability of (3).

Theorem 1 A sequence of trades {qn}Nn=1 is a time-consistent solution to the liquidity trader�s

problem (3) if and only if it solves the dynamic program in (8). If a solution exists, then it is

unique and the N − 1-square matrix,

ΛαN +R
£
ΥN + (αλ1ση)

2IN−1×N−1
¤
, (46)

is positive semideÞnite, where

[ΛαN ]n,m ,


αλ1 + 2λn+1 if n = m

(1− α)λmin(n,m)+1 if n 6= m
, (47)

[ΥN ]n,m ,
λ2n+1σ

2
η + (1− α)2

hPn
j=2(λ

2
jσ
2
η + σ

2
ε) + σ

2
ε

i
if n = m

(1− α)
h
λ2min(n,m)+1σ

2
η + (1− α)σ2ε +

Pmin(n,m)
j=2 (λ2jσ

2
η + σ

2
ε)
i
if n 6= m

, (48)

for n,m = 1, . . . ,N − 1, and IN−1×N−1 is the N − 1 identity matrix. On the other hand, if the
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matrix given in (46) is positive deÞnite, then a time-consistent solution to (3) always exists.

Proof. We start by proving that a solution to the dynamic program in (8), {qn, Ln}Nn=1, also

represents a time-consistent solution to (3). Thus we need to show that {qn, Ln}Nn=1, satisÞes the

equations

Ln = inf
{qj∈M(Hj)}Nj=n

En[
NX
j=n

pjqj] +
R

2
V arn[

NX
j=n

pjqj ] for 1 ≤ n ≤ N − 1. (49)

This can be easily accomplished through backward induction. In the last period N , the trade qN

has to be chosen such that qN = Q−
PN−1
n=1 qn. Hence, substitute LN = EN [pNqN ]+

R
2 V arN [pNqN ]

into

LN−1 = inf
qN−1∈M(HN−1)

EN−1[pN−1qN−1 + LN ] +
R

2
V arN−1[pN−1qN−1 + LN ]

to obtain

LN−1 = inf
qN−1∈M(HN−1)

(
EN−1[

NX
n=N−1

pnqn]

+
R

2

"
V arN−1

"
EN [

NX
n=N−1

pnqn]

#
+ V arN [pNqN ]

#)

= inf
qN−1∈M(HN−1)

EN−1[
NX

n=N−1
pnqn] +

R

2
V arN−1[

NX
n=N−1

pnqn]

by taking into account the underlying price process (2). The solution to the dynamic program,

{qn, Ln}Nn=1, therefore satisÞes equation (49) for n = N − 1.

Now, suppose that {qn, Ln}Nn=1 meets the equations in (49) for n + 1 ≤ j ≤ N . In this case

{qn, Ln}Nn=1 satisÞes equation (49) for j = n as well, completing the induction argument. This can
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be seen as follows. Note that

V arn[
NX
j=n

pjqj] = V arn

En+1[ NX
j=n

pjqj]

+ V arn+1[ NX
j=n+1

pjqj ], (50)

because qj is a linear function of Qj for all n + 1 ≤ j ≤ N , as can be seen from the formulas

(20)-(21). But this fact, together with the induction hypothesis, already implies

Ln = inf
qn∈M(Hn)

En[pnqn + Ln+1] +
R

2
V arn[pnqn + Ln+1]

= inf
{qj∈M(Hj)}Nj=n

En[
NX
j=n

pjqj ]

+
R

2

V arn
En+1[ NX

j=n

pjqj ]

+ V arn+1[ NX
j=n+1

pjqj]


= inf
{qj∈M(Hj)}Nj=n

En[
NX
j=n

pjqj] +
R

2
V arn[

NX
j=n

pjqj ].

Proceeding in a similar manner as above, one readily derives that any time-consistent solution

to (3) also constitutes a solution to the dynamic program in (8), proving the Þrst assertion of this

theorem.

Since the recursive solution (20)-(22) can only be iterated in a unique way, a time-consistent

solution to (3) must be unique, too. Furthermore, given that a solution to (3) must be deterministic

(qn =linear function of Qn, 1 ≤ n ≤ N), (3) can be rewritten as

L(Q) = inf
qN,−1∈RN−1

½·
p0 + λ1

µ
1+

R

2
λ1σ

2
η

¶
Q

¸
Q

−λ1
£
(1+ α) +Rαλ1σ

2
η

¤
Q1TN−1qN,−1
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+
1

2
qTN,−1

£
ΛαN +R[ΥN + (αλ1ση)

2IN−1×N−1]
¤
qN,−1

¾
, (51)

where 1N−1 is theN−1-dimensional vector containing only ones and qTN,−1 , [q2, . . . , qN ]. From (51)

and static optimization theory it follows that the matrix given in (46) must be positive semideÞnite,

establishing the second claim of this theorem.

To show the last statement requires only to take the Þrst- and second-order conditions in (51).

¤

Proposition 9 The price process (2) is arbitrage-free if and only if the matrix ΛαN is positive

semideÞnite for all N ∈N.

Proof. If (2) is arbitrage-free, then
PN
n=1 qn = 0 implies expected costs

E[
NX
n=1

pnqn] =
1

2
qTN,−1Λ

α
NqN,−1

to be nonnegative for all qN,−1 ∈ RN−1 and N ∈N, i.e., ΛαN has to be positive semideÞnite for all

N ∈N.

To prove the reverse, note that (3) and (51) for Q = R = 0 imply

inf
{qn∈M(Hn)}Nn=1

E[
NX
n=1

pnqn] = inf
qN,−1∈RN−1

1

2
qTN,−1Λ

α
NqN,−1.

If all {ΛαN}∞N=1 are positive semideÞnite, then expected costs are globally minimized at qn =

0 for all 1 ≤ n ≤ N , because the function qN,−1 7→ qTN,−1Λ
α
NqN,−1 is convex on R

N−1 and

d
dqN,−1

h
qTN,−1Λ

α
NqN,−1

i
(0) = 0. Hence, expected costs are always nonnegative if

PN
n=1 qn = 0,

implying an arbitrage-free market. ¤

Since the matrix ΥN + (αλ1ση)2IN−1×N−1 is positive deÞnite, due to the deÞnition of the
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variance, Theorem 1 and Proposition 9 have the following corollary as consequence.

Corollary 2 Suppose one of the following conditions holds:

i. R > 0 (trader is risk-averse) and the price process (2) is arbitrage-free or

ii. R = 0 (trader is risk-neutral) and the matrices {ΛαN}∞N=1 are all positive deÞnite.

The liquidity trader�s problem (3) then has a unique, time-consistent solution for all N ∈ N

that can be obtained by solving the dynamic program in (8).
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A.2 Proofs of Section 2

Proof of Proposition 2. Writing out the Þrst-order conditions of (3) with price process (1)

yields

λqn+2 − (2λ+Rσ2)qn+1 + λqn = 0 for 1 ≤ n ≤ N − 3 (52)

(λ2 + 3λRσ2 +R2σ4)qN−1 − λ(λ+Rσ2)qN−2 = 0 (53)

(3λ+Rσ2)qN−1 + λ
N−3X
n=1

qn = λQ, (54)

where σ2 , λ2σ2η + σ2ε.

Solving the difference equation (52) subject to the boundary conditions (53) and (54) gives (14)

and (15).

The proof that the optimal trades are positive and strictly decreasing can be easily veriÞed by

looking directly at the formulas in (14) and (15). ¤

Proof of Proposition 3. The proof of this proposition uses only the principle of induction.

In period N , the optimal loss function, as a function of the two state variables �pN−1 and QN ,

is given by

LN (�pN−1, QN ) = EN [pNqN ] +
R

2
V arN [pNqN ]

= EN [(�pN−1 + λN (QN + ηN))QN ] +
R

2
V arN [λNηNQN ]

= �pN−1QN + λN(1+
R

2
λNσ

2
η)Q

2
N ,

since in the last period qN = QN must be traded. Let us deÞne µN , λN (1+ R
2 λNσ

2
η).

Next, suppose that (16)-(18) hold for n+1. We will show that this is also true for n, completing
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the induction argument. Keeping the price process (1) in mind, one can write

Ln(�pn−1, Qn) = inf
qn
En[(�pn−1 + λn(qn + ηn))qn +Ln+1(�pn,Qn+1)]

+
R

2
V arn[(�pn−1 + λn(qn + ηn))qn + Ln+1(�pn,Qn+1)]

Using the induction hypothesis, this can be rewritten as

Ln(�pn−1,Qn) = inf
qn
(�pn−1 + λnqn)Qn + (µn+1 +

R

2
σ2ε)(Qn − qn)2 +

R

2
σ2ηλ

2
nQ

2
n.

Taking the Þrst-order condition for this expression yields (16). With (16), one can compute

Ln(�pn−1,Qn) to be

�pn−1Qn + λn
·
1+

R

2
λnσ

2
η −

λn
2(2µn+1 +Rσ

2
ε)

¸
Q2n,

which completes the proof. ¤

A.3 Numerical Analysis: Optimal Trading Frequency

To begin, the model parameters are sliced into equidistant plausible intervals speciÞed below,

and the loss function is then evaluated at all endpoints. We proceed by looking at Þrst differences

of the loss function to verify its convexity. SpeciÞcally, for R the interval [0.001, 0.05] is sliced into

ten subintervals of the same length, and similarly for λ the interval [10−6, 10−5] is divided into

100 sub-intervals. The variance functions take the forms σ2η(N) =
σ2ητ
N and σ2η(N) =

σ2ετ
N , where

for σ2ητ the interval [500, 5000] is chosen and for σ
2
ετ the interval is [0.01,0.05], both split into 20

sub-intervals of same length. In all cases, we look at 130 trading rounds, equivalent to trading

every 15 minutes in a week at the NYSE (the NYSE is open six and a half hours a day, Þve days

a week; hence trading every 15 minutes produces 130 transactions). One week is a reasonable time

horizon for a liquidity trader (see Bertsimas and Lo (1998)).
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For all computations, we Þnd local convexity of the loss function for the periods under consider-

ation, thereby ensuring a local unique solution for the risk-averse trader. Therefore, the numerical

analysis is a powerful practical tool to determine the optimal number of trades.

To illustrate the sensitivity of the loss function and the optimal frequency of trades to the

underlying parameters, we do some comparative statics, shown in Figures 6a-6c. The trading time

is again sliced into 130 periods. The block to be traded consists of 10,000 shares of the asset and

the initial price is $40.

Figure 6a shows the loss function for different levels of risk aversion. The optimal frequency of

trades is decreasing in the level of risk aversion, R. In the example depicted, N∗ = 26 for R = 0.001,

N∗ = 70 for R = 0.01, and N∗ = 128 for R = 0.05. Risk aversion has thus a substantial impact on

the frequency with which traders submit their orders. Also note here how the risk coefficient affects

the curvature of the loss function: it becomes more convex as the level of risk aversion declines.

The parameter λ is varied in Figure 6b. As in the risk-neutral case, N∗ is increasing in λ. In

particular, for λ = 10−5, N∗ = 27; for λ = 5 ∗ 10−5, N∗ = 60; and for λ = 10−4, N∗ = 80. The loss

function gets more convex the lower is the slope λ.

Finally, Figure 6c shows the impact of the Þxed costs on the optimal number of trades. Not

surprisingly, N∗ is decreasing in the transaction costs. In numbers, for a commission fee k = 5,

N∗ = 89; for k = 15, N∗ = 48; and N∗ = 36 is chosen if k = 25.

For α > 0, the same qualitative results are obtained, and so this case is not analyzed.

A.4 Proofs of Section 5

Proof of Corollary 1. This proof makes use of the following facts: r+ = r−1− , r+ → 1,

rN+ →∞, and A± → 0 as N →∞. They are applied below without explicit reference.

To show that qb t
τ
Nc → 0, for all t ∈ [0, τ ], due to Proposition 2, it suffices to prove that q1 → 0

as N →∞.
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For this purpose write

q1 =
[A+ −A−r2(N−3)− ]

WN +XN
Q,

where

WN ,
1− rN−3−
1− r− A+ − r

2(N−3)
− − rN−3−
1− r+ A−

and

XN , rN−3−

Ã
3λ+R

λ2σ2ητ + σ
2
ετ

N/τ

!Ã
λ+R

λ2σ2ητ + σ
2
ετ

N/τ

!
(r+ − r−) .

Obviously, the numerator of q1, A+ − A−r2(N−3)− , and XN both converge to zero. On the other

hand, WN converges to λ2, because

1− rN−3−
1− r− A+ = (1− rN−3− )

∗

λ2r+ + λR(3r+ − 1) λ
2σ2ητ+σ

2
ετ

N/τ

1− r− +R2r+

(λ2σ2ητ+σ2ετ)
2

N2/τ2

1− r−

→ λ2

and

r
2(N−3)
− − rN−3−
1− r+ =

rN−2− (1− rN−3− )

1− r− ≤ rN−2−
1− r− → 0,

as N → ∞. This proves the Þrst fact in Corollary 1. Another way to see this is to consider the

formulas (16) and (17). Since the solution to the Riccati equation in (17)

µn =
1−

h
2 +Rλ

σ2ητ
N/τ

i
r− + r

2(N−n)
+ [(2 +Rλ

σ2ητ
N/τ )r+ − 1)]

2
λr−[r

2(N−n+1)
+ − 1]

(55)

converges to λ
2 as N →∞, q1 → 0 in (16).

The second assertion is proved in a similar way and can be left to the reader. ¤

41



Proof of Proposition 6. Let us begin by solving problem (33). The necessary conditions for

a minimum require �Qt to meet

2θ
d2 �Qt
dt2

= R(λ2σ2ητ + σ
2
ετ ) �Qt with �Q0 = Q and �Qτ = 0. (56)

It is easily checked that this boundary-value problem has the solution

�Qt =

sinh

·q
R(λ2σ2ητ+σ

2
ετ )

2θ (τ − t)
¸

sinh

µq
R(λ2σ2ητ+σ

2
ετ )

2θ τ

¶ Q for t ∈ [0, τ ]. (57)

Clearly, the function �Qt given in (57) is an element of Θ[0,τ ](Q).

Next, we tackle the discrete-time problem (3) for the price dynamics (32). The loss function,

l(CN), for this case becomes

p0Q+ λ
NX
n=1

Qn(Qn −Qn+1) + R
2

λ2σ2ητ + σ
2
ετ

N

NX
n=1

Q2n +
Nθ

τ

NX
n=1

(Qn −Qn+1)2. (58)

Minimizing l(CN ) with respect to the sequence {Qn}Nn=2 yields the Þrst-order conditions

Qn+1 − 2Qn +Qn−1 = τ2

N2

R(λ2σ2ητ + σ
2
ετ )

2θ + λ τN
Qn for 1 ≤ n ≤ N + 1, (59)

Q1 = Q, and QN+1 = 0. Some algebra reveals that the solution to the difference equation (59) has

the form

Qn =
sinh

£
ψNτ(1+

1−n
N )

¤
sinh (ψNτ)

Q for 1 ≤ n ≤ N , (60)

where

cosh
³ τ
N
ψN

´
= 1+

τ2

2N2

R(λ2σ2ητ + σ
2
ετ )

2θ + λ τN
. (61)
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Hence, as qn = Qn −Qn+1 by deÞnition, the formulas in (34) and (35) constitute the solution to

problem (3) under the price rule (32).

We are now prepared to show that both limN→∞Qb t
τ
Nc and limN→∞

qb tτ Nc
τ/N exist, and that

they equal �Qt and −d �Qt
dt , respectively, where

�Qt is given as in (57). As a Þrst step, we study the

convergence behavior of ψN . The Taylor expansion

cosh
³ τ
N
ψN

´
= 1+

∞X
n=1

1

(2n)!

³ τ
N

´n
ψnN (62)

indicates that for large N (neglecting terms with degree four or larger) equation (61) becomes

1

2

³ τ
N

´2
ψ2N =

τ2

2N2

R(λ2σ2ητ + σ
2
ετ )

2θ + λ τN
.

This, in turn, has

ψN →
s
R(λ2σ2ητ + σ

2
ετ )

2θ
(63)

for N →∞ as a consequence. By virtue of (57) and (60), �Qt = limN→∞Qb t
τ
Nc.

To Þnd limN→∞
qb tτ Nc
τ/N , use (34) to calculate

qb t
τ
Nc

τ/N
=
ψN cosh(ξN)

sinh(ψNτ)
Q

for ξN ∈
³
ψNτ

³
1− b tτ Nc

N

´
,ψNτ

³
1+ 1

N −
b tτ Nc
N

´´
. Clearly,

qb tτ Nc
τ/N converges to the expression �qt

given in (36), which is the negative of the Þrst derivative of �Qt in (57).

Thus, �l[0,τ ](Q) = limN→∞ L(Q,N) remains to be proved. Employing Qn and �Qt as in (60) and

(57), respectively, it follows that

NX
n=1

Qn(Qn −Qn+1)→−
Z τ

0

�Qtd �Qt =
Q2

2
, (64)
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λ2σ2ητ + σ
2
ετ

N/τ

NX
n=1

Q2n = (λ
2σ2ητ + σ

2
ετ )

NX
n=1

Q2n
τ

N
→ (λ2σ2ητ + σ

2
ετ )

Z τ

0

�Q2tdt, (65)

and

Nθ

τ

NX
n=1

(Qn −Qn+1)2 = θ
NX
n=1

Qn+1 −Qn
τ/N

(Qn+1 −Qn)→ θ

Z τ

0

Ã
d �Qt
dt

!2
dt (66)

as N →∞. But this shows that L(Q,N)→ �l[0,τ ](Q) and the proof is complete. ¤

A.5 Proofs of Section 6

Proof of Proposition 7. To solve (39) for V (f, g) = f(τ) we only need to consider the

problem

�L(Q) = inf
�qt∈ �M[Θ[0,τ ](Q)]

E

·Z τ

0
�qTt Λ�qtdt

¸
(67)

subject to (37). This is due to the constraint �Qτ = 0 and the equality E
hR τ
0
�QTτ ΓdBt

i
= 0. The

solution of (67) can be obtained by applying the following Lagrange approach. Solve for all κ ∈ RM

�L(Q,κ) = inf
�qt is continuous

M(Ht)-Markov control

E

·Z τ

0
�qTt Λ�qtdt+ κ

T �Qτ

¸
(68)

subject to (37). Note that the optimal policy of (68) may not satisfy the constraint
R τ
0 �qtdt = Q.

However, any deviation from this constraint would alter the objective �L(Q,κ) through the term

κT �Qτ , where κ has the interpretation of a Lagrange multiplier. If we are able to determine a vector

κ∗ such that the solution �qt(κ∗) of (68) satisÞes
R τ
0 �qt(κ

∗)dt = Q, then we have also found a solution

of (67).

The Hamilton-Jacobi-Bellman equation for (68) entails

inf
�qs

·
(1+ φ �C)�q

T
s Λ�qs + φt − φT�Q�qs +

1

2
�QTs Γ

2 �Qsφ �C �C

¸
= 0, (69)

s ∈ [0, τ ], for a smooth candidate function φ : [0, τ ] × RM ×R → R, where φt, φ �C , φ �C �C , and
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φ �Q , (φ �Q1 ,φ �Q2 , . . . ,φ �QM ) denote the partial derivatives of φ with respect to time and the state

variables, repectively. By virtue of (69), the optimal trading rate is given by

�qs =
1

2(1+ φ �C)
Λ−1φ �Q. (70)

Hence, by substituting (70) into (69), we obtain that the candidate function φ must solve the

boundary value problem

φt −
1

4(1+ φ �C)
φT�QΛφ �Q +

1

2
�QTs Γ

2 �Qsφ �C �C = 0 (71)

with

φ(τ , �Q, �C) = κT �Q for all �Q ∈ RM and �C ∈ R.

It can be easily veriÞed that φ(t, �Q, �C) = 1
4κ
TΛ−1κ(t − τ) + κT �Q solves (71) and therefore

�qs(κ) =
1
2Λ

−1κ. As a consequence, the unique κ∗ that implies
R τ
0 �qt(κ

∗)dt = Q equals κ∗ = 2
τΛQ.

The solution of (39) for V (f, g) = f(τ) is thus found: �qs(κ∗) = 1
τQ as stated in Proposition 7.

The value function �L(Q) can be calculated from (38) and the equality φ∗(0,Q, 0) = 1
τQ

TΛQ, which

completes the proof. ¤

Proof of Proposition 8. Consider the problem

�L(Q) , inf
�qt∈ �M [Θ[0,∞)(Q)]

E

·Z ∞

0
[�qTt Λ�qt +

R

2
�QTt Γ

2 �Qt]dt

¸
. (72)

It is easy to see that a solution of (72) also solves (42). So we only need to study here (72). From
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its Hamilton-Jacobi-Bellman equation

inf
�qs

·
(1+ φ �C)�q

T
s Λ�qs + φt − φT�Q�qs +

1

2
(R+ φ �C �C)

�QTs Γ
2 �Qs

¸
= 0 (73)

we derive that a solution φ : [0,∞)×RM ×R→ R has to satisfy

φt −
1

4(1+ φ �C)
φT�QΛφ �Q +

1

2
(R+ φ �C �C)

�QTs Γ
2 �Qs = 0 (74)

and

lim
t→∞φ(t,

�Qt, �Ct) = 0.

Straightforward computations show that �qt as given in (70) solves (73) and that the function

φ(t, �Q, �C) =
q

R
2
�QTΓΛ1/2 �Q meets both equations in (74). In view of the state equations d �Qt =

−�qtdt, we conclude that
d �Qt
dt

= −
r
R

2
�QTΓΛ1/2 �Qt.

The solution of this differential equation system yields at once (43) and (44). Finally, note that

the loss function in (45) follows from φ(0, Q, 0) =
q

R
2Q

TΓΛ1/2Q. ¤
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Figure 1a: Optimal trading volume with different risk aversion. Simulation values: N = 13,

p0 = 40, Q = 100, 000, λ = 10−5, σ2ε = 0.02, σ2η = 1000.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13

period

ch
an

ge
 in

 p
ric

e R=0
R=10^-4
R=0.001
R=0.01
R=0.1

Figure 1b: Optimal change in price with different risk aversion. Simulation values: N = 13,

p0 = 40, Q = 100, 000, λ = 10−5, σ2ε = 0.02, σ2η = 1000.
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Figure 2a: Optimal trading volume with different price volatilities. Simulation values: N = 13,

p0 = 40, Q = 100, 000, λ = 10−5, R = 0.005, σ2η = 1000; the legen box shows the different values

used for the variance of ε.
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Figure 2b: Optimal change in price with different price volatilities. Simulation values: N = 13,

p0 = 40, Q = 100, 000, λ = 10−5, R = 0.005, σ2η = 1000; the legend box shows the different values

used for the variance of ε.

51



0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10 11 12 13

period

tr
ad

in
g 

vo
lu

m
e λ=0.000001

λ=0.000005

λ=0.00001

λ=0.00005

λ=0.0001

Figure 3a: Optimal trading volume with different constant λ�s. Simulation values: N = 13,

p0 = 40, Q = 100, 000, R = 0.005, σ2ε = 0.02, σ
2
η = 1000.
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Figure 3b: Optimal change in price with different constant λ�s. Simulation values: N = 13,

p0 = 40, Q = 100, 000, R = 0.005, σ2ε = 0.02, σ
2
η = 1000.
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Figure 4a: Optimal trading volume with time-dependent λn�s. Simulation values: N = 13,

p0 = 40, Q = 100, 000, λn = 5.2 ∗ 10−6 in odd periods, = 5 ∗ 10−6 in even periods, σ2ε = 0.02,

σ2η = 1000.
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Figure 4b: Optimal change in price with time-dependent λn�s. Simulation values: N = 13,

p0 = 40, Q = 100, 000, λn = 5.2 ∗ 10−6 in odd periods, = 5 ∗ 10−6 in even periods, σ2ε = 0.02,

σ2η = 1000.
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Figure 5a: Optimal trading volume with different updating weights. Simulation values: N = 13,

p0 = 40, Q = 100, 000, λ = 10−5, σ2ε = 0.02, σ2η = 1000.
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Figure 5b: Optimal change in price with different updating weights. Simulation values: N = 13,

p0 = 40, Q = 100, 000, λ = 10−5, σ2ε = 0.02, σ2η = 1000.
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Figure 6a: The loss function with transaction costs depending on risk aversion. Simulation

values: N = 130, p0 = 40, Q = 10, 000, λ = 5 ∗ 10−5, k = 10, σ2η(N) = 1000/N , σ2ε(N) = 0.02/N .
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Figure 6b: The loss function with transaction costs depending on the λ�s. Simulation values:

N = 130, p0 = 40, Q = 10, 000, R = 0.01, k = 10, σ2η(N) = 1000/N , σ
2
ε(N) = 0.02/N .
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Figure 6c: The loss function depending on Þxed transaction costs. Simulation values: N = 130,

p0 = 40, Q = 10, 000, R = 0.01, λ = 5 ∗ 10−5, σ2η(N) = 1000/N , σ2ε(N) = 0.02/N .
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