
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 5, MAY 2013 1123

Optimal Liveness-Enforcing Control for a Class of

Petri Nets Arising in Multithreaded Software
Hongwei Liao, Student Member, IEEE, Stéphane Lafortune, Fellow, IEEE, Spyros Reveliotis, Senior Member, IEEE,

Yin Wang, Member, IEEE, and Scott Mahlke, Member, IEEE

Abstract—We investigate the synthesis of optimal
liveness-enforcing control policies for Gadara nets, a special
class of Petri nets that arises in the modeling of the execution of
multithreaded computer programs for the purpose of deadlock
avoidance. We consider maximal permissiveness as the notion
of optimality. Deadlock-freeness of a multithreaded program
corresponds to liveness of its Gadara net model. We present
a new control synthesis algorithm for liveness enforcement of
Gadara nets that need not be ordinary. The algorithm employs
structural analysis of the net and synthesizes monitor places
to prevent the formation of a special class of siphons, termed
resource-induced deadly-marked siphons. The algorithm also
accounts for uncontrollable transitions in the net in a minimally
restrictive manner. The algorithm is generally an iterative
process and converges in a finite number of iterations. It exploits
a covering of the unsafe states that is updated at each iteration.
The proposed algorithm is shown to be correct and maximally
permissive with respect to the goal of liveness enforcement.

Index Terms—Concurrent software, deadlock avoidance, live-
ness enforcement, optimal control, Petri nets.

I. INTRODUCTION

L IVENESS-ENFORCING control is an important class of

problems in the supervisory control of Petri nets. Petri

nets have been employed to model resource allocation and

concurrency of dynamic systems in many applications, and

liveness is often an important property for these systems [22]. In

this paper, we study a class of Petri nets that arises in modeling

concurrent software. In this scenario, liveness of the Petri net

model guarantees the complete absence of deadlocks in the

corresponding program. Deadlock analysis based on Petri nets

has been widely studied for flexible manufacturing systems and

other technological applications involving a resource allocation

Manuscript received May 02, 2011; revised January 25, 2012 and September
26, 2012; accepted November 17, 2012. Date of publication November 30,
2012; date of current version April 18, 2013. This work was supported in part by
NSF grant CCF-0819882 and an award from HP Labs Innovation Research Pro-
gram (University of Michigan) and by NSF grants CMMI-0619978 and CMMI-
0928231 (Georgia Institute of Technology). Recommended by Associate Editor
H. Marchand.
H. Liao, S. Lafortune, and S. Mahlke are with the Department of Elec-

trical Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 48109 USA (e-mail: hwliao@umich.edu; stephane@umich.edu;
mahlke@umich.edu).
S. Reveliotis is with the School of Industrial and Systems Engi-

neering, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
spyros@isye.gatech.edu).
Y. Wang is with HP Labs, Palo Alto, CA 94304 USA (e-mail: yin.wang@hp.

com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2012.2230814

function [15], [26]. It has also been applied to Ada programs

[23]. Recently, supervisory control of Petri nets has been

applied to concurrent program synthesis [9]. Our investigation

in this paper is motivated by the recent multicore revolution in

computer hardware. This trend is making parallel programming

unavoidable but concurrency bugs are making it costly and

error-prone. We have started a project, called Gadara [11], [16],

[30], where we are interested in multithreaded programs with

shared data. In this programming paradigm, mutual exclusion

locks (or mutexes) are usually employed to protect shared data

from inconsistent concurrent access. However, when mutexes

are inappropriately used, an important class of failures, termed

circular-mutex-wait deadlocks, can occur in the program when

a set of threads are waiting for one another and none of them

can proceed.

In [19], [32], we defined a special class of Petri nets, called

Gadara nets, to systematically model multithreaded C pro-

grams with lock allocation and release operations. We formally

established that a multithreaded program that can be modeled

as a Gadara net is deadlock-free if and only if its associated

Gadara net is live [19]. This correspondence motivates our

study of liveness-enforcing control of Gadara nets. In addition

to liveness, another important property desired in control

synthesis is maximal permissiveness, so that the control logic

will provably eliminate deadlocks while otherwise minimally

constraining program behavior. Therefore, the main focus of

the present paper is on the synthesis of maximally-permissive

liveness-enforcing (MPLE) control policies for Gadara nets.

By definition, an original Gadara net model of a concurrent

program is ordinary (i.e., all its arc weights are equal to one),

while a controlled Gadara net may no longer be ordinary due

to the structure (new monitor places and arcs) added as a result

of a control synthesis step. Such a step can be carried out

prior to the control synthesis presented in this paper. In this

step, users may enforce other properties (than liveness) on the

net, or they may attempt to enforce liveness by using other

methods. In either case, ordinariness of the resulting Gadara net

is not guaranteed in general. This motivates our development

of an MPLE control synthesis strategy for the general class

of non-ordinary controlled Gadara nets that may arise from

various applications. An MPLE control policy is often called

an optimal liveness-enforcing control policy [13]. We employ

the same terminology in this paper.

If the reachability graph of a Petri net is available, the

problem of MPLE control can be solved by the Supervisory

Control Theory for discrete event systems initiated by Ramadge

and Wonham [3], [25]. The theory of regions (see, e.g., [5],

[29]), which in some sense combines the modeling strength

0018-9286/$31.00 © 2012 IEEE

1124 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 5, MAY 2013

of Petri nets and the control strength of automata, synthesizes

monitor places [21] back into the Petri net to avoid unsafe states

in the reachability graph. But employing an automaton model

(of the reachability graph) in controller synthesis suffers from

the state explosion problem when modeling concurrent soft-

ware, as it fails to capture the concurrency in the target parallel

program. Moreover, the associated control decisions are made

based on a centralized controller, which needs to be updated

at every transition execution, and thus introduces a global

bottleneck in the concurrent program. For these two reasons,

we are investigating structural control techniques for Petri net

models in the Gadara project. Petri net models can efficiently

characterize system concurrency without enumerating the

entire reachability space. Many approaches have been proposed

for the synthesis of liveness-enforcing control logic for Petri

nets. These approaches are typically sub-optimal, i.e., they

sacrifice maximal permissiveness due to the complexity of the

problem and the inherent limitation of monitor-based control.

In the case of Gadara nets, we have demonstrated that MPLE

control logic can always be implemented using monitor places

[19], [32]. In this paper, we thoroughly exploit the structural

properties of Gadara nets for the efficient synthesis of MPLE

control policies. Our initial results in this regard were reported

in our earlier work [31]. In this paper, we significantly extend

and formalize MPLE control synthesis for controlled Gadara

nets that need not be ordinary.

In general, the proposed MPLE control synthesis is an it-

erative process, because the synthesized control logic may in-

troduce new potential deadlocks. That is, the added net struc-

ture, when coupled with the original net structure, may cause

new potential deadlocks in the controlled net. This necessitates

iterations on the controlled nets until no further deadlock is

found. Few works address such an iterative process and its im-

plications for MPLE control synthesis. A siphon-based itera-

tive control synthesis method is proposed in [28] for the class

of nets. But this method is sub-optimal in general, i.e.,

it does not guarantee maximal permissiveness. In [8], the role

of iterations in liveness-enforcing control synthesis is discussed

and a net transformation technique is employed to transform

non-ordinary nets into PT-ordinary nets during the iterations.

This approach, however, may not guarantee convergence within

a finite number of iterations. In fact, as pointed out in [12], it

is not easy to establish a formal and satisfactory proof of fi-

nite convergence for this type of problem; moreover, achieving

optimal control logic is very difficult. The key reason is that

the Petri net modeling framework might not be able to express

the MPLE property for general process-resource nets; as a re-

sult, the problem of MPLE control synthesis based on siphon

analysis in non-ordinary nets has not been well-resolved yet

[14]. In [1], the “max-controlled-siphon-property” is proposed;

however, siphon-based control synthesis by enforcing this prop-

erty is not maximally permissive in general.

This paper presents formal general results on MPLE control

synthesis for the class of controlled Gadara nets. Further cus-

tomized algorithms can be developed for particular concurrent

software applications, which are beyond the scope of this paper

and will be presented in another paper [20], along with experi-

mental results on their performance. The main contributions of

this paper can be summarized as follows: (i) We present a new

iterative control synthesis scheme (called ICOG) for Gadara

nets; this scheme is based on structural analysis and converges

in finite iterations. (ii) We develop a new algorithm (called

UCCOR) for controlling siphons in Gadara nets; this algorithm

uses the notion of covering of unsafe states (markings) in order

to achieve greater computational efficiency. (iii) The UCCOR

Algorithm accounts for uncontrollable transitions in the net in a

minimally restrictive manner using the technique of constraint

transformation. (iv) We establish that the proposed ICOG

Methodology and the associated UCCOR Algorithm synthesize

a control policy that is correct and maximally permissive with

respect to the goal of liveness enforcement.

This paper is organized as follows. In Section II, the defini-

tions and properties of Gadara nets are reviewed and their im-

plications for control synthesis are discussed. The development

of the ICOG Methodology and the UCCOR Algorithm is pre-

sented in Section III, and their main properties are established

in Section IV. We discuss the customization of the proposed al-

gorithms in Section V. Finally, we conclude in Section VI. A

preliminary and partial version of the results in Sections III and

IV, without proofs, appears in [17].

II. GADARA NETMODEL AND ITSMAIN PROPERTIES

In this section, we review the class of Gadara nets and its main

properties. We assume the readers are familiar with standard

Petri net definitions and notations. The readers are referred to

the Appendix for some necessary background and to [22] for

a detailed tutorial on Petri nets. The Appendix also provides a

brief introduction to monitor-based control of Petri nets.

A. Gadara Petri Nets

Gadara nets, a new class of Petri nets introduced in [19], [32],

are formally defined to model multithreaded C programs with

lock allocation and release operations.

Definition 1: [19], [32] Let be a finite

set of indices. A Gadara net is an ordinary, self-loop-free Petri

net where

1) is a partition such that: a)

, , and , for all ;

b) , where ; and c)

, .

2) , for all .

3) For all , the subnet generated by

is a strongly connected state machine. There are no direct

connections between the elements of and

for any pair with .

4) , if , then .

5) For each , there exists a unique minimal-sup-

port P-semiflow, , such that ,

, , and .

6) , , and

.

7) .

Conditions 1 and 2 characterize a set of subnets that de-

fine work processes (i.e., software threads), called process sub-

nets. The idle place is an artificial place added to facilitate

the discussion of liveness and other properties. is the set of

operation places. is the set of resource places that model

mutex locks. The readers are referred to [19], [32] for further

LIAO et al.: OPTIMAL LIVENESS-ENFORCING CONTROL FOR A CLASS OF PETRI NETS ARISING IN MULTITHREADED SOFTWARE 1125

discussion about the definition of Gadara nets. Here, we high-

light the following: Conditions 5 and 6 characterize a distinct

and crucial property of Gadara nets, which is stated as follows.

Property 1: For any resource place , and its associated

, we have the following semiflow equation:

(1)

Or, equivalently, at any marking of the net, only one place in

can have a token.

Given , we wish to augment the net by synthesizing mon-

itor places that will control the firing of transitions for the pur-

pose of deadlock avoidance in the program. In this regard, we

partition into two disjoint subsets: , where

is the set of controllable transitions (which can be disabled by a

monitor place), and is the set of uncontrollable transitions

(which cannot be disabled by a monitor place). A more detailed

definition of this partitioning of the transition set is provided

in the next section.

B. Controlled Gadara Nets

When we use Supervision Based on Place Invariants (SBPI)

[6], [8], [33] as the control technique on a Gadara net, we obtain

an augmented net that we call a controlled Gadara net, which is

defined in [19], [32].

Definition 2: [19], [32] Let be a

Gadara net. A controlled Gadara net

is a self-loop-free Petri net such that, in addition

to all conditions in Definition 1 for , we have

8) For each , there exists a unique minimal-support

P-semiflow, , such that ,

, , , and

.

9) For each , .

Definition 2 indicates that the introduction of the monitor

places preserves the net structure that is implied by

Definition 1. Furthermore, we observe that the monitor places

possess similar structural properties with the resource places in

, but have weaker constraints. More specifically, monitor

places may have multiple initial tokens and non-unit arc weights

associated with their input or output arcs. Amonitor place in

can be considered as a generalized resource place, which pre-

serves the conservative nature of resources in and has the

following property.

Property 2: For any monitor place , and its associ-

ated , we have the following semiflow equation:

(2)

The readers should notice that the weights associated with the

semiflows defined by Property 2 are not necessarily equal to 1,

due to the possibility that a monitor place can introduce non-unit

arc weights and multiple initial tokens.

Due to the similarity between the original resource places and

the synthesized monitor places, we will use the term “general-

ized resource place” to refer to any place .

Remark 1: From Definitions 1 and 2, we observe that is a

special subclass of , where and . Therefore,

any property that we derive for holds for as well. In

the following, for the sake of simplicity, we refer to as a

“Gadara net” (unless special mention is made).

As discussed in Section II-A, in general, a Gadara net has

both controllable and uncontrollable transitions. In view of this,

a controlled Gadara net is said to be admissible if

. In the remainder of this paper, we only consider

admissible .

Assumption 1: is admissible.

According to the semantics of the program represented by

Gadara nets, branching transitions are uncontrollable (this is

why we separate branching transitions from lock acquisition

transitions in Condition 4 of Definition 1, i.e., resource places

do not connect to branching transitions). On the other hand,

lock acquisition transitions are controllable so that we can avoid

deadlocks. The rest of the transitions can be classified either

way, representing the “upper bound” and the “lower bound” of

, respectively. In practice, controlling only lock acquisition

transitions often result in an equally permissive but much sim-

pler control logic, in terms of the number of arcs connected be-

tween the monitor place and .

Assumption 2:

The development of the results presented in this paper only

requires that contains all the branch selection transitions

(i.e., the lower bound in Assumption 2); these results also extend

to any other choice of that satisfies Assumption 2.

C. Liveness Properties and Implications for Control Synthesis

First, we present some definitions that are relevant to the main

properties of Gadara nets. We use to denote the set of

reachable markings of net starting from .

A Petri net is live if , and ,

there is a marking such that is enabled at .

A Petri net is said to be reversible if ,

for all . Place is said to be a disabling place

at marking if there exists , s.t. . A

nonempty set of places is said to be a siphon if .1

Definition 3: A siphon of a Gadara net is said to

be a Resource-Induced Deadly Marked (RIDM) siphon [26] at

marking , if it satisfies the following conditions:

1) every is disabled by some at ;

2) ;

3) , is a disabling place at .

From Definition 3, we know that a RIDM siphon is speci-

fied by the set of places in and its associated partial marking

. In general, a siphon that satisfies Condition 2 of Defi-

nition 3 above can be rendered a RIDM siphon under more than

one partial marking . In the following discussion, when-

ever we refer to a RIDM siphon , it means with an associated

.

Definition 4: Given and , the modified

marking is defined by

if ;

if .
(3)

1The notation , when used as a subscript in , refers to the type of op-
eration places. In all other cases, unless special mention is made, refers to a
siphon.

1126 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 5, MAY 2013

Modified markings essentially “erase” the tokens in idle

places. The set of modified markings induced by the set of

reachable markings is defined by

. Note that the number of tokens in idle place

can always be uniquely recovered from the invariant implied

by the (strongly connected state machine) structure of subnet

. Therefore, we have the following property.

Property 3: There is a one-to-one mapping between the orig-

inal marking and the modified marking, i.e., if and

only if .

When it comes to liveness, the main properties of Gadara

nets are formally established in [19], [32], and they serve as the

foundation for the control synthesis results in the present paper.

Theorem 1: [19], [32] (Liveness and reversibility of Gadara

nets)

(a) is live iff it is reversible.

(b) is live iff there does not exist a marking

and a siphon such that is an

empty siphon at .

(c) is live iff there does not exist a modified marking

and a siphon such that is a RIDM

siphon at .

We have formally shown in [19] that a multithreaded pro-

gram that can be modeled as a Gadara net is deadlock-free

if and only if is reversible. According to Theorem 1(a), re-

versibility and liveness are equivalent in Gadara nets. Therefore,

deadlock-freeness of the program corresponds to liveness of the

Gadara net. This correspondence is the primary motivation for

our study of the liveness-enforcing control of Gadara nets. As

established in Theorem 1(b), the liveness of is guaranteed

when cannot reach a marking under which some siphon

is empty. Thus, in control synthesis, we need to prevent all

the siphons in from becoming empty by adding appropriate

monitor places. As discussed in Section I, in general we need

to iterate the control synthesis process. When remains or-

dinary, we can carry out control synthesis in the way similar

to .

When becomes non-ordinary, we need Theorem 1(c) to

guide control synthesis. Theorem 1(c) characterizes the liveness

of by a more general type of siphon, namely the RIDM

siphon, under the modified markings. A RIDM siphon can be

nonempty. An empty siphon is a special case of RIDM siphon.

Fig. 1 shows an example of a nonempty RIDM siphon

. This example implies that simply

preventing the siphons from becoming empty is not sufficient

for the control synthesis in non-ordinary . Therefore, in non-

ordinary , we need to consider all the RIDM siphons that are

present in the modified markings of the net.

The above discussion implies that the problem of deadlock

avoidance in a multithreaded program is equivalent to the

problem of preventing any RIDM siphon (resp., empty siphon)

from becoming reachable in the modified reachability space

(resp., original reachability space) of its Gadara net model

(resp.,). Since represents the most general subclass of

Gadara nets, we will focus on control synthesis for in the

next section; the derived results can also be applied to . We

formally state our problem as follows.

Problem statement: Given a controlled Gadara net, find a

monitor-based control policy such that the resulting controlled

Fig. 1. Example of a nonempty RIDM siphon.

Gadara net is admissible, live, and maximally permissive with

respect to the goal of liveness enforcement.

Remark 2: We briefly discuss the existence of a solution

to the aforementioned problem. From the viewpoint of an au-

tomaton model, if we construct the reachability graph (i.e., an

automaton model) of a Gadara net and only mark its initial

state, then the coaccessible part of this automaton [3] will not be

empty. This is because a single instance from any given process

subnet can always execute to completion, in isolation. On the

other hand, according to Theorem 1(a), if a Gadara net can al-

ways return to its initial marking, then it is live. Therefore, the

simple control policy that executes all threads sequentially is

necessarily live, thereby proving that a liveness-enforcing con-

trol policy always exists. This control policy is also admissible

because it can be realized by connecting an outgoing arc of a

monitor place, with one initial token, to the first lock acquisi-

tion transition of each process subnet (which is not an uncon-

trollable transition by Assumption 2), and returning this token

to the monitor place only at the last transition of each process

subnet. In Section III-C-3 we will also show that a maximally

permissive control policy using monitor places always exists in

Gadara nets.

III. CONTROL SYNTHESIS FOR GADARA NETS: ALGORITHMS

In this section, we present a new MPLE control synthesis

methodology for general controlled Gadara nets that need not

be ordinary. The proposed methodology exploits the structural

properties of Gadara nets and enforces liveness by preventing

RIDM siphons from being reachable. We will use a running

example, depicted in Fig. 2, to facilitate our discussion. The net

structure shown in solid lines is the original Gadara net before

control; the net structure shown in dashed lines represents the

monitor places that are synthesized using the algorithms to be

presented next.

A. Motivation

We first briefly discuss the motivation of our investigation of

the MPLE control of .

A non-ordinary can arise from various reasons in applica-

tions. For example, a non-ordinary Gadara net may be the result

of enforcing other properties on multithreaded programs, like

LIAO et al.: OPTIMAL LIVENESS-ENFORCING CONTROL FOR A CLASS OF PETRI NETS ARISING IN MULTITHREADED SOFTWARE 1127

Fig. 2. Running example of control synthesis. The original Gadara net is shown
with solid lines, and denoted as . The synthesized monitor places and their
associated arcs are shown with dashed lines. We define three controlled Gadara
nets of interest: (i) consists of and ; (ii) consists of ,

, and ; and (iii) consists of , , , and .

Fig. 3. Iterative control of controlled Gadara nets (ICOG).

atomicity [10], prior to the control synthesis presented in this

paper, where more general types of specifications expressible

as linear inequalities may be enforced upon the net. In general,

the enforcement of such linear inequalities (e.g., by the SBPI

technique) may result in monitor places that have non-unit arc

weights.

Example 1: Consider the running example as shown in Fig. 2.

The original Gadara net, denoted as , is shown in solid lines.

Prior to ICOG, the following specification2 was enforced upon

by using SBPI:

(4)

The synthesized monitor place is denoted as and shown

in dashed lines. The resulting net, which consists of , ,

and its associated arcs, is a controlled Gadara net, denoted as

. Note that is non-ordinary, due to the introduc-

tion of . Therefore, to fully resolve liveness enforcement in a

maximally permissive manner for , a general MPLE con-

trol synthesis methodology that works for non-ordinary Gadara

nets is required.

B. Overall Strategy—Iterative Control of Gadara Nets

We propose an Iterative Control Of Gadara nets (ICOG)

Methodology, with a net in the class of as the initial

condition. The flowchart of ICOG is shown in Fig. 3. Given a

controlled Gadara net, we first see if there is any new RIDM

siphon under the modified markings of the net. If no RIDM

siphon is detected, then, according to Theorem 1(c), the net is

live and ICOG terminates. Otherwise, we synthesize control

logic to prevent the detected RIDM siphon from becoming

reachable, by using an algorithm, called UCCOR, to be pre-

sented next. The UCCOR Algorithm outputs a set of monitor

places, which are added to the net. After UCCOR, we go

back to the first step of ICOG and determine if there are any

remaining or new RIDM siphons. One important feature of

the proposed ICOG is that we maintain a “global bookkeeping

set”, denoted by , throughout the iterations. The set records

all the control syntheses that have been carried out in terms of

prevented unsafe coverings, which will be introduced shortly.

ICOG is an iterative process in general, because there may be

some siphons that have not been identified in the previous iter-

ations and need further consideration. Moreover, we explained

above that the added monitor place can be considered as a

generalized resource place, and may introduce new potential

deadlocks.

Note that the ICOGMethodology is fully modular so that the

detection of RIDM siphons is not associated with any specific

algorithm. This can be done, for instance, by using a Mixed In-

teger Programming (MIP) based approach that finds a maximal

RIDM siphon in the net [26]. In the case of an ordinary net,

the MIP technique has also been employed to detect a maximal

empty siphon in the net [4]. We have developed a set of cus-

tomized and efficient MIP formulations for RIDM siphon de-

tection in general Gadara nets and empty siphon detection in

ordinary Gadara nets [18], [19]. Moreover, siphons can also be

detected via structural analysis; a recent result on siphon detec-

tion in nets using graph theory is presented in [2].

We emphasize that the RIDM siphon detection is carried out

under themodified markings, due to Theorem 1(c). The detected

RIDM siphon, say , will be characterized by the set of places

, and an associated partial modified marking on .

2The set of places involved in the left-hand-side of (4) consists of a max-
imal empty siphon, obtained from the siphon detection algorithm presented in
[4]. The rationale of (4) was to attempt to address liveness enforcement by pre-
venting this maximal empty siphon from being reachable.

1128 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 5, MAY 2013

C. Fundamentals of the UCCOR Algorithm

We propose a new algorithm, used as a module of ICOG, for

preventing RIDM siphons in . We call it the UCCOR Al-

gorithm, where UCCOR is short for “Unsafe-Covering-based

Control Of RIDM siphons”. (The notion of unsafe covering in-

duced by a RIDM siphon will be introduced in Section III-C-2.)

1) Definitions and Partial-Marking Analysis: Similarly to

the modified marking defined in Section II-C, we also define

the -marking to facilitate the discussion.

Definition 5: Given and , the -

marking is defined by

if ;

if .
(5)

-markings essentially “erase” the tokens in idle places and

generalized resource places, retaining only tokens in operation

places. The -marking does not introduce any ambiguity.

More specifically, given the -marking corresponding to

the original marking , the number of tokens in places

and under can be uniquely recovered by solving the

equations given in Properties 1 and 2, respectively. Therefore,

combining this result with Property 3 of the modified markings,

we have the following property.

Property 4: There is a one-to-one mapping between the orig-

inal marking and the -marking, i.e., if and only if

.

As revealed by Properties 3 and 4, there is a one-to-one

mapping among the original marking, modified marking, and

-marking. Thus, in the UCCOR Algorithm, when syn-

thesizing linear inequality specifications for monitor-based

control, we can focus our attention on only, and the coef-

ficients in the linear inequalities corresponding to places ,

, and are all zero, i.e., they are “don’t care” terms in the

linear inequalities. We observe that Conditions 5, 6, and 7 of

Definition 1 imply that is always a binary vector. It is this

property that motivates us to focus on .

Through the UCCOR Algorithm, essentially we want to syn-

thesize control logic that can prevent the net from reaching any

unsafe marking with respect to RIDM siphons. The next defini-

tion concretizes this concept.

Definition 6: A marking is said to be a RIDM-unsafe

marking if there exists at least one RIDM siphon at the corre-

sponding modified marking . Given a siphon , a marking

is said to be a RIDM-unsafe marking with respect to , if is

a RIDM siphon at marking .

From Definition 6 and Theorem 1(c), we immediately have:

Corollary 1: is live iff it cannot reach a marking that is a

RIDM-unsafe marking.

Example 2: Let us refer to the controlled Gadara net

in Fig. 2, and consider the following two markings (for the

sake of simplicity, we only specify the marked places; the

unspecified places are empty by default): (i) , where

, , , and each have one token, and (ii) ,

where , , , and each have one token. In this

example, the marking is RIDM-unsafe, and the siphon

is a

RIDM siphon at . The marking is not RIDM-unsafe,

but starting from , the net cannot go back to the initial

marking and can only go to a RIDM-unsafe marking. Therefore,

both and should be prevented by control synthesis.

As we will see in the following discussion, the latter type of

markings (such as in this example) will be eventually ex-

posed as RIDM-unsafe markings as the iterations evolve. Thus,

in the rest of this section, we can focus our attention on RIDM-

unsafe markings.

From the above discussion, for any given RIDM-unsafe

marking , it is the partial modified marking on

the RIDM siphon that is critical to the lack of safety. Here,

is a column vector with entries corresponding to

the places in , and the subscript “ ” denotes “RIDM-unsafe”.

In other words, if we know that is a RIDM siphon, and

an associated partial modified marking is , then any

(full) marking , such that , must also be

a RIDM-unsafe marking with respect to . This leads to the

following result.

Proposition 1: Given a RIDM siphon , and an associated

partial modified marking , any marking such that

, is RIDM-unsafe with respect to .

Thus, in the control synthesis, we want to prevent any

marking such that . This is achieved

by considering RIDM-unsafe partial markings in a way that

each synthesized monitor place can prevent more than one

RIDM-unsafe marking. As we mentioned, the control will

be implemented on -markings. From Proposition 1, we

observe that the partial modified marking is sufficient

to characterize the corresponding RIDM-unsafe markings with

respect to . However, this is not true for partial -marking

. Consider the siphon

in Fig. 1 that we discussed earlier. Since is a RIDM siphon,

in this case we know that the current marking of the net, say

, is RIDM-unsafe with respect to . On the other hand,

Fig. 7 (without considering the dashed lines) shows the same

net under its initial marking . is not RIDM-unsafe by

assumption.3 But, we observe that . This is

because from the partial -marking , one cannot tell

the “status” of the resources (namely, tokens) in .

Intuitively, we want to consider more places under the partial

-marking. This deficiency can be made up by further con-

sidering the partial -marking on the supports of minimal

semiflows associated with , which are introduced

as follows.
The minimal-support P-semiflow for any generalized re-

source place is a well-defined concept in Petri nets [22] (see

Appendix). This concept can be extended for any resource-in-

duced siphon; for the sake of discussion, we introduce the

notation, , as follows:

where, is the minimal-support P-semiflow of .

3More specifically, this statement is true since no place in can be a
disabling place at .

LIAO et al.: OPTIMAL LIVENESS-ENFORCING CONTROL FOR A CLASS OF PETRI NETS ARISING IN MULTITHREADED SOFTWARE 1129

Property 5: For any resource-induced siphon , the corre-

sponding is unique.

Based on Properties 1 and 2, starting from a partial

-marking on , one can uniquely recover the tokens in

. This observation, together with Proposition

1, implies that the partial -marking (or,

equivalently, since the -marking

only considers tokens in), is sufficient to characterize the

RIDM-unsafe markings with respect to . For simplicity, we

define . This leads to our next result.

Proposition 2: Given a RIDM siphon , and an associated

partial modified marking , any marking such that

, is RIDM-unsafe with respect to .

Remark 3: Proposition 2 bridges the notion of partial modi-

fied marking on , which is obtained in the RIDM siphon detec-

tion, and the notion of partial -marking on , which is used

in the control synthesis. It also implies that the -marking of

any is a “don’t care” term in the control synthesis, i.e.,

the coefficient associated with it in the linear inequality that will

prevent siphon is 0. The partial -marking analysis is fur-

ther facilitated by the notion of covering, which is introduced

next.

2) Notion of Covering: We introduce the notation “ ” for the

value of a -marking component,where “ ” stands for “0 or 1”.

Definition 7: In , a covering is a generalized

-marking, whose components can be 0, 1, or .

For any place , represents the covering compo-

nent value on . This notation can be extended to a set of places

in a natural way. Furthermore, we extend the notion

of covering so that it encompasses any place by setting

, .

Given two coverings and , we say that covers ,

denoted as , if such that ,

. As a special case, if , then we have

and . The “cover” relationship between a

covering and a -marking, which have the same dimensions,

is defined in a similar way. For example, for a binary marking

vector , covers the -markings

and . A covering is said to

be a RIDM-unsafe covering if for all -markings it covers,

the corresponding is RIDM-unsafe.

Remark 4: As a result of Proposition 2 and the notion of

covering, for any RIDM siphon to be prevented, the con-

trol synthesis only needs to consider the set of places , and

the associated RIDM-unsafe covering, , and ,

.

Remark 5: By Definition 7, a covering is a generalized

-marking. So the component values in a covering can only

be 0, 1, or . In the context of control synthesis, is a “don’t

care” term, and the coefficient associated with it in the corre-

sponding linear inequality will always be 0.

3) Feasibility of Maximally Permissive Control: In [19],

[32], we have established a “convexity-type” property of

Gadara nets. This property is based on the binary nature of

the -markings and it states that, in these nets, any set of

reachable markings can be separated from the rest through a set

of linear inequalities, which are provided in the constructive

Fig. 4. UCCOR Algorithm.

proof of Theorem 6 in [32]. These linear inequalities can be

subsequently enforced upon the original net through monitor

places. Following Remarks 4 and 5, this property can be gen-

eralized to any set of RIDM-unsafe coverings with respect to

some given RIDM siphon .

Theorem 2: In , for any RIDM siphon , the set

of all RIDM-unsafe coverings with respect to can be

separated by a finite set of linear inequality constraints

such that a covering is RIDM-un-

safe with respect to iff .

Theorem 2 implies that it is feasible to implement max-

imally permissive control using monitor-based control in

terms of RIDM-unsafe coverings. More specifically, for a

given covering we want to prevent, its associated linear

inequality can be specified as: , if ;

, if ; , if ; and,

.

D. UCCOR Algorithm

We now formally present the UCCOR Algorithm. Our pre-

sentation is organized in a top-down manner. We first give the

overall procedure of the UCCOR Algorithm in Fig. 4, and then

explain the embedded modules in subsequent sections. We will

apply the UCCOR Algorithm to , which is the controlled

Gadara net with the monitor place shown in Fig. 2, to illus-

trate the steps of UCCOR.

The input to the algorithm is , a RIDM siphon , and

an associated partial modified marking . In Step 1, the

Unsafe Covering Construction Algorithm is used to solve for

a set of possible RIDM-unsafe coverings with respect to ,

denoted as . As a result of Step 1 and Propositions 1 and

2, any RIDM-unsafe marking with respect to , such that

, is captured by . In Step 2, is taken as

the input to the Unsafe Covering Generalization. This step fur-

ther generalizes the RIDM-unsafe coverings obtained from Step

1, by utilizing a certain type of monotonicity property of Gadara

nets. It outputs a modified set of coverings, , which is taken

as the input to the Inter-Iteration Coverability Check carried out

in Step 3. In Step 3, the coverings that have already been con-

trolled are removed from consideration. The output of this step

1130 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 5, MAY 2013

is a further modified set of coverings, . In Step 4, if is

an empty set, then the algorithm terminates; otherwise, control

synthesis using SBPI is carried out. One monitor place will be

synthesized for each covering in .

Define to be the set of coverings that have already been

prevented in the previous iterations. One can think of as a

global “bookkeeping set” in the control synthesis process, which

records all the coverings that have been prevented so far. The set

helps us to determine the convergence of ICOG. Since only

needs to record a relatively small number of coverings to keep

track of a potentially much larger number ofmarkings that need

to be prevented, the complexity of the bookkeeping process is

greatly reduced—a saving on both time and space. The set

is updated by the UCCOR Algorithm during the Inter-Iteration

Coverability Check in Step 3 discussed below. In addition,

is also updated after the termination of the UCCOR Algorithm,

i.e., , to include the coverings that are prevented

in this iteration.

E. Unsafe Covering Construction Algorithm

From the input of the UCCOR Algorithm, we know the

RIDM siphon and an associated partial modified marking

. As discussed above, we want to find the RIDM-un-

safe coverings that cover any possible RIDM-unsafe marking

, such that . The desired RIDM-unsafe

coverings are obtained in the Unsafe Covering Construction

Algorithm, which is described as follows.

First, for each generalized resource place in , there is an

associated P-semiflow equation. Denote the set of all such

equations associated with as . Secondly,

substitute the unknown variables in corresponding to places

using the values specified by . The set of

updated equations is denoted as . Thirdly, solve , together

with the constraint that , .

The set of solutions of are denoted as , which

is a set of partial markings on . Finally, construct the

RIDM-unsafe coverings based on the obtained

and the given . For each , define

the corresponding covering with a dimension of

as follows: (i) ; (ii)

; and, (iii)

, . The resulting set of coverings is the

output of this algorithm, denoted as .

Remark 6: Observe that for any , is a RIDM-

unsafe covering with respect to . Thus, for any -marking

that is covered by , the corresponding original marking is

also RIDM-unsafe with respect to .Moreover, only specifies

binary values for the places in , and the other places not in

are irrelevant to the analysis of the RIDM siphon under

the notion of covering.

Example 3: Consider the net in Fig. 2.We use as

the initial condition of ICOG. The first iteration of ICOG detects

a RIDM siphon:

(6)

at the marking , as described in Example 2. For this

example, Step 1 of UCCOR solves the set of semiflow equa-

tions that contains three equations:

,

, and

. Using the in-

formation from , the updated set of equations is:

, and . Thus, Step 1 finally outputs

the set that contains one RIDM-unsafe covering , where

, , for , 3,

4, 5 and , 3, 4, 5, and

.

F. Unsafe Covering Generalization

Given the set of possible RIDM-unsafe coverings with

respect to , the Unsafe Covering Generalization generalizes

and outputs a modified set of coverings .

Given two markings and , we say that “ domi-

nates ”, denoted by , if the following two con-

ditions are satisfied: (i) , for all , and

(ii) , for at least some . The domi-

nance relationship between two coverings and can be

defined in a similar way by substituting “ ” above by “ ”.

Note that “ ”, as a covering component, stands for “0 or 1”. So,

we have: . Moreover, if , then Condition

(ii) above can only be satisfied by the case when and

.

The following theorem is closely related to the monotonicity

property of state safety in resource allocation systems [27].

Theorem 3: Consider a Gadara net , and a marking of

it that satisfies the net semiflow equations (1) and (2) but cannot

reach . Then, any marking that satisfies all the semiflow

equations (1) and (2) and , cannot reach either.

Proof: We prove the contra-positive proposition, i.e., we

prove that if can reach and satisfies all the semiflow

equations (1) and (2), then any marking that satisfies all the

semiflow equations (1) and (2) and , can also reach

.

By assumption, starting from , there exists a feasible firing

transition sequence , which will lead the net from to .

Furthermore, since both markings and satisfy all the

semiflow equations (1) and (2) and , Properties 1

and 2 imply that , . That is, the

net under contains only a subset of the processes that are ac-

tive in , and it is “resource richer”. Thus, starting from ,

there also exists a feasible firing transition sequence , which

will lead the net from to ; such a sequence can be ob-

tained from by “erasing” the set of transitions that are fired

by the extra tokens in under as compared to , and the

feasibility of under can be formally established by an in-

duction on the length of the sequence.

An immediate corollary of Theorem 3 is as follows:

Corollary 2: Consider a Gadara net , and a marking

that is RIDM-unsafe and satisfies all the semiflow equations (1)

and (2). Then, any marking that satisfies all the semiflow

equations (1) and (2) and , cannot reach .

Remark 7: From Proposition 2 and its associated discussion,

we know that only the set of places is relevant to

the analysis of siphon (or equivalently, under the notion of

-marking, only the set of places is relevant). Note that

LIAO et al.: OPTIMAL LIVENESS-ENFORCING CONTROL FOR A CLASS OF PETRI NETS ARISING IN MULTITHREADED SOFTWARE 1131

. This implies

that Corollary 2 still holds if we replace the condition “satisfies

all the semiflow equations (1) and (2)” on and , by the

condition “satisfies all the semiflow equations associated with

.”

In Step 1 of UCCOR, we obtain the set of RIDM-unsafe cov-

erings with respect to . According to Remark 6, for any

, and any , such that , is RIDM-un-

safe with respect to . Due to the construction of in Step 1

of UCCOR, satisfies all the semiflow equations associated

with . Consider the partial marking . If

there exists at least one “0” component in , we replace

any subset of the “0” components in by “1”, and leave

the other components in unchanged. The resulting marking

is denoted as , and it is obvious that . Therefore,

either does not satisfy the semiflow equations associated

with (and hence is not reachable), or satisfies the

semiflow equations associated with and cannot

reach (based on Corollary 2 and Remark 7).

As a consequence, for a given covering that needs to

be prevented, any covering , such that , can also be

prevented. Therefore, all the 0 components in can be replaced

by , and the resulting covering is denoted as , where

. In the control synthesis, we can prevent instead of .

In the Unsafe Covering Generalization, we “generalize” each

by replacing all the 0 components in by , and ob-

tain a corresponding modified covering . The resulting set

of modified coverings is denoted as . Consequently, the el-

ements in and those in are in one-to-one correspon-

dence. Observe that any corresponding pair , where

and , satisfies: . Therefore, by

considering the set of modified coverings afterwards in the

UCCOR Algorithm, we will not “miss” preventing any element

in due to this coverability relationship. Moreover, the prop-

erty of maximal permissiveness is still preserved, i.e., we only

prevent reachable markings that cannot reach , or markings

that are not reachable, due to the above discussion.

Furthermore, we determine if there exists a pair of coverings

, such that and . (i) If such a

pair is detected, then we perform , and re-

peat the process in the updated . (ii) If no pair is detected,

then we output the set . Note that and

have the same power of coverability, because the operations per-

formed above simply remove the “redundant” coverings in the

set .

Example 4: Let us continue the example of applying

UCCOR to the net shown in Fig. 2. In Step 2 of

UCCOR, for this example, the set contains one covering

, where and , for any

.

Clearly, will cover, in general, a larger set of markings

than does. Thus, by considering in the UCCOR Al-

gorithm, the synthesized monitor places are more efficient, in

terms of the number of markings that they can prevent. As we

mentioned, some markings covered by may not be reach-

able, however, the property of maximal permissiveness is not

compromised because of this.

G. Inter-Iteration Coverability Check

In the Inter-Iteration Coverability Check, each pair of cov-

erings

is tested. (i) If , then the existing monitor place as-

sociated with already prevents , and we perform:

. (ii) If and , then by

synthesizing a new monitor place in the current iteration that

prevents , this monitor place will also prevent . That

is, the existing monitor place associated with will become

redundant after the current iteration. In this case, we perform:

, and remove the existing monitor place (and its

incoming and outgoing arcs) associated with from the net.

(iii) If and are incomparable, then no action is performed.

The algorithm finally outputs a modified set of coverings corre-

sponding to , denoted as , and updates .

Example 5: We continue the discussion on the running ex-

ample. The set is initialized as an empty set before the first

iteration of ICOG. Thus, in the first iteration of ICOG, no action

is needed in Step 3 of UCCOR. Ater this step of UCCOR, we

have: and .

H. Monitor Place Synthesis Algorithm

In Step 4 of UCCOR, if the set is empty, then we termi-

nate the algorithm and start the next iteration of ICOG. If the

set is not empty, then for each covering in , a monitor

place is synthesized. The key of the Monitor Place Synthesis

Algorithm is to find an appropriate linear inequality constraint

in the form of (19) for each element , so that we can

employ SBPI to synthesize a monitor place to prevent , and

finally obtain an admissible controlled Gadara net. In general,

for any given , we can find an associated linear in-

equality constraint in two stages.

In Stage 1, we specify a linear inequality constraint in the

form of (19) for , according to the discussion following The-

orem 2. From the above discussion of UCCOR, we know that

contains only “1” or “ ” components. So the parameters of

the constraint associated with are:

if ;

otherwise.
(7)

(8)

Note that this constraint only prevents according to Theorem

2. SBPI can be employed to synthesize a monitor place based

on this constraint. If the resulting is admissible, then Stage

2 is not necessary for this and we can continue with the next

element (if any) in ; otherwise, we need to proceed to Stage

2, where constraint transformation is carried out to deal with the

partial controllability and ensure the admissibility of .

Example 6: Before moving on to Stage 2, let us first illus-

trate Stage 1 by the running example. is chosen to be the

lower bound specified in Assumption 2, which is in this ex-

ample. From Step 3 of UCCOR, we know that contains one

covering . According to (7) and (8), we specify the following

linear inequality constraint in the form of (19) to prevent :

(9)

1132 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 5, MAY 2013

Fig. 5. The constraint transformation technique used in Stage 2 of the Monitor
Place Synthesis Algorithm.

The monitor place , which enforces (9), is synthesized by

SBPI and shown in Fig. 2. The controlled net obtained in the

first iteration of ICOG, which consists of , , , and their

associated arcs, is denoted as . At the end of the first itera-

tion, we update the global bookkeeping set as:

.

The constraint transformation technique in Stage 2 is pre-

sented as follows. For the sake of discussion, the constraint ob-

tained in Stage 1 can be rewritten as:

(10)

We apply constraint transformation to (10) to handle partial

controllability, adapted and much simplified from the corre-

sponding procedure in [21], due to the special structure of

Gadara nets. The core idea is the following. If place in (10)

can gain tokens through a sequence of uncontrollable transi-

tions, places along the sequence of uncontrollable transitions

must be included to the left-hand-side of (10) as we cannot

prevent these transitions from firing and populating tokens into

. We make two remarks for the above statement: (i) The set

of places corresponding to a given sequence of uncontrollable

transitions is unique due to the state-machine structure of

the process subnet. (ii) The uncontrollable transitions in this

sequence are not blocked by any generalized resource place,

otherwise they would be controllable. The pseudo-code that

implements the constraint transformation for (10) is given in

Fig. 5. Based on the set of places obtained above, the new,

transformed constraint is:

(11)

Without any confusion, in the following discussion we will refer

to (10) as the original constraint, and refer to (11) as the new

constraint.

Proposition 3: Using SBPI, all the outgoing arcs of the

monitor place synthesized for the new constraint do not con-

nect to any uncontrollable transition, i.e., the resulting is

admissible.

Proof: We prove the result of Proposition 3 by contradic-

tion. It can be shown that by applying SBPI to a constraint of

the form (10) or (11), the outgoing arcs of the synthesized mon-

itor place connect to “entry” transitions only, i.e., transitions

whose input places (in the process subnet) are not in the con-

straint, and whose output places (in the process subnet) are in

the constraint. This follows from the fact that SBPI enforces a

P-invariant based on the constraint via a monitor place. If an

“entry” transition is uncontrollable, the constraint transforma-

tion technique must have included its input place into the new

constraint. Therefore, it is not an “entry” transition anymore.

Proposition 4: (a) Any marking prevented by the original

constraint is also prevented by the new constraint. (b) Any

reachable marking that is prevented by the new constraint but

not by the original constraint, can reach a marking prevented

by the original constraint via a sequence of uncontrollable

transitions.

Proof:

(a) This is a direct result of the construction of the new con-

straint. Any marking that violates the original constraint

will also violate the new one.

(b) The new constraint simply adds more places to the left-

hand-side of the original constraint. By construction, any

token in these new places may reach one of the places in

the original constraint through a sequence of uncontrol-

lable transitions. If a reachable marking satisfies the

original constraint but not the new one, then at there

must be extra tokens in the set of places added. These

tokens can “leak” into the set of places in the original

constraint through a sequence of uncontrollable transi-

tions. Thus, in the reachability graph, there must be a se-

quence of uncontrollable transitions connecting from

to a marking that violates the original constraint.

Example 7: The Gadara net model of a deadlock case in the

OpenLDAP software is shown in Fig. 6. In this example, is

chosen to be the upper bound as specified in Assumption 2; thus,

only , , and are controllable transitions. When we apply

UCCOR to this example, both stages in Step 4b are required. In

Stage 1 of Step 4b, the original constraint is

; in Stage 2 of Step 4b, the new, transformed constraint is

, where the synthesized monitor place is

shown in dashed lines in Fig. 6. The resulting controlled Gadara

net is admissible.

Example 8: Let us return to the running example of Fig. 2. In

the second iteration of ICOG, we further input to ICOG,

and detect a new RIDM siphon:

(12)

at the marking , where the places , , , and each

have one token, and all the other places are empty. We apply

UCCOR to this RIDM siphon in the second iteration of ICOG.

After Step 3 of UCCOR, the set contains one covering ,

where and , for any

. In Stage 1 of Step 4b, the monitor place shown in

Fig. 2 is synthesized to prevent . The resulting controlled net

is denoted as , and it is admissible. Thus, Stage 2 of Step

4b is not necessary. At the end of the second iteration, we update

the global bookkeeping set as: . Next,

we input to ICOG, and no new RIDM siphon is detected.

Therefore, ICOG converges after the second iteration.

Two important observations can be made from the above ex-

ample. (i) In the second iteration of ICOG, we notice that the

new RIDM siphon is induced by the monitor places and

. This is an example of the scenario we discussed in Sec-

tion III-B, where monitor places can introduce new potential

LIAO et al.: OPTIMAL LIVENESS-ENFORCING CONTROL FOR A CLASS OF PETRI NETS ARISING IN MULTITHREADED SOFTWARE 1133

Fig. 6. Gadara net model of a deadlock example in the OpenLDAP software.

deadlocks and thus force further iterations. (ii) As discussed in

Section III-C-1, in the initial net , the marking is not

RIDM-unsafe but cannot reach the initial marking. However, in

the controlled net , is RIDM-unsafe. More specifi-

cally, it is RIDM-unsafe with respect to the RIDM siphon .

In other words, as the control iterations evolve, the added con-

trol logic exposes the marking , which was not RIDM-un-

safe but could not reach the initial marking, to a marking that is

RIDM-unsafe. Therefore, can eventually be captured by its

associated RIDM siphon in ICOG and prevented by UCCOR.

Example 9: In Fig. 1, we gave a controlled Gadara net that

contains a RIDM siphon. The monitor place, which is synthe-

sized by UCCOR and prevents this RIDM siphon, is shown in

Fig. 7. The controlled net after this iteration is admissible for

any choice of satisfying Assumption 2. ICOG converges

after this iteration.

By the definition of covering, we know that the relation “ ”

is a partial order on the set , and is a partially ordered set.

Steps 2 and 3 of the UCCOR Algorithm imply that after ICOG

converges, any two distinct elements of are incomparable.

Thus, the final controlled Gadara net does not contain any re-

dundant monitor place.

The performance of the ICOGMethodology has been system-

atically investigated in [18], in terms of execution time, number

of iterations, and scalability. Our experimental results reveal

that the RIDM siphon detection step is the bottleneck of ICOG,

while the UCCOR Algorithm and the maintenance of the book-

keeping set only account for a negligible portion of the com-

putational overhead.

IV. CONTROL SYNTHESIS FOR GADARA NETS: PROPERTIES

In Section III-B, we presented the global flowchart of the

ICOG Methodology. Here, we present its main properties. In

Fig. 7. A simple example of UCCOR.

this section, when we say that ICOG is “correct with respect

to the goal of liveness enforcement”, it will mean that the re-

sulting controlled net is admissible and live. We will carry out

the proofs in two steps: we first prove the properties of UCCOR

(employed in each iteration of ICOG), then we prove the prop-

erties maintained by ICOG throughout the entire set of the per-

formed iterations.

Theorem 4: In , the control logic synthesized for any

RIDM siphon based on the UCCOR Algorithm is correct and

maximally permissive with respect to the goal of preventing

from becoming a RIDM siphon and the given set of uncontrol-

lable transitions.

Proof: First, we prove the correctness. We are going to

show that the UCCOR Algorithm does not miss preventing any

RIDM-unsafe marking with respect to .

For any RIDM siphon with its associated , which

needs to be prevented, Step 1 of the UCCOR Algorithm finds

the set of RIDM-unsafe coverings that covers all the possible

RIDM-unsafemarkings , such that . This set

of RIDM-unsafe markings is denoted as . According to

the Unsafe Covering Generalization Algorithm and the prop-

erty of “covering”, the set obtained in Step 2 covers ,

which covers . Moreover, Step 3 only removes the cov-

erings that are already prevented in previous control synthesis

iterations. Thus, , together with the prevented coverings ,

covers . From Step 4 as well as Propositions 2 and 4(a),

we know that any marking in the set will be prevented

in this step, or this marking has already been prevented in pre-

vious iterations.

The above discussion applies to any RIDM siphon in the

net. Thus, UCCOR does not miss preventing any RIDM-unsafe

marking with respect to any RIDM siphon . This, together with

Assumption 1 and Proposition 3, implies that UCCOR is correct

with respect to the goal of preventing from becoming a RIDM

siphon and the given set of uncontrollable transitions.

Next, we prove the maximal permissiveness. Recall from

Theorem 1(a) that is live iff it is reversible. Thus, we are

1134 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 5, MAY 2013

going to show that the UCCOR Algorithm only prevents mark-

ings that cannot reach the initial marking , or markings that

can reach the aforementioned type of markings via a sequence

of uncontrollable transitions.

According to Proposition 2, it follows from the Unsafe Cov-

ering Construction Algorithm that the set obtained in Step 1

of the UCCOR Algorithm only covers RIDM-unsafe markings

with respect to . Moreover, Corollary 2 and Remark 7 imply

that any marking, covered by the refined set obtained in

Step 2, cannot reach . In Step 3, the obtained set is a

subset of . Hence, anymarking covered by cannot reach

either. Moreover, Stage 1 of Step 4b only prevents the cov-

erings in ; Stage 2 of Step 4b only prevents the coverings

in , and the markings that can reach some marking cov-

ered by , through a sequence of uncontrollable transitions

(see Proposition 4(b)). Such coverings and markings must be

removed. Therefore, UCCOR is maximally permissive with re-

spect to the goal of preventing from becoming a RIDM siphon

and the given set of uncontrollable transitions.

From Definition 5, we know that any marking in a Gadara net

can be uniquely characterized by the corresponding -marking

without any ambiguity. That is, if and only if

. The set of reachable -markings induced by the set of

reachable markings is defined as

, which is denoted as for simplicity. We imme-

diately have the following result.

Lemma 1: The reachability graph associated with

and the reachability graph associated with

are isomorphic.

Lemma 1 subsequently enables us to prove the following

theorem.

Theorem 5: ICOG terminates in a finite number of iterations.

Proof: Due to Lemma 1, in the following proof, we can

restrict our attention to . By Definition 1, the number of

operation places in a Gadara net is finite. Further, for any

, is always binary. As a result, the set of reachable

-markings has finite cardinality. The set of reachable

-markings that need to be prevented, which is a subset of ,

also has finite cardinality.

For the sake of discussion, we use to denote the set of

non-reachable -markings, each of which is a binary vector.

According to the above discussion, the cardinality of

is at most . Note that the aforementioned and are

associated with the input Gadara net before the first iteration

of ICOG is applied.

In each iteration of ICOG, we only expand the set

by adding monitor places while leaving unchanged. So,

ICOG does not expand . In other words, the set of reachable

-markings that need to be prevented has a finite upper bound

; another looser but also finite upper bound for this set is

, whose cardinality is at most. In every iteration

of ICOG, the synthesized monitor place eliminates at least one

marking from , which is not prevented in the previous

iterations of ICOG. Therefore, the proposed ICOG will termi-

nate in a finite number of iterations.

Theorem 6: ICOG is correct and maximally permissive with

respect to the goal of liveness enforcement and the given set of

uncontrollable transitions.

Proof: First, we prove the correctness of ICOG.

In each iteration of ICOG, a new RIDM siphon in the net

is detected. According to Theorem 4, for any detected RIDM

siphon with its associated , the UCCOR Algorithm

ensures that any possible RIDM-unsafe marking , such that

, will be prevented. And the detected RIDM

siphon will not become reachable under the synthesized

control logic. ICOG terminates when no further new RIDM

siphons can be detected. By using the UCCORAlgorithm for all

detected RIDM siphons in all the iterations, any RIDM-unsafe

marking associated with any RIDM siphon will be prevented,

and no siphon will become a RIDM siphon. Furthermore, in

each iteration of ICOG, UCCOR always synthesizes an admis-

sible Gadara net, according to Assumption 1 and Proposition 3.

This, together with Theorems 1(c) and 5, implies that the

proposed ICOG ensures admissibility and liveness of the final

controlled Gadara net, i.e., it is correct with respect to the goal

of liveness enforcement and the given set of uncontrollable

transitions.

Next, we prove the maximal permissiveness of ICOG. This

is an immediate consequence of the maximal permissiveness of

UCCOR on a single iteration basis as established in Theorem

4. In each iteration of ICOG, UCCOR is employed to prevent

markings in the net. Since UCCOR only prevents markings that

cannot reach the initial marking, or markings that can reach the

aforementioned type of markings via a sequence of uncontrol-

lable transitions, so does ICOG. Therefore, ICOG is maximally

permissive with respect to the goal of liveness enforcement and

the given set of uncontrollable transitions.

Remark 8: We interpret the effect of ICOG andUCCOR from

the viewpoint of the Supervisory Control Theory. Let

be the final controlled Gadara net when ICOG terminates. Let

and be the automata models of the reachability graphs as-

sociated with and , respectively. The language gen-

erated by is denoted as . In and , only the ini-

tial states are marked. The languages marked by and

are denoted as and , respectively. The live

(equivalently, reversible) part of corresponds to the trim of

automaton and it is captured by the marked language .

However, this language need not be controllable (as defined

in [25]) with respect to and , where is the set

of uncontrollable events corresponding to the set in the

Gadara net. ICOG and UCCOR control and finally obtain

, so that is equal to the supremal control-

lable sublanguage [25] of with respect to and

. Throughout the iterations of ICOG, the cumulative effect

of the constraint transformation in Stage 2 of Step 4b of UCCOR

corresponds to the elimination of the states that violate the con-

trollability condition in the supremal controllable sublanguage

algorithm; the cumulative effect of the remaining operations in

UCCOR corresponds to the removal of the blocking states in

that algorithm.

Our last result is the following interesting property of the

UCCOR Algorithm.

LIAO et al.: OPTIMAL LIVENESS-ENFORCING CONTROL FOR A CLASS OF PETRI NETS ARISING IN MULTITHREADED SOFTWARE 1135

Fig. 8. Illustration of the rearranged order of rows in a marking, covering, and
incidence matrix.

Theorem 7: In , for any monitor place synthesized by the

UCCORAlgorithm, all its incoming and outgoing arcs have unit

arc weights.

Proof: From Step 4b of the UCCOR Algorithm, we know

that for any synthesized monitor place , the arc weights of its

associated incoming and outgoing arcs are determined by the

nonzero components in the row vector , which is calculated

as

(13)

In (13)
if ;

otherwise.
(14)

is a column vector that has the same dimension with , and

is the incidence matrix of the net.

For the sake of discussion and without loss of generality, we

can always rearrange the order of rows in a marking, covering,

and incidence matrix such that row 1 to row correspond to

the set of all operation places , row to row

correspond to the set of all idle places , row to

row correspond to the set of all resource places

, and row to

correspond to the set of all monitor places . The rearranged

order is shown in Fig. 8.

In this way, any covering can be logically divided into four

blocks corresponding to the four types of places. Then, any cov-

ering can be rewritten as

(15)

where , , , and are the partial coverings

on , , , and , respectively. Similarly, the aforemen-

tioned column vector in (14) can be rewritten as

(16)

and the incidence matrix can be rewritten as

(17)

The blocks are self-explanatory by their subscripts. From Defi-

nition 7 and its discussion thereafter, we know that for any cov-

ering written as in (15), any component in , , and

is always . As a result of this and (14), for any column

vector written as in (16), any component in , , and

is always 0. Therefore, (13) can be simplified as:

(18)

Note that is the part of the incidence matrix of that

corresponds to , which describes the connectivity between

operation places and transitions. Since is also a part of the

incidence matrix of and is ordinary, any component in

can only be 1, 1, or 0. Moreover, according to Condition

3 of Definition 1, we know that each transition in has at

most one input operation place and at most one output operation

place. That is, any column in contains at most one “ 1” and

at most one “1”, with all other components being zeros. On the

other hand, we know from (14) that any component in is

either 0 or 1. Consequently, any component in the row vector

calculated in (18) can only be 1, 1, or 0.

The implication of Theorem 7 will be discussed in the next

section.

V. DISCUSSION

Theorem 7 implies that the UCCOR Algorithm will never

introduce any non-ordinariness to the Gadara net. If ICOG starts

with a controlled Gadara net that is ordinary, then the resulting

controlledGadara netswill remain ordinary throughout the itera-

tions.Therefore, if theobjectiveofourcontrol synthesis is strictly

liveness enforcement and the initial condition is an ordinary con-

trolledGadara net (including), then the generalmethodology

of ICOG and UCCOR can be customized for this special case.

More specifically, in the customized control synthesis, we could

focus on preventing empty siphons that are induced by resources,

rather than RIDM siphons. Such customization preserves all the

properties of ICOGandUCCORpresented in this paper, because

the former type of siphons is a special case of RIDM siphons. In

addition, somesteps in ICOGandUCCOR, suchasbookkeeping,

can also be simplified as a result of the customization.

Furthermore, observing that RIDM siphon detection is the

computational bottleneck of ICOG, as mentioned in Section III,

we have developed a set of customized MIP formulations for

RIDM siphon detection in general Gadara nets and empty

siphon detection in ordinary Gadara nets. We have shown via

experiments that the proposed MIP formulations, when used

as a module in ICOG, perform consistently better than the

similar MIP formulations available in the literature for broader

classes of Petri nets. Further, our stress tests indicate that ICOG

is scalable to very large nets that are typical of the size of

real-world software. We have also shown that the customized

ICOG, together with the customized MIP formulation, never

synthesizes redundant control logic throughout the iterations.

On the other hand, the number of monitor places synthesized

by ICOG need not be minimal in general. In this regard, we

refer the readers to the recent work [24], developed in parallel

by members of our team, which addresses the minimization of

the number of monitor places in control problems for a class of

resource allocation systems using classification theory.

The detailed description of the above customizations and ex-

periments is beyond the scope of this paper and is reported in a

follow-up applications paper [20].

VI. CONCLUSION

We have presented an iterative methodology, called ICOG,

for the synthesis of optimal liveness-enforcing control policies

1136 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 5, MAY 2013

for the class of controlled Gadara nets based on siphon anal-

ysis. As a module in ICOG, a new algorithm, called UCCOR,

is proposed to prevent any RIDM siphon from becoming reach-

able. Using the notion of covering, each monitor place synthe-

sized by the UCCOR Algorithm can prevent more than one

undesirable state. In addition, the net uncontrollability is ac-

counted for in a minimally restrictive manner. ICOG applies

the UCCOR Algorithm until all RIDM siphons are prevented

by at least one monitor place; this convergence is achieved in a

finite number of iterations. We formally show that both ICOG

and UCCOR are correct and maximally permissive with respect

to the goal of liveness enforcement. The proposed ICOG and

UCCOR provide a general methodology for the liveness en-

forcement of Gadara nets that can be further customized for spe-

cific applications.

APPENDIX

A. Petri Net Preliminaries

Definition 8: A Petri net dynamic system

is a bipartite graph with an

initial number of tokens. Specifically,

is the set of places, is the set of

transitions, is the set of arcs,

is the arc weight function, and for

, is the initial number of tokens in .

The marking (or state) of a Petri net is a column vector

of entries corresponding to the places. As defined above,

is the initial marking. We use to denote the (par-

tial) marking on a place (a scalar) and use to denote

the (partial) marking on a set of places , which is a

column vector. The notation denotes the set of input transi-

tions of place . Similarly, denotes

the set of output transitions of . The sets of input and output

places of transition are similarly defined by and . This

notation is extended to sets of places or transitions in a natural

way. A pair is called a self-loop if is both an input and

output place of . We consider only self-loop-free Petri nets in

this paper. Our Petri net models of multithreaded programs have

unit arc weights. Such Petri nets are called ordinary. However,

the imposition of further control structure upon these nets may

render them non-ordinary. A transition is enabled or fireable

at a marking , if , . The reachable

state space of is the set of all markings reach-

able by transition firing sequences starting from . The inci-

dence matrix of a Petri net is an integer matrix ,

where represents the net change

in the number of tokens in place when transition fires. A

state machine is an ordinary Petri net such that each transition

has exactly one input place and exactly one output place, i.e.,

.

Definition 9: Let be the incidence matrix of a Petri net .

Any non-zero integer vector such that , is called a

P-invariant of . Further, P-invariant is called a P-semiflow

if all the elements of are non-negative.

A straightforward property of P-invariants is given by the

following well-known result [22]: If vector is a P-invariant

of , then for any

. The support of P-semiflow , denoted by , is

defined to be the set of places that correspond to nonzero en-

tries in . A support is said to be minimal if there does not

exist another nonempty support , for some other P-semi-

flow , such that . A P-semiflow is said to be

minimal if there does not exist another P-semiflow such that

, . For a given minimal support of a P-semi-

flow, there exists a unique minimal P-semiflow, which we call

the minimal-support P-semiflow [22].

B. Control Synthesis for Petri Nets

Supervision Based on Place Invariants (SBPI) [6]–[8], [33]

provides an efficient algebraic technique for control logic syn-

thesis by introducing a monitor place, which essentially en-

forces a P-invariant so as to achieve a given linear inequality

constraint of the following form

(19)

where is the marking vector of the net under control, is a

weight (column) vector, and is a scalar. All entries of and

are integers. The main result of SBPI is as follows.

Theorem 8: [8] Consider a Petri net , with incidence matrix

and initial marking . If it satisfies , then a

monitor place, , with incidence matrix , and

initial marking , enforces the constraint

upon the net marking. This supervision is maximally

permissive.

The property of maximal permissiveness stated in the above

theorem implies that a transition in the net is disabled by the

monitor place only if its firing leads to a marking where the

linear constraint in (19) is violated.

REFERENCES

[1] K. Barkaoui and J.-F. Pradat-Peyre, “On liveness and controlled

siphons in Petri nets,” in Proc. 17th Int. Conf. Appl. Theory Petri Nets,

1996, pp. 57–72.

[2] E. E. Cano, C. A. Rovetto, and J.-M. Colom, “An algorithm to compute

the minimal siphons in nets,” in Proc. Int. Workshop Discrete

Event Syst., 2010, pp. 18–23.

[3] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Sys-

tems, 2nd ed. Boston, MA: Springer, 2008.

[4] F. Chu and X.-L. Xie, “Deadlock analysis of Petri nets using siphons

and mathematical programming,” IEEE Trans. Robot. Autom., vol. 13,

no. 6, pp. 793–804, Dec. 1997.

[5] A. Ghaffari, N. Rezg, and X. Xie, “Design of a live and maximally per-

missive Petri net controller using the theory of regions,” IEEE Trans.

Robot. Autom., vol. 19, no. 1, pp. 137–142, Jan. 2003.

[6] A. Giua, “Petri Nets as Discrete Event Models for Supervisory Con-

trol,” Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy, NY,

1992.

[7] A. Giua, F. DiCesare, and M. Silva, “Generalized mutual exclusion

constraints on nets with uncontrollable transitions,” in Proc. IEEE Int.

Conf. Syst., Man, Cybern., 1992, pp. 974–979.

[8] M. V. Iordache and P. J. Antsaklis, Supervisory Control of Concurrent

Systems: A Petri Net Structural Approach. Boston, MA: Birkhäuser,

2006.

[9] M. V. Iordache and P. J. Antsaklis, “Concurrent program synthesis

based on supervisory control,” in Proc. American Control Conf., 2010,

pp. 3378–3383.

[10] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated atomicity-

violation fixing,” in Proc. ACM SIGPLAN 2011 Conf. Programming

Language Design Implementation, 2011, pp. 389–400.

[11] T. Kelly, Y. Wang, S. Lafortune, and S. Mahlke, “Eliminating concur-

rency bugs with control engineering,” IEEE Computer, vol. 42, no. 12,

pp. 52–60, Dec. 2009.

LIAO et al.: OPTIMAL LIVENESS-ENFORCING CONTROL FOR A CLASS OF PETRI NETS ARISING IN MULTITHREADED SOFTWARE 1137

[12] Z. Li, N. Wu, and M. Zhou, “Deadlock Control of Automated Manu-

facturing Systems Based on Petri Nets—A Literature Review,” Xidian

University, Shaanxi, China, Tech. Rep., 2010.

[13] Z. Li and M. Zhou, Deadlock Resolution in Automated Manu-

facturing Systems: A Novel Petri Net Approach. London, U.K.:

Springer-Verlag, 2009.

[14] Z. Li andM. Zhou, Modeling, Analysis, and Deadlock Control of Auto-

mated Manufacturing Systems. Beijing, China: Science Press, 2009.

[15] Z. Li, M. Zhou, and N. Wu, “A survey and comparison of Petri

net-based deadlock prevention policies for flexible manufacturing

systems,” IEEE Trans. Syst., Man, Cybern. C, vol. 38, no. 2, pp.

173–188, Mar. 2008.

[16] H. Liao, “Modeling, Analysis, and Control of a Class of Resource Al-

location Systems Arising in Concurrent Software,” Ph.D. dissertation,

Univ. Michigan, Ann Arbor, 2012.

[17] H. Liao, S. Lafortune, S. Reveliotis, Y. Wang, and S. Mahlke, “Syn-

thesis of maximally-permissive liveness-enforcing control policies for

Gadara Petri nets,” in Proc. 49th IEEE Conf. Decision Control, 2010,

pp. 2797–2804.

[18] H. Liao, J. Stanley, Y. Wang, S. Lafortune, S. Reveliotis, and S.

Mahlke, “Deadlock-avoidance control of multithreaded software: An

efficient siphon-based algorithm for Gadara Petri nets,” in Proc. 50th

IEEE Conf. Decision Control, 2011, pp. 1142–1148.

[19] H. Liao, Y. Wang, H. K. Cho, J. Stanley, T. Kelly, S. Lafortune, S.

Mahlke, and S. Reveliotis, “Concurrency bugs in multithreaded soft-

ware: Modeling and analysis using Petri nets,” J. Discrete Event Dy-

namic Syst., to be published.

[20] H. Liao, Y. Wang, J. Stanley, S. Lafortune, S. Reveliotis, T. Kelly, and

S. Mahlke, “Eliminating concurrency bugs in multithreaded software:

A new approach based on discrete-event control,” IEEE Trans. Control

Syst. Technol., to be published.

[21] J. O. Moody and P. J. Antsaklis, Supervisory Control of Discrete Event

Systems Using Petri Nets. Boston, MA: Kluwer, 1998.

[22] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.

IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989.

[23] T. Murata, B. Shenker, and S. M. Shatz, “Detection of Ada static dead-

locks using Petri net invariants,” IEEE Trans. Software Eng., vol. 15,

no. 3, pp. 314–326, Mar. 1989.

[24] A. Nazeem, S. Reveliotis, Y. Wang, and S. Lafortune, “Designing

compact and maximally permissive deadlock avoidance policies for

complex resource allocation systems through classification theory:

The linear case,” IEEE Trans. Autom. Control, vol. 56, no. 8, pp.

1818–1833, Aug. 2011.

[25] P. Ramadge and W. M. Wonham, “The control of discrete event sys-

tems,” Proc. IEEE, vol. 77, no. 1, pp. 81–98, Jan. 1989.

[26] S. A. Reveliotis, Real-Time Management of Resource Allocation

Systems: A Discrete-Event Systems Approach. New York: Springer,

2005.

[27] S. A. Reveliotis and P. M. Ferreira, “Deadlock avoidance policies for

automated manufacturing cells,” IEEE Trans. Robot. Autom., vol. 12,

pp. 845–857, 1996.

[28] F. Tricas, F. Garcia-Valles, J. Colom, and J. Ezpeleta, “A Petri net

structure-based deadlock prevention solution for sequential resource

allocation systems,” in Proc. IEEE Int. Conf. Robot. Autom., 2005, pp.

271–277.

[29] M. Uzam, “An optimal deadlock prevention policy for flexible manu-

facturing systems using Petri net models with resources and the theory

of regions,” Int. J. Adv. Manufact. Technol., vol. 19, no. 3, pp. 192–208,

2002.

[30] Y. Wang, H. K. Cho, H. Liao, A. Nazeem, T. P. Kelly, S. Lafortune, S.

Mahlke, and S. Reveliotis, “Supervisory control of software execution

for failure avoidance: Experience from the Gadara project,” in Proc.

Int. Workshop Discrete Event Syst., 2010, pp. 259–266.

[31] Y. Wang, S. Lafortune, T. Kelly, M. Kudlur, and S. Mahlke, “The

theory of deadlock avoidance via discrete control,” in Proc. 36th Annu.

ACM SIGPLAN-SIGACT Symp. Principles Programming Languages,

2009, pp. 252–263.

[32] Y. Wang, H. Liao, S. Reveliotis, T. Kelly, S. Mahlke, and S. Lafor-

tune, “Gadara nets: Modeling and analyzing lock allocation for dead-

lock avoidance in multithreaded software,” in Proc. 48th IEEE Conf.

Decision Control, 2009, pp. 4971–4976.

[33] K. Yamalidou, J. Moody, M. Lemmon, and P. Antsaklis, “Feedback

control of Petri nets based on place invariants,” Automatica, vol. 32,

no. 1, pp. 15–28, Jan. 1996.

Hongwei Liao (S’10) received the B.Eng. degree
in electrical engineering and Dual B.Mgt. degree
in business administration (with honors) from
Shanghai Jiao Tong University, Shanghai, China,
in 2007, and the M.Sc. degree in electrical engi-
neering-systems, the M.S.E. degree in industrial
and operations engineering, and the Ph.D. degree in
electrical engineering-systems from the University
of Michigan, Ann Arbor, in 2009, 2011, and 2012,
respectively.
He joined the Operations Research Group at

US Airways, Tempe, AZ, in 2012, where he is an Analyst and Technologies
Lead. He was an Intern at General Electric Global Research, Niskayuna,
NY, in summer 2010, and an Intern at General Motors Global Research and
Development, Warren, MI, in summer 2011. His research interests include
discrete event systems, operations research, and wireless communications.
Dr. Liao received the Rackham Predoctoral Fellowship Award (2011) and

the College of Engineering Distinguished Achievement Award (2011) from the
University of Michigan, Ann Arbor. He is a member of Phi Kappa Phi and Tau
Beta Pi.

Stéphane Lafortune (F’99) received the B. Eng
degree from Ecole Polytechnique de Montréal
Montréal, QC, Canada, in 1980, the M. Eng. degree
from McGill University, Montréal, Montréal, QC,
in 1982, and the Ph.D. degree from the University
of California at Berkeley in 1986, all in electrical
engineering.
Since September 1986, he has been with the

University of Michigan, Ann Arbor, where he is a
Professor of Electrical Engineering and Computer
Science. He is the lead developer of the software

package UMDES and co-developer of DESUMA with L. Ricker. He co-au-
thored the textbook Introduction to Discrete Event Systems—Second Edition
(Springer, 2008). He is a member of the editorial boards of the Journal
of Discrete Event Dynamic Systems: Theory and Applications and of the
International Journal of Control. His research interests are in discrete event
systems and include multiple problem domains: modeling, diagnosis, control,
optimization, and applications to computer systems.
Dr. Lafortune received the Presidential Young Investigator Award from the

National Science Foundation in 1990 and the George S. Axelby Outstanding
PaperAward from the Control Systems Society of the IEEE in 1994, and in 2001.

Spyros Reveliotis (SM’03) received the Diploma in
electrical engineering from the National Technical
University of Athens, Athens, Greece, the M.Sc.
degree in computer systems engineering from
Northeastern University, Boston, MA, and the Ph.D.
degree in industrial engineering from the University
of Illinois at Urbana-Champaign.
He is a Professor in the School of Industrial and

Systems Engineering, Georgia Institute of Tech-
nology, Atlanta. His research interests are in the area
ofDiscrete Event Systems theory and its applications.

Dr. Reveliotis received the 1998 IEEE Intl. Conf. on Robotics and Au-
tomation Kayamori Best Paper Award. He serves as Associate Editor for the
IEEE TRANSACTIONS ON AUTOMATIC CONTROL and as Department Editor for
the IIE TRANSACTIONS. He has also been an Associate Editor for the IEEE
TRANSACTIONS ON ROBOTICS AND AUTOMATION and the IEEE TRANSACTIONS
ON AUTOMATION SCIENCE AND ENGINEERING, a Senior Editor in the Con-
ference Editorial Board for the IEEE International Conference on Robotics
and Automation. He is a member of INFORMS. In 2009, he was the Program
Chair for the IEEE Conference on Automation Science and Engineering, and
currently he serves as a member of the Steering Commitee for this conference.

1138 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 5, MAY 2013

Yin Wang (M’09) received the B.S. and M.S. de-
grees from the Department of Automation, Shanghai
Jiao Tong University, Shanghai, China, in 2000
and 2003, respectively, and the Ph.D. degree from
the Electrical Engineering and Computer Science
Department, University of Michigan, Ann Arbor, in
2009.
He joined Hewlett-Packard Laboratories in early

2009. He interned at Microsoft Shanghai, IBM Al-
maden Research Center, and HP Labs.

Scott Mahlke (M’90) received the Ph.D. degree in
electrical engineering from the University of Illinois
at Urbana-Champaign, in 1997.
He is a Professor in the Electrical Engineering

and Computer Science Department, University of
Michigan, Ann Arbor, where he leads the Compilers
Creating Custom Processors Group. The CCCP
Group delivers technologies in the areas of compilers
for multicore processors, application-specific pro-
cessors for mobile computing, and reliable system
design.

Dr. Mahlke was named the Morris Wellman Assistant Professor in 2004 and
received theMost Influential Paper Award from the International Symposium on
Computer Architecture in 2007. He is a member of the IEEE Computer Society
and the ACM.

