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Abstract— Since sensor networks can be composed of a very
large number of nodes, the developed protocols for these net-
works must be scalable. Moreover, these protocols must be
designed to prolong the battery lifetime of the nodes. Typical
existing routing techniques for ad hoc networks are known not
to scale well. On the other hand, the so-called geographical
routing algorithms are known to be scalable but their energy
efficiency has never been extensively and comparatively studied.
For this reason, a novel analytical framework is introduced. In
a geographical routing algorithm, the packets are forwarded by
a node to its neighbor based on their respective positions. The
proposed framework allows to analyze the relationship between
the energy efficiency of the routing tasks and the extension
of the range of the topology knowledge for each node. The
leading forwarding rules for geographical routing are compared
in this framework, and the energy efficiency of each of them
is studied. Moreover Partial Topology Knowledge Forwarding,
a new forwarding scheme, is introduced. A wider topology
knowledge can improve the energy efficiency of the routing
tasks but can increase the cost of topology information due
to signaling packets that each node must transmit and receive
to acquire this information, especially in networks with high
mobility. The problem of determining the optimal Knowledge
Range for each node to make energy efficient geographical
routing decisions is tackled by Integer Linear Programming. It
is demonstrated that the problem is intrinsically localized, i.e.,
a limited knowledge of the topology is sufficient to take energy
efficient forwarding decisions, and that the proposed forwarding
scheme outperforms the others in typical application scenarios.
For online solution of the problem, a probe-based distributed
protocol which allows each node to efficiently select its topology
knowledge, is introduced and shown to converge to a near-optimal
solution very fast.

Index Terms— Wireless Sensor Networks, Mathematical pro-
gramming/Optimization, Position Based routing, Topology Con-
trol.

I. INTRODUCTION

Recent advances in wireless communications and electron-
ics are paving the way for the deployment of low-cost, low-
power networks of untethered and unattended sensors and
actuators. Sensor networks [1] differ from “traditional” ad
hoc networks in many aspects. The number of nodes in a
sensor network can be several orders of magnitude higher
than in ad hoc networks, and the deployment of nodes is
usually denser. Moreover, sensor nodes are limited in power,
computational capacities and memory, and they may not have
global identification (ID) because of the very large number of

nodes and the according overhead.
Because of the above constraints, sensor networks protocols

and algorithms must possess self-organizing capabilities, i.e.
sensors must be able to cooperate in order to organize and
perform networking tasks in an efficient way. The primary
design constraints of these algorithms are: energy efficiency,
scalability and localization.

It has been pointed out in [2] that the improved energy effi-
ciency can be obtained by designing protocols and algorithms
with a cross-layer approach, i.e., by taking into account inter-
actions among different layers of the communication process
so that the overall energy expenditure can be minimized. In
this paper we consider dependencies between physical and
network layers with the objective to perform energy efficient
routing tasks.

All networking tasks, such as routing, should perform well
for wireless networks with an arbitrary number of nodes. A
scalable algorithm performs well in a large network. The
notion of scalability for an algorithm is strictly related to that
of localization: in a scalable algorithm each node exchanges
information only with its neighbors (localized information
exchange) in a very large wireless network [3]. In a localized
routing algorithm, each node decides on the next hop based
only on the position of itself, of its neighbors, and of the
destination node. As a result, the local node behavior tries to
achieve global network objectives such as minimum latency,
minimum energy consumption, etc. On the other hand, in a
non-localized routing algorithm a node maintains an accurate
description of the overall network topology to compute the
next hop, so that a global objective can be maximized. The
routing problem becomes then equal to the shortest path
problem if the hop count is used as the global performance
metric or the shortest weighted path if power [4] or cost [5][6]
link metrics are used.

It has been shown in [7][8] that the routing protocols which
do not use geographical location information are not scalable,
e.g, AODV (Ad hoc on-demand Distance Vector), DSDV
(Destination Sequenced Distance Vector) or DSR (Dynamic
Source Routing). On the other hand, the recent availability of
small, inexpensive and low-power GPS (Global Positioning
System) receivers, together with techniques which can deduce
relative sensor coordinates from signal strengths [9] encourage
people to deploy Geographical Routing [16] (also Position



Based Routing) algorithms which are becoming most promis-
ing scalable solutions for critically power-constrained sensor
networks.

For these reasons this paper deals with the interactions be-
tween topology control [10] and energy efficient geographical
routing. The question we try to answer is “How extensive
should be the Local Knowledge of the global topology in each
sensor node, so that an energy efficient geographical routing
can be guaranteed?”. This question is clearly related to the
degree of localization of the routing scheme. If each sensor
node could have the complete knowledge of the topology,
it could then compute the “global” optimal next hop which
minimizes the energy expenditure. However, the process of
acquiring complete topology information has a cost, i.e.,
energy spent to exchange the signaling traffic.

We develop an analytical framework to capture the trade-
off between what we call the topology information cost,
which increases with the Knowledge Range of each node,
and the communication cost, which decreases when the
knowledge becomes more complete. We apply this analytical
framework to different position based forwarding schemes
[11][12][13][14][15] and demonstrate by using Monte Carlo
simulations that a limited knowledge is sufficient to make
energy efficient routing decisions.

With respect to existing literature on geographical routing,
we try to better define the terms “localized” and “neighbor”.
A “neighbor” for a certain sensor node is another node which
falls into its topology Knowledge Range, denoted as KR in
what follows.

Our main contributions are:
1) We introduce a novel analytical framework to evaluate

the energy expenditure of geographical routing algo-
rithms [16] for sensor networks;

2) We give an Integer Linear Programming (ILP) formu-
lation of the topology Knowledge Range optimization
problem;

3) We provide a detailed comparison of the leading existing
forwarding schemes [11][12][13][14][15] and introduce
a new scheme called Partial Topology Knowledge For-
warding (PTKF);

4) For the on-line solution of the problem we introduce the
PRobe-bAsed Distributed protocol for knowledge rAnge
adjustment (PRADA), which allows the network nodes to
select near-optimal Knowledge Ranges in a distributed
way.

The remainder of the paper is organized as follows. In Section
II we review the forwarding schemes [11][12][13][14][15]
for geographical routing and other related work. In Section
III we state the problem and in Section IV we provide a
mathematical formulation of the optimization problem. In
Section V we introduce the distributed protocol for Knowledge
Range adjustment and in Section VI we show numerical results
obtained using the above analytical framework. Finally, in
Section VII we conclude the paper.

II. RELATED WORK

First we describe the existing position based forwarding
rules which will be utilized in the remainder of the paper.

Fig. 1. Different Forwarding Schemes

A. Forwarding Rules

In a localized routing scheme, the node S (Fig. 1) which
currently holds a message, knows only the position of its
neighbors, i.e., the nodes within its Knowledge Range, and
the destination node D.

Definition 1: Given a sender node S, and a destination node
D, the progress of a generic node X , neighbor of S, is defined
as the orthogonal projection of the line connecting S and X
onto the line connecting S and D.
Takagi and Kleinrock [11] proposed the first geographical
routing scheme based on the notion of progress. In their Most
Forward within Radius (MFR) scheme [11], the packet is
forwarded to the neighbor whose progress is maximum, e.g.,
the node M , whose progress is Sm, in Fig. 1. Note that
though node G is closer to the destination, its progress Sg is
smaller than Sm. Hou and Li [12] discuss the Nearest Forward
Progress (NFP) method which selects the neighbor with the
minimum progress within the Knowledge Range of S, e.g.,
the node N in Fig. 1, whose progress is Sn.

Finn [13] proposes the Greedy Routing Scheme (GRS),
based on the geographical distance where the node S selects
from its neighbors the closest one to its destination, e.g., G
in Fig. 1. In the so-called Compass Routing method [14], the
message is forwarded to a neighbor, e.g., C in Fig. 1, such that
the direction SC is the closest to the direction SD, i.e., the
angle ∠CSD is minimum. In the so-called Random Progress
Forwarding (RPF) method [15] a random next hop is selected
among the nodes within the Knowledge Range. Let us now
introduce the following

Definition 2: Given a sender node S and a destination node
D, the advance of a generic neighboring node X is defined
as the distance between S and D minus the distance between
X and D.
A sufficient condition for a geographical routing scheme to be
loop free is that only next hop nodes with positive advance can
be selected. According to Definition 2, a generic neighbor has
a positive advance with respect to a sender node if it is closer
than the sender to the destination. When a routing scheme
selects next hop nodes only if they have positive advance, then



Fig. 2. Counterexample on the notion of progress

the overall path is guaranteed to be loop free. On the other
hand, a positive progress for each next hop is not a sufficient
condition for a routing scheme to be loop free, as can be
inferred from the counterexample in Fig. 2, where three nodes,
A, B and a destination node D are shown. A is a possible
next hop for B and vice versa, since both nodes A and B have
positive progress with respect to each other (Ak > 0, Bh > 0).
However, this does not avoid loops. Both node could choose
the other as next hop, thus generating a loop.

Conversely, loops are avoided when the positive advance
criterion is used as a necessary condition for a node to be
the next hop. Referring again to the example in Fig. 2, when
a positive advance is a necessary condition for a node to be
next hop, A is feasible next hop for B, but not vice versa,
since A is closer than B to the destination (AD < BD).
Since positive advance is a stronger condition, and guarantees
loop free paths, we assume a positive advance as a necessary
condition for a node to be the next hop in what follows. In
other words, a node must choose the next hop among the
nodes within its Knowledge Range and with positive advance
with respect to the destination node, for all the considered
forwarding schemes.

B. Other Related Work

Here we review related work on geographical routing, which
constitutes the background of our work.

An excellent survey on position based routing techniques
for ad hoc networks is given in [16], [17]. The methods to
determine absolute and relative coordinates for network nodes,
i.e., on location update techniques are reviewed in [18].

Most of the prior research assumes that nodes can work
either in greedy mode or in recovery mode. In the greedy
mode, the node that currently holds the message can forward
it towards the destination. The recovery mode is entered when
a node fails to forward a message in the greedy mode, since
none of its neighbors is a feasible next hop. Usually this occurs
because the node observes a void region between itself and
the destination. For example the Greedy Perimeter Stateless
Routing (GPSR), introduced in [19], makes greedy forwarding
decisions (as GRS in Section II.A). When a packet reaches a
concave node, the GPSR tries to recover by routing around the
perimeter of the void region. Recovery mechanisms, which

allow a packet to be forwarded to the destination when a
concave node is reached, are out of the scope of our paper.
Here we assume that the packet is directly forwarded to the
destination whenever such a node is reached.

The so-called Trajectory Based Forwarding (TBF) is pro-
posed in [20] where the packet is forwarded along a pre-
defined parametric curve encoded in the packet at the source.
Several localized algorithms for power, cost and power-cost
efficient routing are proposed and their efficiency is analyzed
in [21]. Scalability properties of different ad hoc routing
techniques, such as flat, hierarchical and geographical routing
are discussed in [22]. A topology control algorithm called
GAF given in [23] identifies, based on position information,
nodes that are equivalent from a routing perspective and
adaptively turns unnecessary nodes off in order to maintain
a constant level of performance.

A taxonomy of location systems is given in [9] for ubiqui-
tous computing applications including location sensing tech-
niques and properties as well as a survey of commercially
available location systems. In [24] it is shown how to derive
position information for all nodes using Angle of Arrival
(AOA) capabilities, when only a fraction of the nodes have
positioning capabilities. Finally a distributed location service
(GLS) is described in [7], where a node sends its position
updates to its location servers without knowing their actual
identities. This information is then used by the other nodes in
the network to perform geographical routing operations.

III. PROBLEM SETUP

First we describe the Neighborhood Discovery Protocol
which allows each node to gather information about its neigh-
borhood. We then introduce the network model and define
some notions. The network model is followed by the energy
efficiency model. Finally we develop a new forwarding scheme
called Partial Topology Knowledge Forwarding (PTKF).

Let us consider the following Neighborhood Discovery
Protocol. Node S in Fig. 3 periodically sends a Neighborhood
Discovery packet, called ND-packet, to gather information
about its neighbor nodes, at a power level that allows the
packet to be received by all nodes within its chosen Knowledge
Range (KR in Fig. 3).

As a result, nodes N1, N2 and N3 receive the ND-packet
while other nodes do not. Then, the nodes which received the
ND-packet reply with a Location Update packet, called LU-
packet. This contains the geographical position of the node.
Now the question we are trying to answer is what should the
Knowledge Range (KR) of each node be in the network so that
the energy required by the network to perform the routing tasks
is minimized. It is intuitive that increasing the KR may result
in more efficient routing decisions. However, this comes with
the penalty that more energy is needed to exchange signaling
traffic.

A. Network Model

The network of sensor nodes is represented as (V , D),
where V = {v1, v2, .., vN} is a finite set of nodes in a finite-
dimension terrain, with N = |V|, and D is the matrix whose



Fig. 3. Neighborhood Discovery Protocol

element (i, j) contains the value of the distance between nodes
vi and vj . We associate each node k with its Knowledge
Range, rk, based on the Neighborhood Discovery protocol
as explained above. Thus, the array R = [r1, r2, .., rN ]
describes the KRs of all nodes in the network. Let S be
the set of traffic sources and D the set of destination nodes.
We define P = {(s, d) : s ∈ S, d ∈ D} as the set of
source-destination connections. The information rate of each
connection is described by the traffic matrix P = [pij ], where
psd represents the average information rate (bits/s) between a
source node s ∈ S and a destination node d ∈ D.

Definition 3: A loop-free Forwarding Rule F , given a node
vi, its KR rk and a destination node vd, associates the node
vi with another node vn in V \ {vi}, in such a way that the
path {vi, vn, ..., vd} obtained by recursively applying the rule
is composed of distinct nodes.

Definition 4: vn is called next hop of node vi towards vd

with KR ri, according to F , which we indicate with vn =
lFvi

(vd, ri).
Note that for the sake of simplicity we will refer to a generic
node vn as n in what follows. We will also omit the index F .
Thus, lFvi

(vd, ri) is referred to as li(d, ri).
Given the set of KRs of all nodes R, the rule F induces

paths among any possible source-destination pair in the net-
work. Thus,

F : R→xsd
ij (R) (1)

where xsd
ij (R)=1 iff the link between node i and node j is

part of the path between node s and node d with the given
choice R of ranges, when we apply the forwarding rule F .

B. Energy Model

An accurate model for energy consumption per bit at the
physical layer is

E = Etrans
elec + βdα + Erec

elec (2)

where
Etrans

elec is the energy utilized by transmitter electronics
(PLLs, VCOs, bias currents, etc) and digital processing. This
energy is independent of distance;

Erec
elec is the energy utilized by receiver electronics, and

βdα accounts for the radiated power necessary to transmit
over a distance d between source and destination.

As in [28], we assume that

Etrans
elec = Erec

elec = Eelec (3)

Thus the overall expression for E in eq. 2, which we refer to
as link metric hereafter, simplifies to

E = 2 · Eelec + βdα (4)

According to this link metric, the topology information cost
for node vi is expressed as:

CINF
i (ri) = [LD · βrα

i + (Ni(ri) + 1) · LD · Eelec+

+
∑

m∈ζi(ri)

LU · βdα
mi + 2Ni(ri) · LU · Eelec] · 1

TM
(5)

with
α is the path loss (2 ≤ α ≤ 5);
β is a constant [Joule/(bits · mα)];
LD is the length of neighborhood discovery packets [bits];
LU is the length of location update packets [bits];
Eelec is the energy needed by the transceiver circuitry to

transmit or receive one bit [Joule/bits];
Ni(ri) is the number of neighbors of node vi when its

Knowledge Range is ri;
ζi(ri) is the set containing the indices of the nodes in range

ri of node i;
TM is the period between two consecutive neighborhood

discovery messages [sec];
The expression βrα

i represents the energy needed to transmit
one bit at distance ri; thus LD ·Eelec +LD ·βrα

i is the energy
needed for node i to transmit the ND-packet in its Knowledge
Range, where as each of the Ni(ri) nodes in its KR “spends”
only LD ·Eelec to receive the ND-packet. By adding these two
components we obtain the first line of eq. 5. Then, each of the
Ni(ri) nodes transmits an LU-packet. The energy expenditure
has again a constant factor, LU ·Eelec, plus a factor, LU ·βdα

mi),
which depends on the distance between the transmitting node
vm and node vi. Moreover, vi spends LU ·Eelec to receive each
of the Ni(ri) LU-packets. By adding all these components,
and dividing by TM , which depends on the mobility rate of
the nodes in the network, we obtain the final expression for
CINF

i . In other words, CINF
i is the average energy (measured

in watts) which is needed to allow node vi to obtain topology
information within the range ri.
The communication cost for node vi can be computed from:

CCOM
i (R) =

∑

(s,d)∈Πi(R)

[βdα
ili(d,ri)

+ 2Eelec] · psd (6)

with

Πi(R) = {(s, d) s.t. xsd
ij = 1 for at least one j} (7)

The set Πi(R) contains all source-destination pairs whose path
includes vi as a transit node, as well as those for which vi is the
source. Thus, in eq. 6 we sum over all the connections in which
vi is a transmitting node. Note that each term has a distance-
independent component 2·Eelec (the energy needed to transmit



and receive one bit), and a distance dependent component,
dα

ili(d,ri)
, which represents the α-th power of the distance

between node vi and vli(d,ri), its next hop towards vd when
its KR is ri. Every term is then multiplied by the average bit
rate of the communication psd. Thus, CCOM

i (R) is measured
in watts and represents the average energy expenditure for
all the communications node vi is involved in. We can now
state the total cost for node vi as:

CTOT
i (R) = CCOM

i (R) + CINF
i (ri),∀i. (8)

Note that while the information cost of each node only depends
on its own KR, the communication cost depends on the KRs
of all nodes involved in the communication process.

C. Partial Topology Knowledge Forwarding (PTKF)

Here we describe a novel forwarding scheme called Partial
Topology Knowledge Forwarding (PTKF). This is essentially
a shortest weighted path routing scheme with a power link
metric. Consider a node S which must forward a message to
a given destination D. Given its KR, S knows the position of
all nodes inside this range and the position of the destination
node. The topological view of S is constituted by node D and
by all the nodes in the KR with positive advance with respect
to D, so that the loop freedom condition holds. To evaluate
the next hop towards the destination node, a link metric of
2 · Eelec + βdα

ij , according to eq. 4, is assumed to be the
cost of the link between each node pair vi and vj . A shortest
weighted path algorithm (such as Bellman-Ford’s) is executed
to calculate the path towards the destination. The message
is forwarded to the first node N in this shortest path. The
node N calculates, in its turn, the optimal path towards the
destination D, but this time according to its own KR. This
can actually result in a very different path being chosen by
N compared to the path calculated by S. It is easy to see
the existing trade-off between the communication cost and
the information cost for this scheme. Note that, unlike the
forwarding schemes described in Section II.A, this is not a
greedy scheme. This scheme is more localized the smaller
the KR of each node becomes. However, we will demonstrate
by using realistic models that “small” KRs are chosen when
energy efficiency is the major concern.

IV. INTEGER LINEAR PROGRAMMING FORMULATION

Our objective is to select the vector of Knowledge Ranges
(KR) R which minimizes the energy expenditure of the overall
network, given the set of connections P and a Forwarding Rule
F :

P : min
R

CTOT =
∑

i∈V
(CCOM

i + CINF
i ) (9)

Here we give an Integer Linear Programming (ILP) formula-
tion of the problem.

To linearize an inherently non-linear problem we consider
discrete values of the Knowledge Ranges. The granularity of
this quantization can be whatever, but obviously finer-grained
transmission ranges increase the complexity of the problem.
Each variable ri, 0 ≤ ri ≤ rmax assumes one out of the kmax

discrete, equidistant values in the set {r0, r1, .., rkmax−1},

with rk − rk−1 = ∆r, ∀k s.t. 1 ≤ k ≤ kmax − 1, with
r0 = 0 and rmax = rkmax−1. We refer to the set of indices
{0, 1, .., kmax − 1} as R.

We introduce the following notations and variables:
r(k) is the k-th Knowledge Range;
rα(k) is the α-th power of the k-th KR;
Ni(k) is the number of neighbors for node vi when it selects

the k-th KR
f ij

dk = 1 iff, according to F , node vj is next hop for node
vi, when vd is destination, and the the k-th Range is chosen;

ak
ij = 1 iff node vj is in the k-th KR of node vi;

dα
ij is the α-th power of the distance between nodes vi and

vj .
We introduce the following routing variables:
xsd

ij = 1 iff link i− j is part of the path between vs and vd.
The assignment variables are:
yk

i = 1 iff node vi uses k-th Knowledge Range. We refer
to the variables yk

i as Knowledge Range indices.
We can now express the problem as:
P: Optimal Topology Knowledge Ranges Problem:
Minimize:

CTOT =
∑

i∈V
(CCOM

i + CINF
i ) (10)

Subject to: ∑

k∈R
yk

i = 1,∀i (11)

∑

j∈V
(xsd

sj − xsd
js) = 1,∀s ∈ S,∀d ∈ D s.t. s �= d; (12)

∑

j∈V
(xsd

dj − xsd
jd) = −1,∀s ∈ S,∀d ∈ D s.t. s �= d; (13)

∑

j∈V
(xsd

ij − xsd
ji ) = 0,∀s ∈ S,∀d ∈ D,∀i ∈ V

s.t. s �= d, i �= s, i �= d; (14)

xsd
ij ≤

∑

k∈R
(yk

i · f ij
dk),∀s ∈ S,∀d ∈ D,∀i, j ∈ V; (15)

xsd
sj =

∑

k∈R
(yk

s ·fsj
dk),∀s ∈ S,∀d ∈ D,∀j ∈ V s.t. s �= d (16)

CINF
i = (LN · β ·

∑

k∈R
(yk

i · rα(k) + (
∑

k∈R
(yk

i · Ni(k)) + 1)·

·LN · Eelec +
∑

m∈V
(LU · β · dα

mi + 2 · LU · Eelec)·

·
∑

k∈R
(yk

i · aim(k))) · 1
TM

,∀i ∈ V. (17)

CCOM
i =

∑

s∈S

∑

d∈D

∑

j∈V
(xsd

ij · psd · (2 · Eelec

+β · dα
ij)),∀i ∈ V. (18)

The constraint (11) imposes the existence of a single Knowl-
edge Range index different from zero for each node. The con-
straints (12)(13)(14) express conservation of flows [25], while



the constraints (15)(16) impose that paths are built according
to the forwarding rule defined by the input parameters f ij

dk.
Finally the constraints (17) and (18) express the information
and communication cost with the Knowledge Range index
notation, respectively. Note that given a forwarding rule F ,
expressed by the f ij

dk parameters, the assignment of the routing
(xsd

ij ) variables is completely dependent on the choice of
Knowledge Ranges (yk

i variables). Once the values of the yk
i

variables have been selected, the set X = {xsd
ij } defines the

path from source to destination for any connection in P .

V. PRADA: A DISTRIBUTED PROTOCOL FOR TOPOLOGY

KNOWLEDGE ADJUSTMENT

The solution of the ILP problem is not feasible in a practical
setting due to its complexity and centralized nature. Here we
introduce the PRobe-bAsed Distributed protocol for knowledge
rAnge adjustment PRADA, which determines the KRs on-line
in a distributed way. The objective of PRADA is to allow net-
work nodes to select stable and efficient topology Knowledge
Ranges (KRs). This global target is achieved through local
decisions and by means of probe packets exchanged among
the nodes. The main idea behind PRADA is to allow each
node to adjust its KR according to the feedback information
it receives from neighboring nodes involved in the same
multihop connections. A quick convergence to a near-optimal
solution and robustness are the key features of PRADA.

To trade off between the topology information cost and
the communication cost, each node which is part of the path
of a particular connection (as a source or a transit node),
periodically probes its possible KRs. For each of them the
node evaluates the increase/decrease in energy expenditure
when selected that KR could affect the network operation.
To clearly understand the rationale behind PRADA we point
out that while the information cost of each node only depends
on its KR, the communication cost depends on the KRs of
all nodes involved in the communication process. Thus, the
communication cost must be monitored with probe packets.

PRADA is executed at each node vi that has an active role
in the network, as a source or a transit node, in a certain set of
connections Pi. For each connection pk in this set, vi selects
the next hop lFvi

(vk
d , rprobe), where vk

d is the destination node
of the k-th connection, according to the selected forwarding
rule F and to its current KR. Periodically, each active node
selects a certain KR to be probed, different from the current
one, in the discrete set of possible KRs. We refer to the
selected KR as rprobe and to the current KR as rcurrent. Then
the node calculates:

CTOT
i (rprobe) = CINF

i (rprobe) +
∑

p∈Pi

cp
i (rprobe) (19)

where cp
i (rprobe) is the cost of the transmissions along the path

from vi to the destination of the connection p, with KR rprobe.
This way, the node can calculate the communication cost, from
the node itself to all the destinations, plus the information cost
that this new KR rprobe would cause.

If CTOT
i (rprobe) < CTOT

i (rcurrent), the value of the KR
is updated (rcurrent = rprobe).

Fig. 4. Structures of Probe Packet and of Incremental Cost Record Table

Let us describe the fields of the probe packets to explain
how this information is obtained. As shown in Fig. 4, a probe
packet has five fields. The first two contain the geographical
coordinates of the source and the destination. The third con-
tains a parameter called Cumulative Communication Cost and
the fourth contains the value rprobe of KR. The last field is a
one-bit flag, which is equal to 1 if the packet is on the forward
path towards the destination, or equal to 0 if it is on the reverse
path. The cumulative communication cost field, initialized to
0 when the packet is created, is updated hop-by-hop by adding
the incremental communication cost, i.e., the communication
cost necessary to reach the next hop, to the communication
cost stored in the packet. This way, the partial cumulative
communication costs are computed hop-by-hop along the path
from the sender to the destination.

Algorithm 1 PRADA
begin
randomly select rprobe �= rcurrent

for each pk ∈ Pi do
vi → lFvi

(vk
d , rprobe): probe packet

end for
wait for return packets
CTOT

i (rprobe) = CINF
i (rprobe) +

∑
p∈Pi

cp
i (rprobe)

if (CTOT
i (rprobe) < CTOT

i (rcurrent)) then
rcurrent = rprobe

end if
end

After choosing a KR rprobe, for each of the connections
in Pi the node sends a probe packet to the relevant next
hop and waits for its return. When a node receives a probe
packet on the forward path, it looks into the Incremental Cost
Record table to check if it already knows the incremental
communication cost needed to reach this destination. If it
does, there is no need to forward the probe packet to the
destination. The probe packet is sent back with the updated
information and the path bit is set to reverse. If it does not, the
packet is forwarded to the next hop towards the destination



Scenario 1 Scenario 2 Scenario 3
Terrain (10mx10m) (10mx10m) (50mx50m)

KRs (0,2,4,6,8)m (0,2,4,6,8)m (0,5,..,20)m
α 4 3 varies

LD 128 bits 128 bits 128 bits
LU 128 bits 128 bits 128 bits
TM 1s varies 1s

Eelec varies 50pJ/bit 50nJ/bit
β 100pJ/bit/mα 100pJ/bit/mα 100pJ/bit/mα

traffic 10Kbit/s 100Kbit/s 100Kbit/s

TABLE I

PARAMETERS OF THE MODEL USED FOR SIMULATIONS

in order to evaluate the communication cost. The packet is
forwarded until a node with information for that destination
or the destination itself is reached. The pseudocode in this
page (Algorithm 1) describes the operations performed by a
node vi which executes PRADA.

In order to reach stability, we choose to update the KR only
if the moving average of the communication cost for the last
Nprobe values gathered is lower than the cost of the current
range. In the experiments we assume that all the KRs are
probed with the same probability. More sophisticated strategies
can also be implemented in order to selectively scan the KRs,
aimed at saving transmission power, e.g. by avoiding values
of KR that are not likely to bring any benefit and providing a
better estimate of the cost.

VI. PERFORMANCE EVALUATION

We implemented the forwarding schemes described in Sec-
tion II-A, PTKF given in Section III-C and PRADA, given in
Section V. We further implemented the ILP problem in AMPL
[26] and solved it with the CPLEX [27] solver.

We are particularly interested in scenarios, such as those
encountered in sensor networks applications, where the density
of nodes is very high. However, due to the computational
complexity of the problem we investigate, and to the large
amount of the input data, a state-of-the-art workstation can
find the optimal solution with CPLEX for networks with at
most 100 nodes. Thus, we consider small geographical areas in
order to take into account the effects of high node densities on
the problem. The model depends on several input parameters,
and on the appropriate choice of these parameters which
are highly dependent on the technology and on the target
applications. Our choice for these parameters was motivated
by the model presented in [28]. However we also vary these
parameters in order to study their relevant effects on the
network performance. Moreover, we believe that a realistic
tuning of these parameters must be aided by real hardware
implementation of the considered protocols.

We present simulation results for the scenarios illustrated in
Table I.

In Scenario 1, all nodes are sources with 10 Kbit/s flows
directed towards a unique sink node. In Fig. 5 we show
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Fig. 5. Scenario 1 - Optimal Cost for the implemented forwarding schemes,
Eelec = 50 · 10−9J/bit
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Fig. 6. Scenario 1 - Cost with PRADA for the implemented forwarding
schemes, Eelec = 50 · 10−9J/bit

the optimal cost (the minimum of the objective function of
problem P, eq. 10), with increasing number of nodes for all
the implemented forwarding schemes (described in Sections
II-A and III-C). The value chosen for the parameter Eelec

is 50 · 10−9J/bit [28]. Note that the confidence intervals
are not shown for the sake of clarity. Since the area of
the terrain is very limited, multi-hop is often not energy
efficient, which leads source nodes to directly transmit to the
destination. For this reason, many forwarding schemes show
similar performance. In Fig. 6 we show the total cost for all
the implemented forwarding schemes in Scenario 1 obtained
by applying PRADA with Nprobe = 3.

In Fig. 7 we compare the optimal cost obtained for PTKF
with three different approaches for the solution of the opti-
mization problem, with 95% confidence intervals. The problem
is solved with CPLEX (optimal solution), with a greedy local
search heuristic, and by applying the distributed protocol
PRADA introduced in Section V. CPLEX finds the optimal
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Fig. 7. Scenario 1 - Comparison of Optimal Cost for PTKF with different
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Fig. 8. Scenario 1 - Distribution of values of Knowledge Range, Eelec =
50 · 10−9J/bit

solution for mixed integer problems by using a branch and
bound algorithm. The greedy local search heuristic basically
scans the nodes one after another and selects for each of them
the KR which minimizes the cost; the process is repeated
periodically until the stability is reached. Results obtained
with PRADA are also given where the PRADA curve is very
close to those obtained with CPLEX and with the greedy local
search heuristic. This behavior, as will be shown, becomes
more evident when the problem becomes more localized.

In Fig. 8 we show the distribution of the values of the KRs
in Scenario 1, with N = 10, 30, 50 and 70 nodes. The average
KR is, in this Scenario, below 1.5 meters, and it is easy to
see that most nodes either have a KR equal to 0 (that is,
they “prefer” to know nothing about their neighborhood and
directly transmit to destination) or they try to know “far” nodes
(4, 6 meters) to use them as intermediate relays. As a result,
it is either efficient to directly transmit to destination or use
at most one intermediate node as relay.
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Fig. 9. Scenario 1 - Optimal Cost for the implemented forwarding schemes,
Eelec = 50 · 10−10J/bit
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Fig. 10. Scenario 1 - Optimal Cost for the implemented forwarding schemes,
Eelec = 50 · 10−11J/bit

By decreasing the Eelec parameter, we decrease the weight
of the component in energy expenditure (link metric in eq.
4) which is independent of the distance. It becomes more
energy efficient to select multi hop paths, since the overall
distance independent part of the energy expenditure increases
with the number of hops. We would obtain the same effect by
increasing the area of the terrain, but we would have a less
dense terrain.

It can be inferred by comparing Figures 7, 9, 10 and 11
that the more multi hop paths are energy efficient (low values
for Eelec), the more PTKF (Section III-C) outperforms the
other schemes. In the above figures, the values for Eelec are
50·10−9, 50·10−10, 50·10−11 and 50·10−12J/bit respectively.

For Eelec = 50·10−12J/bit, the cost obtained with PRADA
is optimal, as can be seen from Fig. 12. When the distance
independent term Eelec in eq. 4 becomes small compared to
the area of the terrain, multi hop paths become more energy
efficient. When this occurs, by selecting KRs which are opti-
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Fig. 11. Scenario 1 - Optimal Cost for the implemented forwarding schemes,
Eelec = 50 · 10−12J/bit
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Fig. 12. Scenario 1 - Comparison of Optimal Cost for PTKF with different
approaches, Eelec = 50 · 10−12J/bit
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Fig. 13. Scenario 1 - Distribution of values of Knowledge Range, Eelec =
50 · 10−12J/bit
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Fig. 14. Scenario 2 - Optimal Cost for the implemented forwarding schemes,
TM = 0.01s

mal only locally, as PRADA does, we obtain globally optimal
solutions, because the problem becomes more localized when
Eelec decreases. In Fig. 13 we demonstrate that it is more
energy efficient to select near nodes (KRs are 2 meters), as
Eelec decreases. This is particularly true when the density of
the nodes increases.

In Scenario 2, all nodes are sources with 100 Kbit/s flows
directed towards a unique sink node. In Fig. 14 we report
optimal costs with increasing number of nodes for all the
implemented forwarding schemes (Section II-A). Again, PTKF
(Section III-C) performs better than the other forwarding
schemes. More greedy schemes such as Nearest Forward
Progress (NFP) and Most Forward within Radius (MFR), both
described in Section II-A, consume more energy.

In Fig. 15 we give optimal paths for all the considered for-
warding schemes in a Simulation with 50 nodes. Fig. 16 shows
the total cost for all the implemented forwarding schemes in
Scenario 2 obtained by applying PRADA with Nprobe = 3. Fig
16 and 14 are almost identical, which is explicitly shown by
Fig. 17 where we compare the results obtained for PTKF with
the three different optimization approaches (CPLEX, greedy
local search, PRADA). In Fig. 18 we depict the information
cost (eq. 17) and the communication cost (eq. 18) for PTKF,
again with the three different approaches. The communication
cost is shown to highly exceed the information cost when
relatively high data rate flows must be supported. In Fig. 19
we show the average value of the Knowledge Range with
increasing number of nodes for all the proposed schemes. It
is obvious that a very limited knowledge of the topology is
needed in average, less than 2 meters.

In Figures 20 and 21 we show the average convergence
dynamics of PRADA to the optimal solution with 70 and 40
nodes. At every step, any sensor node selects and probes
randomly one of its KRs. For 70 nodes, after 3000 steps
we obtain a near-optimal solution. In Fig. 22 we assume a
lower mobility rate, thus, we set TM = 1. As can be seen
in Fig. 22, for lower rates of mobility PTKF even more
evidently outperforms the other schemes. A more extended
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Fig. 15. Optimal Routing Trees with different Routing schemes - Scenario
2, 50 nodes.
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Fig. 16. Scenario 2 - Cost with PRADA for the implemented forwarding
schemes, TM = 0.01s
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Fig. 17. Scenario 2 - Comparison of Optimal Cost for PTKF with different
approaches, TM = 0.01s
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Fig. 18. Scenario 2 - information cost and communication cost for PTKF,
TM = 0.01s
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Fig. 19. Scenario 2 - Average KR with different forwarding schemes, TM =
0.01s
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0.01s
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Fig. 21. Scenario 2 - Convergence of PRADA with GRS, 40 nodes, TM =
0.01s
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Fig. 22. Scenario 2 - Optimal Cost for the implemented forwarding schemes,
TM = 1
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Fig. 23. Scenario 2 - Average KR with different forwarding schemes, TM =
1

local topology knowledge brings benefits in terms of energy
to the scheme which best exploits this information. This is
confirmed by Fig. 23 that shows how the average KRs increase
in general, and particularly for PTKF which is able by its
nature to better take advantage of a more extended knowledge.
Still, the extension of local knowledge of the topology is very
limited compared to the terrain dimensions.

In Scenario 3, 100 Kbit/s traffic flows are simultaneously
generated by sensor nodes in the network towards a sink
node, but the terrain is bigger (50mx50m). Figures 24 and 25
report optimal cost with increasing number of nodes for all
the implemented forwarding schemes with α = 3 and α = 5,
respectively. For high values of the parameter α the optimal
cost decreases as the node density increases, while for low
values of α the increase in the amount of traffic overcomes
the positive effect of a higher node density. Again, in all
the experiments of Scenario 3 PTKF is shown to perform
better than any other scheme. This is more evident again
when multi-hop paths are energy efficient, that is, when α
is higher (the distance dependent part of the cost has a higher
weight). Again more greedy schemes, such as Nearest Forward
Progress (NFP) [12] and Most Forward within Radius (MFR)
[11], both described in Section II-A, are shown to lead to
higher energy consumptions.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we solve the problem how to determine optimal
local topology knowledge for energy efficient geographical
routing for sensor networks. We give an Integer Linear
Programming Formulation of the problem which constitutes
a framework for the analysis of the energy efficiency of
different forwarding schemes. We show that only a limited
local topology knowledge is needed to take energy efficient
routing decisions. We introduce a distributed protocol called
PRADA which quickly achieves a near-optimal solution.

Future research will include the extension of the model,
primarily to include features such as battery and bandwidth
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Fig. 24. Scenario 3 - Optimal Cost for the implemented forwarding schemes,
α = 3
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Fig. 25. Scenario 3 - Optimal Cost for the implemented forwarding schemes,
α = 5

constraints for the nodes. Moreover, the considered schemes
will be implemented in a tool simulating all layers of the
communication task to evaluate the effect of the signaling
traffic.
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