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Optimal Location of Actuators and
Sensors in Active Vibration Control

Bruant I., Proslier L.

Laboratoire de Mécanique de Paris X,
1 Chemin Desvallières,

92410 Ville d’Avray, France

ABSTRACT

Several studies have been developed in order to find the optimal location of actuators and sensors in active
control of structures. In this paper, a modified optimization criteria is proposed for these two optimization problems,
ensuring good observability or good controllability of the structure, and considering residual modes to limit the spill-
over effects. Its efficiency is shown by comparison with classical criteria, illustrated for a simply supported beam and
a rectangular plate. In these two applications, the number of active elements is discussed, using or neglecting the
residual modes.
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INTRODUCTION

In vibration suppression of structures, some parame-
ters, such as location of actuators and sensors, have a ma-
jor influence on the performance of the control system. It
is well known that misplaced sensors and actuators lead
to problems such as the lack of observability or controlla-
bility. In this way, different cost functions have been used
to find the optimal locations of these active elements.

In the case of optimization of actuators loca-
tions,(Arbel, 1981), (Hac and Liu, 1993) and (Devasia
et al., 1993) proposed to maximize a controllability cri-
teria using a measure of the gramian matrix. This ap-
proach seeks to ensure active damping of all needed modes
by minimizing the control energy. In a second approach
(Wang and Wang, 2001) suggested to maximize the con-
trol forces transmitted by the actuators to the structure.
A third optimization cost function is a linear quadratic
optimal framework. (Dhingra and Lee, 1995), (Kondoh
et al., 1990), (Bruant et al., 2001) and (Yang and Lee,
1993) proposed a quadratic cost function taking into ac-
count the measurement error and control energy. In the
case of sensors locations, the most usual performance uses
the energy of the state output so as to maximize the
information given by sensors. (Baruh, 1992) and (Hac
and Liu, 1993) rather proposed to maximize measures of
the gramian observability matrix in order to have optima
without dependence on initial conditions.

In this paper, a methodology is presented to find the

actuators and sensors location to increase control qual-
ity. In order to simplify the optimization problem, it was
decided to search independently the optimal location of
actuators and that of sensors.

In applications, the external disturbances are not all-
ways wellknown. In addition, many regulator methods
can be used. Then, it seems to be better to define an
optimization methodology independent of these external
work parameters. From these reasons, we propose here to
obtain optimal actuators location by maximizing a mod-
ified criteria which can result from the two first different
approaches. From a given number of eigenmodes, our
objective is to find the actuators locations such that the
actuators control is the largest possible using less possible
electrical energy. In the same way, as the sensors have to
inform the control system about the vibrationnal state of
the structure for each eigenmode, we present a modified
criteria in order to maintain the system output as large
as possible.

The spillover effects appear as a strong problem of
active control implementation on real structures. Very
few papers take into account the residual modes in their
developpements (Gaudiller and Hagopian, 1996), (Collet,
1999). Here, each criteria is presented considering them,
in order to limit the actuation or observation by active
elements on a certain subset of modes.
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In section 2, we point out the active vibration con-
trol equations. In section 3 and 4, we present the opti-
mization criteria used for sensors and actuators location.
Comparisons with classical criteria are shown in section
5, illustrated for a simply supported plate with piezoelec-
tric active elements. Discussion is developed about the
optimal number of actuators and sensors, especially when
residual modes are taken into account in the cost func-
tions. Results are shown for a simply supported beam
with point sensors.

EQUATIONS OF ACTIVE CONTROL

Consider a flexible structure with Na actuators and
Ns velocity sensors (all further developpements can be
applied for displacement sensors). The motion’s equa-
tions and the sensors’ equations of the system in modal
coordinates can be written as follows, when the N first
eigenmodes are considered and when taking into account
the NR residual eigenmodes:

α̈i + 2ζiωiα̇i + ω2
i αi =

Na∑
l=1

bilΦl i = 1..N (1)

α̈i + 2ζR
i ωR

i α̇i + (ωR
i )2αi =

Na∑
l=1

bR
ilΦl i = 1..NR (2)

yj =
N∑

l=1

cjlα̇l +
NR∑
l=1

cR
jlα̇l j = 1..Ns

αi, α̇i and α̈i represent modal displacement, velocity
and acceleration, ωi and ζi are the natural frequency and
damping ratio of the ith mode, and ωR

i and ζR
i those of

the residual modes; bilΦl is the ith modal component of
the control force due to Φl applied to the actuator l, bR

ilΦl

is the ith residual modal component of the force appear-
ing with the actuation of the actuator l. yj is the quantity
measured from the jth sensor. cjl is the sensing constant
of the jth sensor due to the motion of the lth mode and cR

jl

those due to the motion of the lth residual mode. bil, bR
il ,

cjl, cR
jl depend respectively of the lth actuator location

and jth sensor location.

These equations can be written in a state-space form,
using the state vector {x}(size (N + NR) + (N + NR)):

{x} = {ωiαi α̇i}T (3)

d

dt
{x} = [A]{x} + [B]{Φ} (4)

{y} = [C]{x} (5)

[A](2N+2NR,2N+2NR), [B](2N+2NR,Na) and [C](Ns,2N+2NR)

are the state, control and output matrices given by:

[A] =




[0] [0] [ωi] [0]
[0] [0] [0] [ωR

i ]
−[ωi] [0] −[2ζiωi] [0]
[0] −[ωR

i ] [0] −[2ζR
i ωR

i ]


 (6)

[B] =




[0]
[bil]
[0]
[bR

il ]


 (7)

[C] =
[

[0] [0] [cjl] [cR
jl]

]
(8)

Φ is the actuation vector: in the case of piezoelectric ac-
tuators, it contains electrical potentials.

From equation (4), several automatic tools can be
used to actively control vibrations (Preumont, 1999) by
applying a well chosen {Φ}. The actuation must be de-
fined to bend the N first eigenmodes, but it also actuates
the residual modes exciting them. This effect is called
spillover. In fact, the best case would be having:

bil >> 0 ∀l ∈ 1, ...Na and ∀i ∈ 1...N

bR
il = 0 ∀l ∈ 1, ...Na and ∀i ∈ 1...NR,

ensuring actuation (or controllability) for the N first
modes and no influence (or non controllability) of the NR

residual modes. This configuration should be approached
by optimizing the actuators locations.

In the same way, the vibrational information given by
the output sensors to the control system contains motions
on residual modes. As the control system neglects these
residual modes, the received information does not corre-
spond to the needed information. The best case would be
having:

cjl >> 0 ∀j ∈ 1, ...Ns and ∀l ∈ 1...N

cR
jl = 0 ∀j ∈ 1, ...Ns and ∀l ∈ 1...NR,

in order to have each mode (l ∈ 1...N) well observed
(good observability) and each residual mode not observed
(non observability). As before, this configuration should
be approached by optimizing the sensors locations.

Hence, before setting up the regulator and observer
system, the active elements’ locations have to be defined.



OPTIMAL LOCATION OF ACTUATORS

Many studies have been developed on optimal loca-
tion of actuators. Two usual approaches are used before
setting up the regulator: minimizing the control energy
required by maximizing a measure of the controllability
gramian matrix, and maximizing in a certain way the
control force.

In this work, we suggest considering these two ap-
proaches: finding the actuators’ locations so that the ac-
tuators’ forces are the largest possible (2nd approach) us-
ing electrical energy (1st approach) as possible.

In the next subsections, we briefly describe these ap-
proaches and explain our modified criteria.

Minimization of the control energy

This method is detailed in (Hac and Liu, 1993). The ob-
jective here is to find actuators locations which minimize
the control energy required to bring the modal system
(considering the N first eigenmodes) to a desired state
{xT } after some time T :

J = min
{Φ}

∫ T

0

{Φ}T{Φ}dt (9)

The optimal solution gives the following optimal control
energy :

J = [e[A]T {x0}−{xT}]T W−1(T )[e[A]T{x0}−{xT} (10)

where W (T ) is the controllability gramian matrix defined
by :

W (T ) =
∫ T

0

e[A]t[B][B]T e[A]T tdt (11)

Hence, as the actuators’ effects are only in W (T ) from
[B], minimizing J with respect to the actuators locations
consists in minimizing W−1(T ) or maximizing a measure
of the controllability gramian matrix.

(Hac and Liu, 1993) has shown that instead of using
W (T ), a steady state Wc can be considered to eliminate
the dependency of the solution T . Wc tends to a diagonal
form with

(Wc)ii = (Wc)i+N+NR,i+N+NR = (WU
c )ii (12)

=
Na∑
j=1

b2
ij

4ζiωi
=

1
4ζiωi

Na∑
j=1

b2
ij (13)

(Wc)i+N,i+N = (Wc)i+2N+NR,i+2N+NR = (WR
c )ii (14)

=
Na∑
j=1

(bR
ij)

2

4ζR
i ωR

i

i = 1, ...NR (15)

=
1

4ζR
i ωR

i

Na∑
j=1

(bR
ij)

2 i = 1, ...NR (16)

(WU
c )ii and (WR

c )ii equal to the energy transmitted
from the actuators to the structure for the ith used and
residual eigenmode.

Hence if one eigenvalue of (WU
c )ii is small there is an

eigenmode that is difficult to control: there is no con-
trollability for the system. Similarly, if one eigenvalue
(Wc)R

ii corresponding to a residual mode is high, the in-
duced spillover effect can be important. In order to avoid
these cases, several criteria can be maximized, as (Arbel,
1981), (Hac and Liu, 1993), (Collet, 1999):

det(WU
c ) − γdet(WR

c ) (17)

trace(WU
c )∗(det(WU

c ))1/2N−γtrace(WR
c )∗(det(WR

c ))1/2N

(18)
min

i=1,N
(WU

c )ii − γ max
i=1,NR

(WR
c )ii (19)

where γ is a weighting constant. These three criteria en-
sure global controllability of the system for the N first
eigenmodes and try to minimize the global excitation of
the NR residual modes.

Maximization of the control force

In this approach, detailed in (Wang and Wang, 2001),
the actuators locations are obtained by maximizing the
global control force {fc} = [B]{f} from {fc}T {fc} =
{Φ}T [B]T [B]{Φ} (here residual modes are neglected).

Using singular value analysis, [B] can be written as:
[B] = [M ][S][N ]T where [M ]T [M ] = [I] = [N ]T [N ],

[S] =




σ1 0 0
0 σi 0
0 0 σNa

0 0 0


 (20)

and
{fc}T {fc} = {Φ}T [N ][S]T [S][N ]T {Φ} (21)

or ||{fc}||2 = ||{Φ}||2||S||2. Thus, maximizing this
norm independently on the input {Φ} induces maximizing
||S||2. Wang suggests to maximize

Na∏
i=1

σ2
i (22)

taking into account globally all modes. In this equation,
σi is refered to as the ith degree of controllability of the
system. Its magnitude is a function of the location and
size of the piezoelectric actuators.



When residual modes cannot be neglected, a similar
criteria can be obtained, consisting in differentiating the
N first modes from the NR residual modes and maximiz-
ing :

Na∏
i=1

σ2
i − γ

Na∏
i=1

(σR
i )2 (23)

where σR
i are the components of [S]R corresponding to

bR, and γ is a weighting constant.

The modified criteria

The use of these criteria shows that the eigenmodes are
taken into account globally. As our objective is to control
each considered modes, without exciting residual modes,
by transmitting a maximum control force with a mini-
mum electrical energy, we suggest here modifying these
criteria.

• First of all, instead of maximizing a global norm
of Wc which means minimizing the electrical energy, we
suggest maximizing each diagonal term of Wc (the energy
transmitted from the actuators to the structure for each
eigenmode (1...N))and minimizing the NR other diagonal
term of Wc:

maximize {(WU
c )11, ..., (WU

c )NN} (24)

minimize {(WR
c )11, ..., (WR

c )NRNR} (25)

This optimization problem has Na optimization param-
eters (the locations of the Na actuators) and N + NR

optimization functions. It can be simplified by consider-
ing the new optimization criteria:

maximize { min
i=1,...N

(WU
c )ii − γ max

i=1,...NR
(WR

c )ii} (26)

where γ is a weighting constant. This criteria, with γ = 0
has been proposed by (Arbel, 1981), but as the compo-
nents of Wc have not the same range, solving this problem
can induce the study of particular modes instead of each
of them, and then the obtained locations are not optimal.

Consequently, we decide to establish homogeneity be-
tween each term (Wc)ii by dividing each of them by its
maximal value obtained if the ith mode is the specific
mode to be controlled. This maximal value is the maxi-
mal energy which can be transmitted from the actuators
for the ith eigenmode.

Hence, the optimization problem becomes, by using
the homogeneous components: maximizing

{ min
i=1,N

(WU
c )ii

max
locations

(WU
c )ii

− γ max
i=1,NR

(WR
c )ii

max
locations

(WR
c )ii

} (27)

= min
i=1,N

Na∑
j=1

b2
ij

max
locations

Na∑
j=1

b2
ij

− γ max
i=1,NR

Na∑
j=1

(bR
ij)

2

max
locations

Na∑
j=1

(bR
ij)

2

(28)
and,

∀i = 1, ...N + NR 0 ≤ (Wc)ii

max
locations

(Wc)ii
≤ 1 (29)

• In the same way, instead of maximizing the norm of
the global control force for the considered modes, we sug-
gest to maximize the applied force for each mode (1, ...N)
independently of {Φ} and to minimize the applied force
for residual modes. For the ith mode, the modal equation
can be written in the state space form :
[

ωiα̇i

α̈i

]
=

[
0 ωi

−ωi −2ζiωi

] [
ωiαi

α̇i

]
+

[ {0}
{Bi}

]
{Φ}
(30)

and ||{fc}||2 = ||{Φ}||2.||Si||2 where S2
i has only a non

zero term :

σ̄2
i =

Na∑
j=1

b2
ij (31)

Then, the optimization problem is:

maximize {||S1||2, ...||SN ||2} = {σ̄2
1 , ...σ̄

2
N} (32)

and minimize {||SR
1 ||2, ...||SR

N ||2} = {σ̄2
1 , ...σ̄

2
NR}

(33)

From the same arguments than before, this problem
is thus transformed: maximizing

{ min
i=1,N

σ̄2
i

max
locations

σ̄2
i

− γ max
i=1,NR

σ̄2
i

max
locations

σ̄2
i

} (34)

= min
i=1,N

Na∑
j=1

b2
ij

max
locations

Na∑
j=1

b2
ij

− γ max
i=1,NR

Na∑
j=1

(bR
ij)

2

max
locations

Na∑
j=1

(bR
ij)

2

(35)
By comparing equations (28) and (35) it follows that the
two different approaches give the same final criteria. Its
greatest advantage is that all modes are studied with the
same range. Residual modes are not neglected; their in-
fluence on the structure dynamic can be more or less im-
portant using γ. Furthermore, the expression inside (28)
and (35) has a physical meaning: it is the mechanical en-
ergy transmitted for the ith mode divided by the maximal
mechanical energy that could be received.



OPTIMAL LOCATION OF SENSORS

The optimal locations of sensors are determined in the
same way than the optimal locations of actuators.

Maximization of the system output

When the system is released from the initial state
{x(0)} = {x0}, as when it is subjected to a persistent
disturbance,(Hac and Liu, 1993) has shown that maximiz-

ing the system output
∫ ∞

0

{y}T{y}dt (for desired modes)

yields maximizing the gramian observability matrix de-
fined by :

Wo =
∫ ∞

0

e[A]T t[C]T [C]e[A]tdt (36)

and Wo tends to a diagonal form (for displacement sen-
sors): i = 1, ...N

(Wo)ii = (Wo)i+N,i+N =
Ns∑
j=1

c2
ji

4ζiωi
=

1
4ζiωi

Ns∑
j=1

c2
ji (37)

Each diagonal term (Wo)ii corresponds to the maxi-
mization of the output energy Ji for the ith mode, ob-
tained if we consider the state equation reduced to the
ith mode:[

ωiα̇i

α̈i

]
=

[
0 ωi

−ωi −2ζiωi

] [
ωiαi

α̇i

]
+

[
[0]

+[bil]

]
{Φ}
(38)

{y} = [Ci]
[

0
α̇i

]
J =

∫ ∞

0

{y}T{y}dt (39)

Consequently, if the ith eigenvalue of Wo is small, it means
that the ith mode will not be well observed. To avoid this
case, (Hac and Liu, 1993), (Baruh, 1992) suggest to find
the sensors locations by maximizing a measure of Wo,
like:

trace(Wo) ∗ (det(Wo)1/2N ) min
i

(Wo)ii (40)

These criteria take into account the eigenmodes globally.
They can be used with the residual modes as for actua-
tors, in order to maximize the given information for the
N first modes and minimize the information about the
NR modes (in order to minimize the spillover effect).

The modified criteria

As we want to have a convenient information for the
N first eigenmodes we suggest maximizing the output en-
ergy Ji for each mode i (each diagonal term of Wo denoted
(WU

o )ii) instead of maximizing the global system output,

and minimizing the output energy of each residual mode
(called (WR

o )ii):

maximize {(WU
o )11, ..., (WU

o )NN} (41)

minimize {(WR
o )11, ..., (WR

o )NRNR} (42)

This optimization problem has Ns optimization parame-
ters (the locations of the Ns sensors) and N optimization
functions. It can be simplified by considering the new
optimization criteria:

maximize { min
i=1,...N

(WU
o )ii − γ max

i=1,...NR
(WR

o )ii} (43)

where γ is a weighting constant. As the components of
Wo have not the same range, solving this problem can
induce the study of particular modes instead of each of
them, and then the obtained locations will not be opti-
mal. Hence, we decide to establish homogeneity between
each term (Wo)ii by dividing each of them by its maximal
value obtained if the ith mode is the specific mode to be
measured. The optimization problem becomes to maxi-
mize the minimal value of the homogeneous components:

min
i=1,N

(WU
o )ii

max
locations

(WU
o )ii

− γ max
i=1,NR

(WR
o )ii

max
locations

(WR
o )ii

(44)

= min
i=1,N

∑Ns

j c2
ji

max
locations

Ns∑
j=1

c2
ji

− γ max
i=1,NR

∑Ns

j c2
ji

max
locations

Ns∑
j=1

c2
ji

(45)

with ∀i = 1, ...N + NR 0 ≤ (Wo)ii

max
locations

(Wo)ii
≤ 1 (46)

Then all modes are studied with the same range. The first
quotient inside (44) represents the output energy mea-
sured for the ith mode divided by the maximal output
energy which could be measured for the ith mode by the
sensors.

APPLICATIONS

In this section, we aim to compare the different usual
criteria of controllability and observability with one mod-
ified criteria. In order to make comparisons, we define
two degrees.



A degree of controllability and a degree of
observability

We define the following degree of controllability for
each mode (i = 1, ..N + NR):

DEGCi =

Na∑
j=1

b2
ij

max
one actuator

b2
i1

(47)

It equals to the energy transmitted from the actuators to
the structure for the ith mode divided by the maximal
value energy obtained if the ith mode is optimally con-
trolled by one actuator (if one actuator is located in order
to optimally control this mode). When the N first degrees
are over 100 % it means that each mode (i = 1, ...N) is
better controlled than when it is specifically controled by
an actuator.

Inversely, for residual modes, the objective is to min-
imize DEGCi the higher possible.

In the same way, the following degree of observability
is defined for each mode i:

DEGOi =

Ns∑
j=1

c2
ji

max
one sensor

c2
1i

(48)

It equals to the output energy measured from the sensors
for the ith mode divided by the maximal value of output
energy obtained if the ith mode is optimaly measured by
one sensor (if one sensor is located to optimally measure
this mode). When the N degrees are over 100%, each
mode is better measured than when it is specifically mea-
sured by a sensor. Of course, the opposite is searched for
residual modes.

In the next subsections, two applications are pre-
sented. The first one consists in comparing several cri-
teria for actuators locations. The second one consists in
studying the influence of residual modes in the optimiza-
tion procedure.

First application: optimal location of
piezoelectric actuators on a simply
supported plate

A simply supported plate is considered, equiped with
Na piezoelectric actuators to locate. In order to con-
sider only pure bending motion, each actuator is made
up of a pair of piezoelectric materials attached symetri-
cally. They are assumed to be perfectly bonded to the
surface of the plate, and their thickness is assumed to be
small compared to the plate thickness. The geometrical

and mechanical properties of the system are detailed in
tables 1 and 2.

table 1: characteristics of the plate

Length (m) 0.38
width (m) 0.3
thickness (m) 0.0031752 E (Pa) 207109

ν 0.292
ρ (kg/m3) 7870

table 2: characteristics of the PZT 5A

Length (m) 0.019
width (m) 0.015
thickness (m) 0.001

ε33 (F/m) 1.510−8

e31 (C.m−2) -7.209
e32 (C.m−2) -7.209

The plate is divided in 400 rectangular elements which
correspond to the possible locations of actuators. As the
structure has two symmetry axes, we only consider its
quarter. In this study, the first seven eigenmodes are
used and all residual modes are neglected.

Simulations are presented for piezolectric actuators.
Exactly the same results would be obtained for piezo-
electric sensors measuring velocity (Bruant and Proslier,
2002).

The four following criteria are compared using
DEGCi:

min
i

(Wc)ii

max
locations

(Wc)ii
called MINL/LMAX (49)

trace(Wc) ∗ (det(Wc))1/2N called TRACE ∗ DET
(50)

min
i

(Wc)ii called L (51)

Na∏
i=1

σ2
i called WANG (52)

Results for different actuators numbers are shown figures
1 to 3. Figure 1.a represents, for each configuration, the
smallest value DEGCi (i = 1...N). The others plots rep-
resent the degree of controllability of each eigenmode.

By comparing results, the smallest value DEGi has
the highest values for the criteria MINL/LMAX. This is
because other criteria use matrice (gramian or singular)
which have not homogeneous components. Consequently,
some eigenmodes are favourite instead of others. For ex-
ample, for TRACE*DET the 6th mode and also modes
3,4 and 5 have a degree of controllability higher than the
modes 1, 2 and 7. This is also the case for L: the 1st mode
is very well controlled instead of modes 4 and 6 which are
very badly controlled even if seven actuators are used. In



the optimization of WANG, the worst controlled mode
is the fourth. Hence, these criteria ensure avoiding non
controllability area, but do not ensure homogeneous con-

trollability for considered modes. For MINL/LMAX, the
variations of the degrees DEGCi are homogeneous, and
they are more than 300% using seven actuators.
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(b) First eigenmode
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(c) Second eigenmode
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(a) eigenmode 3
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(b) eigenmode 4
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(c) eigenmode 5

Figure 2.

About the number of actuators

The controllability degree gives us information about the
quality of the control for each mode. It can also be used to
define the number of actuators needed. When the small-
est value DEGCi, in figure 3, is over 100% it means that
each mode is better controlled than when it is specifically
controlled by an actuator. Consequently, we can choose
the value 100% as criteria for the optimal number of ac-
tuators. From this point of view, the number of actuators
needed is for MINL/LMAX 3, even though TRACE*DET
and WANG need 4 actuators and L needs 7 actuators.

Furthermore, the smallest value DEGCi is over 200%
for MINL/LMAX using 5 actuators. Then, when a robust

control system which ensures good controlability (over
100% for each mode) is necessary even if one actuator
is failing, we will use this configuration. For the other
criteria, it is not possible to use only 5 actuators located
optimaly.

In this application, we have not considered the resid-
ual modes. In fact, for better optimal configuration of ac-
tuators, it should be necessary to take into account them.
In our modal approach, it would consist in adding a suf-
ficient number of residual modes. The use of the modal
basis gives us a phyiscal meaning of gramian matrix.

In the next subsection, the residual modes are used to
locate the sensors.
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(a) eigenmode 6
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(b) eigenmode 7

Figure 3.

Second application: optimal location of
point sensors on a slender uniform beam

As it was explained previoulsy, residual modes can be
dangerous in active control, leading to instabilities. The
used output sensors contain informations on motion on
all modes instead of only the needed motion of the N
first modes. In the same way, the actuators actuate all
modes of the real structure, and consequently can excite
residual modes.

In order to illustrate the influence of residual modes
in the optimization procedure, we consider here a sim-
ply supported uniform beam described in (Hac and Liu,
1993). In this case, an analytical analysis can be easily
developed, and as the structure is symmetric, only the
first middle of the beam is studied and divided in 50 pos-
sible point sensors locations. The observability gramian
is equal to:

(Wo)ii =
1

2ρAlζiωi
(

NS∑
j=1

sin2 iπxj

l
)

where ρA is the mass density, xj the location of the jth
sensor and l = 1 m , the beam length. We want to pre-
cisely measure the displacement of the first six modes
while avoiding residual modes: modes 7, 8, 9 and 10.

The results are also available for point actuators.

The considered criteria is defined in (44). it was used
for different sensors quantity, with γ = 0 and γ = 1. Re-
sults are shown in tables 3 and 4. For each case, the small-
est degree of observability for needed modes (SDEGOi)
and the highest degree of observability for residual modes
(HDEGOiR) are presented. To avoid measure of resid-
ual modes, HDEGOiR has to be minimal, and to have
good information about the first 6 modes, SDEGOi has
to be maximal, with HDEGOiR less than SDEGOi.

table 3: results for γ = 0

sensors numbers SDEGOi HDEGOiR

1 18% 96 %
2 93% 100 %
3 167% 144 %
4 221% 325 %

table 4: influence of the residual modes: γ = 1
sensors number SDEGOi HDEGOiR

1 13,5 % 34 %
2 75 % 74 %
3 116 % 82 %
4 191 % 136 %

First of all, it can be seen from these results that
forgetting residual modes in the optimization procedure
(γ = 0) can be dangerous: except when there are 3 sen-
sors, the maximal value HDEGOiR is over the minimal
value SDEGOi. It means that one residual mode is bet-
ter observed than a needed mode. Consequently, the
sensors information can be strongly disturbed, inducing
spillover effect.

When residual modes are taken into account in the op-
timization criteria, HDEGOiR is smallest than SDEGOi
except when there is one sensor. Comparing results for
γ = 0 and for γ = 1 show that the value of each de-
gree decreases between γ = 0 and γ = 1. When γ = 1,
the optimization procedure has to adjust the sensors lo-
cations obtained for γ = 0 in order to avoid measurement
of residual modes.

These kind of simulations can also help us to define the
number of needed sensors. A good compromise between
needed modes and residual modes seems to be obtained
by using 3 sensors: each needed modes is better measured
than each residual modes (SDEGOi > HDEGOiR). In
an other part, the degrees of observability of the six first



modes are over 100% and those of each residual modes is
less than 100%.

CONCLUSION
In this paper, the problem of sensors and actuators lo-

cations is considered. We propose for each optimization
problem a modified optimization criteria derived from
usual approaches, ensuring good observability and con-
trollability of each mode of the structure, and taking into
account residual modes which have to be less observable
and controllable.

Their efficiency are shown by comparing them with
classical criteria, especially when the number of active el-
ements is varying. The results show how important is the
choice of the optimization criteria for the effectiveness of
the control. They also give us some help to define the
optimal sensors and actuators number. The great advan-
tages of these criteria are their computational simplicity,
their non-dependance with the external disturbances and
with the applied control law.

This methodology was used here considering actua-
tors and sensors independently. It could be studied for
collocated active elements. In the same way, same devel-
oppements could be done for active elements shape.
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