
I.J. Intelligent Systems and Applications, 2019, 2, 36-48
Published Online February 2019 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2019.02.05

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 2, 36-48

Optimal Machine learning Model for Software

Defect Prediction

Tripti Lamba
Research Scholar, JaganNathUniversity, Jaipur, India

E-mail: triptigautam@yahoo.co.in

Kavita and A.K.Mishra
Associate Professor, JaganNathUniversity, Jaipur , India and Principal Scientist AKMU, IARI Pusa Campus,

New Delhi, India

E-mail: kavita.yogen@gmail.com and akmishra.usi.iari@gmail.com

Received: 06 November 2017; Accepted: 12 July 2018; Published: 08 February 2019

Abstract—Machine Learning is a division of Artificial

Intelligence which builds a system that learns from the

data. Machine learning has the capability of taking the

raw data from the repository which can do the

computation and can predict the software bug. It is

always desirable to detect the software bug at the earliest

so that time and cost can be reduced. Feature selection

technique wrapper and filter method is used to find the

most optimal software metrics. The main aim of the paper

is to find the best model for the software bug prediction.

In this paper machine learning techniques linear

Regression, Random Forest, Neural Network, Support

Vector Machine, Decision Tree, Decision Stump are used

and comparative analysis has been done using

performance parameters such as correlation, R-squared,

mean square error, accuracy for software modules named

as ant, ivy, tomcat, berek, camel, lucene, poi, synapse and

velocity. Support vector machine outperform as compare

to other machine learning model.

Index Terms—Linear Regression, Random Forest,

Neural Network, Support Vector Machine, Decision Tree,

Decision Stump.

I. INTRODUCTION

Today’s era is not only a computer age but an age of

Artificial Intelligence wherein machine will think by

itself. Machine learning technique is an important branch

of computers for software bug prediction. Software bug is

one of the major issues in a computer industry. It is

always desirable to have minimum software bug and

software system to reach at the maximum accuracy level.

In this paper regression method [3],[10] is applied on

machine learning model namely Linear Regression,

Random Forest, Neural Network, Support Vector

Machine [2], Decision Tree and Decision Stump. The

objective of this paper is to identify the finest machine

learning model used for the software bug prediction.

In this paper dataset was taken from open science

promise repository which is publicly available at

http://openscience.us/repo/defect/ck/ and the machine

learning techniques were applied on software modules

named as ant, ivy, tomcat, berek, camel, lucene, poi,

synapse and velocity to find the best machine learning

model, for this two sets of experiment was conducted

one using all the variables and another using only

important variable that was derived from feature

selection method. Different performance comparison

parameter like correlation, R Squared, mean square error

(MSE) and accuracy was calculated on different machine

learning models. Remaining section of the paper was

arranged as follows. Section II describes the related work.

Section III describes the different machine learning

model used for regression. Research methodology used in

the paper is described in section IV. Experiment was

conducted in section V to find the best model with

respect to the performance parameter used in machine

learning technique. Section VI derives the result and the

conclusion is drawn in section VII.

II. RELATED WORK

Suresh et.al. [5] describe that software Metrics are

beneficial to evaluate the complexity, software reliability

and fault proneness of the system. CK metrics are the

best indicators for fault proneness. Regression analyses

are utilized to determine the relationship between the

values of the metrics and bugs associated in the class.

The DIT and NOC cannot be used for fault detection.

LOC, LCOM and WMC are the best indicators for the

system reliability. Singh and Salarai [29] in their study

has collected data from the PROMISE repository of

empirical software engineering data. This dataset uses the

CK (Chidamber and Kemerer) OO (object-oriented)

metrics. The accuracy of Levenberg-Marquardt (LM)

algorithm based neural network is compared with the

polynomial function-based neural network predictors for

detection of software defects. Their results indicate that

the prediction model has a high accuracy. Okutan et.al.

[30] used Bayesian network to check the influence among

software metrics and defect proneness. In combination

mailto:triptigautam@yahoo.co.in
mailto:kavita.yogen@gmail.com%20and
mailto:akmishra.usi.iari@gmail.com
http://openscience.us/repo/defect/ck/

 Optimal Machine learning Model for Software Defect Prediction 37

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 2, 36-48

with the metrics used in Promise Repository; they have

defined two more metrics, Source Code Quality Metrics

(LOCQ) and a Number Of Developers (NOD). For their

experiment, they have selected nine datasets from the

Promise Repository. They derived that RFC, LOC and

LOCQ are more effective to defect proneness whereas

NOC and DIT are less effective and unreliable. Their

future work will include other software metrics and

process metrics to determine the best metrics used for

defect prediction and emphasis has been given to work

with a smaller set of software metrics. A.Kaur et.al [31]

in their research article has depicted that there are many

approaches for predicting bugs in software systems. Their

paper uses the metrics derived using entropy of changes

to compare five machine learning techniques, namely

Gene Expression Programming (GEP), General

Regression Neural Network, Locally Weighted

Regression, Support Vector Regression (SVR) and Least

Median Square Regression for predicting bugs.The data

extraction for the validation purpose is automated by

developing an algorithm that employs web scraping and

regular expressions. The study suggests GEP and SVR as

stable regression techniques for bug prediction using

entropy of changes. Rong et.al [32] in their article has

pointed out the value of parameters of SVM model has a

remarkable influence on its classification accuracy and

the selection process lacks theory guidance that makes

the SVM model uncertainty and low efficiency. In their

paper, a CBA-SVM software defect prediction model is

proposed, which take advantage of the non- linear

computing ability of SVM model and optimization

capacity of bat algorithm with centroid strategy (CBA).

Through the experimental comparison with other models,

CBA-SVM is proved to have a higher accuracy.

III. MACHINE LEARNING MODELS

Machine learning is a branch of Artificial Intelligence

which will build a system that learns from and make

prediction on data. Machine learning has become one of

the hot topics as everyone wants to build an intelligent

application [22]. Machine learning can be classified as

unsupervised learning and supervised learning [20].

Unsupervised learning is a method to find the hidden

patterns in input data. Clustering is unsupervised learning

technique. Supervised learning [1] is used when need to

train the model to make a prediction. Supervised learning

can be categorized into two types: regression and

classification. This paper applied regression technique on

machine learning models to predict the best model for the

software bug prediction. This paper used six machine

learning models Linear Regression, Random Forest,

Decision Tree, Support Vector Machine, Neural Network

and Decision Stump.

A. Linear Regression

Linear Regression is generally used for the predictive

analysis. This model finds the relationship between the

response variable (dependent variable) and one or more

explanatory variable (independent variable).

B. Random Forest

Random forest[23] is one of the ensemble learning user

friendly methods[11] used in prediction for better

performance and can be used for the software bug

prediction. It is also used to rank the importance of the

variable. In Random forest two parameters are used and

each node is split and randomly chosen to find the best

predictor.

C. Decision Tree

Decision tree is one of the supervised learning methods

used in classification and regression for predictive

modeling approach [21]. Decision tree has the capability

to handle datasets which have errors and missing values

[12]. But one of the drawbacks of decision tree is

oversensitivity to the training set which is not relevant or

noisy data.

D. Support Vector Machine

Support Vector Machine is supervised machine

learning used in classification, regression [14] and

outliers detection. SVM works well when data sets are

small because the required training time is less. If the

data set are less noisy, it provides a good model

[24].SVM is used in many applications like face

recognition field [15], Optical character Recognition [16],

spam categorization [17], financial time series forecasting

[18] etc.

E. Neural Network

Neural Network can be used to find the correlation

between input and output, to predict software defects and

find the pattern.

F. Decision Stump

Decision Stump is a machine learning model. Decision

Stump can be called as one level decision tree [14].

Decision stump generally gives best result or continues to

improve when feature selected has useful values.

IV. RESEARCH METHODOLOGY

Research methodology is also one of the important

components to achieve the goal of any system. The main

objective of the paper is to find the best machine learning

model for software bug prediction. Systematic structuring

is required to accomplish this objective and the

framework for software defect prediction using historical

datasets as shown in Fig 1.

A. Data Collection

Data collection is also one of the vital sections of a

system to work upon. For the experiment/analysis dataset

is collected from the open source Promise repository

which is authentic and publically available. Different

software metrics like product metrics, process metrics are

available for software bug prediction. Chidamber &

Kemerer object-oriented (CK_OO) [5] metrics suite

which is a product metrics were taken for experiment.

38 Optimal Machine learning Model for Software Defect Prediction

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 2, 36-48

Software modules used in the paper is shown in Table 1.

Six CK metrics are Weighted Methods per Class

(WMC),Response for a Class (RFC), Coupling between

objects (CBO), Lack of Cohesion (LCOM), Number of

children (NOC), Depth Of Inheritance (DIT) and OO

metrics are Afferent couplings(CA), Efferent couplings

(CE), Number of Public Methods (NPM), Lack of

firmness in methods (LCOM3), Lines of Code (LOC),

Data Access Metric (DAM), Measure of aggregation

(MOA), Measure of Functional Abstraction (MFA),

Cohesion Among Methods of Class (CAM), Inheritance

Coupling (IC), Coupling Between Methods (CBM),

Average Method Complexity (AMC) and McCabe's

cyclomatic complexity (CC - MAX_CC, AVG_CC).

.

Fig.1. Framework for Software Defect prediction using Historical

Databases

B. Data Cleaning

Data Cleaning [19] is helpful in improving the quality

of the data as it deals in detecting inconsistencies,

removing errors, missing values [22]. Rahm et.al [24] in

their paper addresses the issue of data cleaning which is a

foremost part of extraction, transformation, loading (ETL)

process in a data warehouse. Various types of tools [25]

are available to clean the data but sometime major

portion of the data need to be clean manually that are

difficult to write and maintain.

C. Feature Selection

Feature Selection is an extremely significant phase in

bug prediction for accuracy and the complication of the

model [6]. Another vital factor of using the Feature

Selection is that if the number of variables is higher than

optimal, then the machine learning algorithm exhibits a

decrease in accuracy. So it is desirable that selection of

small feature set gives best result. Various types of

Feature Selection techniques, Boruta [8], Regsubset [26],

FSelector [13] can be utilized to explore the optimal

metrics for software bug prediction. The Feature

Selection uses Wrapper, Filter and Hybrid Algorithm.

D. Mathematical Model

One of the machines learning technique is a regression

[1] which can be used to formulate the prediction model

[2]. This paper has applied performance parameters [4]

Correlation, R-squared, Mean Square Error and Accuracy

in machine learning models. Performance parameters

were calculated as follows:

 Correlation (corr) [4]

Correlation can be defined as the association between

actual and predicted values. The values lie between 0 and

1 and the value of correlation which is near to 1 is

considered as good. Mathematical representation is as

follows:

 (1)

Where, x = Actual Value; y = Predicted Value; =mean

of all the actual values; =mean of all the Predicted

values; n = total number of instances

 R-Squared (R2)

R Squared is known as coefficient of determination.

The coefficient of determination R-Squared is used to

analyze how differences in one variable can be explained

by a difference in a second variable and determine as

percent. The higher the coefficient, the higher percentage

of points the line passes through when the data points and

line are-plotted. Values of 1 or 0 would indicate the

regression line represents all or none of the data

respectively.

R2=corr*corr (2)

 Mean Square Error(MSE)

Mean Square Error is used to calculate the error rate of

a regression model.

 (3)

Where, a = actual target; p = predicted target; n = total

number of instances

 Accuracy

The accuracy is calculated as percentage deviation of

predicted target with actual target with acceptable error.

 (4)

Where, a = actual target; p = predicted target; n = total

number of instances; err=acceptable error.

 Optimal Machine learning Model for Software Defect Prediction 39

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 2, 36-48

Table 1. Software Modules

Software

Modules
Versions

No. of

Observations

No. Of

variables

Ant 1.7 745 21

Ivy 2.0 352 21

Tomcat 6.0 858 21

Berek 1.0 44 21

Camel 1.6 965 21

Lucene 2.4 340 21

Poi 3.0 442 21

Synapse 1.2 256 21

Velocity 1.6 229 21

V. EXPERIMENT

For the experiment the data set is split as 50% training

data set and 50% testing data set, which validates the

values of statistical measures reported by D’Ambros et.al
(2010) for CK and OO metrics[5]. These have been

implemented and simulated in RStudio (R 3.3.1)

environment. Feature selection [6] is a very important

phase in the bug prediction for the accuracy and the

complication of the model [7]. Another important factor

of using feature selection is that if the numbers of

dependent variables are more than optimal than machine

learning algorithm show a decrease of accuracy. So it is

desirable that selection of small feature set gives best

result. Feature selection uses wrapper, filter and hybrid

algorithm. Different types of feature selection technique

Boruta [8], Regsubset [9], FSelector [13] are used to get

the most optimal metrics for software bug prediction. The

Filter algorithm FSelector like Random Forest,

Information Gain, Rank Correlation and Linear

Correlation are used in this paper.

A. Boruta Feature Selection Technique

Boruta is a Wrapper Algorithm, which is used to

discover the relevant variables. It performs iteration and

removes the variables, which are less relevant. When

Boruta is run, Z-Scores boxplot graph is drawn as shown

in Fig. 2, the green boxplot represent a Z-Scores of

confirmed (important) variables, blue boxplot represents

a Z-Scores of average variable and red boxplot represents

a Z-Scores of rejected variables for the Ant software

modules. The variable (software metrics) accepted by

running the Boruta Algorithm for Ant Software modules

are MOA, MFA, CAM, AMC, NPM, LCOM, CE,

AVG_CC, WMC, MAX_CC, LOC and RFC. The

variables rejected are IC, NOC, CBM, CA, DIT and

DAM. The variable which can be accepted or rejected

that is average is LCOM3 and CBO. For other software

modules the Z-Scores are calculated and the software

metrics accepted and rejected by the different software

modules using Boruta are represented as ‘T’ and ‘F’
respectively as shown in Table 2 and the reduce set of

variable for Boruta and Regsubset is displayed in Table 3.

Fig.2. Feature Selection using Boruta for Ant Software Modules

1. Significant Software Metrics Assortment Using Boruta

To find the significance of the software metrics the

total number of “T” was calculated from Table 2 for each
software metrics such as WMC, DIT, NOC, CBO, RFC,

LCOM, CA, CE, NPM, LCOM3, LOC, DAM, MOA,

MFA, CAM,IC, CBM, AMC, MAX_CC, and AVG_CC

for all the nine software modules shown in fig 3.

Fig.3. Software Metrics Selection using Boruta for the Software

Modules Ant, Ivy, Tomcat, Berek, Camel, Lucene, Poi, Synapse and

Velocity

B. Regsubset Feature Selection Technique

The other feature selection technique used in this paper

is Regsubset. It uses exhaustive selection algorithm and

subset of size eight. The number is been allotted to each

of the metrics out of eight for different software modules

shown in Table 4. Two indicators black and white are

shown in fig 4, black indicates that variables are in the

model or accepted software metrics which includes

WMC, RFC, LCOM, CE, NPM, LOC, MOA, AMC

whereas white indicate variables are not in the model and

they are DIT, NOC, CBO, CA, LCOM3, DAM, MFA,

CAM, IC, MAX_CC, AVG_CC and CBM. Similarly for

the remaining software modules Regsubset feature

selection technique. The reduce set of variable for Boruta

and Regsubset is displayed in Table 3.

40 Optimal Machine learning Model for Software Defect Prediction

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 2, 36-48

Fig.4. Feature Selection using Regsubset for Ant Software Module

1. Significant Software Metrics Assortment Using Regsubset

The significance of the software metrics in a Feature

Selection technique, regsubset is computed by adding

each of the software metrics resp. for all the nine

software modules from Table 4 and plotted in Fig 5. The

most significant metrics are RFC value as 43, WMC as

32 and LOC as 26.The least significant metrics are CAM

and DAM as 0 then NOC as 4 is shown in fig 5.

Fig.5. Software Metrics Selection using Regsubset for the Software

Modules Ant,Ivy,Tomcat, Berek,Camel,Lucene,Poi,Synapse and

Velocity

C. FSelector Feature Selection Technique

FSelector is another feature selection technique used in

this paper. The correlation filter such as linear correlation

and rank correlation uses Pearson’s correlation and
Spearman’s correlation respectively are used. This
algorithm finds weights of continuous attributes based on

their correlation with continuous class attribute package

FSelector. Table 5, 6, 7 and 8 shows weighted attribute

using Random Forest, Information Gain, Linear

correlation and Rank Correlation respectively.

1. Significant Software Metrics Assortment Using

FSelector (Random Forest)

The graph plotted in Fig. 6 using FSelector (Random

Forest) indicate that the most significant software

metrics are RFC having a value 168, LOC value as 140,

AMC value as 113, NPM value as 106 and so on. The

least significant software metrics are NOC value as 4,

then DAM as 29 and DIT as 36.

Fig.6. Software Metrics Selection Using FSelector(Random Forest) for

the Software Modules Ant,Ivy, Tomcat, Berek, Camel, Lucene, Poi,

Synapse, Velocity

2. Significant Software Metrics Assortment Using

FSelector (Information Gain)

The graph plotted using FSelector Information Gain) in

Fig 7 indicate that most significant software metrics are

RFC having a value 1.1, LCOM3 value as 0.8, AMC and

LCOM value as 0.6. The least significant software

metrics are NOC and DIT as 0.

Fig.7. Software Metrics Selection Using FSelector(Information Gain)

for the Software Modules Ant,Ivy, Tomcat, Berek, Camel, Lucene, Poi,

Synapse, Velocity

3. Significant Software Metrics Assortment Using

FSelector (Linear Correlation)

The graph plotted in Fig 8 using FSelector (Linear

Correlation) indicates that the most significant software

metrics are RFC having a value 5.5, LOC as 5 and WMC

as 4.6. The least significant software metrics are NOC

value as 0.6, DIT and IC as 1.0.

Fig.8. Software Metrics Selection Using FSelector (Linear correlation)

for the Software Modules Ant, Ivy, Tomcat, Berek, Camel,

Lucene,synapse and velocity.

 Optimal Machine learning Model for Software Defect Prediction 41

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 2, 36-48

4. Significant Software Metrics Assortment Using

FSElector (Rank correlation)

The graph plotted using FSelector (Rank Correlation)

in Fig 9 indicates that the most significant software

metrics are RFC having a value 4, LOC as 3.9, WMC as

3.7. The least significant software metrics are DIT as 0.6,

NOC and MFA as 0.8.

D. Significant and Insignificant metrics

The significance of various software metrics using

Feature Selection techniques is plotted in Figures 3, 5, 6,

The graph plotted using FSelector (Rank Correlation) in

Fig 9 indicates that the most significant software metrics

are RFC having a value 4, LOC as 3.9, WMC as 3.7. The

insignificant software metrics selected using Feature

Selection technique for software modules: Ant, Ivy,

Tomcat, Camel, Berek, Lucene, POI, Synapse and

Velocity is shown in Table 9.

Fig.9. Software Metrics Selection Using FSelector (rank Correlation)

for thr Software Modules Ant, Ivy, Tomcat, Berek, Camel, Lucene, Poi,

Synapse, Velocity.

E. Snippets of machine learning algorithm used with

Tuning Parameters

The R packages used in machine learning models with

the tuning parameters are shown as in Table 10. These

have been implemented and simulated in R Studio

(R.3.3.1) environment.

Table 2. Confirmed Software Metrics using Boruta

Software

modules
WMC DIT NOC CBO RFC LCOM CA CE NPM LCOM3 LOC DAM MOA MFA CAM IC CBM AMC MAX_CC AVG_CC

Ant T F F F T T F T T F T F T T T F F T T T

Ivy T F F T T T F T T F T F F F T F F T T T

Tomcat T F F F T T F F T F T F F T F F F F F F

Berek T T F T T T T T F F T F T T F F F T F F

Camel T F F F T T F F T T T T T F T F F T T T

Lucene T T F T T T T T T T T T T T T T T F F T

Poi T F F T T T T T T T T F T T T F T T T T

Synapse T F F T T F T T T F T F F T T F F T T T

Velocity T F F T T T F T T F T F F F T T T T F F

Table 3. Reduced set of CK and OO Software Metrics using Boruta and Regsubset

Software

Modules

No. Of

Variables

Feature Selection using Boruta Feature Selection Using Regsubset

Reduced

Variables
Reduced Software metrics

Reduced

Variables
Reduced Software metrics

Ant 21 12
WMC, RFC, LCOM, CE, NPM, LOC, MOA, MFA, CAM,

AMC,MAX_CC, AVG_CC
8

WMC, RFC, LCOM, CE, NPM, LOC, MOA,

AMC

Ivy 21 11
WMC, CBO, RFC, LCOM, CE, NPM, LOC, CAM, AMC,

MAX_CC, AVG_CC
9

WMC, NOC, LCOM, CE, NPM, LOC, MFA,

MAX_CC, AVG_CC

Tomcat 21 6 WMC, RFC, LCOM, NPM, LOC, MFA 9
WMC, CBO, RFC, CA, NPM,LCOM3,

DAM, MOA, CBM

Berek 21 11
WMC, DIT, CBO, RFC, LCOM, CA, CE, LOC, MOA,

MFA, AMC
14

WMC, DIT, CBO, RFC, LCOM, CA,

CE,NPM, LOC, MOA, MFA, CBM, AMC,

MAX_CC

Camel 21 12
WMC, RFC, LCOM, NPM, LCOM3, LOC, DAM, MOA,

CAM, AMC, MAX_CC, AVG_CC
9

WMC, CBO, LCOM, CA, CE, NPM,

LOC,DAM, MOA

Lucene 21 17
WMC, DIT, CBO, RFC, LCOM, CA, CE, NPM, LCOM3,

LOC, DAM, MOA, MFA, CAM, IC, CBM, AVG_CC
10

WMC, NOC, CBO, RFC, LCOM, CA,

CE,NPM, IC, CBM

Poi 21 16
WMC, CBO, RFC, LCOM, CA, CE, NPM, LCOM3, LOC,

MOA, MFA, CAM, CBM, AMC, MAX_CC, AVG_CC
7 WMC, DIT, RFC, LCOM, CE, MFA, CBM

Synapse 21 12
WMC, CBO, RFC, LCOM, CE, NPM, LOC, CAM, IC,

CBM, AMC
9

WMC, DIT, CBO, RFC, CA, NPM, LOC,

MFA, AMC

Velocity 21 11
WMC, CBO, RFC, LCOM, CE, NPM, LOC, CAM, IC,

CBM, AMC
9

WMC, CE, LOC, MOA, CAM, IC,

AMC,MAX_CC, AVG_CC

42 Optimal Machine learning Model for Software Defect Prediction

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 2, 36-48

Table 4. Important Metrics using Regsubset

Software

modules
WMC DIT NOC CBO RFC LCOM CA CE NPM LCOM3 LOC DAM MOA MFA CAM IC CBM AMC

MAX_

CC

AVG

_CC

Ant 4 0 0 0 8 6 0 2 1 0 7 0 3 0 0 0 0 4 0 0

Ivy 6 0 3 0 0 4 0 6 5 0 2 0 0 1 0 0 0 0 3 3

Tomcat 4 0 0 3 8 0 6 0 7 4 0 1 5 0 0 0 2 0 0 0

Berek 1 7 0 2 3 4 2 1 3 0 5 0 1 4 0 0 1 4 7 0

Camel 5 0 0 5 0 3 7 3 5 0 1 1 8 0 0 0 0 0 0 0

Lucene 3 0 1 2 8 5 6 1 3 0 0 0 0 0 0 2 5 0 0 0

POI 4 3 0 0 8 3 0 4 0 0 0 0 0 3 0 0 4 0 0 0

Synapse 2 2 0 3 8 0 2 0 7 0 4 0 0 2 0 0 0 6 0 0

Velocity 3 0 0 0 0 0 0 5 0 0 7 0 1 0 2 5 0 7 2 2

Table 5. Feature Selection Using FSelector (Random Forest)

Ant Ivy Tomcat Berek Camel Lucene Poi Synapse Velocity

WMC 13.5 11 6.9 7.2 9.9 12.6 10.2 5.7 12

DIT 1.3 1.6 3.9 6.4 6.3 6.2 3 2.7 2.3

NOC 3.9 -1.1 -1.6 0 1.8 1.2 2.3 -6 2.1

CBO 7.2 9.3 8.2 7 2.3 15 9.2 7 8.5

RFC 22.3 13.6 17.2 11.7 6.9 20.6 20.6 19.1 11.8

LCOM 10.7 10.8 3.4 7 9.3 13.2 8.8 4.8 8.7

CA 3.4 6.5 2.8 7.1 5.6 11.6 6.2 4.7 4.3

CE 12.4 13.5 0 8.7 2.1 16.9 13.5 10.9 17.6

NPM 13.4 16.9 13.4 5.6 7 14.7 10.5 3.8 9.1

LCOM3 7 3 8.4 2.1 9.5 5.9 6 3.8 3.8

LOC 21.8 16.2 12.7 10.6 7 6.6 12.5 15.2 17.9

DAM 3.2 0.8 1.1 3.5 5.5 9.4 4.5 0 -1.4

MOA 7.4 1.4 2 6.1 17.4 2.6 6.2 4.6 3

MFA 11.6 2.4 10.7 4.2 7 9.2 3.4 8.5 5.9

CAM 11.6 9.5 -2.4 1.1 10 8.6 10.7 7.5 13.9

IC 1.4 1.2 0.8 -0.2 2.6 18.8 4 4.7 10.9

CBM 1.9 2.2 -1.9 1.2 2.2 12.7 10.3 4.6 9.4

AMC 11.1 10 4.9 13.6 11.9 3.8 13.4 16.1 16.3

MAX_CC 18.1 3.3 1.2 3.3 6.1 3.9 8.9 13.1 2.2

AVG_CC 19 6.3 2.6 2.4 9.2 7.5 11.6 13.5 5.4

Table 6. Feature Selection using FSelector (Information Gain)

Ant Ivy Tomcat Berek Camel Lucene Poi Synapse Velocity

WMC 0.1 0 0 0 0 0.1 0.1 0 0

DIT 0 0 0 0 0 0 0 0 0

NOC 0 0 0 0 0 0 0 0 0

CBO 0.1 0 0 0.3 0 0.1 0.1 0 0

RFC 0.1 0.1 0 0.4 0 0.1 0.2 0.1 0

LCOM 0.1 0 0 0.3 0 0.1 0.1 0 0

CA 0 0 0 0.3 0 0 0 0 0

CE 0.1 0 0 0 0 0.1 0.2 0.1 0.1

NPM 0.1 0 0 0 0 0.1 0.1 0 0

LCOM3 0.1 0 0 0.4 0 0 0.2 0 0

LOC 0.1 0.1 0 0 0 0 0.1 0.1 0

DAM 0 0 0 0 0 0.1 0.1 0 0

MOA 0 0 0 0 0 0 0 0 0

MFA 0 0 0 0 0 0 0.1 0 0

CAM 0.1 0.1 0 0 0 0.1 0.1 0 0.1

IC 0 0 0 0 0 0 0.1 0 0

CBM 0 0 0 0 0 0 0.1 0 0

AMC 0.1 0 0 0.3 0 0 0.1 0.1 0

MAC_CC 0.1 0 0 0 0 0 0.1 0 0

AVG_CC 0 0 0 0 0 0 0.2 0 0

 Optimal Machine learning Model for Software Defect Prediction 43

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 2, 36-48

Table 7. Feature Selection using FSelector (Linear Correlation)

Ant Ivy Tomcat Berek Camel Lucene Poi Synapse Velocity

WMC 0.43 0.41 0.3 0.63 0.31 0.7 0.53 0.27 0.48

DIT 0.05 0.02 0.02 0.58 0.01 0.06 0.13 0.05 0.1

NOC 0.1 0.02 0.06 0.08 0.15 0.1 0.03 0.07 0.01

CBO 0.35 0.3 0.3 0.73 0.46 0.48 0.31 0.32 0.26

RFC 0.49 0.51 0.45 0.75 0.28 0.73 0.69 0.49 0.53

LCOM 0.41 0.22 0.18 0.68 0.14 0.65 0.38 0.15 0.43

CA 0.12 0.07 0.12 0.73 0.42 0.28 0.12 0.08 0.06

CE 0.37 0.46 NA 0.75 0.2 0.55 0.44 0.44 0.47

NPM 0.37 0.31 0.2 0.11 0.27 0.64 0.46 0.19 0.27

LCOM3 0.02 0.07 0.08 0.14 0.05 0.13 0.14 0.17 0.13

LOC 0.49 0.52 0.43 0.74 0.28 0.57 0.37 0.44 0.53

DAM 0.15 0.15 0.18 0.03 0.05 0.22 0.17 0.19 0.11

MOA 0.34 0.32 0.31 0.66 0.24 0.32 0.24 0.22 0.41

MFA 0.07 0.07 0.03 0.36 0.06 0.04 0.13 0.06 0.07

CAM 0.4 0.28 0.22 0.4 0.19 0.33 0.26 0.27 0.33

IC 0.13 0.05 0.11 0.2 0 0.23 0.04 0.02 0.1

CBM 0.13 0.11 0.18 0.2 0.04 0.35 0.06 0.04 0.09

AMC 0.35 0.18 0.13 0.67 0.06 0.07 0.09 0.16 0.47

MAX_CC 0.38 0.4 0.3 0.32 0.21 0.11 0.35 0.25 0.32

AVG_CC 0.31 0.2 0.23 0.27 0.16 0.01 0.2 0.09 0.14

Table 8. Feature Selection using FSelector (Rank Correlation)

Ant Ivy Tomcat Berek Camel Lucene Poi Synapse Velocity

WMC 0.43 0.34 0.31 0.31 0.31 0.42 0.48 0.33 0.31

DIT 0.05 0.03 0.11 0.11 0.01 0.12 0.01 0.03 0.11

NOC 0.1 0.03 0.1 0.1 0.15 0.09 0.02 0.03 0.1

CBO 0.35 0.3 0.31 0.31 0.46 0.41 0.47 0.32 0.31

RFC 0.49 0.36 0.33 0.33 0.28 0.45 0.54 0.43 0.33

LCOM 0.41 0.3 0.15 0.15 0.14 0.19 0.37 0.21 0.15

CA 0.12 0.07 0.02 0.02 0.42 0.18 0.21 0.24 0.02

CE 0.37 0.2 0.4 0.4 0.2 0.38 0.49 0.28 0.4

NPM 0.37 0.27 0.3 0.3 0.27 0.43 0.4 0.22 0.3

LCOM3 0.02 0.01 0.14 0.14 0.05 0.14 0.19 0.16 0.14

LOC 0.49 0.36 0.34 0.34 0.28 0.35 0.5 0.44 0.34

DAM 0.15 0.13 0.12 0.12 0.05 0.32 0.28 0.2 0.12

MOA 0.34 0.18 0.29 0.29 0.24 0.13 0.25 0.29 0.29

MFA 0.07 0.06 0.14 0.14 0.06 0.06 0.02 0.01 0.14

CAM 0.4 0.3 0.4 0.4 0.19 0.36 0.37 0.32 0.4

IC 0.13 0.04 0.15 0.15 0 0.26 0.29 0.11 0.15

CBM 0.13 0.05 0.16 0.16 0.04 0.25 0.35 0.12 0.16

AMC 0.35 0.27 0.24 0.24 0.06 0.17 0.36 0.28 0.24

MAX_CC 0.38 0.29 0.1 0.1 0.21 0.24 0.47 0.32 0.1

AVG_CC 0.31 0.26 0.14 0.14 0.16 0.16 0.41 0.23 0.14

Table 9. Significant and Insignificant Metrics Using Feature Selection Techniques

Feature Selection Technique Significant Metrics Insignificant Metrics

Boruta WMC,RFC,LOC, LCOM, NPM NOC,DIT, DAM, IC

Regsubset WMC,RFC, LOC, NPM, LCOM DAM, NOC, CAM, NOC, LCOM3

FSelector (Random Forest) WMC,RFC,NPM, LOC, AMC NOC,DIT, DAM, IC, CBM

FSelector (Information Gain) RFC, LCOM3, CBO, LCOM, AMC NOC,DIT, MOA, IC, CBM

FSelector (Linear Correlation) RFC, LOC, WMC, CE, CBO DIT, NOC, LCOM3, MFA, IC

FSelector (Rank Correlation) RFC,LOC, WMC, CBO, CE DIT,NOC, MFA, LCOM3

44 Optimal Machine learning Model for Software Defect Prediction

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 2, 36-48

F. Performance Parameters Applied

Performance parameters [4] Correlation, R-Squared,

Mean Square Error and Accuracy were calculated on

machine learning models.

1. Machine learning models applied combining all the

Software Metrics.

The machine learning models with the tuning

parameters as discussed in Table 10 was applied with all

the software metrics to obtain the correlation, R-Squared,

Mean Square Error and Accuracy shown in Tables 11, 12,

13 and 14 below respectively. The graph is plotted to

compare the performance parameters by computing the

mean average of each nine software modules with

respective Machine Learning Models as shown in Figure

10, 11, 12 and 13 to get the best machine learning model.

The Correlation Comparative Analysis was done of the

machine learning model using all the software metrics.

Fig: 10 depicted that Random Forest has the highest

correlation at 0.44 and Neural Network and Decision

Stump have lowest correlation at 0.29 using all the

software metrics.

The R-Squared Comparative Analysis was done of the

machine learning model using all the software metrics.

The Fig. 11 depicted that the Random Forest has highest

R-Squared value as 0.33 and Neural Network has the

lowest R Squared values as 0.18.

Support Vector Machine has the lowest mean square

value as 0.74 and the Neural Network has the highest

Mean Square Error as 1.7 shown in Fig: 12.

Table 10. Machine Learning Models, Packages and Tuning Parameters

ML Models Technique Packages Tuning Parameters

Linear Regression Lm None None

Random Forest
Random

Forest
Library(Random Forest) ntree=250, mtry=3

Decision Tree Rpart Library(rpart)
parms=list(split="information"), control

=rpart.control(usesurrogate=0, maxsurrogate=0))

Support Vector machine Svm library(e1071) nu=0.5, epsilon=0.1

Neural Network Neuralnet Library(neuralnet) hidden = 1, threshold = 0.01,stepmax = 1e+05, rep = 1

Decision Stump DecisionStump library(RWeka) control = Weka_control(), options = NULL

Table 11. Correlation Calculated combining of all the Software Metrics

Machine Leaning Model Ant Ivy Tomcat Berek Camel Lucene POI Synapse Velocity

Linear Model 0.6 0.3 0.4 0.5 0.0 0.3 0.2 0.1 0.1

Random Forest 0.6 0.5 0.4 0.7 0.1 0.4 0.4 0.2 0.2

Neural Network 0.2 0.4 0.3 0.1 0.0 0.4 0.4 0.0 0.2

Decision Tree 0.5 0.1 0.4 0.6 0.0 0.3 0.2 0.1 0.5

SVM 0.4 0.3 0.1 0.8 0.0 0.3 0.1 0.1 0.0

Decision Stump 0.4 0.5 0.2 0.7 0 0 0.2 0.1 0

Table 12. R Squared calculated combining all the software metrics

Machine Learning Model Ant Ivy Tomcat Berek Camel Lucene POI Synapse Velocity

Linear Model 0.48 0.14 0.23 0.26 0.05 0.37 0.21 0.14 0.18

Random Forest 0.41 0.31 0.18 0.52 0.16 0.48 0.42 0.27 0.25

Neural Network 0.06 0.23 0.14 0.01 0.01 0.42 0.45 0.01 0.25

Decision Tree 0.3 0.02 0.22 0.42 0.03 0.32 0.24 0.14 0.5

SVM 0.22 0.14 0.01 0.79 0.07 0.32 0.18 0.16 0.09

Decision Stump 0.23 0.45 0.3 0.77 0.35 0.32 0.18 0.16 0.09

Table 13. Mean Square Error calculated combining all the software metrics

Machine Learning Model Ant Ivy Tomcat Berek Camel Lucene poi synapse velocity

Linear Model 0.23 2.28 0.23 0.23 1.54 0.05 1.99 0.88 0.62

Random Forest 0.5 0.22 0.19 1.44 0.78 1.3 0.77 0.53 0.92

Neural Network 2.28 0.27 1.98 2.11 0.96 1.55 1.85 2.45 1.89

Decision Tree 0.51 0.18 0.18 1.25 0.85 1.51 0.94 0.63 1.18

SVM 0.42 0.18 0.27 1.34 0.64 1.63 0.78 0.58 0.81

Decision Stump 0.63 0.24 0.23 1.54 0.86 1.99 0.88 0.62 1.01

 Optimal Machine learning Model for Software Defect Prediction 45

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 2, 36-48

Table 14. Accuracy calculated combining all the software metrics

Machine Learning Model Ant Ivy Tomcat Berek Camel Lucene POI Synapse Velocity

Linear Model 87.67 93.22 97.21 36.6 74.95 49.71 73.42 84.5 72.17

Random Forest 85.52 96.61 97.67 54.55 83.44 52.05 76.58 86.05 66.96

Neural Network 34.58 95 34.42 40.91 77.64 47.95 41.89 45.74 60

Decision Tree 87.4 97.74 96.28 68.18 85.3 56.14 80.63 81.4 62.61

SVM 90.62 97.18 97.74 72.73 88.41 55.56 81.98 88.37 74.78

Decision Stump 89.0 96.6 96.05 77.27 89.44 29.8 80.6 82.17 84.35

Fig.10. Correlation Analysis comparison of machine learning Model

using all the software metrics

Fig.11. R-Squared Analysis Comparison of Machine Learning Model

using all the Software Metrics,

Fig.12. Mean Square Error Analysis Comparison of Machine Learning

Model using all the software metrics

The Accuracy Comparative Analysis was done of the

Machine Learning Model using all the software metrics.

Fig.13 depicted that the Support Vector machine has the

highest value as 83.04 and the Neural Network has the

lowest accuracy as 53.13.

Fig.13. Accuracy Analysis Comparison of Machine Learning Model

using all the software metrics

2. Machine learning models applied combining WMC,

RFC and LOC Software Metrics.

The Performance Parameters Correlation, R-Squared,

Mean Square Error and Accuracy as shown in Table 15,

16, 17 and 18 respectively were computed when only

optimal software metrics WMC, RFC and LOC were

applied on a machine learning model, Linear Regression,

Random Forest, Decision Tree, Neural Network, Support

Vector Machine and Decision Stump.

VI. RESULT

A. Optimal Machine Learning Model

The comparative analysis was done by using the

performance parameters on machine learning models

discussed in Section II on the software modules described

in table 1. Two observations were analyzed which are

described below:

1. Feature Selection Analysis

When the modeling technique was applied on the

reduced variable, the result was either better or the same.

Another important factor of using Feature Selection

technique is that if the number of variables is higher than

optimal, then the Machine Learning Algorithm exhibits a

decrease in accuracy. The Table 9 shows the significant

and insignificant software metrics. The comparative

analysis was conducted to achieve the most optimal

metrics by comparing the result shown in Table 9 derives

that RFC, LOC and WMC are the most optimal metrics

and the least significant metrics are DIT and NOC.

2. Machine Learning Models Analysis

In order to discover the best model result, a

comparative analysis of machine learning models having

different performance parameters using all the CK_OO

software metrics is compared optimal software metrics

like WMC, RFC and LOC. It was found that the Support

Vector Machine is the best model and its accuracy is 83%

and mean square error is 0.7 %. Correlation, R Squared,

Mean Square Error and Accuracy are calculated on

different machine Learning Model using all the software

metrics and with WMC, RFC and LOC software metrics

is shown in Fig. 14, 15, 16 and 17 respectively

46 Optimal Machine learning Model for Software Defect Prediction

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 2, 36-48

Table 15. Correlation calculated combining WMC, RFC, LOC Software Metrics

Machine Learning

Model
Ant Ivy Tomcat Berek Camel Lucene POI Synapse Velocity

Linear Model 0.72 0.44 0.46 0.82 0.14 0.65 0.69 0.47 0.42

Random Forest 0.58 0.42 0.37 0.72 0.26 0.69 0.6 0.44 0.64

Neural Network 0.57 0.44 0.53 0.63 0.25 0.58 0.67 0.28 0.52

Decision Tree 0.56 0.33 0.42 0.58 0.22 0.54 0.52 0.37 0.36

SVM 0.51 0.58 0.5 0.68 0.19 0.5 0.42 0.45 0.43

Decision Stump 0.48 0.39 0.33 0.64 0.07 0 0.43 0.34 0

Table 16. R Squared Calculated Combining WMC, RFC, and LOC Software Metrics

Machine Learning

Model
Ant Ivy Tomcat Berek Camel Lucene POI Synapse Velocity

Linear Model 0.52 0.19 0.21 0.67 0.02 0.42 0.48 0.22 0.18

Random Forest 0.34 0.18 0.14 0.52 0.07 0.48 0.36 0.18 0.41

Neural Network 0.32 0.19 0.28 0.4 0.06 0.34 0.45 0.08 0.27

Decision Tree 0.31 0.11 0.18 0.34 0.05 0.29 0.27 0.14 0.13

SVM 0.26 0.34 0.25 0.46 0.04 0.25 0.18 0.2 0.18

Decision Stump 0.23 0.15 0.11 0.41 0 0 0.18 0.12 0

Table 17. Mean Square Error Calculated Combining WMC, RFC and LOC Software Metrics

Machine Learning

Model
Ant Ivy Tomcat Berek Camel Lucene POI Synapse Velocity

Linear Model 0.38 0.54 0.23 0.23 1.75 0.05 1.99 0.89 0.62

Random Forest 0.5 0.21 0.19 1.41 0.84 1.57 0.81 0.56 0.89

Neural Network 0.53 0.23 0.2 1.23 0.79 1.54 0.91 0.71 1.02

Decision Tree 0.48 0.24 0.18 1.69 0.75 1.58 0.92 0.68 0.94

SVM 0.46 0.17 0.16 1.03 0.65 1.4 0.81 0.56 0.72

Decision Stump 0.63 0.23 0.23 1.75 0.86 1.99 0.89 0.62 1.01

Table 18. Accuracy Calculated Combining WMC, RFC, LOC software metrics

Machine Learning

Model
Ant Ivy Tomcat Berek Camel Lucene POI Synapse Velocity

Linear Model 86.33 94.92 96.05 68.18 81.57 52.63 81.08 87.6 77.3

Random Forest 86.86 93.79 97.91 68.18 80.12 47.37 77.03 82.95 65.22

Neural Network 87.4 95.48 96.98 63.64 82.82 45.61 79.28 82.95 72.17

Decision Tree 85.52 94.92 96.74 54.55 83.64 49.12 80.18 79.07 69.57

SVM 87.94 96.61 97.67 63.64 89.86 58.48 81.98 86.05 80

Decision Stump 89.01 98.31 96.28 72.73 89.44 29.82 54.05 82.17 84.35

Fig.14. Correlation Calculated on different machine Learning Model

Fig.15. R-Squared Calculated on different Machine Learning Models

Fig.16. Mean Square Prediction of Machine Learning Model

Fig.17. Accuracy Prediction of Machine Learning Model

 Optimal Machine learning Model for Software Defect Prediction 47

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 2, 36-48

B. Findings

Pandey N et.al [27] have used a machine learning

techniques Naive Bayes, linear discrimination analysis,

K-Nearest neighbors, Support Vector Machine, decision

tree and random forest to find the high performance from

three open source projects JIRA which belongs to

APACHE, LUCENE, JACKRABBIT. They derive that

Random Forest perform best accuracy of 79% and SVM

accuracy was 75%. Singh P.D et.al [28] in their paper

have analyzed five machine learning model to predict the

software defect prediction. They have taken 7 dataset

from NASA Promise repository. They have used KEEL

tool and classification technique was used in Artificial

Neural Network (NN), Decision Tree (DT), Linear

Classifier (LC), Naive Bayes (NB), P article swarm

ptimization (PS) machine learning model. It was analyzed

that linear classifier outperform as compare to other

machine learning model. The accuracy level was 83%.

Fig 18 depict that SVM is the best model to predict the

software defect as per the experiment done using nine

datasets and seven datasets as 83% and 88% respectively

and compared with accuracy prediction of different

machine learning technique by Pandey N et.al and Singh

P.D et.al as 79% and 83% respectively.

VII. CONCLUSION

The objective of the paper was to find the best machine

learning model for software bug prediction. To get the

most optimal machine learning model the accuracy, mean

square error, R Squared and correlation was computed. It

was seen that the maximum accuracy and minimum mean

square error was derived from the support vector machine

(SVM) machine learning model for finding the software

bug prediction.

Fig.18. Accuracy prediction in different machine learning technique

REFERENCES

[1] S. Puranik, P. Deshpande, and K. Chandrasekaran, “A
Novel Machine Learning Approach for Bug Prediction,”
Procedia - Procedia Comput. Sci., vol. 93, no.September,

pp. 924–930, 2016. “doi:10.1016/j.procs.2016.07.271”.

[2] K. O. Elish and M. O. Elish, “Predicting defect-prone

software modules using support vector machines,”
Journal of Systems and Software, vol. 81, no. 5, pp. 649–
660, 2008. “doi:10.1016/j.jss.2007.07.040”

[3] M. Dhiauddin, M. Suffian, and S. Ibrahim, “A Prediction
Model for System Testing Defects using Regression

Analysis,” Int. J. Soft Comput. Softw. Eng., vol. 2, no. 7,

pp. 55–68, 2012. “doi:10.7321/jscse.v2.n7.6”

[4] P. S. Rana, H. Sharma, M. Bahattacharya, and A. Shukla,

“Journal of Bioinformatics and Computational Biology c

Imperial College Press Quality assessment of modeled

protein structure using physicochemical properties,” J.

Bioinform. Comput. Biol., vol. 13, no. 2, pp. 1–16, 2015.

https://doi.org/10.1142/S0219720015500055

[5] Y. Suresh, J. Pati, and S. K. Rath, “Effectiveness of
software metrics for object-oriented system,” Procedia

Technology vol. 6, pp. 420–427, 2012.” doi:
10.1016/j.protcy.2012.10.050”

[6] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya,

“Choosing software metrics for defect prediction : an
investigation on feature selection techniques,” Software:

Practice and Experience pp. 579–606, 2011.” doi:
10.1002/spe.1043”

[7] A. Liaw and M. Wiener, “Classification and Regression

by randomForest,” R news, vol. 2, no. December, pp. 18–
22, 2002. “doi: 10.1177/154405910408300516” .

[8] M. B. Kursa and W. R. Rudnicki, “Feature Selection with
the Boruta Package,” J. Stat. Softw., vol. 36, no. 11, pp. 1–
13, 2010.”doi: Vol. 36, Issue 11, Sep 2010 “

[9] Cran.r-project.org, 2018. [Online]. Available:

https://cran.r-project.org/web/packages/leaps/leaps.pdf.

[Accessed: 21- Feb- 2018].

[10] Y. Suresh, J. Pati, and S. K. Rath, “Effectiveness of
software metrics for object-oriented system,” Procedia

technology vol. 6, pp. 420–427, 2012.”doi:
10.1016/j.protcy.2012.10.050”

[11] A. Liaw and M. Wiener, “Classification and Regression
by randomForest,” R news, vol. 2, no. December, pp. 18–
22, 2002.”doi: 10.1177/154405910408300516”.

[12] Y. Song and Y. Lu, “Decision tree methods: applications
for classification and prediction,” Biostatistics in

psychiatry, vol. 27. pp. 130–135, 2015.”doi:
10.11919/j.issn.1002-0829.215044”

[13] P. Romanski, L. Kotthoff, and M. L. Kotthoff, “Package
FSelector: Selecting Attributes,” Cran, p. 18, 2016.”

[14] P. A. Selvaraj and P. Thangaraj, “Support Vector Machine
for Software Defect Prediction,” Int. J. Eng. Technol. Res.,

vol. 1, no. 2, pp. 68–76, 2013.

[15] E. Osuna, R. Freund, and F. Girosit, “Training support
vector machines: an application to face detection,”
Proceedings of IEEE Computer Society Conference on

Proceedings of IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. pp. 130–136,

1997. “doi:10.1109/cvpr.1997.609310”

[16] F. E. H. Tay and C. Lijuan, “Application of Support
Vector Machines in Financial Time Series Forecasting,”
Omega, vol. 29, no. 2001, pp. 309–317, 2001. “doi:
10.1016/s0305-0483(01)00026-3”

[17] Y. Song and Y. Lu, “Decision tree methods: applications
for classification and prediction,” Biostatistics in

psychiatry, vol. 27. pp. 130–135, 2015.”
doi:10.11919/j.issn.1002-0829.215044”

[18] F. E. H. Tay and C. Lijuan, “Application of Support
Vector Machines in Financial Time Series Forecasting,”
Omega, vol. 29, no. 2001, pp. 309–317, 2001.

[19] E. Rahm and H. H. Do, “Data cleaning: Problems and
current approaches,” IEEE Bull. Data Eng., vol. 23, no. 4,

pp, 2000.

[20] “Documentation,” Machine Learning in MATLAB -

MATLAB & Simulink - MathWorks India. [Online].

Available: https://in.mathworks.com/help/stats/machine-

learning-in- matlab.html. [Accessed: 03-Jul-2017].

[21] “1.10. Decision Trees¶,” 1.10. Decision Trees — scikit-

learn 0.18.2 documentation. [Online]. Available :http ://

https://doi.org/10.1142/S0219720015500055
https://in.mathworks.com/help/stats/machine-learning-in-
https://in.mathworks.com/help/stats/machine-learning-in-

48 Optimal Machine learning Model for Software Defect Prediction

Copyright © 2019 MECS I.J. Intelligent Systems and Applications, 2019, 2, 36-48

scikit-learn.org/stable/ module s/tree.html. [Accessed: 04-

Jul-2017].

[22] S. Kim, “Introduction to Machine Learning for

developers,” Algorithmia Blog, 28-Feb-2017.

[Online].Available: https:// blog. algorithmia. com/

introduction -machine-learning- developers/. [Accessed:

05-Jul-2017].

[23] “Random forest,” Wikipedia, 04-Jul-2017. [Online].

Available:https://en. wikipedia.org /wiki/ Random_ forest.

[Accessed: 05-Jul-2017].

[24] S. Ray, S. Bansal, A. Gupta, D. Gupta, and F. Shaikh,

“Understanding Support Vector Machine algorithm from
examples (along with code),” Analytics Vidhya, 13-Sep-

2016. [Online]. Available: https://www.

analyticsvidhya.com/ blog/2015/10/understaing-support-

vector-machine-example-code/. [Accessed: 05-Jul-2017].

[25] E. Rahm and H. Do, “Data cleaning: Problems and current
approaches,” Bull. Tech. Comm., 2000.

[26] R. K. H. Galvão and A. M.C.U., “Variable Selection,”
Compr. Chemom., pp. 233–283, 2009.

[27] N. Pandey, D. K. Sanyal, A. Hudait, and A. Sen,

“Automated classification of software issue reports using
machine learning techniques: an empirical study,” Innov.

Syst. Softw. Eng., pp. 1- 19, 2017. “doi: 10.1007/s11334-

017-0294-1”

[28] P. Deep Singh and A. Chug, “Software defect prediction
analysis using machine learning algorithms,” 2017 7th Int.

Conf. Cloud Comput. Data Sci. Eng. - Conflu., pp. 775–
781, 2017. ” doi: 10.1109/ CONFLUENCE .2017.

7943255”.
[29] M. Singh and D.S. Salaria. “Software defect prediction

tool based on neural network”. International Journal of

Computer Applications. Vol. 70 No. 22. pp- 22-28,

2013.”doi: 10.5120/12200-8368”.
[30] A. Okutan and O. T. Yildiz, “Software defect prediction

using Bayesian networks,” Empir. Softw. Eng., vol. 19, no.
1, pp. 154–181, 2014.”doi: 10.1007/s10664-012-9218-8”

[31] A. Kaur, K. Kaur, and D. Chopra, “An empirical study of

software entropy based bug prediction using machine

learning,” Int. J. Syst. Assur. Eng. Manag., 2016. “doi:
10.1007/s10664-012-9218-8”.

[32] X. Rong, F. Li and Z. Cui. “A model for software defect
prediction using support vector machine based on CBA”.
Int. J. Intelligent Systems Technologies and Applications,

Vol. 15, No. 1, pp- 19-34. 2016. “doi:
10.1504/ijista.2016.076102”.

Authors’ Profiles

Tripti Lamba is pursuing Ph.D from JIMS,

Jaipur. She has done her M. Tech from

Punjabi Univ, Patiala. She has 15 yrs of

experience. Currently working with Institute

of Information and Technology (IITM)as an

Asst. Professor –IT. Her areas of interest are

web technologies and data mining. She has

published five papers in reputed International / National

journals.

Dr. Kavita Ph.D (Computer Science)

received her M.C.A degree in computer

science from Modi Institute of technology

and Science Lakshmangarh, Sikar.

Presently working as Associate Professor at

Jyoti Vidyapeeth University Jaipur. She has

eleven years of teaching experience in the

field of Computer Science and supervising research scholars in

the field of E-commerce, Mobile Commerce, Data Mining, big

data, Cloud computing etc.

Dr. A.K.Mishra has published several

research papers in the reputed ‘National and
International Journals’.

A.K.MISHRA is a Principal Scientist in

Indian Agricultural Research Institute,

Pusa , New Delhi, India. He is an IT expert

with more than 20 yrs. of experience which

includes application designing, implementation and

management of ICT based projects. He has experience in

implementing projects in the domain of Knowledge and e-

Resource management. He has published 25 papers in reputed

International / National journals. His area of interest are

bioinformatics, Web technologies, Software Engineering, IT in

Agriculture and Rural Development.

How to cite this paper: Tripti Lamba, Kavita, A.K.Mishra,

"Optimal Machine learning Model for Software Defect

Prediction", International Journal of Intelligent Systems and

Applications(IJISA), Vol.11, No.2, pp.36-48, 2019. DOI:

10.5815/ijisa.2019.02.05

https://en/

