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Abstract  

We propose an optimization model based on vehicle travel patterns to capture public charging 

demand and select the locations of public charging stations to maximize the amount of 

vehicle-miles-traveled (VMT) being electrified. The formulated model is applied to Beijing, 

China as a case study using vehicle trajectory data of 11,880 taxis over a period of three 

weeks. The mathematical problem is formulated in GAMS modeling environment and Cplex 

optimizer is used to find the optimal solutions. Formulating mathematical model properly, 

input data transformation, and Cplex option adjustment are considered for accommodating 

large-scale data. We show that, comparing to the 40 existing public charging stations, the 40 

optimal ones selected by the model can increase electrified fleet VMT by 59% and 88% for 

slow and fast charging, respectively. Charging demand for the taxi fleet concentrates in the 

inner city. When the total number of charging stations increase, the locations of the optimal 

stations expand outward from the inner city. While more charging stations increase the 

electrified fleet VMT, the marginal gain diminishes quickly regardless of charging speed.  
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1. Introduction 

Fossil fuel-based road transportation has instigated increasing global demand for oil and air 

pollution, especially in urban areas (Hoogma et al., 2005). Emerging vehicle technologies that 

can utilize alternative fuels are considered as potential solutions for these issues, such as 

electric vehicles (EVs). Although the life cycle environmental implications of EVs depends 

on the fuel mix of electricity generation (Torchio and Santarelli, 2010), using electricity 

instead of liquid fossil-based fuels for road transportation can relocate tailpipe emissions from 

mobile vehicular sources to stack emissions in power plants which are more concentrated and 

easier to control. Many countries have set goals for EV adoption. For example, the U.S. plans 

to have more than 1.8 million plug-in hybrid electric vehicles (PHEVs); and China hopes to 

put 5 million hybrid and electric vehicles on the road by 2020 (Deutsche Bank Group, 2012; 

Navigant Research Group, 2013). 
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One of the factors that significantly impact the growth of the EV market is access to public 

charging infrastructure (Morrow, 2008). Many governments are investing in the deployment 

of public charging stations. For example, California has announced to build 200 public fast-

charging stations; and British Columbia, Canada has set goals for building 570 charging 

stations across the province (City of Surrey, 2012; JR, 2012). While the deployment of 

charging infrastructure has been moving forward in many cities, research on developing 

mathematical models for charging infrastructure siting is also growing. Xi et al., (2013) have 

formulated an optimization framework for charging station siting to maximize the amount of 

energy and the expected EVs recharged, by estimating charging demand as a function of 

household demographic variables (e.g. average total mileage driven) and macroeconomic 

variables (e.g. gasoline and electricity prices). Sathaye and Kelley (2013) estimate charging 

demand using a linear function of two terms—traffic and population—to minimize total 

distances between demand locations and charging stations. Sadeghi-Barzani et al., (2014) 

predict the charging demand based on the number of EV owners to minimize the total cost 

associated with charging which includes travel cost to stations and electricity cost. He et al., 

(2013) predict charging demand based on travel time, charging expenses, availability, and 

attractions to maximize total social welfare. Dong et al., (2014) use multiday travel data of 

275 household in the Seattle metropolitan area to minimize the number of trips which cannot 

be completed using electricity. Despite the difference on scope and goals, these studies use 

non-exact algorithms to find local optimal solutions to our knowledge. 

Two research gaps exist in the literature on siting public charging stations. First, methods 

currently used in estimating charging demand may not reflect the real world situation. Unlike 

refueling liquid fuels which only takes a few minutes to fill the tank, fully recharging the 

battery on an EV can take a much longer time, from 30 minutes to several hours depending on 

the charger power, battery size, and the state of charge of the battery (Dong et al., 2014). 

Therefore, EV charging is more likely to happen at the end of a trip instead of in the middle of 

a trip. In addition, EV owners can charge their vehicles at home during the night. As a result, 

using traffic flow volume or vehicle ownership density to estimate charging demand as 

predominately used in previous studies may not be valid. Secondly, few studies considered 

environmental impacts of EV charging as the objective function for global optimal solution. 

The ultimate goal of EV system deployment is to fulfill more travel needs using electricity 

instead of fossil-based liquid fuels. We aim to address both gaps in this study by 1) using 

large-scale real world vehicle travel data to better model charging demand and 2) maximizing 

electrified fleet vehicle-miles-traveled (VMT) as the objective function to find the global 

optimal solution. Our previous work has demonstrated that collective public parking 

“hotspots” extracted from real world vehicle trajectory data are good indicators of public 

charging demand (Cai et al., 2014). This research expands upon Cai et al., (2014) to develop 

an optimization model to solve for global optimization solutions for public charging station 

siting using large-scale real world vehicle travel data. In addition, the goal of our optimization 

model is to maximize electrified fleet VMT, which directly links to the environmental 

benefits of vehicle electrification.  
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Using Beijing, China as a case study, this paper presents an optimization framework which 

utilizes large-scale real world vehicle trajectory data for selecting the location of public 

charging stations to maximize electrified fleet VMT. The demonstrated optimization 

framework can be applied to other fleets in other cities using similar data. The case study also 

has its own policy relevance because Beijing plans to deploy 200,000 electric vehicles on road 

by 2017 and build 10,000 public charging stations (NAATBatt International, 2015; 

WantChinaTimes, 2013). Results from this study can help future decisions on developing 

public charging stations in Beijing. The proposed optimization model is implemented in 

GAMS with Cplex solver. In order to accommodate for the large-scale vehicle trajectory data 

in the model, we identify factors in model formulation, input data format, and settings of 

Cplex options that need to be adjusted to solve the model efficiently. In summary, major 

contributions of this paper include 1) formulating an optimization model which selects the 

location of public charging stations to maximize electrified fleet VMT; 2) incorporating 

vehicle travel patterns by using large-scale individual-based vehicle trajectory data to model 

public charging demand; 3) studying public charging infrastructure planning in Beijing as a 

case study; and 4) providing suggestions in model formulation and execution to handle large-

scale data. 

2.  Mathematical formulation 

EVs include battery electric vehicles (BEV) and plug-in hybrid electric vehicles (PHEV). 

BEVs use electricity as the sole power source while PHEV has the flexibility of using both 

electricity and liquid fuels (Markel, 2010). In this paper we focus on PHEVs to allow drivers 

finishing trips on liquid fuels when batteries are depleted, because it is unclear how limited 

driving range of BEVs will affect the behavior of drivers. 

Let G(i,j,k) be a network with i candidate locations for installing public charging stations, j 

individual PHEVs, and k trips for each vehicle in the examined period. The time spent 

between two consecutive trips is defined as the dwell time.  

Each vehicle (j) has a remained battery charge (Rjk) at the end of each trip (k) before starting 

its dwell time. For the convenience of modeling, Rjk is measured as the mileage that the 

vehicle can travel with the remaining electricity (battery range). Rjk can be formulated as 

shown in Eq. (1) (Dong et al., 2014). Negative values of Rjk represent the mileage that cannot 

be powered by electricity (i.e., powered by liquid fuels) in trip k. Eq. (2) shows the real 

remaining battery range (𝑅�𝑗𝑗) of vehicle j at the end of trip k, which is forced to be non-

negative.  𝑅𝑗𝑗 =  𝑅�𝑗𝑗−1 + 𝐸𝑗𝑗−1 − 𝑑𝑗𝑗    ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾 (1) 𝑅�𝑗𝑗−1 = 𝑚𝑚𝑚�𝑅𝑗𝑗−1, 0�         ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾 

 

(2) 
 

where Rjk is the remaining battery range of vehicle j at the end of trip k (mile), Ejk-1 

is the electricity recharged (measured in miles) for vehicle j during the dwell time 

between trip k-1 and trip k; and djk is the travel distance (miles) of vehicle j during 

trip k. 
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This model differentiates home charging and public charging. If vehicle j does not park at 

home after trip k (hjk = 0), the vehicle seeks public charging opportunities. Electricity 

recharged for vehicle j after trip k (Ejk), as shown in Eq. (3), equals to the difference between 

the full battery range and the remaining battery range if the dwell time is longer than what is 

required to fully charge the battery, or the exact amount of electricity that can be charged if a 

full charge cannot be achieved within the dwell time. Ejk equals to 0 if no charging station is 

available for vehicle j at the end of trip k. If vehicle j parks at home after trip k (hjk = 1), home 

charging is utilized. Recharged electricity at home, as shown in Eq. (4), equals to the 

difference between the full battery range and the remaining battery charge if the home parking 

time is longer than what is required to fully charge the battery, or the exact amount of 

electricity that can be charged during home dwell time.  𝐸𝑗𝑗 = min �𝐸𝑗 − 𝑅�𝑗𝑗 ,
𝐿𝐿 𝑡𝑗𝑗𝑟𝑗 ,𝑀∑ 𝑃𝑖𝑗𝑗𝑖∈𝐼  �       𝑖𝑖 ℎ𝑗𝑗 = 0  (3) 𝐸𝑗𝑗 = min �𝐸𝑗 − 𝑅�𝑗𝑗 ,
𝐿ℎ 𝑡𝑗𝑗𝑟𝑗  �                              𝑖𝑖 ℎ𝑗𝑗 = 1         (4) 

 

where hjk equals to 1 if vehicle j is parked at home after trip k and 0 otherwise; Ej is 

the effective all-electric-range (AER) of vehicle j’s battery (measured in miles); Le 

is the charging power level (kW) at each of the public charging stations (assuming 

same for all public charging stations); Lh is home charging power level; tjk is dwell 

time of vehicle j at the end of trip k (hour); rj is the average electricity consumption 

rate of vehicle j in charge depletion (CD) mode (kWh/mile); M is a large number 

greater than Ej; and Pijk is the availability of charging station for vehicle j at location 

i after trip k. Pijk equals to 1 if candidate location i is accessible for vehicle j at the 

end of trip k and a charging station is installed at location i. Accessibility of 

charging station at location i by vehicle j is measured by the distance between 

location i and vehicle j at the end of trip k. If this distance is less than the service 

range of charging stations, location i is accessible.  

2.1 Optimization model 

The optimal selection of charging station locations in a geographical area using the travel 

patterns of individual vehicles defined in this paper is given by Eqs. (5) - (14). The objective 

function, as shown in Eq. (5), minimizes the total travel distances that cannot be fulfilled by 

electricity. This is equivalent as maximizing the electrified fleet VMT. Eqs. (6), (7) and (8) 

formulate the remaining battery range of vehicle j at the end of trip k. In Eq. (7), Rj is the 

remaining battery range of vehicle j at the beginning of trip 1. Recharged electricity of vehicle 

j at the end of trip k is shown in Eqs. (9) and (10). Eq. (11) shows the budget constraint, 

limiting the maximum number of public charging stations as B. Charging opportunity is 

available at candidate location i for vehicle j at the end of trip k if two conditions are satisfied 

simultaneously, as shown in Eq. (12). The first condition is that the distance between 

candidate location i and the location of vehicle j at the end of trip k is less than the specified 

charging station service range. If vehicle j at the end of trip k is within the service range of 

candidate location i, Zijk equals to 1, otherwise zero. The second condition is that a charging 
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station is installed at location i (yi = 1). The model solves yi for the optimal solutions. Eq. (13) 

and (14) show the binary and positive variables, respectively. 

min  ∑ ∑ �𝑅�𝑗𝑗 − 𝑅𝑗𝑗�𝑗∈𝐽𝑗∈𝐾   (5) 

 

Subject to: 𝑅𝑗𝑗 =  𝑅�𝑗𝑗−1 + 𝐸𝑗𝑗−1 − 𝑑𝑗𝑗                            ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾/{1} (6) 𝑅𝑗1 =  𝑅𝑗 − 𝑑𝑗1                                                  ∀𝑗 ∈ 𝐽 (7) 𝑅�𝑗𝑗 = 𝑚𝑚𝑚�𝑅𝑗𝑗, 0�                                           ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾 (8) 𝐸𝑗𝑗 = min �𝐸𝑗 − 𝑅�𝑗𝑗 ,
𝐿𝐿 𝑡𝑗𝑗𝑟𝑗 ,𝑀∑ 𝑃𝑖𝑗𝑗𝑖∈𝐼  �    𝑖𝑖 ℎ𝑗𝑗 = 0, ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾  

 
(9) 𝐸𝑗𝑗 = min �𝐸𝑗 − 𝑅�𝑗𝑗 ,

𝐿ℎ 𝑡𝑗𝑗𝑟𝑗  �                       𝑖𝑖 ℎ𝑗𝑗 = 1, ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾  
(10) 

  ∑ 𝑦𝑖𝑖∈𝐼 ≤ 𝐵  (11) 
 𝑃𝑖𝑗𝑗 = 𝑍𝑖𝑗𝑗 𝑦𝑖                                                      ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝐼 (12) 𝑃𝑖𝑗𝑗, 𝑦𝑖  ∈ {0,1}                                                    ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝐼 (13) 𝑅�𝑗𝑗 ,𝐸𝑗𝑗 ≥ 0                                                           ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾 (14) 

  

where the decision variables of the problem are as follows: 𝑅𝑗𝑗: The remaining battery range of vehicle j at the end of trip k (mile) 𝑅�𝑗𝑗: The real remaining battery range of vehicle j at the end of trip k (mile) 𝑃𝑖𝑗𝑗: Binary variable which shows the availability of public charging for vehicle j at the 
end of trip k at location i, with 1 indicating available and otherwise 0 𝑦𝑖: Binary variable which shows whether a charging station is installed at location i, 
with 1 indicating present and otherwise 0 𝐸𝑗𝑗: Battery electricity recharged for vehicle j at the end of trip k (mile) 
 

The formulated optimization model is a Mixed Integer Non-Linear Programming (MINLP) 

model due to max and min operators in Eqs. (8), (9) and (10). Since solving MINLP problem 

is much more computationally challenging than solving a Mixed Integer Linear Programming 

(MILP) problem, we transform the MINLP to MILP in next section.  

2.2 Linearization  

By substituting Eq. (6) and (7) in Eq. (5), the objective function can be written in Eq. (15) 

which is equal to Eq. (16) for specific j. Therefore, the objective function can be written as in 

Eq. (17). ∑ ∑ �𝑅�𝑗𝑗 − 𝑅𝑗𝑗�𝑗∈𝐽𝑗∈𝐾 =   ∑ ∑ �𝑅�𝑗𝑗 − 𝐸𝑗 + 𝑑𝑗𝑗� 𝑗∈𝐽𝑗=1 + ∑ ∑ �𝑅�𝑗𝑗 − 𝑅�𝑗𝑗−1 − 𝐸𝑗𝑗−1 + 𝑑𝑗𝑗�  𝑗∈𝐽𝑗>1& 𝑗∈𝐾     

 

(15) 

∑ �𝑅�𝑗𝑗 − 𝑅𝑗𝑗�𝑗∈𝐾 =  𝑅�𝑗1 − 𝐸𝑗 + 𝑑𝑗1 + 𝑅�𝑗2 − 𝑅�𝑗1 − 𝐸𝑗1 + 𝑑𝑗2 + 𝑅�𝑗3 − 𝑅�𝑗2 − 𝐸𝑗2 + 𝑑𝑗3 + ⋯+ 𝑅�𝑗𝑗 − 𝑅�𝑗𝑗−1 − (16) 
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𝐸𝑗𝑗−1 + 𝑑𝑗𝑗 = 𝑅�𝑗𝑗 − 𝐸𝑗 + 𝑑𝑗1 + ∑ �−𝐸𝑗𝑗−1 + 𝑑𝑗𝑗�𝑗>1& 𝑗∈𝐾     

 ∑ ∑ �𝑅�𝑗𝑗 − 𝑅𝑗𝑗�𝑗∈𝐽𝑗∈𝐾 =  ∑ �𝑅�𝑗𝑗 − 𝐸𝑗 + 𝑑𝑗1 + ∑ �−𝐸𝑗𝑗−1 + 𝑑𝑗𝑗�𝑗>1& 𝑗∈𝐾 �𝑗∈𝐽     

(17) 

 

According to Eqs. (17) and (5), we maximize the amount of recharged electricity (Ejk). 

Therefore, Eqs. (18), (19), (20) and (21) show the linear formulation of Eqs. (9) and (10). To 

linearize Eq. (8), we add Eqs. (22) and (23) as constraints to the model and penalty function, 

Eq. (24), to the objective function with µ=1. In addition, we multiply Eq. (5) by a coefficient 

(M) which is a large number greater than µ . Therefore, the objective function is changed to 

Eq. (25). 

Adding the penalty function with µ=1, Eq. (24), does not affect the optimal solution, since the 

value of �𝑅�𝑗𝑗 − 𝑅𝑗𝑗� depends directly on the amount of recharged electricity (Ejk) which 

objective function aims to maximize. Eqs. (6), (7) and (8) calculates the remaining battery 

range (Rjk) at the end of each trip based on the amount of recharge electricity (Ejk). The 

penalty function adjusts the value of 𝑅�𝑗𝑗 to its minimum value which is 𝑅𝑗𝑗. When 𝑅𝑗𝑗 is 

negative, 𝑅�𝑗𝑗 is set to zero, leading to that the penalty function will be zero. When 𝑅𝑗𝑗 is 

positive, 𝑅�𝑗𝑗 is set to its minimum value which is 𝑅𝑗𝑗 according to Eq. (22). In addition, the 

large number M guarantees that adding the penalty function does not have any effect on the 

optimal solution.  

  𝐸𝑗𝑗 ≤ 𝐸𝑗 − 𝑅�𝑗𝑗            ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾  (18) 𝐸𝑗𝑗 ≤ 𝐿𝐿 𝑡𝑗𝑗𝑟𝑗                 𝑖𝑖 ℎ𝑗𝑗 = 0, ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾  
(19) 𝐸𝑗𝑗 ≤ 𝑀∑ 𝑃𝑖𝑗𝑗𝑖∈𝐼     𝑖𝑖 ℎ𝑗𝑗 = 0, ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾  (20) 𝐸𝑗𝑗 ≤ 𝐿ℎ 𝑡𝑗𝑗𝑟𝑗                 𝑖𝑖 ℎ𝑗𝑗 = 1, ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾  
(21) 𝑅�𝑗𝑗 ≥ 𝑅𝑗𝑗                       ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾  (22) 𝑅�𝑗𝑗 ≥ 0                          ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾  (23) 𝜇 ∑ ∑ 𝑅�𝑗𝑗𝑗∈𝐽𝑗∈𝐾   (24) 

min   𝑀∑ ∑ �𝑅�𝑗𝑗 − 𝑅𝑗𝑗� + 𝜇 ∑ ∑ 𝑅�𝑗𝑗𝑗∈𝐽𝑗∈𝐾𝑗∈𝐽𝑗∈𝐾   (25) 

 

 

2.3 Extensions on the optimization model 

In the case that a mix of charging stations with different charging power (e.g., fast charging 

and slow charging) need to be installed, the model can be extended by replacing Eqs. (9), (11) 

and (12) with Eqs. (26)-(33). Eq. (26) calculates the amount of electricity that vehicle j can 

gain from recharge at either fast or slow charging stations at the end of trip k. Eqs. (27) and 

(28) show the limitation on the number of fast and slow charging stations, respectively. The 

amount of electricity that vehicle j can get from a slow or fast charging station at the end of 

trip k is formulated in Eqs. (29) and (30), respectively. Eq. (31) shows that at each candidate 

location, we can either install a fast charging station or a slow charging station, but not both. 
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Eqs. (32) and (33) assure that each vehicle can only charge at one station at the end of each 

trip, with le
s and le

f representing the power level at a slow and fast charging stations, 

respectively. 𝐸𝑗𝑗 = min�𝐸𝑗 − 𝑅�𝑗𝑗  ,∑ (𝐸𝑗𝑗𝑖𝑠 + 𝐸𝑗𝑗𝑖𝑓 )𝑖∈𝐼  �      𝑖𝑖 ℎ𝑗𝑗 = 0,    ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾  (26) ∑ 𝑦𝑖𝑓𝑖∈𝐼 ≤ 𝐵𝑓   (27) 
 ∑ 𝑦𝑖𝑠𝑖∈𝐼 ≤ 𝐵𝑠   (28) 𝐸𝑗𝑗𝑖𝑠 = 𝑚𝑖𝑚 �𝑙𝐿𝑠 𝑡𝑗𝑗𝑟𝑗 ,𝑀 𝑍𝑖𝑗𝑗 𝑦𝑖𝑠�                     𝑖𝑖 ℎ𝑗𝑗 = 0,       ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝐼   

(29) 

𝐸𝑗𝑗𝑖𝑓 = 𝑚𝑖𝑚 �𝑙𝐿𝑓 𝑡𝑗𝑗𝑟𝑗 ,𝑀 𝑍𝑖𝑗𝑗  𝑦𝑖𝑓�                    𝑖𝑖 ℎ𝑗𝑗 = 0,       ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝐼   
(30) 𝑦𝑖𝑓 +  𝑦𝑖𝑠 ≤ 1                                                                                ∀𝑖 ∈ 𝐼  (31) ∑ 𝐸𝑗𝑗𝑖𝑠𝑖∈𝐼 ≤ 𝑙𝐿𝑠 𝑡𝑗𝑗𝑟𝑗                                                                          ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾   
(32) ∑ 𝐸𝑗𝑗𝑖𝑓𝑖∈𝐼 ≤ 𝑙𝐿𝑓 𝑡𝑗𝑗𝑟𝑗                                                                          ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾  
(33) 

 

In this formulation, the binary variable yi is replaced by the two binary variable sets to 

separate slow and fast charging stations. Similarly, Eijk is replaced by 𝐸𝑗𝑗𝑖𝑠  and 𝐸𝑗𝑗𝑖𝑓 . 𝑦𝑖𝑓: Binary variable which shows whether a fast charging station is installed at location 
i, with 1 indicating presence and 0 indicating absence. 𝑦𝑖𝑠: Binary variable which shows if a slow charging station is installed at location i, 
with 1 indicating presence and 0 indicating absence. 𝐸𝑗𝑗𝑖𝑠 :     Electricity recharged for vehicle j at the end of trip k from a slow charging station at 
location i (mile) 𝐸𝑗𝑗𝑖𝑓 : Electricity recharged for vehicle j at the end of trip k from a fast charging station i 
(mile) 

 

Constraints (26), (29) and (30) can be replaced by Eqs. (34)-(39) to obtain a linear 

formulation. 

 𝐸𝑗𝑗 ≤ 𝐸𝑗 − 𝑅�𝑗𝑗                                                      ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾   (34) 𝐸𝑗𝑗 ≤ ∑ (𝐸𝑗𝑗𝑖𝑠 + 𝐸𝑗𝑗𝑖𝑓𝑖∈𝐼  )                                       𝑖𝑖 ℎ𝑗𝑗 = 0, ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾  
(35) 𝐸𝑗𝑗𝑖𝑠 ≤ 𝑙𝐿𝑠 𝑡𝑗𝑗𝑟𝑗                                                          𝑖𝑖 ℎ𝑗𝑗 = 0,    ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝐼    
(36) 𝐸𝑗𝑗𝑖𝑠 ≤ 𝑀 𝑍𝑖𝑗𝑗 𝑦𝑖𝑠                                                 𝑖𝑖 ℎ𝑗𝑗 = 0,   ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝐼  (37) 𝐸𝑗𝑗𝑖𝑓 ≤ 𝑙𝐿𝑓𝑡𝑗𝑗𝑟𝑗                                                           𝑖𝑖 ℎ𝑗𝑗 = 0,   ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝐼    
(38) 
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𝐸𝑗𝑗𝑖𝑓 ≤ 𝑀 𝑍𝑖𝑗𝑗 𝑦𝑖𝑓                                                𝑖𝑖 ℎ𝑗𝑗 = 0, ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐾,∀𝑖 ∈ 𝐼  (39) 

3.  Data  

The taxi fleet in Beijing, China is used as a case study to apply the optimization model. Public 

fleets (i.e., taxis and buses) are likely early adopters for electric vehicles (A Krieger, L Wang, 

P Radtke, 2012). Although the case study is specific, the model can be generally applied to 

other fleets as well.  

The vehicle trajectory data used in this study include 11,880 taxis (18% of the fleet) in Beijing 

over a period of three weeks (March 2 to 25, 2009). The data were recorded by geographic 

positioning systems (GPS) devices and consist of vehicle id, time stamps up to the seconds, 

and position of the vehicle at the recorded time (longitude and latitude). A total of 255 million 

data points are included in the data, covering over 2 million trips and 34 million miles of 

travel. The trajectory data are used to evaluate vehicle travel behaviors and extract trip chains 

(a series of driving and parking events). A threshold of fifteen minutes parking is used to 

separate trips. This threshold is set with the consideration that drivers are not likely to go 

through the hassle of charging if they have less than 15 minutes of parking time. More 

information about this data set can be found in (Cai et al., 2014).  

The existing 1,737 gas stations in Beijing are considered as candidate locations to build public 

charging stations. Wang et al., (2010) show that gas stations with charging capability may 

lead to more efficient long-term infrastructure use when EVs gradually replace conventional 

gasoline vehicles. Although it is unrealistic to expect drivers waiting for hours at gas stations 

for vehicle charging, taxi drivers normally do not stop for long duration during the day, 

making gas-station-based charging possible (Cai et al., 2014). Beijing currently has 40 

charging stations built. To compare how charging station sites optimized with vehicle travel 

patterns can increase electrified fleet VMT, our baseline model selects 40 locations among the 

1,737 candidates to build charging stations. The impacts of the total number of charging 

stations on electrified fleet VMT are also examined. The service range of each charging 

station is set at 1 mile with the assumption that drivers are not willing to significantly revise 

their travel behavior to accommodate for charging.  

Vehicle travel behavior varies from day to day. To capture this variation and examine model 

sensitivity, we separate the trajectory data into three weekly data sets and apply model to 

each. For each week, the data are prepared into four input matrixes, D(djk), T(tjk), H(hjk), and 

DIS (disijk), with j equals to 11,881, i equals to 1,737, and k ranges from 83 to 125 depending 

on the week. Thus, each djk, tjk and hjk has at least 986,123 elements, where djk is the travel 

distance of vehicle j during trip k (mile), tjk is dwell time of vehicle j at the end of trip k and 

before trip k+1 (hour), hjk is a 0-1 matrix with 1 indicating that vehicle j parks at home during 

its dwell time at the end of trip k and 0 indicating that it does not park at home during the 

dwell time, and disijk is the distance between candidate location i and the location of vehicle j 

at the end of trip k (mile). Given the size of the data set, the DIS matrix has over one billion 

elements. If directly considering DIS matrix elements as inputs to our optimization model, we 

have to define a set of binary variables with over one billion elements and parameters to 

indicate the accessibility of DIS elements by each vehicle, which makes solving the problem 
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computationally intractable. To make the problem solvable, the elements of the DIS matrix 

are translated into binary elements in a Z matrix, where Zijk is 1 if vehicle j is parked within 

the service range of candidate location i at the end of trip k, and zero otherwise. Using Z 

matrix instead of DIS matrix reduces not only the data size but also the complexity of the 

problem by reducing the number of binary variables. However, reading Z matrix with over 

one billion elements is still time-consuming. To overcome this computational obstacle, we use 

a specific feature from the optimization software GAMS. In GAMS if we do not set any value 

for a parameter, its default value is set to zero. Because the Z matrix contains many zeros, we 

simply extract the non-zero Zijk and store the i, j, and k information in a series of vectors. 

Reading only the non-zero elements will reduce data size dramatically. In short, instead of 

directly using the DIS matrix, the information is translated into the position locations of non-

zero Zijk as vectors before reading into the model. 

We use 37.5kW and 7.04 kW for power outputs of public fast charging and slow charging 

stations, respectively (State Gride Corporation of China, 2010; Tong, 2014). Home charging 

is assumed to use residential power outlet at 2.2 kW. We assume all vehicles have access to 

home charging when they park at home. The effective all-electric-range (Ej) of all PHEVs is 

assumed to be 100 miles. The impacts of this assumption on results is discussed in Section 

4.3. Electricity consumption rate of PHEV is assumed to be constant at 0.35kWh/mile during 

the charging-depleting mode (USA.gov, 2013). Variation of fuel economy due to different 

driving condition is not considered in this study. Charging efficiency is considered as 88% 

(Kelly et al., 2012). We assume that all vehicles start with fully charged battery at the 

beginning of each week, meaning that Rj is set to 100 miles. 

4. Results and Discussions  

 
The optimization model is implemented in the GAMS environment using Cplex solver to 

solve the optimization problem. For solving MILP problems, Cplex uses a branch and cut 

algorithm which generates and solves a series of LP subproblems. The most common 

difficulty for solving MIP problems is running out of memory. Even small MILP problems 

generate many subproblems, making it very computationally intensive and requiring 

significant amount of physical memory. This problem arises when the branch and bound tree 

becomes so large that insufficient memory is available to solve an LP subproblem. The branch 

and bound tree can contain as large as 2n terminal nodes, where n equals the number of binary 

variables. A problem containing only 30 binary variables could produce a tree having over 

one billion terminal nodes (Solutions et al., 2012). 

 
In our problem, we have 1,737 binary variables and three set of variables with j×k dimension, 

with j equal to 11,881 and k ranging from 83 to 125. There are at least 3×11,881×83 = 

2,958,369 general variables. When using GAMS/Cplex to find the global optimal solutions, 

the solution process using this dataset terminates with an unrecoverable integer failure 

message with 100 GB of physical memory that is highly demanding in terms of computing 

infrastructure. To overcome this problem, the values of following Cplex options are changed: 

reinv, varsel, cuts, nodesel, nodefileind, workmem, memoryemphasis, names, threads, and 

lpmethod. Justifying these options carefully can have dramatic effects on improving the 
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computing speed and reducing memory usage. More details of these option adjustments are 

included in the Supplemental Information. 

 
4.1 The 40-station scenario 

 

At the time of this study, Beijing has 40 charging stations and posts already built. The 40-

station scenario implemented in our model finds the 40 optimal locations from the candidate 

gas stations based on weekly data. As shown in Figure 1a, while existing charging stations 

can electrify 29±3% and 35±2% of the fleet VMT with slow charging and fast charging 

respectively, location-optimized stations can effectively increase electrified fleet VMT to 

46±4% and 66±2%, on average an 59% and 88% improvement. Comparing to the locations 

of the existing stations, the optimized stations are concentrated in the inner city (Figure 1b). 

Here only the stations optimized with data for week 1 are presented for illustration. Location 

maps with other weekly data are included in the Supplemental Information (Figure SI-1). 

Similar patterns exist across all weeks. It is notable that, while the location of optimized 

stations in the suburban area varies from week to week, selection of optimized stations in the 

inner city is quite consistent (Figure SI-1d). By zooming into the inner city, it is clear that the 

locations of the optimized stations are quite different from those existing ones (Figure 2a-c). 

Significant charging demand near the Beijing Capital International Airport has not currently 

been covered by the existing stations (Figure 2d).  

 

 
Figure 1. Electrified fleet VMT as percentage of total fleet VMT (electrification rate) (a) and 

optimal public charging stations (b) of the 40-station scenario comparing to the existing 40 

built charging stations.  

a) b) 
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Figure 2. Location comparison of optimized stations and existing stations in the inner city of 

Beijing: a) optimization results with data for week 1; b) optimization results with data for 

week 2; c) optimization results with data for week; and d) optimal locations selected in two or 

three weeks. 

4.2 Impacts of increased number of charging stations 

To evaluate the impact of the total number of stations that can be installed (B) on the 

optimization results, we ran models ranging B from 20 to 500. The results show that, while 

increasing the total number of charging stations increases electrified fleet VMT regardless of 

charging speed, the marginal electrified fleet VMT for both type of charging stations quickly 

diminishes (Figure 3). The difference in electrified fleet VMT between installing the same 

number of fast and slow charging stations diverges initially but stays stable at about 20% 

when there are 40 or more charging stations.  

 

c) 

a) b) 

d) 

Airport 

region 
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Figure 3. Change of electrified fleet VMT as the percentage of total fleet VMT (electrification 

rate) and marginal electrification rate with increasing number of charging stations 

The locations of optimized stations concentrate in the inner city in all scenarios, gradually 

expanding to the suburban area with increasing number of charging stations (Figure 4a-4d). 

Zoomed-in maps for the inner city are included in the Supplemental Information (Figure SI-

2). To measure how many of the selected stations stay as the optimal choice when the total 

number of charging stations is increased, we define retention rate as the percentage of selected 

stations in a scenario with smaller number of stations remains as the optimal choices in a 

scenario with greater number of stations. As shown in Figure 5, on average, the overall 

retention rate is 70% to 88% for slow charging and 67% to 88% for fast charging, which 

indicates that the majority of the optimal stations are consistently selected even when the total 

number of charging stations are increased by 25 times. In general, the optimal slow charging 

stations have higher retention rate than the fast charging ones, showing that slow charging 

stations selected for short term planning (i.e. scenarios with less total number of stations) are 

more likely to stay as the optimal choices for long term planning (i.e. scenarios with larger 

total number of stations). Additionally, the standard deviation of the retention rate reduces 

with increasing total number of charging stations, showing that the variation of travel pattern 

among different weeks can be better covered with more charging stations. With 200 charging 

stations, the standard deviation of retention rate can be effectively reduced to less than 3%.  
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Figure 4. Locations of optimized stations in scenarios with different total number of charging 

stations: a) 60 stations, b) 100 stations, c) 200 stations, and d) 500 stations. 

 

 

Figure 5. Retention rate of selected stations when increasing total number of charging stations 

a) b) 

c)
  

d) 
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4.3 Impacts of AER 
 

AER is also a key factor in determining overall electrification rate. To test the model’s 

sensitivity to AER, we conducted a sensitivity analysis ranging AER from 60 miles to 120 

miles. The results show that, in the tested range, greater AER can lead to higher electrification 

rate (Figure 6). On average, increasing AER by 1 mile can gain 0.15% to 0.4% of 

electrification rate improvement with fast charging, and 0.15% to 0.25% with slow charging. 

It is notable that PHEVs with greater AER could be more expensive and as a result have 

lower adoption rates (Cai and Xu, 2013). The economics consideration is not included in this 

analysis. With the same number of charging stations, the locations of the selected stations are 

not significantly affected by AER (Figure 7). With fast charging, 63% to 80% of the selected 

stations are consistent regardless of different AER; while with slow charging, the rate is 

higher at 75% to 82%. 

 

      
Figure 6. Electrification rates with different battery all-electric-range and different numbers of 

charging stations: a) fast charging; b) slow charging. 

 

 
Figure 7. Locations of selected stations in 40-station scenario using different AER: a) fast 

charging; b) slow charging. 

 

4.4 Limitations and future directions 

While the proposed model has the merit of incorporating real world vehicle travel behavior to 

better estimate public charging demand, a key assumption is that the drivers will not change 

their behavior when they switch from conventional gasoline vehicles to PHEVs. When drivers 

a) b) 

a) b) 
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do not need to change their travel patterns to accommodate the use of EVs, they are more 

likely to adopt. However, it is possible that PHEV drivers may modify their behavior to 

actively seek charging opportunities, because electricity is cheaper than gasoline on a per mile 

basis. Future studies to compare travel behavior before and after EV adoption will be needed 

to evaluate the impact of this assumption. 

The case study of taxi fleet in Beijing, China demonstrates that real world vehicle trajectories 

can be used in optimization models to estimate charging demand. However, the results of the 

case study need to be used carefully for policy recommendations. First of all, the case study 

assumes that the public charging infrastructure only serves the taxi fleet. The charging 

demand of other vehicles (e.g. private vehicles, public service vehicles, buses) is not 

considered. Future research incorporating data of different fleets will be needed to better 

reflect city level public charging infrastructure for mixed uses. In addition, this model does 

not take into consideration the space constraints and the capacity limits of the charging 

stations. Depending on the location of the existing gas stations, certain stations may be 

constrained by space, the number of charging posts, and the associated parking space it can 

accommodate. If all charging posts are occupied at a given time, nearby vehicles with 

charging needs will not be able to charge at this station. Furthermore, the candidate locations 

in this case study are limited to existing gas stations only. Additional candidates can be 

explored. For example, when modeling private vehicles, existing parking lots may be better 

candidates for charging stations. 

Additionally, the representativeness of the data needs to be future verified. In total, Beijing 

has around 66,000 taxis. While the data used in this study contains 18% of the fleet and no 

specific biases are observed, the representativeness of sampled taxis need to be further 

examined with additional datasets. 

Lastly, the maximized electrified fleet VMT does not guarantee maximized environmental 

benefits. Higher electrified fleet VMT displaces more fossil-based liquid fuels (e.g., gasoline). 

However, the environmental impacts of fleet electrification depend on the grid fuel mix, 

charging time (base load versus peak load), and individual driving conditions (variations of 

fuel economy). Future studies can expand the model to optimize environmental benefits. 

5. Conclusion 

In this study, an optimization model is formulated to find the optimal locations for installing 

charging stations to maximize electrified fleet VMT based on vehicle travel behaviors. The 

formulated model is implemented for Beijing, China as a case study using vehicle trajectory 

data of 11,880 taxis over a period of three weeks. The large scale data is handled by 

formulating the mathematical model properly, transforming input data, and adjusting Cplex 

options. The results show that the optimal locations of charging stations can have significant 

improvements. The Majority of the optimal locations are selected in the inner city. By 

increasing the total number of charging stations, the locations of the optimal stations expand 

outward from the inner city. While more charging stations increase electrified fleet VMT, the 

marginal gain diminishes quickly regardless of charging speed. With more than 40 charging 

stations, the difference of electrified fleet VMT between the same number of slow and fast 
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charging stations stays constantly at 20%. The majority of the stations selected in a model 

with smaller number of charging stations remain as the optimal choices when the total number 

of charging stations increases. Slow charging stations generally have higher retention rates. 
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