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Abstract—Machine Learning is a division of Artificial 

Intelligence which builds a system that learns from the 

data. Machine learning has the capability of taking the 

raw data from the repository which can do the 

computation and can predict the software bug. It is 

always desirable to detect the software bug at the earliest 

so that time and cost can be reduced. Feature selection 

technique wrapper and filter method is used to find the 

most optimal software metrics. The main aim of the paper 

is to find the best model for the software bug prediction. 

In this paper machine learning techniques  linear 

Regression, Random Forest, Neural Network, Support 

Vector Machine, Decision Tree, Decision Stump are used 

and comparative analysis has been done using 

performance parameters such as correlation, R-squared, 

mean square error, accuracy  for software modules named 

as ant, ivy, tomcat, berek, camel, lucene, poi, synapse and 

velocity. Support vector machine outperform as compare 

to other machine learning model. 

 

Index Terms—Linear Regression, Random Forest, 

Neural Network, Support Vector Machine, Decision Tree, 

Decision Stump. 

 

I.  INTRODUCTION 

Today’s era is not only a computer age but an age of 

Artificial Intelligence wherein machine will think by 

itself. Machine learning technique is an important branch 

of computers for software bug prediction. Software bug is 

one of the major issues in a computer industry. It is 

always desirable to have minimum software bug and 

software system to reach at the maximum accuracy level. 

In this paper  regression method [3],[10] is applied on 

machine learning model namely Linear Regression, 

Random Forest, Neural Network, Support Vector 

Machine [2], Decision Tree and Decision Stump. The 

objective of this paper is to identify the finest machine 

learning model used for the software bug prediction. 

In this paper dataset was taken from open science 

promise repository which is publicly available at  

http://openscience.us/repo/defect/ck/ and the machine 

learning techniques were applied on software modules 

named as ant, ivy, tomcat, berek, camel, lucene, poi, 

synapse and velocity to find the best machine learning 

model, for this  two sets of experiment was conducted 

one using all the variables and another using only 

important variable  that was derived  from feature 

selection method. Different performance comparison 

parameter like correlation, R Squared, mean square error 

(MSE) and accuracy was calculated on different machine 

learning models. Remaining section of the paper was 

arranged as follows. Section II describes the related work. 

Section III describes the different machine learning 

model used for regression. Research methodology used in 

the paper is described in section IV.  Experiment was 

conducted in section V to find the best model with 

respect to the performance parameter used in machine 

learning technique. Section VI derives the result and the 

conclusion is drawn in section VII. 

 

II.  RELATED WORK 

Suresh et.al. [5] describe that software Metrics are 

beneficial to evaluate the complexity, software reliability 

and fault proneness of the system. CK metrics are the 

best indicators for fault proneness. Regression analyses 

are utilized to determine the relationship between the 

values of the metrics and bugs associated in the class. 

The DIT and NOC cannot be used for fault detection. 

LOC, LCOM and WMC are the best indicators for the 

system reliability. Singh and Salarai [29] in their study 

has collected data from the PROMISE repository of 

empirical software engineering data. This dataset uses the 

CK (Chidamber and Kemerer) OO (object-oriented) 

metrics. The accuracy of Levenberg-Marquardt (LM) 

algorithm based neural network is compared with the 

polynomial function-based neural network predictors for 

detection of software defects. Their results indicate that 

the prediction model has a high accuracy. Okutan et.al. 

[30] used Bayesian network to check the influence among 

software metrics and defect proneness. In combination 
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with the metrics used in Promise Repository; they have 

defined two more metrics, Source Code Quality Metrics 

(LOCQ) and a Number Of Developers (NOD). For their 

experiment, they have selected nine datasets from the 

Promise Repository. They derived that RFC, LOC and 

LOCQ are more effective to defect proneness whereas 

NOC and DIT are less effective and unreliable. Their 

future work will include other software metrics and 

process metrics to determine the best metrics used for 

defect prediction and emphasis has been given to work 

with a smaller set of software metrics. A.Kaur et.al [31] 

in their research article has depicted that there are many 

approaches for predicting bugs in software systems. Their 

paper uses the metrics derived using entropy of changes 

to compare five machine learning techniques, namely 

Gene Expression Programming (GEP), General 

Regression Neural Network, Locally Weighted 

Regression, Support Vector Regression (SVR) and Least 

Median Square Regression for predicting bugs.The data 

extraction for the validation purpose is automated by 

developing an algorithm that employs web scraping and 

regular expressions. The study suggests GEP and SVR as 

stable regression techniques for bug prediction using 

entropy of changes. Rong et.al [32] in their article has 

pointed out the value of parameters of SVM model has a 

remarkable influence on its classification accuracy and 

the selection process lacks theory guidance that makes 

the SVM model uncertainty and low efficiency. In their 

paper, a CBA-SVM software defect prediction model is 

proposed, which take advantage of the non- linear 

computing ability of SVM model and optimization 

capacity of bat algorithm with centroid strategy (CBA). 

Through the experimental comparison with other models, 

CBA-SVM is proved to have a higher accuracy.  

 

III.  MACHINE LEARNING MODELS 

Machine learning is a branch of Artificial Intelligence 

which will build a system that learns from and make 

prediction on data. Machine learning has become one of 

the hot topics as everyone wants to build an intelligent 

application [22]. Machine learning can be classified as 

unsupervised learning and supervised learning [20]. 

Unsupervised learning is a method to find the hidden 

patterns in input data. Clustering is unsupervised learning 

technique. Supervised learning [1] is used when need to 

train the model to make a prediction. Supervised learning 

can be categorized into two types: regression and 

classification. This paper applied regression technique on 

machine learning models to predict the best model for the 

software bug prediction. This paper used six machine 

learning models Linear Regression, Random Forest, 

Decision Tree, Support Vector Machine, Neural Network 

and Decision Stump. 

A.  Linear Regression 

Linear Regression is generally used for the predictive 

analysis. This model finds the relationship between the 

response variable (dependent variable) and one or more 

explanatory variable (independent variable). 

B.  Random Forest 

Random forest[23] is one of the ensemble learning user 

friendly methods[11] used in prediction for better 

performance and can be used for the software bug 

prediction. It is also used to rank the importance of the 

variable. In Random forest two parameters are used and 

each node is split and randomly chosen to find the best 

predictor.  

C.  Decision Tree 

Decision tree is one of the supervised learning methods 

used in classification and regression for predictive 

modeling approach [21]. Decision tree has the capability 

to handle datasets which have errors and missing values 

[12]. But one of the drawbacks of decision tree is 

oversensitivity to the training set which is not relevant or 

noisy data. 

D.  Support Vector Machine  

Support Vector Machine is supervised machine 

learning used in classification, regression [14] and 

outliers detection. SVM works well when data sets are 

small because the required training time is less. If the 

data set are less noisy, it provides a good model 

[24].SVM is used in many applications like face 

recognition field [15], Optical character Recognition [16], 

spam categorization [17], financial time series forecasting 

[18] etc. 

E.  Neural Network  

Neural Network can be used to find the correlation 

between input and output, to predict software defects and 

find the pattern.  

F.  Decision Stump 

Decision Stump is a machine learning model. Decision 

Stump can be called as one level decision tree [14]. 

Decision stump generally gives best result or continues to 

improve when feature selected has useful values. 

 
 

 

IV.  RESEARCH METHODOLOGY 

Research methodology is also one of the important 

components to achieve the goal of any system. The main 

objective of the paper is to find the best machine learning 

model for software bug prediction. Systematic structuring 

is required to accomplish this objective and the 

framework for software defect prediction using historical 

datasets as shown in Fig 1. 

A.  Data Collection 

Data collection is also one of the vital sections of a 

system to work upon. For the experiment/analysis dataset 

is collected from the open source Promise repository 

which is authentic and publically available. Different 

software metrics like product metrics, process metrics are 

available for software bug prediction. Chidamber & 

Kemerer object-oriented (CK_OO) [5] metrics suite 

which is a product metrics were taken for experiment. 
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Software modules used in the paper is shown in Table 1. 

Six CK metrics are Weighted Methods per Class 

(WMC),Response for a Class (RFC), Coupling between 

objects (CBO), Lack of Cohesion (LCOM), Number of 

children (NOC), Depth Of Inheritance (DIT) and OO 

metrics are Afferent couplings(CA), Efferent couplings 

(CE), Number of Public Methods (NPM), Lack of 

firmness in methods  (LCOM3), Lines of Code (LOC), 

Data Access Metric (DAM), Measure of aggregation 

(MOA), Measure of Functional Abstraction ( MFA), 

Cohesion Among Methods of Class (CAM), Inheritance 

Coupling (IC), Coupling Between Methods (CBM), 

Average Method Complexity (AMC) and McCabe's 

cyclomatic complexity (CC - MAX_CC, AVG_CC). 

. 

 

 

Fig.1. Framework for Software Defect prediction using Historical 

Databases 

B.  Data Cleaning 

Data Cleaning [19] is helpful in improving the quality 

of the data as it deals in detecting inconsistencies, 

removing errors, missing values [22]. Rahm et.al [24] in 

their paper addresses the issue of data cleaning which is a 

foremost part of extraction, transformation, loading (ETL) 

process in a data warehouse. Various types of tools [25] 

are available to clean the data but sometime major 

portion of the data need to be clean manually that are 

difficult to write and maintain.  

C.  Feature Selection 

Feature Selection is an extremely significant phase in 

bug prediction for accuracy and the complication of the 

model [6]. Another vital factor of using the Feature 

Selection is that if the number of variables is higher than 

optimal, then the machine learning algorithm exhibits a 

decrease in accuracy. So it is desirable that selection of 

small feature set gives best result. Various types of 

Feature Selection techniques, Boruta [8], Regsubset [26], 

FSelector [13] can be utilized to explore the optimal 

metrics for software bug prediction. The Feature 

Selection uses Wrapper, Filter and Hybrid Algorithm. 

D.  Mathematical Model 

One of the machines learning technique is a regression 

[1] which can be used to formulate the prediction model 

[2]. This paper has applied performance parameters [4] 

Correlation, R-squared, Mean Square Error and Accuracy 

in machine learning models. Performance parameters 

were calculated as follows: 

 Correlation (corr) [4] 

Correlation can be defined as the association between 

actual and predicted values. The values lie between 0 and 

1 and the value of correlation which is near to 1 is 

considered as good. Mathematical representation is as 

follows: 

 

                (1) 

 

Where, x = Actual Value; y = Predicted Value;  =mean 

of all the actual values;  =mean of all the Predicted 

values; n = total number of instances 

 R-Squared (R2) 

R Squared is known as coefficient of determination. 

The coefficient of determination R-Squared is used to 

analyze how differences in one variable can be explained 

by a difference in a second variable and determine as 

percent. The higher the coefficient, the higher percentage 

of points the line passes through when the data points and 

line are-plotted. Values of 1 or 0 would indicate the 

regression line represents all or none of the data 

respectively. 

 

R2=corr*corr                                (2) 

 

 Mean Square Error(MSE) 

Mean Square Error is used to calculate the error rate of 

a regression model. 

 

                            (3) 

 

Where, a = actual target; p = predicted target; n = total 

number of instances 

 Accuracy 

The accuracy is calculated as percentage deviation of 

predicted target with actual target with acceptable error.   

 

 
            (4) 

 

Where, a = actual target; p = predicted target; n = total 

number of instances; err=acceptable error. 
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Table 1. Software Modules 

Software 

Modules 
Versions 

No. of 

Observations 

No. Of 

variables 

Ant 1.7 745 21 

Ivy 2.0 352 21 

Tomcat 6.0 858 21 

Berek 1.0 44 21 

Camel 1.6 965 21 

Lucene 2.4 340 21 

Poi 3.0 442 21 

Synapse 1.2 256 21 

Velocity 1.6 229 21 

 

V.  EXPERIMENT 

For the experiment the data set is split as 50%  training 

data set  and 50% testing data set, which validates the 

values of statistical measures reported by D’Ambros et.al 
(2010) for CK and OO metrics[5]. These have been 

implemented and simulated in RStudio (R 3.3.1) 

environment. Feature selection [6] is a very important 

phase in the bug prediction for the accuracy and the 

complication of the model [7]. Another important factor 

of using feature selection is that if the numbers of 

dependent variables are more than optimal than machine 

learning algorithm show a decrease of accuracy. So it is 

desirable that selection of small feature set gives best 

result. Feature selection uses wrapper, filter and hybrid 

algorithm. Different types of feature selection technique 

Boruta [8], Regsubset [9], FSelector [13] are used to get 

the most optimal metrics for software bug prediction. The 

Filter algorithm FSelector like Random Forest, 

Information Gain, Rank Correlation and Linear 

Correlation are used in this paper. 

A.  Boruta Feature Selection Technique 

Boruta is a Wrapper Algorithm, which is used to 

discover the relevant variables. It performs iteration and 

removes the variables, which are less relevant. When 

Boruta is run, Z-Scores boxplot graph is drawn as shown 

in Fig. 2, the green boxplot represent a Z-Scores of 

confirmed (important) variables, blue boxplot represents 

a Z-Scores of average variable and red boxplot represents 

a Z-Scores of rejected variables for the Ant software 

modules. The variable (software metrics) accepted by 

running the Boruta Algorithm for Ant Software modules 

are MOA, MFA, CAM, AMC, NPM, LCOM, CE, 

AVG_CC, WMC, MAX_CC, LOC and RFC. The 

variables rejected are IC, NOC, CBM, CA, DIT and 

DAM. The variable which can be accepted or rejected 

that is average is LCOM3 and CBO. For other software 

modules the Z-Scores are calculated and the software 

metrics accepted and rejected by the different software 

modules using Boruta are represented as ‘T’ and ‘F’ 
respectively as shown in Table 2 and the reduce set of 

variable for Boruta and Regsubset is displayed in Table 3. 

 

Fig.2. Feature Selection using Boruta for Ant Software Modules 

1.  Significant Software Metrics Assortment Using Boruta 

To find the significance of the software metrics the    

total number of “T” was calculated from Table 2 for each 
software metrics such as WMC, DIT, NOC, CBO, RFC, 

LCOM, CA, CE, NPM, LCOM3, LOC, DAM, MOA, 

MFA, CAM,IC, CBM, AMC, MAX_CC, and AVG_CC  

for all the nine software modules shown in fig 3. 

 

 

Fig.3. Software Metrics Selection using Boruta for the Software 

Modules Ant, Ivy, Tomcat, Berek, Camel, Lucene, Poi, Synapse and 

Velocity 

B.  Regsubset Feature Selection Technique 

The other feature selection technique used in this paper 

is Regsubset. It uses exhaustive selection algorithm and 

subset of size eight.  The number is been allotted to each 

of the metrics out of eight for different software modules 

shown in Table 4. Two indicators black and white are 

shown in fig 4, black indicates that variables are in the 

model or accepted software metrics which includes  

WMC, RFC, LCOM, CE, NPM, LOC, MOA, AMC 

whereas white indicate variables are not in the model  and 

they are DIT, NOC, CBO, CA, LCOM3, DAM, MFA, 

CAM, IC, MAX_CC, AVG_CC and CBM. Similarly for 

the remaining software modules Regsubset feature 

selection technique. The reduce set of variable for Boruta 

and Regsubset is displayed in Table 3.     
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Fig.4. Feature Selection using Regsubset for Ant Software Module 

1.  Significant Software Metrics Assortment Using Regsubset 

The significance of the software metrics in a Feature 

Selection technique, regsubset is computed by adding 

each of the software metrics resp. for all the nine 

software modules from Table 4 and plotted in Fig 5. The 

most significant metrics are RFC value as 43, WMC as 

32 and LOC as 26.The least significant metrics are CAM 

and DAM as 0 then NOC as 4 is shown in fig 5.  

 

 

Fig.5. Software Metrics Selection using Regsubset for the Software 

Modules Ant,Ivy,Tomcat, Berek,Camel,Lucene,Poi,Synapse and 

Velocity 

C.  FSelector Feature Selection Technique 

FSelector is another feature selection technique used in 

this paper. The correlation filter such as linear correlation 

and rank correlation uses Pearson’s correlation and 
Spearman’s correlation respectively are used. This 
algorithm finds weights of continuous attributes based on 

their correlation with continuous class attribute package 

FSelector. Table 5, 6, 7 and 8 shows weighted attribute 

using Random Forest, Information Gain, Linear 

correlation and Rank Correlation respectively. 
 

1.  Significant Software Metrics Assortment Using 

FSelector (Random Forest) 

The graph plotted in Fig. 6 using FSelector (Random 

Forest) indicate that the  most significant software 

metrics are RFC having a value 168, LOC value as 140, 

AMC value as 113, NPM value as 106 and so on. The 

least significant software metrics are NOC value as 4, 

then DAM as 29 and DIT as 36. 

 

Fig.6. Software Metrics Selection Using FSelector(Random Forest) for 

the Software Modules Ant,Ivy, Tomcat, Berek, Camel, Lucene, Poi, 

Synapse, Velocity 

2.  Significant Software Metrics Assortment Using 

FSelector (Information Gain) 

The graph plotted using FSelector Information Gain) in 

Fig 7 indicate that most significant software metrics are 

RFC having a value 1.1, LCOM3 value as 0.8, AMC and 

LCOM value as 0.6. The least significant software 

metrics are NOC and DIT as 0.  

 

 

Fig.7. Software Metrics Selection Using FSelector(Information Gain) 

for the Software Modules Ant,Ivy, Tomcat, Berek, Camel, Lucene, Poi, 

Synapse, Velocity 

3.  Significant Software Metrics Assortment Using 

FSelector (Linear Correlation) 

The graph plotted in Fig 8 using FSelector (Linear 

Correlation) indicates that the most significant software 

metrics are RFC having a value 5.5, LOC as 5 and WMC 

as 4.6. The least significant software metrics are NOC 

value as 0.6, DIT and IC as 1.0. 

 

 

Fig.8. Software Metrics Selection Using FSelector (Linear correlation) 

for the Software Modules Ant, Ivy, Tomcat, Berek, Camel, 

Lucene,synapse and velocity. 
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4.  Significant Software Metrics Assortment Using 

FSElector (Rank correlation) 

The graph plotted using FSelector (Rank Correlation) 

in Fig 9 indicates that the most significant software 

metrics are RFC having a value 4, LOC as 3.9, WMC as 

3.7. The least significant software metrics are DIT as 0.6, 

NOC and MFA as 0.8. 

D.  Significant and Insignificant metrics 

The significance of various software metrics using 

Feature Selection techniques is plotted in Figures 3, 5, 6, 

The graph plotted using FSelector (Rank Correlation) in 

Fig 9 indicates that the most significant software metrics 

are RFC having a value 4, LOC as 3.9, WMC as 3.7. The 

insignificant software metrics selected using Feature 

Selection technique for software modules: Ant, Ivy, 

Tomcat, Camel, Berek, Lucene, POI, Synapse and 

Velocity is shown in Table 9. 
 

 

Fig.9. Software Metrics Selection Using FSelector (rank Correlation) 

for thr Software Modules Ant, Ivy, Tomcat, Berek, Camel, Lucene, Poi, 

Synapse, Velocity. 

  

E.  Snippets of machine learning algorithm used with 

Tuning Parameters  

The R packages used in machine learning models with 

the tuning parameters are shown as in Table 10. These 

have been implemented and simulated in R Studio 

(R.3.3.1) environment.  

Table 2. Confirmed Software Metrics using Boruta 

Software 

modules 
WMC DIT NOC CBO RFC LCOM CA CE NPM LCOM3 LOC DAM MOA MFA CAM IC CBM AMC MAX_CC AVG_CC 

Ant T F F F T T F T T F T F T T T F F T T T 

Ivy T F F T T T F T T F T F F F T F F T T T 

Tomcat T F F F T T F F T F T F F T F F F F F F 

Berek T T F T T T T T F F T F T T F F F T F F 

Camel T F F F T T F F T T T T T F T F F T T T 

Lucene T T F T T T T T T T T T T T T T T F F T 

Poi T F F T T T T T T T T F T T T F T T T T 

Synapse T F F T T F T T T F T F F T T F F T T T 

Velocity T F F T T T F T T F T F F F T T T T F F 

Table 3. Reduced set of CK and OO Software Metrics using Boruta and Regsubset 

Software 

Modules 

No. Of 

Variables 

Feature Selection using Boruta Feature Selection Using Regsubset 

Reduced 

Variables 
Reduced Software metrics 

Reduced 

Variables 
Reduced Software metrics 

Ant 21 12 
WMC, RFC, LCOM, CE, NPM, LOC, MOA, MFA, CAM, 

AMC,MAX_CC, AVG_CC 
8 

WMC, RFC, LCOM, CE, NPM, LOC, MOA, 

AMC 

Ivy 21 11 
WMC, CBO, RFC, LCOM, CE, NPM, LOC, CAM, AMC, 

MAX_CC, AVG_CC 
9 

WMC, NOC, LCOM, CE, NPM, LOC, MFA, 

MAX_CC, AVG_CC 

Tomcat 21 6 WMC, RFC, LCOM, NPM, LOC, MFA 9 
WMC,   CBO,   RFC, CA,  NPM,LCOM3, 

DAM, MOA, CBM 

Berek 21 11 
WMC, DIT, CBO, RFC, LCOM, CA, CE, LOC, MOA, 

MFA, AMC 
14 

WMC, DIT, CBO, RFC, LCOM, CA, 

CE,NPM, LOC, MOA, MFA, CBM, AMC, 

MAX_CC 

Camel 21 12 
WMC, RFC, LCOM, NPM, LCOM3, LOC, DAM, MOA, 

CAM, AMC, MAX_CC, AVG_CC 
9 

WMC, CBO, LCOM, CA, CE, NPM, 

LOC,DAM, MOA 

Lucene 21 17 
WMC, DIT, CBO, RFC, LCOM, CA, CE, NPM, LCOM3, 

LOC, DAM, MOA, MFA, CAM, IC, CBM, AVG_CC 
10 

WMC, NOC, CBO, RFC, LCOM, CA, 

CE,NPM, IC, CBM 

Poi 21 16 
WMC, CBO, RFC, LCOM, CA, CE, NPM, LCOM3, LOC, 

MOA, MFA, CAM, CBM, AMC, MAX_CC, AVG_CC 
7 WMC, DIT, RFC, LCOM, CE, MFA, CBM 

Synapse 21 12 
WMC, CBO, RFC, LCOM, CE, NPM, LOC, CAM, IC, 

CBM, AMC 
9 

WMC, DIT, CBO, RFC, CA, NPM, LOC, 

MFA, AMC 

Velocity 21 11 
WMC, CBO, RFC, LCOM, CE, NPM, LOC, CAM, IC, 

CBM, AMC 
9 

WMC, CE, LOC, MOA, CAM, IC, 

AMC,MAX_CC, AVG_CC 
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Table 4. Important Metrics using Regsubset 

Software 

modules 
WMC DIT NOC CBO RFC LCOM CA CE NPM LCOM3 LOC DAM MOA MFA CAM IC CBM AMC 

MAX_

CC 

AVG

_CC 

Ant 4 0 0 0 8 6 0 2 1 0 7 0 3 0 0 0 0 4 0 0 

Ivy 6 0 3 0 0 4 0 6 5 0 2 0 0 1 0 0 0 0 3 3 

Tomcat 4 0 0 3 8 0 6 0 7 4 0 1 5 0 0 0 2 0 0 0 

Berek 1 7 0 2 3 4 2 1 3 0 5 0 1 4 0 0 1 4 7 0 

Camel 5 0 0 5 0 3 7 3 5 0 1 1 8 0 0 0 0 0 0 0 

Lucene 3 0 1 2 8 5 6 1 3 0 0 0 0 0 0 2 5 0 0 0 

POI 4 3 0 0 8 3 0 4 0 0 0 0 0 3 0 0 4 0 0 0 

Synapse 2 2 0 3 8 0 2 0 7 0 4 0 0 2 0 0 0 6 0 0 

Velocity 3 0 0 0 0 0 0 5 0 0 7 0 1 0 2 5 0 7 2 2 

Table 5. Feature Selection Using FSelector (Random Forest) 

 
Ant Ivy Tomcat Berek Camel Lucene Poi Synapse Velocity 

WMC 13.5 11 6.9 7.2 9.9 12.6 10.2 5.7 12 

DIT 1.3 1.6 3.9 6.4 6.3 6.2 3 2.7 2.3 

NOC 3.9 -1.1 -1.6 0 1.8 1.2 2.3 -6 2.1 

CBO 7.2 9.3 8.2 7 2.3 15 9.2 7 8.5 

RFC 22.3 13.6 17.2 11.7 6.9 20.6 20.6 19.1 11.8 

LCOM 10.7 10.8 3.4 7 9.3 13.2 8.8 4.8 8.7 

CA 3.4 6.5 2.8 7.1 5.6 11.6 6.2 4.7 4.3 

CE 12.4 13.5 0 8.7 2.1 16.9 13.5 10.9 17.6 

NPM 13.4 16.9 13.4 5.6 7 14.7 10.5 3.8 9.1 

LCOM3 7 3 8.4 2.1 9.5 5.9 6 3.8 3.8 

LOC 21.8 16.2 12.7 10.6 7 6.6 12.5 15.2 17.9 

DAM 3.2 0.8 1.1 3.5 5.5 9.4 4.5 0 -1.4 

MOA 7.4 1.4 2 6.1 17.4 2.6 6.2 4.6 3 

MFA 11.6 2.4 10.7 4.2 7 9.2 3.4 8.5 5.9 

CAM 11.6 9.5 -2.4 1.1 10 8.6 10.7 7.5 13.9 

IC 1.4 1.2 0.8 -0.2 2.6 18.8 4 4.7 10.9 

CBM 1.9 2.2 -1.9 1.2 2.2 12.7 10.3 4.6 9.4 

AMC 11.1 10 4.9 13.6 11.9 3.8 13.4 16.1 16.3 

MAX_CC 18.1 3.3 1.2 3.3 6.1 3.9 8.9 13.1 2.2 

AVG_CC 19 6.3 2.6 2.4 9.2 7.5 11.6 13.5 5.4 

Table 6. Feature Selection using FSelector (Information Gain) 

 
Ant Ivy Tomcat Berek Camel Lucene Poi Synapse Velocity 

WMC 0.1 0 0 0 0 0.1 0.1 0 0 

DIT 0 0 0 0 0 0 0 0 0 

NOC 0 0 0 0 0 0 0 0 0 

CBO 0.1 0 0 0.3 0 0.1 0.1 0 0 

RFC 0.1 0.1 0 0.4 0 0.1 0.2 0.1 0 

LCOM 0.1 0 0 0.3 0 0.1 0.1 0 0 

CA 0 0 0 0.3 0 0 0 0 0 

CE 0.1 0 0 0 0 0.1 0.2 0.1 0.1 

NPM 0.1 0 0 0 0 0.1 0.1 0 0 

LCOM3 0.1 0 0 0.4 0 0 0.2 0 0 

LOC 0.1 0.1 0 0 0 0 0.1 0.1 0 

DAM 0 0 0 0 0 0.1 0.1 0 0 

MOA 0 0 0 0 0 0 0 0 0 

MFA 0 0 0 0 0 0 0.1 0 0 

CAM 0.1 0.1 0 0 0 0.1 0.1 0 0.1 

IC 0 0 0 0 0 0 0.1 0 0 

CBM 0 0 0 0 0 0 0.1 0 0 

AMC 0.1 0 0 0.3 0 0 0.1 0.1 0 

MAC_CC 0.1 0 0 0 0 0 0.1 0 0 

AVG_CC 0 0 0 0 0 0 0.2 0 0 
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Table 7. Feature Selection using FSelector (Linear Correlation) 

 
Ant Ivy Tomcat Berek Camel Lucene Poi Synapse Velocity 

WMC 0.43 0.41 0.3 0.63 0.31 0.7 0.53 0.27 0.48 

DIT 0.05 0.02 0.02 0.58 0.01 0.06 0.13 0.05 0.1 

NOC 0.1 0.02 0.06 0.08 0.15 0.1 0.03 0.07 0.01 

CBO 0.35 0.3 0.3 0.73 0.46 0.48 0.31 0.32 0.26 

RFC 0.49 0.51 0.45 0.75 0.28 0.73 0.69 0.49 0.53 

LCOM 0.41 0.22 0.18 0.68 0.14 0.65 0.38 0.15 0.43 

CA 0.12 0.07 0.12 0.73 0.42 0.28 0.12 0.08 0.06 

CE 0.37 0.46 NA 0.75 0.2 0.55 0.44 0.44 0.47 

NPM 0.37 0.31 0.2 0.11 0.27 0.64 0.46 0.19 0.27 

LCOM3 0.02 0.07 0.08 0.14 0.05 0.13 0.14 0.17 0.13 

LOC 0.49 0.52 0.43 0.74 0.28 0.57 0.37 0.44 0.53 

DAM 0.15 0.15 0.18 0.03 0.05 0.22 0.17 0.19 0.11 

MOA 0.34 0.32 0.31 0.66 0.24 0.32 0.24 0.22 0.41 

MFA 0.07 0.07 0.03 0.36 0.06 0.04 0.13 0.06 0.07 

CAM 0.4 0.28 0.22 0.4 0.19 0.33 0.26 0.27 0.33 

IC 0.13 0.05 0.11 0.2 0 0.23 0.04 0.02 0.1 

CBM 0.13 0.11 0.18 0.2 0.04 0.35 0.06 0.04 0.09 

AMC 0.35 0.18 0.13 0.67 0.06 0.07 0.09 0.16 0.47 

MAX_CC 0.38 0.4 0.3 0.32 0.21 0.11 0.35 0.25 0.32 

AVG_CC 0.31 0.2 0.23 0.27 0.16 0.01 0.2 0.09 0.14 

Table 8. Feature Selection using FSelector (Rank Correlation) 

 
Ant Ivy Tomcat Berek Camel Lucene Poi Synapse Velocity 

WMC 0.43 0.34 0.31 0.31 0.31 0.42 0.48 0.33 0.31 

DIT 0.05 0.03 0.11 0.11 0.01 0.12 0.01 0.03 0.11 

NOC 0.1 0.03 0.1 0.1 0.15 0.09 0.02 0.03 0.1 

CBO 0.35 0.3 0.31 0.31 0.46 0.41 0.47 0.32 0.31 

RFC 0.49 0.36 0.33 0.33 0.28 0.45 0.54 0.43 0.33 

LCOM 0.41 0.3 0.15 0.15 0.14 0.19 0.37 0.21 0.15 

CA 0.12 0.07 0.02 0.02 0.42 0.18 0.21 0.24 0.02 

CE 0.37 0.2 0.4 0.4 0.2 0.38 0.49 0.28 0.4 

NPM 0.37 0.27 0.3 0.3 0.27 0.43 0.4 0.22 0.3 

LCOM3 0.02 0.01 0.14 0.14 0.05 0.14 0.19 0.16 0.14 

LOC 0.49 0.36 0.34 0.34 0.28 0.35 0.5 0.44 0.34 

DAM 0.15 0.13 0.12 0.12 0.05 0.32 0.28 0.2 0.12 

MOA 0.34 0.18 0.29 0.29 0.24 0.13 0.25 0.29 0.29 

MFA 0.07 0.06 0.14 0.14 0.06 0.06 0.02 0.01 0.14 

CAM 0.4 0.3 0.4 0.4 0.19 0.36 0.37 0.32 0.4 

IC 0.13 0.04 0.15 0.15 0 0.26 0.29 0.11 0.15 

CBM 0.13 0.05 0.16 0.16 0.04 0.25 0.35 0.12 0.16 

AMC 0.35 0.27 0.24 0.24 0.06 0.17 0.36 0.28 0.24 

MAX_CC 0.38 0.29 0.1 0.1 0.21 0.24 0.47 0.32 0.1 

AVG_CC 0.31 0.26 0.14 0.14 0.16 0.16 0.41 0.23 0.14 

Table 9. Significant and Insignificant Metrics Using Feature Selection Techniques 
 

Feature Selection Technique Significant Metrics Insignificant  Metrics 

Boruta WMC,RFC,LOC, LCOM, NPM NOC,DIT, DAM, IC 

Regsubset WMC,RFC, LOC, NPM, LCOM DAM, NOC, CAM, NOC, LCOM3 

FSelector (Random Forest) WMC,RFC,NPM, LOC, AMC NOC,DIT, DAM, IC, CBM 

FSelector (Information Gain) RFC, LCOM3, CBO, LCOM, AMC NOC,DIT, MOA, IC, CBM 

FSelector (Linear Correlation) RFC, LOC, WMC, CE, CBO DIT, NOC, LCOM3, MFA, IC 

FSelector (Rank Correlation) RFC,LOC, WMC, CBO, CE DIT,NOC, MFA, LCOM3 
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F.  Performance Parameters Applied 

Performance parameters [4] Correlation, R-Squared, 

Mean Square Error and Accuracy were calculated on 

machine learning models. 

1.  Machine learning models applied combining all the 

Software Metrics. 

The machine learning models with the tuning 

parameters as discussed in Table 10 was applied with all 

the software metrics to obtain the correlation, R-Squared, 

Mean Square Error and Accuracy shown in Tables 11, 12, 

13 and 14 below respectively. The graph is plotted to 

compare the performance parameters by computing the 

mean average of each nine software modules with 

respective Machine Learning Models as shown in Figure 

10, 11, 12 and 13 to get the best machine learning model. 

The Correlation Comparative Analysis was done of the 

machine learning model using all the software metrics. 

Fig: 10 depicted that Random Forest has the highest 

correlation at 0.44 and Neural Network and Decision 

Stump have lowest correlation at 0.29 using all the 

software metrics. 

The R-Squared Comparative Analysis was done of the 

machine learning model using all the software metrics. 

The Fig. 11 depicted that the Random Forest has highest 

R-Squared value as 0.33 and Neural Network has the 

lowest R Squared values as 0.18.  

Support Vector Machine has the lowest mean square 

value as 0.74 and the Neural Network has the highest 

Mean Square Error as 1.7 shown in Fig: 12. 

Table 10. Machine Learning Models, Packages and Tuning Parameters 

ML Models Technique Packages Tuning Parameters 

Linear Regression Lm None None 

Random Forest 
Random 

Forest 
Library(Random Forest) ntree=250, mtry=3 

Decision Tree Rpart Library(rpart) 
parms=list(split="information"), control 

=rpart.control(usesurrogate=0, maxsurrogate=0)) 

Support Vector machine Svm library(e1071) nu=0.5, epsilon=0.1 

Neural Network Neuralnet Library(neuralnet) hidden = 1, threshold = 0.01,stepmax = 1e+05, rep = 1 

Decision Stump DecisionStump library(RWeka) control = Weka_control(), options = NULL 

Table 11. Correlation Calculated combining of all the Software Metrics 

Machine Leaning Model Ant Ivy Tomcat Berek Camel Lucene POI Synapse Velocity 

Linear Model 0.6 0.3 0.4 0.5 0.0 0.3 0.2 0.1 0.1 

Random Forest 0.6 0.5 0.4 0.7 0.1 0.4 0.4 0.2 0.2 

Neural Network 0.2 0.4 0.3 0.1 0.0 0.4 0.4 0.0 0.2 

Decision Tree 0.5 0.1 0.4 0.6 0.0 0.3 0.2 0.1 0.5 

SVM 0.4 0.3 0.1 0.8 0.0 0.3 0.1 0.1 0.0 

Decision Stump 0.4 0.5 0.2 0.7 0 0 0.2 0.1 0 

Table 12. R Squared calculated combining all the software metrics 

Machine Learning Model Ant Ivy Tomcat Berek Camel Lucene POI Synapse Velocity 

Linear Model 0.48 0.14 0.23 0.26 0.05 0.37 0.21 0.14 0.18 

Random Forest 0.41 0.31 0.18 0.52 0.16 0.48 0.42 0.27 0.25 

Neural Network 0.06 0.23 0.14 0.01 0.01 0.42 0.45 0.01 0.25 

Decision Tree 0.3 0.02 0.22 0.42 0.03 0.32 0.24 0.14 0.5 

SVM 0.22 0.14 0.01 0.79 0.07 0.32 0.18 0.16 0.09 

Decision Stump 0.23 0.45 0.3 0.77 0.35 0.32 0.18 0.16 0.09 

Table 13. Mean Square Error calculated combining all the software metrics 

Machine Learning Model Ant Ivy Tomcat Berek Camel Lucene poi synapse velocity 

Linear Model 0.23 2.28 0.23 0.23 1.54 0.05 1.99 0.88 0.62 

Random Forest 0.5 0.22 0.19 1.44 0.78 1.3 0.77 0.53 0.92 

Neural Network 2.28 0.27 1.98 2.11 0.96 1.55 1.85 2.45 1.89 

Decision Tree 0.51 0.18 0.18 1.25 0.85 1.51 0.94 0.63 1.18 

SVM 0.42 0.18 0.27 1.34 0.64 1.63 0.78 0.58 0.81 

Decision Stump 0.63 0.24 0.23 1.54 0.86 1.99 0.88 0.62 1.01 
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Table 14. Accuracy calculated combining all the software metrics 

Machine Learning Model Ant Ivy Tomcat Berek Camel Lucene POI Synapse Velocity 

Linear Model 87.67 93.22 97.21 36.6 74.95 49.71 73.42 84.5 72.17 

Random Forest 85.52 96.61 97.67 54.55 83.44 52.05 76.58 86.05 66.96 

Neural Network 34.58 95 34.42 40.91 77.64 47.95 41.89 45.74 60 

Decision Tree 87.4 97.74 96.28 68.18 85.3 56.14 80.63 81.4 62.61 

SVM 90.62 97.18 97.74 72.73 88.41 55.56 81.98 88.37 74.78 

Decision Stump 89.0 96.6 96.05 77.27 89.44 29.8 80.6 82.17 84.35 

 

 

Fig.10. Correlation Analysis comparison of machine learning Model 

using all the software metrics 

 

Fig.11. R-Squared Analysis Comparison of Machine Learning Model 

using all the Software Metrics, 

 

Fig.12. Mean Square Error Analysis Comparison of Machine Learning 

Model using all the software metrics 

The Accuracy Comparative Analysis was done of the 

Machine Learning Model using all the software metrics. 

Fig.13 depicted that the Support Vector machine has the 

highest value as 83.04 and the Neural Network has the 

lowest accuracy as 53.13. 

 

 

Fig.13. Accuracy Analysis Comparison of Machine Learning Model 

using all the software metrics 

2.  Machine learning models applied combining WMC, 

RFC and LOC Software Metrics. 

The Performance Parameters Correlation, R-Squared, 

Mean Square Error and Accuracy as shown in Table 15, 

16, 17 and 18 respectively were computed when only 

optimal software metrics WMC, RFC and LOC were 

applied on a machine learning model, Linear Regression, 

Random Forest, Decision Tree, Neural Network, Support 

Vector Machine and Decision Stump.  

 

VI.  RESULT 

A.  Optimal Machine Learning Model 

The comparative analysis was done by using the 

performance parameters on machine learning models 

discussed in Section II on the software modules described 

in table 1. Two observations were analyzed which are 

described below: 

1.  Feature Selection Analysis 

When the modeling technique was applied on the 

reduced variable, the result was either better or the same. 

Another important factor of using Feature Selection 

technique is that if the number of variables is higher than 

optimal, then the Machine Learning Algorithm exhibits a 

decrease in accuracy. The Table 9 shows the significant 

and insignificant software metrics. The comparative 

analysis was conducted to achieve the most optimal 

metrics by comparing the result shown in Table 9 derives 

that RFC, LOC and WMC are the most optimal metrics 

and the least significant metrics are DIT and NOC. 

2.  Machine Learning Models Analysis 

In order to discover the best model result, a 

comparative analysis of machine learning models having 

different performance parameters using all the CK_OO 

software metrics is compared optimal software metrics 

like WMC, RFC and LOC.  It was found that the Support 

Vector Machine is the best model and its accuracy is 83% 

and mean square error is 0.7 %. Correlation, R Squared, 

Mean Square Error and Accuracy are calculated on 

different machine Learning Model using all the software 

metrics and with WMC, RFC and LOC software metrics 

is shown in Fig. 14, 15, 16 and 17 respectively 
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Table 15. Correlation calculated combining WMC, RFC, LOC Software Metrics 

Machine Learning 

Model 
Ant Ivy Tomcat Berek Camel Lucene POI Synapse Velocity 

Linear Model 0.72 0.44 0.46 0.82 0.14 0.65 0.69 0.47 0.42 

Random Forest 0.58 0.42 0.37 0.72 0.26 0.69 0.6 0.44 0.64 

Neural Network 0.57 0.44 0.53 0.63 0.25 0.58 0.67 0.28 0.52 

Decision Tree 0.56 0.33 0.42 0.58 0.22 0.54 0.52 0.37 0.36 

SVM 0.51 0.58 0.5 0.68 0.19 0.5 0.42 0.45 0.43 

Decision Stump 0.48 0.39 0.33 0.64 0.07 0 0.43 0.34 0 

Table 16.  R Squared Calculated Combining WMC, RFC, and LOC Software Metrics 

Machine Learning 

Model 
Ant Ivy Tomcat Berek Camel Lucene POI Synapse Velocity 

Linear Model 0.52 0.19 0.21 0.67 0.02 0.42 0.48 0.22 0.18 

Random Forest 0.34 0.18 0.14 0.52 0.07 0.48 0.36 0.18 0.41 

Neural Network 0.32 0.19 0.28 0.4 0.06 0.34 0.45 0.08 0.27 

Decision Tree 0.31 0.11 0.18 0.34 0.05 0.29 0.27 0.14 0.13 

SVM 0.26 0.34 0.25 0.46 0.04 0.25 0.18 0.2 0.18 

Decision Stump 0.23 0.15 0.11 0.41 0 0 0.18 0.12 0 

Table 17. Mean Square Error Calculated Combining WMC, RFC and LOC Software Metrics 

Machine Learning 

Model 
Ant Ivy Tomcat Berek Camel Lucene POI Synapse Velocity 

Linear Model 0.38 0.54 0.23 0.23 1.75 0.05 1.99 0.89 0.62 

Random Forest 0.5 0.21 0.19 1.41 0.84 1.57 0.81 0.56 0.89 

Neural Network 0.53 0.23 0.2 1.23 0.79 1.54 0.91 0.71 1.02 

Decision Tree 0.48 0.24 0.18 1.69 0.75 1.58 0.92 0.68 0.94 

SVM 0.46 0.17 0.16 1.03 0.65 1.4 0.81 0.56 0.72 

Decision Stump 0.63 0.23 0.23 1.75 0.86 1.99 0.89 0.62 1.01 

Table 18. Accuracy Calculated Combining WMC, RFC, LOC software metrics 

Machine Learning 

Model 
Ant Ivy Tomcat Berek Camel Lucene POI Synapse Velocity 

Linear Model 86.33 94.92 96.05 68.18 81.57 52.63 81.08 87.6 77.3 

Random Forest 86.86 93.79 97.91 68.18 80.12 47.37 77.03 82.95 65.22 

Neural Network 87.4 95.48 96.98 63.64 82.82 45.61 79.28 82.95 72.17 

Decision Tree 85.52 94.92 96.74 54.55 83.64 49.12 80.18 79.07 69.57 

SVM 87.94 96.61 97.67 63.64 89.86 58.48 81.98 86.05 80 

Decision Stump 89.01 98.31 96.28 72.73 89.44 29.82 54.05 82.17 84.35 

  

 

Fig.14. Correlation Calculated on different machine Learning Model 

 

Fig.15. R-Squared Calculated on different Machine Learning Models 

 

Fig.16. Mean Square Prediction of Machine Learning Model 

 

Fig.17. Accuracy Prediction of Machine Learning Model 

 



 Optimal Machine learning Model for Software Defect Prediction 47 

Copyright © 2019 MECS                                                             I.J. Intelligent Systems and Applications, 2019, 2, 36-48 

B.  Findings 

Pandey N et.al [27] have used a machine learning 

techniques Naive Bayes, linear discrimination analysis, 

K-Nearest neighbors, Support Vector Machine, decision 

tree and random forest  to find the high performance from 

three open source projects JIRA which belongs to 

APACHE, LUCENE, JACKRABBIT. They derive that 

Random Forest perform best accuracy of 79% and SVM 

accuracy was 75%. Singh P.D et.al [28] in their paper 

have analyzed five machine learning model to predict the 

software defect prediction. They have taken 7 dataset 

from NASA Promise repository. They have used KEEL 

tool and classification technique was used in Artificial 

Neural Network (NN), Decision Tree (DT), Linear    

Classifier (LC), Naive Bayes (NB), P article swarm 

ptimization (PS) machine learning model. It was analyzed 

that linear classifier outperform as compare to other 

machine learning model. The accuracy level was 83%. 

Fig 18 depict that SVM is the best model to predict the 

software defect as per the experiment done using nine 

datasets and seven datasets as 83% and 88% respectively 

and compared with accuracy prediction of different 

machine learning technique by Pandey N et.al and Singh 

P.D et.al as 79% and 83% respectively. 

 

VII.  CONCLUSION 

The objective of the paper was to find the best machine 

learning model for software bug prediction. To get the 

most optimal machine learning model the accuracy, mean 

square error, R Squared and correlation was computed. It 

was seen that the maximum accuracy and minimum mean 

square error was derived from the support vector machine 

(SVM) machine learning model for finding the software 

bug prediction. 

 

 

Fig.18. Accuracy prediction in different machine learning technique 
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