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Abstract: Currently, the amount of Internet of Things (IoT) applications is enhanced for processing,
analyzing, and managing the created big data from the smart city. Certain other applications of smart
cities were location-based services, transportation management, and urban design, amongst others.
There are several challenges under these applications containing privacy, data security, mining, and
visualization. The blockchain-assisted IoT application (BIoT) is offering new urban computing to
secure smart cities. The blockchain is a secure and transparent data-sharing decentralized platform, so
BIoT is suggested as the optimum solution to the aforementioned challenges. In this view, this study
develops an Optimal Machine Learning-based Intrusion Detection System for Privacy Preserving
BIoT with Smart Cities Environment, called OMLIDS-PBIoT technique. The presented OMLIDS-
PBIoT technique exploits BC and ML techniques to accomplish security in the smart city environment.
For attaining this, the presented OMLIDS-PBIoT technique employs data pre-processing in the
initial stage to transform the data into a compatible format. Moreover, a golden eagle optimization
(GEO)-based feature selection (FS) model is designed to derive useful feature subsets. In addition,
a heap-based optimizer (HBO) with random vector functional link network (RVFL) model was
utilized for intrusion classification. Additionally, blockchain technology is exploited for secure
data transmission in the IoT-enabled smart city environment. The performance validation of the
OMLIDS-PBIoT technique is carried out using benchmark datasets, and the outcomes are inspected
under numerous factors. The experimental results demonstrate the superiority of the OMLIDS-PBIoT
technique over recent approaches.

Keywords: blockchain assisted IoT; smart city; security; privacy preserving; feature selection;
intrusion detection
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1. Introduction

The smart city is regarded as a technological structure utilized by the distinct city share-
holders for achieving distinct objectives such as good governance, enhancing day-to-day
living circumstances, maximizing resource usage, or building new commercial chances [1].
The supporters of the smart city, whether they are technology providers, researchers, or
managers, have performed various designs, improvement studies, and standardization
in response to the difficulties of smart city advancement referring to security, scalability,
connectivity, or heterogeneity [2]. The Internet of Things (IoT) technology provides less cost
and potential solutions for the advancement of smart cities owing to its greater suitability
in an infinite number of cases. Specifically, the intelligent IoT gadgets could consistently
combine multiple fields of a smart city phenomenon, interchanging a continual flow of data
for granting quality services to the public as a supreme objective [3]. Thus, we refer to the
IoT gadgets as brilliant, which means they are capable of communicating autonomously,
demanding less or no human involvement.

Invaders will fix their places in smart cities for many reasons. Malevolent people might
consider smart cities as play areas wherein they make a trail of their hacking skills through
playing with existing technologies for individual fulfillment [4]. For cyber-criminals, the
interconnectivity of systems and devices in a smart city can be operated for any feasible
unauthorized accessibility of monetary properties, personal properties, delicate data, and
causing damages or loss to the common public [5]. State-sponsored actors might exploit
the ubiquity of smart city technologies for launching their hacktivist or espionage camps.
In a few very dire situations, smart applications might be exploited for performances of
terror [6]. Thus, engineers and researchers must grant legal methods and solutions to aid
local administrations and metropolitan or urban developers in creating highly secured
smart cities [7].

Security is not just a necessity for the further usage of blockchain (BC); it could
participate in data dispersal since it operates in a quicker mode. However, according to
the author’s knowledge, autonomous mathematical evidence for quicker solutions is now
not available [8]. Once after the existence of the mathematical evidence, an ideal ambiance
is possible where speedy and trusted nodes are linked in the network and could avail
the advantage from 5G with the help of particular fog layers of clouds. As a result, a
BC-oriented decentralized system is one of the resolutions [9]. One such benefit of utilizing
BC technologies is that it has capability of storing data in an absolute way that does not
need a centralized database. Furthermore, it could offer a means for tracking and executing
transactions amid several members in a trusted ambiance [10]. With the use of strong
encryption with public private key sets, BC further grants higher levels of security to its
members. Figure 1 depicts the process of BC in IoT with smart cities environment.

This study develops an Optimal Machine Learning-based Intrusion Detection Sys-
tem for Privacy Preserving BIoT with Smart Cities Environment, called OMLIDS-PBIoT
technique. The proposed OMLIDS-PBIoT model can be applied to accomplish security
in several areas of smart cities such as traffic management, emergency response, smart
healthcare, air quality monitoring, disaster management, waste management, air quality
monitoring, etc. The presented OMLIDS-PBIoT technique employs data pre-processing in
the initial stage to transform the data into compatible format. Additionally, a golden eagle
optimization (GEO)-based feature selection (FS) model is designed to derive useful feature
subsets. In addition, heap-based optimizer (HBO) with random vector functional link
network (RVFL) model was utilized for intrusion classification. In addition, BC technology
is exploited for secure data transmission in the IoT-enabled smart city environment. The
performance validation of the OMLIDS-PBIoT technique is performed utilizing benchmark
datasets, and the outcomes are valued in many aspects.



Appl. Sci. 2022, 12, 5893 3 of 17Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 18 
 

 

Figure 1. Blockchain in IoT with smart cities environment. 

2. Literature Review 

This section offers a brief review of security-based solutions for the IoT enabled smart 

city environment. Kumar et al. [11] introduce a Privacy Preserving and Secure Framework 

(PPSF) to IoT-driven smart cities. The suggested PPSF depends on two chief processes: 

one is a dual-level secrecy scheme, and another one is IDS. Firstly, in a dual-level secrecy 

scheme, a BC unit is devised for sending the IoT data securely, and a Principal Component 

Analysis (PCA) approach was implemented to convert original IoT data as to innovative 

outline. In the IDS, a Gradient Boosting Anomaly Detector (GBAD) was implied for train-

ing purposes. Meng et al. [12] recommend a BC-enabled single character frequency-re-

lated ESM, which could create a provable database of malicious payloads by means of 

BCs. In the valuation, we examine the act of the methods below flooding and character 

padding assaults in a real and simulated IoT network ambiance. 

Bediya and Kumar [13] debated most feasible assaults on IoT network systems and 

distributed denial of service (DDoS) assault is such a risky one amongst them. BC tech-

nology could be used for developing a structure in order to protect or preserve IoT sys-

tems, and BC is a brand-new technology utilized in transacting processes of cryptocur-

rency. Rathore et al. [14] suggest a decentralized security substructure depends on Soft-

ware Defined Networking (SDN) paired with BC technologies for IoT network from the 

smart cities, which hinges on the three main technologies of Fog, SDN, and BC, as well as 

mobile edge computing (MEC) for detecting assaults in the IoT network with higher ef-

fectiveness. Therefore, in the suggested substructure, SDN is accountable for continual 

observing and interpretation of traffic data in the whole IoT network for providing an 

optimum attack recognition method. 

Botello et al. [15] suggest BlockSIEM, a BC-related and dispersed Security Infor-

mation and Event Management (SIEM) solution structure for the safety of the above-

Figure 1. Blockchain in IoT with smart cities environment.

2. Literature Review

This section offers a brief review of security-based solutions for the IoT enabled smart
city environment. Kumar et al. [11] introduce a Privacy Preserving and Secure Framework
(PPSF) to IoT-driven smart cities. The suggested PPSF depends on two chief processes:
one is a dual-level secrecy scheme, and another one is IDS. Firstly, in a dual-level secrecy
scheme, a BC unit is devised for sending the IoT data securely, and a Principal Component
Analysis (PCA) approach was implemented to convert original IoT data as to innovative
outline. In the IDS, a Gradient Boosting Anomaly Detector (GBAD) was implied for training
purposes. Meng et al. [12] recommend a BC-enabled single character frequency-related
ESM, which could create a provable database of malicious payloads by means of BCs. In
the valuation, we examine the act of the methods below flooding and character padding
assaults in a real and simulated IoT network ambiance.

Bediya and Kumar [13] debated most feasible assaults on IoT network systems and
distributed denial of service (DDoS) assault is such a risky one amongst them. BC technol-
ogy could be used for developing a structure in order to protect or preserve IoT systems,
and BC is a brand-new technology utilized in transacting processes of cryptocurrency.
Rathore et al. [14] suggest a decentralized security substructure depends on Software
Defined Networking (SDN) paired with BC technologies for IoT network from the smart
cities, which hinges on the three main technologies of Fog, SDN, and BC, as well as mobile
edge computing (MEC) for detecting assaults in the IoT network with higher effectiveness.
Therefore, in the suggested substructure, SDN is accountable for continual observing and
interpretation of traffic data in the whole IoT network for providing an optimum attack
recognition method.

Botello et al. [15] suggest BlockSIEM, a BC-related and dispersed Security Information
and Event Management (SIEM) solution structure for the safety of the above-mentioned
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smart city services. These security events were produced by IoT sentinels, which take
responsibility for protecting groups of IoT gadgets. In [16], several various problems and
distinct assault vectors are conferred, including the feasible results. To alleviate numerous
assaults, BlockSDN, a BC as a service structure, for SDN is suggested. The substructure
of permissioned BC is provided, pursued by two assault scenarios: one is a malware
imperiled switch at data plane, and another one is DDoS assault at the control planes.
Peneti et al. [17] inaugurates the BC-defined network system having a grey wolf enhanced
modular neural network (NN) technique for managing the smart ambiance security. At
the time of this process, translation, application, and construction, layers were formed,
where user-authenticated related blocks are devised for handling the privacy and security
property. After this, optimizing NN is implied for maintaining the computational resource
utilization and latency in IoT-empowered smart applications.

The authors in [18] introduced a new AI-based multimodal fusion model to rec-
ognize intrusions in the industry 4.0 environment. This model involves improved fish
swarm optimization-based feature selection (IFSO-FS) approach to choose optimal subset
of features. In addition, the IFSO technique is derived by the use of the Levy Flight (LF)
concept into the searching mechanism of the conventional FSO model. Additionally, the
weighted voting-based ensemble technique is used for fusion procedure. The authors in [19]
presented a hybrid metaheuristic-based energy efficiency resource allocation (HMEERA)
technique for cloud platform. The HEERA technique carries out the feature extraction and
principal component analysis (PCA)-based feature reduction. It also uses hybrid Group
Teaching Optimization Algorithm (GTOA) with rat swarm optimizer (RSO) algorithm to
allot the resources in an optimal way.

Though several models are available in the literature, it is still needed to design
effective IDS models for smart city environment. In addition, most of the research works
have chosen the parameter values based on the trial-and-error method, which is labor
intensive and ineffective. Therefore, parameter optimization can be considered as the NP
hard problem and can be solved by the use of metaheuristic algorithms. In this work, we
have used the HBO algorithm for optimal parameter tuning process.

3. The Proposed Model

In this study, an effective OMLIDS-PBIoT technique was developed with the utilization
of the BC and ML models for accomplishing security in the smart city environment. The
presented OMLIDS-PBIoT technique employs different stages of subprocesses, namely pre-
processing, GEO-FS, RVFL-based classification, and HBO-based parameter optimization.
Moreover, BC technology is exploited for secure data transmission in the IoT enabled smart
city environment.

3.1. Blockchain Technology

In this work, the BC technology is used to assure secure data transmission in the smart
city environment. BC is a decentralized P2P network through which every transaction is
authenticated by the registered node and recorded in an immutable and distributed ledger.
In such case, the consensus approach is the center of the BC technique, since it ensures
network reliability. Especially, no centralized authority exists to authenticate the produced
event; all the transactions should be authenticated by the BC node via mutual agreement
(viz., consensus) [20]. A few common types of consensuses are given in the following:

• Proof of Work (PoW): a transaction is authorized when the node accepts its P2P network.
• Proof of Stake (PoS): the node that has further wealth has great possibility to create a

block and participate in the consensus.
• Proof of Importance (PoI): the node that can generate a block is the one with the

maximum number of transactions.
• Proof of Authority (PoA): explicitly few nodes are permitted to generate new blocks

and protect the BC. It should be apparent that the abovementioned algorithm features
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potential drawbacks and possible advantages, depending mainly on the fundamental
P2P network architecture.

PoS and PoW are explicitly portrayed as the more commonly used algorithms to
achieve the consensus between the P2P nodes. Nonetheless, it has become evident that PoW
needs high computation resources, whereas PoS is most demonstrated for attacking because
the mining cost is almost zero. PoA and PoI are valid alternatives since they have better
performance and are energy-friendly. Moreover, BC presents two techniques to construct a
network, such as permissionless and permissioned BCs. Especially, permissionless BC (that
is, public BC) allows a potential candidate to turn into a node and belong to the network.
A node on this BC may execute other tasks as long as they pose the physical ability (for
example, validate transactions, mine blocks, etc.). Consecutively, permissioned BC (that is,
private BC) restricts the access of a node that belongs to the network and executing task.
An appropriate characteristic of BC is that it is likely to select the levels of decentralization
on the network, that is, partially decentralized or fully centralized. Specifically, open
permissioned BC is partially decentralized, because all the entities have the capacity to
read the saved information, whereas closed permissioned BC is completely centralized.
After all, the saved information is perceptible to the participating node.

3.2. Data Pre-Processing

During this case, min-max normalized has been executed for scaling the data s to unit
variance. It is commonly utilized to compute the similarity degree among points. Assume
that A is data, which is mapped from the dataset range from Amin to Amax, employing in
Equation (1):

Anormalized =
A− Amin

Amax − Amin
(1)

The employ of min-max normalization ensures that the feature was exacted as to
similar scales.

3.3. Process Involved in GEO-FS Technique

In this study, the GEO-FS technique is exploited to choose an optimal subset of features
from the preprocessed data. GEO is a novel meta-heuristic approach, which was established
very recently for solving global optimized problems. The GEO technique was simulated
and mathematically processed by the intelligence of golden eagle (GE) dependent upon
adjusting the speed of its spiral tracking [21]. The GE is a specific type of swarm that
has a superior propensity for cruising around and searching for prey initially to hunt. By
controlling these two elements, i.e., cruise propensity and attack propensity, the GEO was
rapidly capable of hunting an optimum accessible prey from the possible region.

The GE from cruise and hunt is a unique feature, i.e., it follows in a spiral trajectory,
representing that prey was commonly on one side of the eagles. This allows them to
control target prey wisely and use boulders for determining an appropriate angle of attack.
Simultaneously, it can be checking other regions for optimum food. The hunting technique
of GEs mostly dependent upon the subsequent feature.

The mathematical designs of GEs for mimicking the movement to search for the prey
are mostly explained as:

• The spiral movement of GEs: In GEO, all the GE retains from their memory the
optimum visited place previously. The eagle is an attraction near the cruising and
nearing attack of the prey concurrently in order to search for optimum food. At all
iterations, all the GEs j arbitrarily select prey, which is fixed by another GE l, and
circles around optimum place stayed by GE l so far. The GE j also has the chosen
features for circling their memory; therefore, it can be l ∈ {1, 2, · · · , NGE}, whereas
NGE stands for the number of GEs.

• Prey selection: At all the iterations, all the GEs can choose a prey for executing the
cruising as well as attacking functions. Additionally, all the GEs select the chosen
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prey in the memory of the entire flock. Thus, the cruising and attacking vectors are
calculated based on the chosen prey. Next, it verifies their memory when the novel
place was superior to the preceding place. Subsequently, the memory was upgraded
with novel determining.

• Attack: The attack is defined by utilizing a vector deriving from the actual place of GE
j and ending from the place of prey from the eagle’s memory as:

→
Aj =

→
X∗l −

→
Xj, (2)

where
→

Aj∗ implies the attack vector of GEs j,
→
X∗1 denotes the optimum place visited by

eagle l so far, and Xj signifies the present place of eagles j.
• Cruise: The cruise vector is a perpendicular vector to attack vectors and tangent to

circle. It is also well-known as linear speed of GEs for attacking the prey. The target
point on cruise vector was provided under:

→
Cj =

d−∑ f , f 6=j a f

aj
′ , (3)

where d signifies the hyperplane formula from n-dimension space, aj, a f ∈
→
Aj, whereas

→
Aj = [a1, a2, · · · , an] signifies the attack vectors.

• Moving to novel places: Moving to novel places of GEs was mostly dependent upon
the attacking and cruising vectors. Thus, the step vector of GEs j in iteration t was
projected by the subsequent formula:

4xj =
→
r1 pa

→
Aj

‖
→
Aj‖

+
→
r2 pc

→
Cj

‖→cj‖
(4)

In which pt
a denotes the attack co-efficient at iteration t and pt

c implies the cruise co-
efficient at iteration t and controlling that the GE was affected by cruising and attacking.
→
r1 and

→
r2 imply the random vectors. A novel place of GEs is then provided as:

xt+1
j = xr

j +4t
xj

(5)

When the fitness function j offers superior to the preceding places after their memory
is upgraded with novel places.

• The transition from exploration to exploitation: The GEO technique utilizes the attack-
ing co-efficient pa and the cruising co-efficient pc for switching from the state of explo-
ration to exploitation. pa and pc is calculated utilizing the subsequent
linear expression:

pa = p0
a +

t
T

∣∣∣pT
a − p0

a

∣∣∣, (6)

pc = p0
c +

t
T

∣∣∣pT
c − p0

c

∣∣∣, (7)

where p0
a and p0

c are correspondingly the primary values to propensity for attacking
pa and for propensity for cruising pc, t signifies the present iteration, T denotes
the maximal count of iterations, pT

a and pT
a are correspondingly the last values to

propensity for attacking pa and to propensity for cruising pc.
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The fitness function (FF) of the GEO-FS technique assumes the classifier accuracy and
the number of chosen features. It maximizes the classifier accuracy and minimizing the set
size of chosen features. Thus, the subsequent FF utilized for evaluating individual solutions
is demonstrated in Equation (8).

Fitness = α× ErrorRate + (1− α)× #SF
#All_F

(8)

where ErrorRate implies the classifier error rate utilizing the chosen features. ErrorRate
is computed as the percentage of inappropriate classification (by 5-ANN classifier) to
the number of classifiers developed, formulated as a value amongst zero and one [22].
(ErrorRate implies the complement of classifier accuracy), #SF denotes the number of
chosen features, and #All_F denotes the entire number of elements from the original
dataset. α denotes utilized for controlling the significance of classifier quality as well as
subset length. During the experiments, α is fixed to 0.9.

3.4. Process Involved in HBO-RVFL Technique

At this stage, the chosen features are passed into the RVFL model to classify data.
The basic framework of RVFL is generally the same as the artificial neural network that
comprises hidden, output, and input layers [23]. However, the major difference between
RVFL and ANN is that RVFL directly connects the output and input layers. This connection
supports RVFL by an appropriate mechanism to prevent the over-fitting problems that
take place in ANN. The training RVFL begins with the employment of the input data that
comprise target yi and sample xi, to the input state. Next, the output of the hidden node is
computed by the subsequent formula:

Oj
(
αjxi + β j

)
=

1

1 + e−(αjxi+β j)
, β j ∈ [0, S], αj ∈ [−S, S] (9)

From the above equation, αj represents the value of weight, which connects the hidden
and input nodes. S and β j denote the scale bias and factor, correspondingly.

Then, last output is calculated by the Equation (11):

Z = Fw, w ∈ Rn+P, F = [F1, F2] (10)

F1 =

 x11 x1n
...

...
xN1 xNn

 F2 =

 G1(α1x1 + β1) · · · GP(αPx1 + βP)
...

. . .
...

G1(α1xN + β1) · · · GP(αPxN + βP)

 (11)

Here, w is upgraded by the subsequent equation:

w = F†Z (12)

In Equation (12), † indicates the Moore–Penrose pseudo-inverse. Figure 2 demonstrates
the structure of RVFL technique.
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To optimally adjust the parameters related to the RVFL method, the HBO algorithm has
been utilized. The presented algorithm is stimulated by the corporate rank hierarchy (CRH),
which declares that a team could arrange in a hierarchal manner to fulfill organization
goals [24]. The HBO algorithm is categorized as interaction between colleagues, interaction
between subordinates, self-contribution of employees, and the immediate supervisor. In the
CRH approach, the population is established as a CRH, while the heap node is established
as a searching agent. The agent location of every search is upgraded by:

xk
i (t + 1) = Bk + γ(2r− 1)

∣∣∣Bk − xk
i (t)

∣∣∣ (13)

The k-th components of λ vector
→
λ is signified as:

λk = 2r− 1 (14)

γ is evaluated by using Equation (15):

γ =

∣∣∣∣∣2−
(
tmod t

c
)

1
4C

∣∣∣∣∣ (15)

The (C) parameter in Equation (16) controls the variation. However, this will complete
in T iteration as in the following:

C = Tmax/25 (16)

Additionally, the interaction between colleagues is modeled. As expressed in
Equation (17), the location of every agent

(→
xi

)
is upgraded by randomly designated

colleague
→
Sr:

xk
i (t + 1) =

Sk
r + γλk

∣∣∣Sk
r − xk

i (t)
∣∣∣, f (

→
Sr < f

(→
χi(t)

)
xk

i + γλk
∣∣∣Sk

r − xk
i (t)

∣∣∣, f (
→
Sr ≥ f

(→
χi(t)

) (17)

In Equation (17), the fitness of the searching agent is denoted as f .
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Further modeled is the self-contribution of all the employees, whereby the location of
every agent is upgraded based on the following equation:

xk
i (t + 1) = xk

i (t) (18)

At last, the updating position equation has been taking place. The roulette wheel
probability, p1, p2, and p3, are designated to balance the exploitation and exploration stages.

The searching agent upgrades the location by utilizing Equation (18). Selection of the
proportion p1 is implemented by Equation (19):

p1 = 1− t
τ max (19)

The searching agent upgrades their location by Equation (11). Selection of the propor-
tion p2 is implemented by Equation (20):

p2 = p1 +
1− p1

2
(20)

The searching agent upgrades their location by Equation (19). Selection of the propor-
tion p3 is implemented by Equation (21):

p3 = p2 +
1− p1

2
= 1 (21)

Therefore, the common position updating method of the HBO algorithm is expressed
by the following equation:

xk
i (t + 1) =



xk
i (t), p ≤ p1

Bk + γλk
∣∣∣Bk − xk

i (t)
∣∣∣, p1 < p < p2

Sk
r + γλk

∣∣∣Sk
r − xk

i (t)
∣∣∣, p2 < p ≤ p3 and f (

→
Sr < f

(→
x i(t)

)
xk

γ + γλk
∣∣∣Sk

r − xk
i (t)

∣∣∣, p2 < p ≤ p3 and f
(→

Sr ≥ f
(→

x i(t)
)) (22)

The HBO approach grows an FF for achieving superior classifier performances. It
solves a positive integer for demonstrating the best performance of candidate results.
During this study, the minimized classifier error rate has been regarded that FF is offered
in Equation (23).

f itness(xi) = Classi f ierErrorRate(xi) =
number o f misclassi f ied samples

Total number o f samples
× 100 (23)

4. Performance Validation

This section inspects the experimental validation of the OMLIDS-PBIoT technique
using two benchmark datasets such as NSL-KDD and UNSW-NB15 datasets.

The FS outcomes of the GEO-FS system on the test dataset are displayed in Table 1. The
experimental values implied the GEO-FS method has accomplished enhanced performance
over other models. For instance, on test NSL-KDD dataset, the OMLIDS-PBIoT technique
has accomplished least good cost of 0.002218 with the selection of 13 features. Additionally,
on test UNSW-NB15 dataset, the OMLIDS-PBIoT technique has established minimum best
cost of 0.003095 with the selection of 20 features.
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Table 1. Results analysis of OMLIDS-PBIoT based FS on applied dataset.

Dataset Best Cost Selected Features

NSL-KDD 0.002218 1, 2, 5, 6, 8, 21, 23, 26, 29, 31, 33, 34, 37

UNSW-NB15 0.003095 1, 3, 4, 7, 11, 17, 18, 20, 21, 25, 27, 28, 30, 31, 32, 34, 38, 39, 40, 42

A detailed intrusion detection of the outcomes of the OMLIDS-PBIoT technique on
the NSL-KDD dataset are portrayed in Table 2 and Figure 3. The outcomes denoted by the
OMLIDS-PBIoT technique have classified samples under all classes effectively. For example,
the OMLIDS-PBIoT technique has recognized samples under DoS attack with precn, recal ,
F1score, and accuy of 99.30%, 99.50%, 99.64%, and 99.57% respectively. Additionally, the
OMLIDS-PBIoT technique has recognized samples under R2L attack with precn, recal ,
F1score, and accuy of 99.53%, 98.52%, 99.18%, and 99.21% correspondingly. At the same
time, the OMLIDS-PBIoT technique has recognized samples under U2R attack with precn,
recal , F1score, and accuy of 99.89%, 99.12%, 98.45%, and 99.54% individually. Moreover, the
OMLIDS-PBIoT technique has recognized samples under normal attack with precn, recal ,
F1score, and accuy of 98.65%, 98.84%, 98.74%, and 99.07%, correspondingly.

Table 2. Result analysis of OMLIDS-PBIoT technique on NSL-KDD dataset.

Attack Type Precision Recall F1-Score Accuracy

DoS 99.30 99.50 99.64 99.57

R2L 99.53 98.52 99.18 99.21

Probe 98.54 99.53 99.44 99.68

U2R 99.89 99.12 98.45 99.54

Normal 98.65 98.84 98.74 99.07

Average 99.18 99.10 99.09 99.41
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The training accuracy (TA) and validation accuracy (VA) attained by the OMLIDS-
PBIoT technique on NSL-KDD dataset is demonstrated in Figure 4. The experimental



Appl. Sci. 2022, 12, 5893 11 of 17

outcome implied that the OMLIDS-PBIoT technique has gained maximum values of TA
and VA. In specific, the VA seemed to be higher than TA.
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The training loss (TL) and validation loss (VL) achieved by the OMLIDS-PBIoT tech-
nique on NSL-KDD dataset are established in Figure 5. The experimental outcome inferred
that the OMLIDS-PBIoT technique has accomplished least values of TL and VL. In specific,
the VL seemed to be lower than TL.
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A detailed intrusion detection outcome of the OMLIDS-PBIoT technique on the UNSW-
NB15 dataset is displayed in Table 3 and Figure 6. The outcomes exposed that the OMLIDS-
PBIoT technique has classified samples under all classes effectively. For example, the
OMLIDS-PBIoT model has recognized samples under DoS attack with precn, recal , F1score,
and accuy of 99.69%, 99.33%, 99.54%, and 99.74%, correspondingly. Eventually, the OMLIDS-
PBIoT technique has recognized samples under Generic attack with precn, recal , F1score,
and accuy of 99.58%, 99.78%, 98.78%, and 99.67%, correspondingly. In the meantime, the
OMLIDS-PBIoT technique has recognized samples under U2R attack with precn, recal ,
F1score, and accuy of 99.609%, 99.43%, 98.58%, and 99.54%, correspondingly. Furthermore,
the OMLIDS-PBIoT technique has recognized samples under normal attack with precn,
recal , F1score, and accuy of 99.73%, 99.48%, 98.60%, and 99.65%, correspondingly.

Table 3. Result analysis of OMLIDS-PBIoT technique on UNSW-NB15 dataset.

Attack Type Precision Recall F1-Score Accuracy

Normal 99.72 99.11 99.54 99.49

DoS 99.69 99.33 99.54 99.74

Shellcode 99.74 99.61 99.70 99.50

Backdoor 99.58 99.78 98.78 99.67

Generic 99.58 99.48 99.80 99.73

Exploits 99.41 99.39 99.51 99.63

Fuzzers 99.60 99.43 98.58 99.54

Reconnaissance 99.73 99.63 99.45 99.53

Analysis 99.41 99.80 99.55 99.56

Worms 99.73 99.48 98.60 99.65

Average 99.62 99.50 99.31 99.60
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The TA and VA gained by the OMLIDS-PBIoT technique on UNSW-NB15 dataset are
shown in Figure 7. The experimental outcome implied that the OMLIDS-PBIoT technique
has gained maximal values of TA and VA. Particularly, the VA seemed to be higher than TA.
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The TL and VL achieved by the OMLIDS-PBIoT techniques on UNSW-NB15 dataset
are established in Figure 8. The experimental outcome inferred that the OMLIDS-PBIoT
technique has accomplished the least values of TL and VL. Specifically, the VL seemed to
be less than TL.
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Table 4 portrays an extensive comparison study of the OMLIDS-PBIoT technique with
recent models in terms of different measures [18]. Figure 9 offers a comparative precn and
recal examination of the OMLIDS-PBIoT technique with existing models on test data. The
results implied that the AKNN-IDS model has obtained lower precn and recal values of
0.9219 and 0.9376, respectively. Meanwhile, the DPCDBN-IDS and DT-IDS models have
shown slightly improved values of precn and recal . Moreover, the PTDSAE-IDS, AB-IDS,
and RF-IDS models have obtained moderately closer values of precn and recal . In line with
this, the DBN-IDS, LSTM-IDS, and RNN-IDS models have accomplished reasonable precn
and recal values. Though the AIMMFIDS model has shown near-optimal performance
with precn and recal of 0.9946 and 0.9907, the presented OMLIDS-PBIoT technique has
accomplished higher precn and recal of 0.9962 and 0.9950, respectively.

Table 4. Comparative analysis of OMLIDS-PBIoT method with existing approaches.

Methods Precision Recall F1-Score Accuracy

OMLIDS-PBIoT 0.9962 0.9950 0.9931 0.9960

AIMMFIDS 0.9946 0.9907 0.9898 0.9936

DBN-IDS 0.9867 0.9883 0.9897 0.9874

LSTM-IDS 0.9845 0.9857 0.9891 0.9863

RNN-IDS 0.9823 0.9868 0.9875 0.9852

PTDSAE-IDS 0.9791 0.9865 0.9860 0.9849

DPCDBN-IDS 0.9512 0.9499 0.9508 0.9498

AKNN-IDS 0.9219 0.9376 0.9292 0.9199

DT-IDS 0.9659 0.9284 0.9542 0.9365

AB-IDS 0.9742 0.9321 0.9568 0.9587

RF-IDS 0.9756 0.9384 0.9592 0.9598
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Figure 10 provides a comparative F1score and accuy inspection of the OMLIDS-PBIoT
technique with existing techniques on test data. The results implied that the AKNN-IDS
methodology has obtained lower F1score and accuy values of 0.9292 and 0.9199, respectively.
In the meantime, the DPCDBN-IDS and DT-IDS methodologies have shown slightly im-
proved values of F1score and accuy. Next, the PTDSAE-IDS, AB-IDS, and RF-IDS algorithms
have gained moderately closer values of F1score and accuy. In accordance with this, the
DBN-IDS, LSTM-IDS, and RNN-IDS methods have accomplished reasonable F1score and
accuy values. Even though the AIMMFIDS system has displayed near-optimal performance
with F1score and accuy of 0.9898 and 0.9936, the presented OMLIDS-PBIoT technique has
accomplished higher F1score and accuy of 0.9931 and 0.9960, correspondingly.
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Finally, a detailed computation time inspection of the OMLIDS-PBIoT technique with
recent models takes place in Table 5. The results implied that the AKNN-IDS, DT-IDS,
AB-IDS, and RF-IDS, models have shown the least performance with maximum values of
TRT. Additionally, the LSTM-IDS, RNN-IDS, PTDSAE-IDS, and DPCDBN-IDS models have
demonstrated moderately closer values of TRT and TST. In line with this, the DBN-IDS
model has shown a reasonable TRT of 61 s. At the same time, the AIMMFIDS model
has demonstrated considerable TRT of 55 s. However, the OMLIDS-PBIoT technique has
accomplished superior performance with minimal TRT of 35 s.

At the same time, the AKNN-IDS, DT-IDS, AB-IDS, and RF-IDS, models have dis-
played the least performance with maximal values of TST. Following this, the LSTM-IDS,
RNN-IDS, PTDSAE-IDS, and DPCDBN-IDS methodologies have illustrated moderately
closer values of TST and TST. In compliance with this, the DBN-IDS method has shown rea-
sonable TST of 34 s. Meanwhile, the AIMMFIDS model has demonstrated considerable TST
of 25 s. However, the OMLIDS-PBIoT technique has accomplished superior performance
with a minimum TST of 20 s. From the detailed outcomes and discussion, it is clear that the
OMLIDS-PBIoT technique has resulted in more enhanced outcomes than other models.
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Table 5. TRT and TST analysis of OMLIDS-PBIoT technique with existing algorithms.

Methods Training Time (s) Testing Time (s)

OMLIDS-PBIoT 35 20

AIMMFIDS 55 25

DBN-IDS 61 34

LSTM-IDS 68 34

RNN-IDS 69 35

PTDSAE-IDS 71 36

DPCDBN-IDS 73 37

AKNN-IDS 79 42

DT-IDS 80 45

AB-IDS 81 43

RF-IDS 83 45

5. Conclusions

In this study, an effective OMLIDS-PBIoT technique was advanced with the utilization
of the BC and ML models for accomplishing security in the smart city environment. The
presented OMLIDS-PBIoT technique employs different stages of subprocesses, namely pre-
processing, GEO-FS, RVFL-based classification, and HBO-based parameter optimization.
Moreover, BC technology is exploited for secure data transmission in the IoT-enabled
smart city environment. The performance validation of the OMLIDS-PBIoT technique is
performed using benchmark datasets, and the outcomes are inspected under numerous
aspects. The experimental outcomes demonstrated the superiority of the OMLIDS-PBIoT
technique over recent approaches. Thus, the OMLIDS-PBIoT technique could be exploited
as a proficient tool to accomplish security in the smart city environment in sectors such as
healthcare, smart buildings, transportation, etc. In upcoming days, the performance of the
OMLIDS-PBIoT technique could be enhanced using hybrid DL classification methods.
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