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Quantum Lyapunov control was developed in order to transform a quantum system from arbitrary initial states

to a target state. The idea is to find control fields that steer the Lyapunov function to zero as t → ∞, meanwhile

the quantum system is driven to the target state. In order to shorten the time required to reach the target state, we

propose two designs to optimize Lyapunov control in this paper. The first design makes the Lyapunov function

decrease as fast as possible with a constraint on the total power of control fields, and the second design has

the same purpose but with a constraint on each control field. Examples of a three-level system demonstrate that

the evolution time for Lyapunov control can be significantly shortened, especially when high control fidelity

is required. Besides, this optimal Lyapunov-based quantum control is robust against uncertainties in the free

Hamiltonian and decoherence in the system compared to conventional Lyapunov control. We apply our optimal

design to cool a nanomechanical resonator where a shorter cooling time is found with respect to the cooling time

by the conventional Lyapunov design.
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I. INTRODUCTION

Quantum control [1,2] has attracted much attention in recent

years and it has potential applications in many fields such

as quantum information processing, quantum chemistry, and

quantum simulation. Among these quantum control problems,

state transfer is a central task. Various methods such as

quantum optimal control and Lie group decompositions have

been used to design control laws to drive quantum systems to

target states or to realize some specific operations [3–13].

Quantum Lyapunov control was proposed in the early 2000s

as a good candidate for state transfer [14,15]. This strategy has

been widely studied recently both in theory and applications

[16–26] because it offers a simple and effective way to design

control fields. However, the problem of speeding up Lyapunov

control has not been widely considered to date. Quantum

Lyapunov control is practically employed in an open-loop

way without measurement and feedback. Hence, it is quite

natural to shorten the evolution time so as to overcome the

decoherence effect induced by inevitable interactions with the

surrounding environment.

In quantum Lyapunov control, a function V , called a

Lyapunov function of quantum states, is specified to design

time-varying control fields. The system converges to the target

state given by V̇ = 0 while V decreases to its minimum. Based

on this concept, we present a scheme to optimize Lyapunov

control by using the following idea: speed up evolution to the

target state by making V decrease faster.

Generally, the total Hamiltonian in a quantum control

system can be written in two parts H0 +
∑k

n=1 fn(t)Hn,

where H0 is the free (internal) Hamiltonian and Hn are

external control Hamiltonians with fn(t) representing the

corresponding control fields. These control fields should be

designed to ensure V̇ � 0. In fact, there are many ways to

choose fn(t) to achieve this goal. In this paper, we consider

the question: With given control Hamiltonians Hn, how should

we design the shape of the control fields fn(t) in order to make

V decrease fastest?

It is shown that one can enable V to decrease faster simply

by enhancing the strength of the control fields. However,

strong control fields may not be feasible and always bring

unwanted results, for example a large energy (power) cost,

and invalidation of mathematical approximation and treatment

for the system. In view of these factors, we propose two

designs for the control fields. One is under the constraint that

the power-type quantity W =
∑k

n=1 fn(t)2 is bounded. The

other is under the constraint that the strength of each field is

bounded. These designs for control fields make V decrease as

fast as possible within given limitations. The second design has

the simple form of “bang-bang” control, which is easy to be

implemented in an experiment. We also illustrate our control

method with a three-level system and a mechanical oscillator.

The results suggest that the evolution time is significantly

reduced compared with the conventional method.

The paper is organized as follows: In Sec. II, we derive con-

trol fields for a general Lyapunov function V = Tr(Pρ) under

the two aforementioned constraints. In Sec. III, we simulate our

field designs and compare them with the conventional method.

The robustness of the optimal Lyapunov designs is analyzed

in Sec. IV. The proposed approach is applied to the cooling of

a mechanical oscillator in Sec. V. Finally, we summarize our

work in Sec. VI.

II. DESIGN OF CONTROL FIELDS

In quantum Lyapunov control, the system is steered from

an initial state to a target state by control fields designed using

Lyapunov function V . The goal of this paper is to obtain

optimized control fields that make the time derivative of the

Lyapunov function |V̇ | largest so as to speed up the evolution

to the target state. We start from a closed quantum system
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described by the Liouville equation

dρ

dt
= −i[H0 + Hc(t),ρ], (1)

where H0 is the free Hamiltonian for the controlled system

and Hc(t) is a time-dependent Hamiltonian representing

coupling to external control fields, which is called the control

Hamiltonian. We have set h̄ = 1 and assume that the system

is controllable. In Lyapunov control, the solution of Eq. (1)

converges to the minimum of V (ρ). Meanwhile, the state

converges to a set of states characterized by the La Salle’s

invariance principle [1]. The control Hamiltonian Hc(t) can be

written in the form,

Hc(t) =
k

∑

n=1

fn(t)Hn, (2)

where Hn (n = 1, . . . ,k) are time-independent Hermitian

operators corresponding to different types of external control

and fn(t) are time-varying real functions, usually representing

electromagnetic fields. k is a positive integer.

In this paper we consider the following form of Lyapunov

function

V = Tr(Pρ), (3)

where P is a Hermitian operator and assumed to be positive

semidefinite in order to satisfy the standard requirement for

a Lyapunov function, V � 0 [1]. Also, some other forms of

Lyapunov function can be described by Eq. (3), such as that

based on the Hilbert-Schmidt distance [1,19].

The time derivative of V needs to be calculated to design

the control fields,

V̇ = Tr

(

− iP

[

H0 +
k

∑

n=1

fn(t)Hn,ρ

])

= Tr(−iρ[P,H0]) +
k

∑

n=1

fn(t)Tr(−iρ[P,Hn])

=
k

∑

n=1

fn(t)Tn (4)

where Tn = Tr(−iρ[P,Hn]) is a real function of ρ, Hn and P .

We have used the assumption that [P,H0] = 0, which can be

achieved by constructing P using the eigenvectors of H0.

The Lyapunov control strategy requires V̇ � 0. There are

many ways to design fn(t) to satisfy this requirement. A simple

and conventional way is to let fn(t) = −KTn with K > 0 so

that

V̇ (ρ) = −
k

∑

n=1

KTn(t)2
� 0. (5)

With such control fields, V will decrease to its minimum

and state ρ will converge to the target state ρf with

the same spectrum as the initial state ρ0 and satisfying

Tr(e−iH0tρf eiH0t [P,Hn]) = 0 [1].

In the conventional field design method, the amplitude of

the control fields fn(t) is proportional to Tn. That means when

Tn is small (for example, when ρ is very close to ρf ), fn(t) will

become small leading to a slow decreasing of V and a long

evolution time. Our aim is to determine optimized control

fields fn(t) to enable V to decrease as fast as possible in order

to speed up control. From Eq. (4) it is seen that if each fn(t)

has a different sign to the corresponding Tn, then V̇ < 0 and

large |fn(t)| will lead to fast decreasing of V . Therefore, the

problem has to be discussed under a constraint on the control

fields fn(t). Consider the following reasons for constraining

the control fields: First, one often wishes control fields to be

weak in order to reduce energy (power) costs. Second, strong

external control fields may lead to invalidation of the modeling

of the system. Third, strong fields may disturb neighboring

quantum systems that we do not want to disturb. We propose

two designs of control fields under constraints on the power

of the control fields (constraint A) and on the strength of each

control field (constraint B), respectively.

A. A power-type constraint

First, we consider the following constraint on the control

fields

W =
k

∑

n=1

fn(t)2
� Wmax. (6)

Since the control fields fn(t) are always associated with the

amplitude of the electromagnetic fields, the quantity W can

be interpreted as a power-type quantity. We will call it power

for simplicity in the following. The total power of the control

fields is bounded in this case.

Consider
∑k

n=1 T 2
n �= 0 (ρ �= ρf ) in time t and the con-

straint for fn(t) is
∑k

n=1 fn(t)2 = W . In order to determine the

optimized control fields that minimize V̇ =
∑k

n=1 fn(t)Tn (V̇

is negative), we use the Lagrange multiplier method. Let

L =
∑

n

fnTn + λ

(

∑

n

f 2
n − W

)

, (7)

where λ is the Lagrange multiplier, and fn represents fn(t) at

a certain time t . Then from the following equations:

∂

∂fn

L = Tn + 2λfn = 0, (8)

∂

∂λ
L =

∑

f 2
n − W = 0, (9)

it is easy to obtain the amplitude of the fields fn at time t ,

fn = −
√

WTn
√

∑k
n=1 T 2

n

(10)

with Tn = Tr(−iρ[P,Hn]). The corresponding time derivative

of Lyapunov function is

V̇ =
k

∑

n=1

fnTn = −
√

W
∑k

n=1 T 2
n

√

∑k
n=1 T 2

n

. (11)

It is seen that V̇ is proportional to
√

W , so we choose W =
Wmax for a faster decreasing of V and our control design for

all evolution time reads

fn(t) =

⎧

⎨

⎩

−
√

WmaxTn√
∑k

n=1 T 2
n

(

∑k
n=1 T 2

n �= 0
)

0
(

∑k
n=1 T 2

n = 0
)

.
(12)
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Note that when ρ reaches the final state ρf , all Tn =
Tr(−iρf [P,Hn]) become zero and all control fields are

switched off. Considering that ρ converges to ρf asymptot-

ically, we will switch off the control fields after D(ρ,ρf ) < ε

where D denotes some measurement for the distance between

ρ and ρf and ε is the required precision.

In the case k = 1 (i.e., there is only one control Hamilto-

nian) our control design reduces to

f1(t) =

⎧

⎪

⎨

⎪

⎩

−
√

Wmax (T1 > 0)
√

Wmax (T1 < 0)

0 (T1 = 0),

(13)

which has a simple bang-bang control form. With its discrete

shape of the control fields, this control design should be easy

to realize experimentally [8,23].

B. Constraint on the strength of each control field

Next, we will find the optimized control fields when the

strength of each field is bounded. For simplicity, we assume

the maximum strength of every control field fn(t) is S (S > 0),

i.e.,

|fn(t)| � S, (n = 1,2, . . . ,k). (14)

From V̇ =
∑k

n=1 fn(t)Tn, it is easy to obtain the optimized

control fields that minimize V̇ with condition Eq. (14),

fn(t) =

⎧

⎪

⎨

⎪

⎩

−S (Tn > 0)

S (Tn < 0)

0 (Tn = 0)

n = 1,2, . . . ,k (15)

and the time derivative of the Lyapunov function is

V̇ =
k

∑

n=1

fn(t)Tn = −S

k
∑

n=1

|Tn|. (16)

This design has the bang-bang control form with k different

control fields. When there is only one control Hamiltonian, the

design has the same form as that in Eq. (13) with
√

W replaced

by S.

We have presented two designs of control fields for systems

described by Eq. (1) and Lyapunov function Eq. (3) with two

constraints. However, these designs can also be applied to

other Lyapunov control as long as the derivative of Lyapunov

function has the form of Eq. (4) where fn(t) represents a

control field and Tn represents a real function of the quantum

state. In fact, for many different kinds of Lyapunov function

and different dynamical equations [14,18,20,21], V̇ takes this

form.

III. ILLUSTRATIONS

In this section, we will present an example to illustrate

the proposed schemes. The example consists of a three-level

system driven by a control Hamiltonian. We show that the

system can be steered to an eigenstate of the free Hamiltonian

from arbitrary initial states (except the states in the La Salle’s

invariant space) by both the conventional design fn(t) =
−KTn and the designs proposed in this paper. The difference

is that the present designs can speed up the convergence.

Consider a three-level system described by the quantum

Liouville equation

dρ

dt
= −i

[

H0 +
4

∑

n=1

fn(t)Hn,ρ

]

(17)

with free Hamiltonian

H0 = ω

⎛

⎜

⎝

1.5 0 0

0 1 0

0 0 0

⎞

⎟

⎠
. (18)

where the energy difference between |1〉 and |2〉 (|2〉 and |3〉)
is ω ( 1

2
ω). h̄ = 1 has been set throughout this paper.

The aim is to steer the system from an arbitrary initial pure

state ρ0 = |φ0〉〈φ0| to an eigenstate, say |φf 〉 = |3〉 = [1,0,0]T

of the free Hamiltonian H0. We choose the Lyapunov function

V = Tr(Pρ) with

P =

⎛

⎜

⎝

0 0 0

0 1 0

0 0 1

⎞

⎟

⎠
. (19)

According to the Lyapuonv control theory, the system Eq. (17)

will be driven to an eigenstate of P with the minimum eigen-

value 0 (i.e., ρ → ρf = |3〉〈3|). Additionally, in the pure state

case, this Lyapunov function can be explained as the Hilbert-

Schmidt distance between |φ〉 and |φf 〉. Recall that P =
I − |φf 〉〈φf |, and V = Tr(Pρ) = Tr[(I − |φf 〉〈φf |)|φ〉〈φ|] =
1 − |〈φ|φf 〉|2, our control design in this example acts to make

the distance between |φ〉 and |φf 〉 decrease as fast as possible

with a given restriction on the control fields.

In order to achieve the best performance, we choose the

control Hamiltonians Hn to be the generators of the SU(3)

group λn(n = 1, . . . ,8), namely, Hc(t) is constrained from

λ1 =

⎛

⎜

⎝

0 1 0

1 0 0

0 0 0

⎞

⎟

⎠
, λ2 =

⎛

⎜

⎝

0 −i 0

i 0 0

0 0 0

⎞

⎟

⎠
,

λ3 =

⎛

⎜

⎝

1 0 0

0 −1 0

0 0 0

⎞

⎟

⎠
, λ4 =

⎛

⎜

⎝

0 0 1

0 0 0

1 0 0

⎞

⎟

⎠
,

(20)

λ5 =

⎛

⎜

⎝

0 0 −i

0 0 0

i 0 0

⎞

⎟

⎠
, λ6 =

⎛

⎜

⎝

0 0 0

0 0 1

0 1 0

⎞

⎟

⎠
,

λ7 =

⎛

⎜

⎝

0 0 0

0 0 −i

0 i 0

⎞

⎟

⎠
, λ8 =

1
√

3

⎛

⎜

⎝

1 0 0

0 1 0

0 0 −2

⎞

⎟

⎠
.

Notice that since only λ1,λ2,λ4, and λ5 satisfy [P,λn] �= 0,

only these generators are effective for our model, which can

be understood by examining Eq. (4). Therefore, the control
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FIG. 1. (Color online) (a) Pf (solid line) and |V̇ | (dashed line) as a

function of time with the conventional control design fn(t) = −KTn.

(b) Control fields (in units of ω) for Wmax = 0.0001, and Smax =
0.007. These fields are switched off when Pf � 0.999 at t = 191.

Hamiltonians are chosen as,

H1 = λ1 =

⎛

⎜

⎝

0 1 0

1 0 0

0 0 0

⎞

⎟

⎠
, H2 = λ2 =

⎛

⎜

⎝

0 −i 0

i 0 0

0 0 0

⎞

⎟

⎠
,

H3 = λ4 =

⎛

⎜

⎝

0 0 1

0 0 0

1 0 0

⎞

⎟

⎠
, H4 = λ5 =

⎛

⎜

⎝

0 0 −i

0 0 0

i 0 0

⎞

⎟

⎠
,

(21)

which can be rewritten as H1 = |3〉〈2| + |2〉〈3|,
H2 = i(−|3〉〈2| + |2〉〈3|), H3 = |3〉〈1| + |1〉〈3|, and

H4 = i(−|3〉〈1| + |1〉〈3|), which couple the energy levels |1〉
and |2〉 to the final state |3〉. We would like to note that the

control Hamiltonians in this example are optimal, because

any operator for this three-level system can be written as an

expansion of these generators. For high-dimensional system,

the problem becomes more complicated.

We first simulate the problem with the conventional control

field design fn(t) = −KTr(−iρ[P,Hn]) with K = 0.01 and

initial state |φ0〉 = 1√
3
(|1〉 + |2〉 + |3〉). The control fields are

switched off when the probability Pf = |〈φ|φf 〉|2 reaches

0.999 both in this simulation and the following two so as to

compare the evolution time. Figure 1(a) shows the evolution

of probability Pf (black solid line) and |V̇ | (blue dashed line).

It is seen that the system is driven to target state |φf 〉 and the

evolution time is about t = 191 for Pf = 0.999. The time-

varying control fields fn(t) are plotted in Fig. 1(b). The power

W =
∑4

n=1 fn(t)2 reaches its maximum Wmax = 0.0001 at

t = 17 and the maximal strength of a single control field is

|f1| = 0.007 at t = 16.

Next, we employ the control design Eq. (12) under the

constraint on the power of control fields. In order to be

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

t (             1/ω)

P
f

0 20 40 60 80 100
0

0.003

0.006

0.009

0.012

0.015

|V̇
|

20 40 60 80

−0.01

0

0.01

t

f 1

20 40 60 80

−0.01

0

0.01

t

f 2

20 40 60 80

−0.01

0

0.01

t

f 3

0 20 40 60 80 100

−0.01

0

0.01

t (            1/ω)

f 4

(b)

(a)

units of

units of

FIG. 2. (Color online) (a) Pf (solid line) and |V̇ | (dashed line) as

a function of time with the control design Eq. (12) under constraint

A. (b) Control fields (in units of ω) with Wmax = 0.0001. These fields

are switched off at t = 90 when Pf � 0.999.

comparable with the last example, the maximal power Wmax

and initial state are chosen to be the same as the above

one. Results in Fig. 2(a) show that the evolution time for

Pf = 0.999 is t = 92, which is evidently shorter than that

shown in Fig. 1. Control fields are plotted in Fig. 2(b) which

have a sinusoidal shape. In this example, for all the time before

control fields are switched off, the power of control fields

remains constant and the shapes of fields are optimized so that

the Lyapunov function decreases fastest under constraint A.

We can see this from evolution of |V̇ | in Fig. 2(a) (blue dotted

line).

Now we study the control design Eq. (15) under constraint

B. For comparison, we let the maximal strength S and the

initial state be the same as that in the first simulation. The

simulation results are illustrated in Fig. 3. The evolution time

for Pf = 0.999 is t = 73, which is about 38% of the first

example. In this example, the control fields shown in Fig. 3(b)

are steplike. Such a control method makes Lyapunov function

decrease fastest under the restriction of strength and has the

advantage of being easy to be implemented in experiment.

The evolution of |V̇ | is not smooth (shown in Fig. 3(a) by blue

dashed line), which is due to the discrete control fields.

Furthermore, we plot in Fig. 4 the evolution of

D = 1 − |〈φ|φf 〉|2 for the three designs of control

field with 50 randomly chosen initial states |φr〉 =
R[r1e

i2πr4 ,r2e
i2πr5 ,r3e

i2πr6 ]T , where ri(i = 1, . . . ,6) are ran-

dom numbers uniformly created between 0 and 1, R =
1√

r2
1 +r2

2 +r2
3

is a normalization factor] respectively. The sim-

ulations show that the convergence rate for the usual control

design is exponential where the evolution time grows linearly

with the distance between the actual and target states D,

whereas the convergence rate of our two methods is larger

than the conventional one, especially when the control fidelity

is required to be high. The reason is our methods keep |V̇ | at

its maximum for all the evolution even if Tn is very small.
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FIG. 3. (Color online) (a) Pf (solid line) and |V̇ | (dashed line) as

a function of time with bang-bang control Eq. (15) under constraint

B. (b) Control fields (in units of ω) with S = 0.007. These fields are

switched off at t = 74 when Pf � 0.999.

We found that some of the control fields may oscillate with

very high frequency at the end of the control in Eq. (15) with

constraint B. The oscillation depends on the initial state, the

strenght of control fields and the distance between the actual

and target states. The reason of this oscillation is as follows.

When the state is close to the target state, some Tn become

very small leading to ineffectiveness of the corresponding

control field fn(t). While in conventional Lyapunov control,

the control field fn(t) decreases to zero with Tn → 0. In our

method, however, fn(t) is designed to take the value S or

−S, which makes the state oscillate almost every step of

simulation. This problem can be solved by averaging the

control fields over a proper time period and then use the

reshaped fields instead of the oscillating one. In fact, this

average can be used in the situation when the control fields

are not a (fast) oscillating function of time, it yields the same

control fields and maintains the results.

IV. ROBUSTNESS OF THE DESIGNS

One may wonder if these optimal designs improve the

robustness of the Lyapunov-based control. In the following,

we shall examine this problem following the representations in

Ref. [26] by calculating an average fidelity of the system with

Hamiltonian uncertainties, decoherence and field fluctuation

in the controls Eq. (17). Here the average fidelity is defined

by P
′

f = 1
N

(
∑N

j=1 |〈φj |φf 〉|2), |φj 〉 denotes the actual state

evolving from a random initial state under the control with

uncertainties, decoherence or fluctuations. In other words,

the average is taken over N actual states, each evolves

from a randomly chosen initial state, driving by the controls

with uncertainties, decoherence or fluctuations. Our focus

is on whether the optimal designs is robust against these

uncertainties compared with the conventional one.

We begin with analyzing robustness against the uncertainty

in the free Hamiltonian H0. The uncertainties can be taken into
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FIG. 4. (Color online) Evolution of D = 1 − |〈φ|φf 〉|2 for the

three control designs with logarithmic scale. (a),(b), and (c) cor-

respond to the conventional control field design, the design under

constraint A, and that under constraint B, respectively. Each picture

is a result averaged over 50 random initial states. The convergence

speed of (b) and (c) is faster than that of (a) as these figures show.

account by adding a perturbation δH0 to the free Hamiltonian,

i.e.,

H0 → H0 + δH0.

Here δH0 =
∑8

n=1 δnλn with δn a real number and λn the

generators in Eq. (20). For simplicity, we examine separately

the eight uncertainties δH0 = δnλn, n = 1,2, . . . ,8. The equa-

tion dρ

dt
= −i[H0 + δH0 +

∑4
n=1 fn(t)Hn,ρ] is simulated for

the three designs with the same control fields and the same

parameters as in Sec. III. Selected results are showed in Fig. 5

where the fidelity P
′

f is an average over fidelities from 1000

randomly chosen initial states.

The simulations show that, (i) the optimal Lyapunov control

is robust against the uncertainty λ1, and is sensitive to that of λ3;

(ii) the bang-bang design is more robust than the design with

power constraint, and the conventional design has the worst

robustness. In fact, the robustness against the uncertainty δ8λ8

is similar to Fig. 5(a) and robustness against the uncertainties

δnλn(n = 2,3,4,5,6,7) is roughly similar to Fig. 5(b). Thus

here we only show the robustness of the control against the

uncertainties λ1 and λ3. This conclusion confirms that the

system is sensitive to the uncertainties that commute with

the free Hamiltonian, while it is robust against the uncertainties

that does not.
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FIG. 5. (Color online) The average fidelity verses uncertainties in

the free Hamiltonian, (a) for λ1 and (b) for λ3. The blue triangle, green

star, and black circle represent the fidelity obtained by bang-bang

control design, design with power constraint, and the conventional

one, respectively.

We next discuss the robustness against decoherence. In

this discussion, we assume that states |2〉 and |1〉 are long

lived, namely only the spontaneous emission |3〉 → |1〉 and

|3〉 → |2〉 is assumed. This can be described by L(ρ) =
∑

i=1,2 γi(σ
−
i ρσ+

i − 1
2
σ−

i ρσ+
i − 1

2
σ−

i ρσ+
i ) with σ−

i = |i〉〈3|
and σ+

i = |3〉〈i|. With this assumption, the target state is not a

steady state, so the fidelity will be affected seriously. However,

the optimal controls are better than the conventional one due

to the short time needed to drive the quantum system from an

initial state to the target state. As we did in Fig. 5, we calculate

the average fidelity for the three control designs with 1000

random initial state and fixed γ . The results are depicted in

Fig. 6. In this case, the fidelity of the two optimal designs is

obviously higher than the conventional design.

The robustness against field fluctuations (with zero mean)

and errors in the initial state is also explored. The results are

similar to that in Ref. [26], namely the control field fluctuation

with zero mean affects the fidelity slightly, while it depends

sharply on the fluctuation with nonzero mean, and the final

fidelity is sensitive to the initial state. In these cases, the optimal

control has no advantage with respect to the conventional one.

V. APPLICATION TO THE COOLING OF A MECHANICAL

OSCILLATOR

The cooling of mechanical resonators [27–31] has become

an active research topic in recent years due to its potential

applications in detecting extremely small displacement and

observing quantum phenomena of macroscopic mechanical
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FIG. 6. (Color online) The average fidelity as a function of the

decoherence rates, here we choose γ2 = γ3 = γ . The blue triangle,

green star, and black circle represent bang-bang control design, design

with power constraint, and the conventional one, respectively.

objects. In this section, we apply the Lyapunov control to

cooling a nanomechanical resonator. The results show that it

is possible to cool a nanomechanical system to its ground state

by Lyapunov control, and the optimized control design leads to

a shorter cooling time with respect to the conventional control

design.

Consider a nanomechanical resonator (called target) with

frequency ω coupled to the other microwave (optical) oscillator

(auxiliary system), the microwave oscillator has a sufficiently

higher frequency � such that it can be prepared in its ground

state at finite temperature. In the language of Lyapunov control,

the free Hamiltonian of the composite system is given by

H0 = h̄ωa†a + h̄�b†b. (22)

We assume the coupling Hamiltonian of the two oscillators

has the following form,

Hc = g(t)xAxB (23)

with xA = a + a† and xB = b + b†. This type of Hamiltonian

can be realized by coupling the target to a LC oscillator and

the coupling rate g(t) can be modulated by the voltage of the

LC circuit [27–29].

In the sideband cooling, g(t) is modulated at � − ω so

that the two resonators are effectively coupled and the rotating

wave approximation (RWA) applies when the coupling g is

weak. Recently, the authors of [27] have shown that quantum

control can improve the cooling, when the control goes beyond

the RWA in the ultrastrong coupling regime g ∼ ω [27]. Here,

we show that we can obtain the control design by the Lyapunov

function, and the optimized Lyapunov design can shorten the

cooling time.

Denote the state of the two resonators by ρ, we can choose

the Lyapunov function as

V (ρ) = Tr(a†aρ) = 〈na〉, (24)

namely, we choose the mean phonon number of the target

resonator as the Lyapunov function, which is non-negative and

becomes zero when the target system is cooled to its ground

state. By the same procedure, we get

V̇ (ρ) = g(t)Tn. (25)
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FIG. 7. (Color online) (a) Phonon number versus time for the

conventional Lyapunov design (upper half) and optimal Lyapunov

design (lower half). The evolution time for 〈na〉 = 0.05 is t = 37.5

(upper) and t = 13.4 (lower), respectively. (b) Time-dependent

coupling for the conventional design (upper) and the optimal design

(lower), where g(t) for the two designs share the same maximal

strength |gmax|/ω = 1.91. g(t) for the optimal design is shut off after

t = 13.4.

Here Tn = Tr{−iρ[a†a,(a† + a)(b† + b)]}. If g(t) is chosen

to keep V̇ � 0, the phonon number of target resonator will

decrease monotonically. The conventional Lyapunov design

for the time-dependent coupling strength is g(t) = −KTn with

K a positive constant, while the optimal Lyapunov design is a

bang-bang control given by Eq. (15).

Assume that the target resonator is initially in a thermal state

with average phonon number 〈na〉 = 6.38 and the auxiliary

system is prepared in its ground state. Note that the frequency

of auxiliary system � should be sufficiently large compared

with ω, such that thermal fluctuation has small effect on the

microwave oscillator. Our numerical simulations show that

larger � leads to faster oscillation of g(t), but it does not affect

the cooling results. Here we set �/ω = 20.

The simulations are performed in the Fock space, we

truncate the Fock space of each oscillator up to 20 Fock states

and the dissipation of each resonator is ignored. Compared to

simulations with 25-Fock-state truncation, improvement is not

significant, so the simulations with 20-Fock-state truncation

are reasonable. We compare the evolution of phonon number

〈na〉 and g(t) for the two designs in Fig. 7. The top half of

Fig. 7(a) represents the evolution of 〈na〉 for conventional

design with K = 0.03 and maximal control field strength

|g(t)|/ω = 0.191. It takes t = 37.5 (in units of 1/ω) for the

target to reach 〈na〉 = 0.05. In contrast, for the optimal design,

the evolution time for reaching the same phonon number is

t = 13.4 as shown in the lower half of Fig. 7(a). Obviously

the optimal Lyapunov design shorten the cooling time.

Figure 7(b) shows the time dependence of g(t) for the

conventional (upper half) and optimal (lower half) design.

For each case, the control field g(t) starts with a nonzero

small number to avoid Tn = 0 at the initial time. It is seen

that the optimal Lyapunov design leads to a faster decrease

of Lyapunov function (i.e., the phonon number). In addition,

the major components of the oscillation frequency of g(t) is

automatically turned to the frequency difference � − ω of the

two resonators (like that in the sideband cooling scheme).

VI. SUMMARY

We have presented two designs for Lyapunov control under

constraints on the total power and individual strength of

the control fields. These designs make Lyapunov function

decrease fastest determined by the constraints. It has been

shown that the implementation of our designs leads to a shorter

time toward the target state especially for the high-fidelity

requirement. Moreover, the second control design gives simple

bang-bang control fields, which may be easy to implement in

experiment. Intuitively, our methods use a constant power or

strength of control fields to make Lyapunov function decrease

as fast as possible. This optimal control is more robust against

uncertainties in the Hamiltonian and decoherence in the system

with respect to the conventional design. We also explore the

application of our optimal design to cool a nanomechanical

system where a significantly shorter time is obtained compared

with the conventional Lyapunov design. Here we focused only

on how to design control fields with fixed control Hamiltonian

Hn. A general formalism to choose control Hamiltonian Hn to

speed up Lyapunov control is still an open issue.
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