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Abstract

We consider the integrated problem of optimally maintaining an imperfect, deteriorating sensor

and the safety-critical system it monitors. The sensor’s costless observations of the binary state

of the system become less informative over time. A costly full inspection may be conducted to

perfectly discern the state of the system, after which the system is replaced if it is in the out-of-

control state. In addition, a full inspection provides the opportunity to replace the sensor. We

formulate the problem of adaptively scheduling full inspections and sensor replacements using

a partially observable Markov decision process (POMDP) model. The objective is to minimize

the total expected discounted costs associated with system operation, full inspection, system

replacement, and sensor replacement. We show that the optimal policy has a threshold struc-

ture and demonstrate the value of coordinating system and sensor maintenance via numerical

examples.

Keywords: Maintenance optimization; Sensor deterioration; Partially observable Markov decision

process; Threshold policy

1 Introduction

Failures of safety-critical systems, such as those encountered in chemical plants, hospitals, or nu-

clear power reactors, can pose risks to human life, harm the environment, or lead to substantial

economic losses. The operation of these systems is typically subject to strict requirements based
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on quantitative risk assessments and regulatory compliance standards (Fowler [9]). If a system is

operated in an out-of-control state such that these requirements are not met, then it is overexposed

to undue risks. To achieve maximum safety, it is essential that the state of the system be known

at any moment in time. Then, as soon as the system transitions into the out-of-control state,

maintenance can be performed in order to restore it to the in-control state. However, carrying out

a site visit to conduct a full inspection of the system, which may also necessitate an interruption

of operations, is usually expensive and cannot be done on a frequent basis. To help alleviate this

problem, sensors (e.g., accelerometers, thermocouples, or wear debris sensors) are often deployed

to obtain imperfect measurements of the state of the system (Davies [8]).

The informativeness of a sensor’s measurements determines its ability to support maintenance

decisions; naturally, better maintenance decisions can be made if the sensor provides more reliable

measurements of the state of the system. Therefore, along with cost, measurement quality is

a primary consideration when choosing the most appropriate condition monitoring technology.

Srinivasan and Parlikad [38] develop a method to assess and compare the value of different condition

monitoring techniques for infrastructure assets, and illustrate their approach using a case example.

They quantify the value of condition monitoring as the benefit of having imperfect information over

having no information. In applications where partial information about the state of the system

can also be inferred in the absence of any sensor technology, such as a production system whose

output is subjected to quality control procedures, a different evaluation of the value of condition

monitoring may be used (cf. Gilbert and Bar [11]). To enhance the measurement quality of a

condition monitoring system, it is also possible to combine multiple types of sensors or to add

multiple redundant sensors that all measure the same system parameters (see Ray and Phoha [33]).

The implicit assumption in existing maintenance optimization models is that, once a condition

monitoring system has been selected and the sensors have been implemented, the performance of

sensors remains constant over time, i.e., the quality of the measurements of the state of the system

is considered to be stationary. However, as evidenced by durability studies of piezo wafer active

sensor systems (Blackshire et al. [3]) and fiber-optic strain sensors (Habel and Bismarck [14]), for

example, sensors may also deteriorate. Therefore, to fully realize the benefits of condition-based

maintenance strategies, it is necessary to consider sensor maintenance (e.g., via replacement or

recalibration). Coble et al. [6] report that for nuclear power plants in the United States, periodic

recalibration of all safety-related sensors is mandatory. Such settings motivate us to explore joint

optimal system and sensor maintenance policies.

1.1 Problem Description and Contributions

In this paper, we investigate the simultaneous maintenance of a safety-critical system and the dete-

riorating sensor that monitors the system. We shall use the term “system” throughout this paper,
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although in reality the sensor might be monitoring a component of a safety-critical system (e.g.,

a safety valve in a nuclear power plant). The system’s binary state (in-control or out-of-control)

evolves as a discrete-time Markov chain. The sensor provides costless, imperfect observations of

the state of the system; however, due to deterioration, the sensor provides less informative obser-

vations as it ages. Following each sensor observation, a costly full inspection may be conducted to

perfectly discern the state of the system. If the system is found to be in the out-of-control state,

then it is restored to the in-control state by a system replacement. Moreover, a full inspection

offers an opportunity to replace the sensor, so as to acquire more informative future observations

of the state of the system. We seek to determine how to adaptively schedule full inspections and

sensor replacements to minimize the total expected discounted costs due to system operation, full

inspection, system replacement, and sensor replacement. To this end, we formulate the problem

using a partially observable Markov decision process (POMDP) model.

The main result of this paper is a characterization of the structure of the optimal policy, which

is shown to be a threshold policy. Specifically, there exists (i) a sensor-age-dependent threshold

such that it is optimal to perform a full inspection if and only if the probability that the system is in

the out-of-control state exceeds that threshold, and — if it is ever optimal to replace the sensor —

(ii) a threshold such that, at the time of a full inspection, sensor replacement is optimal if and only

if the sensor age exceeds the threshold. The sensor-age-dependent threshold on the probability that

the system is in the out-of-control state is nonincreasing in the range of sensor ages for which sensor

replacement is optimal at a full inspection. When applied to the special case of a non-deteriorating

sensor, our structural results generalize existing results in that we impose no assumptions on the

transition probability matrix and only general assumptions on the cost parameters.

By way of numerical examples, we compare the optimal policy with heuristic policies to gain

more insight into the value of coordinating system and sensor maintenance. These examples illus-

trate that using a constant threshold on the probability that the system is in the out-of-control

state, as opposed to the optimal sensor-age-dependent threshold, can simplify the policy structure

at a relatively small increase in cost (1.0% and 1.5%). When the coordination between system and

sensor maintenance is relaxed further by simply periodically replacing the sensor irrespective of the

information available on the state of the system, the optimality gap can be much larger (11.9% and

14.8%).

1.2 Related Literature

By formulating our problem of optimally maintaining a safety-critical system and its deteriorating

sensor using a POMDP model, we follow a common approach in the literature on maintenance

optimization problems with imperfect information on the state of the system. Researchers have

developed and analyzed POMDP models for a number of ways in which information may be im-
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perfect. There exist models in which costless, imperfect observations of the state of the system

are made at every decision epoch (White [41], Ghasemi et al. [10], Grosfeld-Nir [13]) and models

in which an observation of the state of the system is only made at a decision epoch if it is de-

cided to conduct a costly inspection (Ross [36], Rosenfield [35], Maillart and Zheltova [26]). The

combination of costless, imperfect observations and costly observations is considered in White [40]

and Ohnishi et al. [30]. In all papers listed above, it is assumed that the probabilistic relation

between the state of the system and the observation that is obtained, which in POMDP models

is described by an (action-dependent) observation matrix, is stationary over time. There are also

some recent works that include the possibility of choosing an inspection type at an inspection,

where each inspection type is associated with a different cost and informativeness (e.g., a menu

of different tests is available, or a choice can be made between full inspection and sampling; see

Kuo [20], Maillart et al. [27], Kim and Makis [18]). The assumption in these papers is that for

each inspection type the probabilistic relation between the state of the system and the observation

that is obtained is stationary over time, and moreover, the same inspection types are available at

every decision epoch. The distinguishing feature of our problem is that, because observations are

obtained from a deteriorating sensor, the quality of observations is not stationary. To incorporate

sensor deterioration, we propose a POMDP model in which the observation matrix depends on

the age of the sensor. In this way, the informativeness of sensor observations can be modeled as

dependent on the sensor age.

More specifically, to model the age-dependent informativeness of sensor observations, we draw

upon the classic work of Blackwell [4, 5] on the comparison of experiments (for a detailed review on

the comparison of experiments, the reader is referred to Le Cam [21]). Blackwell [4, 5] considers a

single-stage decision problem in which a decision maker is to minimize her expected loss, where loss

is a function of the action she chooses and the unknown state of nature. Before selecting an action,

the decision maker, who has a prior belief about the state of nature expressed as a probability

distribution on a set of candidate states, performs an experiment to gather additional information.

This experiment is characterized by a collection of (known) probability distributions, one for each

candidate state, defined over a set of possible outcomes. The actual probability distribution of the

outcome of the experiment is the one associated with the true state of nature. After observing

the outcome of the experiment, the decision maker updates her belief, and then selects an action

to minimize the expected loss given her posterior belief. The minimum a priori expected loss for

the decision problem is obtained by taking the expectation with respect to the outcome of the

experiment. In this context, the question arises of how to compare two experiments defined for the

same set of candidate states in terms of their informativeness. Several methods of comparison have

been suggested. For example, one may define an experiment to be more informative than another

experiment (a) if the former experiment yields a lower minimum a priori expected loss for all prior

beliefs and all loss functions, or (b) if the outcomes of the latter experiment can be represented as
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noise-corrupted outcomes of the former experiment (in which case the latter experiment is also called

a “garbling” of the former). Blackwell [5] proves that the two methods above are equivalent, hence

defining one method for ordering experiments according to their informativeness: the Blackwell

order.

There are some major differences between POMDPs and the decision problem considered by

Blackwell [4, 5]. A POMDP is a multi-stage decision problem in which the partially observable

state changes dynamically over time, and actions do not only influence costs, but also the state

transitions and the observations that are made. Yet, receiving an observation in a POMDP is

similar to performing an experiment. In our POMDP model, the observation matrix associated

with the age of the sensor specifies for both the in-control and the out-of-control state a probability

distribution over possible values of the sensor observation; and upon receiving a sensor observation,

the distribution of which corresponds to the true but unknown state of the system, the probability

that the system is in the out-of-control state is updated. Recognizing this similarity, we adopt the

Blackwell order to impose a relation between the observation matrices implied by different sensor

ages such that sensor observations are less informative if the sensor is older.

The Blackwell order has been used by other researchers to capture informativeness relations

in POMDP models. White and Harrington [42], Rieder [34], and Zhang [43] draw a comparison

between POMDPs that have the same underlying Markov decision process (MDP) but a different

observation process. They use the Blackwell order to show that the more informative observation

process results in a lower total expected discounted cost. The Blackwell order is also employed to

assist in the identification of dominated actions in POMDP models for such diverse applications

as sensor scheduling problems (Krishnamurthy and Djonin [19]) and sequential hypothesis testing

problems with various modes of gathering information (Naghshvar and Javidi [29]). Most related

to our use of the Blackwell order are results in sequential hypothesis testing problems by Lévesque

and Maillart [22], Ulu and Smith [39], and Alizamir et al. [2] that provide conditions under which

the value of gathering additional information decreases over time. In our model, observations also

become less informative over time; however, the option to reset the observation matrix at a cost

(i.e., sensor replacement) introduces a trade-off between informativeness and cost that is present

in none of the aforementioned works.

The remainder of the paper is organized as follows. In Section 2, we present our POMDP

model for the problem of optimally maintaining a safety-critical system and its deteriorating sensor.

Structural results on the optimal policy are established in Section 3, and numerical examples

illustrating the value of coordinating system and sensor maintenance are given in Section 4. In

Section 5, we conclude and suggest directions for further research.
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2 Model Formulation

Consider a safety-critical system whose condition can be classified as either in-control ‘1’ or out-of-

control ‘2’. The system operates over an infinite horizon, over which time is divided into periods

of equal length. The periods are indexed by the set N0 = {0, 1, 2, . . .}. The state of the system

evolves as a discrete-time Markov chain over the state space S = {1, 2} according to transition

probability matrix P = [pij ], i, j ∈ S. In the out-of-control state, the system is exposed to an

increased level of risk. This is quantified by a per-period cost cd > 0 for operating the system

in the out-of-control state. Note that cd represents a penalty cost whose value is determined in a

quantitative risk assessment.

At each transition epoch, a sensor provides a costless, imperfect observation of the state of the

system, which takes a value in the finite observation space O = {0, 1, . . . , y}. To reflect the fact

that the sensor deteriorates over time, the probabilistic relation between the state of the system

and the observation is dependent on the sensor age. That is, the observation matrix Q(t) = [qik(t)],

i ∈ S, k ∈ O, is defined as a function of the sensor age: for sensor age t ∈ N0, qik(t) gives the

probability of observing k ∈ O if the state of the system is i ∈ S. To further formalize that sensor

deterioration decreases the information content of sensor observations, we assume the observation

matrices are ordered according to the Blackwell order (Blackwell [4, 5]).

Definition 1 (Blackwell order). Observation matrix Q is more informative than observation matrix

Q̂, denoted by Q �B Q̂, if there exists a stochastic matrix X such that Q̂ = QX.

We assume that Q(t) �B Q(t+1) and denote by X(t) = [xkl(t)], k, l ∈ O, the stochastic matrix

such that Q(t+ 1) = Q(t)X(t), for all t ∈ N0. Under this assumption, an observation by a sensor

of age t+1 can be regarded as if it were an observation by a sensor of age t to which random noise

has been added through a stochastic transformation by X(t). Hence, the older the sensor, the more

noise its observations contain.

Full inspections cost cs > 0 and yield a perfect observation of the state of the system. If a

full inspection identifies the system to be in the out-of-control state, it is restored to the in-control

state by a replacement at additional cost cr ≥ 0. Both full inspection and system replacement take

negligible time. Furthermore, a full inspection provides the opportunity for a sensor replacement;

it may be decided to replace the sensor by a new one at cost ci > 0. Sensor replacement is also

assumed to take negligible time. All costs are discounted by a factor β ∈ [0, 1) per period. Our aim

is to schedule full inspections and sensor replacements to minimize the total expected discounted

costs associated with system operation, full inspection, system replacement, and sensor replacement

over an infinite horizon.

This problem can be modeled as a POMDP whose underlying state is the pair (i, t) ∈ S × N0,

where i is the state of the system and t is the age of the sensor. Because the sensor observations
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provide imperfect information about the system state, the underlying state is partially observable

and cannot be directly used for decision making. Instead, a belief about the state of the system can

serve, together with the (known) sensor age, as a basis for optimal decision making (cf. Monahan

[28], Smallwood and Sondik [37]). The belief, which we express as the probability that the system

is in the out-of-control state, is updated in a Bayesian manner as sensor observations are received.

Following this approach, we cast the POMDP as an MDP on the information state space Ω =

[0, 1]×N0, where information state (π, t) ∈ Ω denotes that the system is in the out-of-control state

with probability π and the sensor age is t. The action space is given by A = {C,S,R}, where

C denotes “continue operating,” S denotes “full inspection without sensor replacement,” and R

denotes “full inspection with sensor replacement” with the understanding that full inspection also

implies replacing the system if it is in the out-of-control state.

A policy is a rule that prescribes, for any information state, an action to be taken. Suppose at

the start of a period, the information state is (π, t) ∈ Ω. If action C is taken, the following sequence

of events takes place:

1. An immediate expected cost πcd is incurred;

2. The state of the system transitions according to P and the sensor age increments to t+ 1;

3. The sensor provides an observation of the state of the system. The probability of receiving

observation k ∈ O is

σ(k;π, t) = ((1− π)p11 + πp21)q1k(t+ 1) + ((1− π)p12 + πp22)q2k(t+ 1);

4. Having received a sensor observation k ∈ O, σ(k;π, t) > 0, Bayes’ rule is used to update the

probability that the system is in the out-of-control state to

ψ(π, t, k) =
((1 − π)p12 + πp22)q2k(t+ 1)

σ(k;π, t)
.

(We define ψ(π, t, k) = 0 for all k ∈ O such that σ(k;π, t) = 0.) This results in a new

information state (ψ(π, t, k), t + 1) at the beginning of the next period.

Because full inspection, system replacement, and sensor replacement are instantaneous, the se-

quence of events after taking action S or R can be stated in terms of the sequence of events after

taking action C. If action S is taken, an immediate expected cost cs + πcr is incurred, and what

follows is identical to when action C is taken in information state (0, t). If action R is taken, an

immediate expected cost cs + ci + πcr is incurred, and what follows is identical to when action C

is taken in information state (0, 0).

Let V denote the set of all bounded, real-valued functions on Ω, which we refer to as value

functions. The optimal value function V ∗, which gives the minimum total expected discounted cost

as a function of the initial information state, is the unique solution to the optimality equations

V (π, t) = min
a∈A

Ha(π, t, V ) (1)
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for all (π, t) ∈ Ω, where

HC(π, t, V ) = πcd + β
∑

k∈O

σ(k;π, t)V (ψ(π, t, k), t + 1),

HS(π, t, V ) = cs + πcr + β
∑

k∈O

σ(k; 0, t)V (ψ(0, t, k), t + 1),

HR(π, t, V ) = cs + ci + πcr + β
∑

k∈O

σ(k; 0, 0)V (ψ(0, 0, k), 1),

for all (π, t) ∈ Ω and V ∈ V. The optimal policy, which we denote by δ∗, takes action δ∗(π, t) =

argmina∈AH
a(π, t, V ∗) in information state (π, t), for all (π, t) ∈ Ω.

Remark 1. This model excludes the possibility of conducting a site visit to replace the sensor

without a system inspection. That is, we assume that a sensor replacement always comes with

a perfect observation of the state of the system. This is certainly true if a sensor of age 0 yields

perfect observations (i.e., for all k ∈ O, there exists at most one system state i ∈ S such that

qik(0) > 0), when one immediately discerns the state of the system through the sensor. However,

even if a new sensor does not yield perfect observations, its observation might already contain

enough information for a maintenance engineer who is present on-site to obtain a good indication

of the state of the system.

Remark 2. We assume that the system is only replaced if a full inspection identifies the system to

be in the out-of-control state. However, the cost structure also allows us to model scenarios in which

the system is replaced regardless of the inspection outcome, or no inspection is performed before

replacing the system. This special case can be examined by setting cr = 0 and incorporating the

cost of system replacement in cs. The issue of which approach is more cost effective — performing

full inspections at site visits or replacing the system without prior inspection — is not explored

here. Likewise, we do not consider policies that decide dynamically, as a function of the information

state, whether an inspection is performed at a site visit.

3 Structural Results

This section investigates the structural properties of the optimal policy for the POMDP model

described in Section 2. In Section 3.1, we derive a necessary and sufficient condition to characterize

the case in which it is optimal not to apply any maintenance actions (i.e., full inspections with

or without sensor replacement) at all and give a closed-form expression for the associated optimal

value function. For the alternative case where there exist information states in which it is optimal

to perform a maintenance action, in Sections 3.2 and 3.3, we show monotonicity properties of the

optimal value function and characterize the structure of the optimal policy. Finally, in Section 3.4,

we consider the implications of our results when the sensor does not deteriorate. The proofs of the

results are given in the Appendix.
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3.1 Condition for the Optimality of No Maintenance

Intuitively, if the risks associated with operating the system in the out-of-control state are small

relative to the costs of maintenance, it may not be economical to perform maintenance, and the

sensor becomes irrelevant. In Theorem 1, we show that

(1− β(p22 − p12))
−1cd ≤ cs + cr (2)

is a necessary and sufficient condition for it to be optimal to continue operating in all information

states. Also, we provide a closed-form expression for the resulting optimal value function.

Theorem 1. Let the policy δ be defined by δ(π, t) = C for all (π, t) ∈ Ω and the value function V

be defined by

V (π, t) = βp12(1− β)−1(1− β(p22 − p12))
−1cd + π(1− β(p22 − p12))

−1cd (3)

for all (π, t) ∈ Ω. Then, δ = δ∗ and V = V ∗ if and only if condition (2) holds.

From Theorem 1, it is seen that under condition (2), the optimal value function is constant in the

sensor age, as decisions are not adapted to the sensor observations. Also, because 1−β(p22−p12) >

0, it holds that the optimal value function is increasing in the probability that the system is in the

out-of-control state.

3.2 Monotonicity of the Optimal Value Function

In this section, we derive results on the optimal value function when condition (2) does not hold,

i.e.,

(1− β(p22 − p12))
−1cd > cs + cr. (4)

Under condition (4), we cannot obtain a closed-form expression for the optimal value function, but

we can establish results on its form. Our first result (Lemma 1) establishes monotonicity in the

probability that the system is in the out-of-control state. We provide a non-negative lower bound

on the change in the optimal value function as a function of an increase in the probability of the

system being out of control.

Lemma 1. If condition (4) holds, then V ∗(π̂, t)−V ∗(π, t) ≥ (π̂−π)cr for all π, π̂ ∈ [0, 1] such that

π ≤ π̂ and t ∈ N0.

A key observation in the proof of Lemma 1 (see Appendix) is that we may restrict our attention

to problem instances where, for all t ∈ N0, the observation matrix Q(t) is (i) totally positive of

order two (TP2), and (ii) such that, for all k, l ∈ O with k ≤ l, q2k(t) > 0 implies q2l(t) > 0. The

TP2 property is defined as follows (Karlin [17]).
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Definition 2. Observation matrix Q is TP2 if qilqjk ≤ qikqjl for all i, j ∈ S and k, l ∈ O such that

i ≤ j and k ≤ l.

These properties of the observation matrices ((i) and (ii)) guarantee a monotonic relationship

between the current probability that the system is in the out-of-control state, the next sensor ob-

servation, and the updated probability that the system is in the out-of-control state (see Proposition

1 in the Appendix).

Remark 3. Any results on V ∗ or δ∗ derived under conditions (i) and (ii) above apply to the

general case where no assumptions are made on the observation matrices. This is true because,

for every problem instance, there exists another problem instance that satisfies (i) and (ii) and

is equivalent in the sense that V ∗ and δ∗ are identical. The argument proceeds as follows. For a

standard POMDP model, Lovejoy [23, p.739] points out that the optimal value function and the

optimal policy are unaffected by a permutation of the columns of the observation matrix. Lovejoy’s

reasoning extends to our model, where the columns of Q(t) may be permuted for all t ∈ N0. The

crucial point is that the Blackwell order is preserved under column permutations: if, for t ∈ N0,

X(t) is a stochastic matrix such that Q(t + 1) = Q(t)X(t) and if Q̃(t) and Q̃(t + 1) are column

permutations of Q(t) and Q(t + 1), then X̃(t) obtained by permuting the rows and columns of

X(t) accordingly is a stochastic matrix such that Q̃(t+ 1) = Q̃(t)X̃(t). The argument is complete

by noting that because |S| = 2, for every observation matrix Q(t), t ∈ N0, there exists a column

permutation that is TP2 and such that, for all k, l ∈ O with k ≤ l, q2k(t) > 0 implies q2l(t) > 0

— namely, a permutation such that, for some l ∈ O, q2k(t) = 0 for k < l and q1k(t)/q2k(t) is

nonincreasing in k for k ≥ l.

Our second result on the form of the optimal value function (Lemma 2) establishes monotonicity

in the sensor age.

Lemma 2. If condition (4) holds, then V ∗(π, t) is nondecreasing in t for all π ∈ [0, 1].

We note that the result of Lemma 2 holds under both conditions (2) and (4). However, under

condition (2), a more specific result has already been established, namely a closed-form expression

of the optimal value function in which V ∗(π, t) is constant in t for all π ∈ [0, 1].

3.3 Optimal Policy Structure

Building on the results of the previous section, we characterize the structure of the optimal policy

under condition (4) in Theorem 2.

Theorem 2. If condition (4) holds, then the optimal policy has one of the following forms:

(a) For all t ∈ N0, there exists a π∗(t) ∈ [0, 1) such that

δ∗(π, t) =




C, 0 ≤ π ≤ π∗(t),

S, π∗(t) < π ≤ 1.
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(b) There exist t∗ ∈ N0 and, for all t ∈ N0, π
∗(t) ∈ [0, 1) such that, for t ≤ t∗,

δ∗(π, t) =




C, 0 ≤ π ≤ π∗(t),

S, π∗(t) < π ≤ 1,

and for t > t∗,

δ∗(π, t) =




C, 0 ≤ π ≤ π∗(t),

R, π∗(t) < π ≤ 1,

and π∗(t) is nonincreasing in t for t > t∗.

Theorem 2 states that the optimal policy has a threshold structure. For all sensor ages t ∈ N0, it

is optimal to continue operating if the system is known to be in the in-control state (π = 0), and it is

optimal to conduct a full inspection and replace the system if it is known to be in the out-of-control

state (π = 1). Else, if the state of the system is not certain (π ∈ (0, 1)), to justify the setup cost

cs > 0, the probability that the system is in the out-of-control state must exceed a threshold π∗(t)

to conduct a full inspection. For the decision whether to replace the sensor at a full inspection,

there are two possibilities. The first possibility (a) is that the cost ci of a sensor replacement is

prohibitively high and it is never optimal to replace the sensor. The second possibility (b) is that,

because a sensor replacement effects a larger reduction in future expected discounted cost if the

sensor is older, there is a threshold t∗ such that it is optimal to invest ci and replace the sensor if

and only if the sensor age is larger than t∗.

For sensor ages at which it is optimal to replace the sensor at a full inspection, Theorem 2 asserts

that the threshold π∗(t) is nonincreasing in the sensor age t. The intuition is as follows. Given that

a full inspection has the purpose of replacing the sensor as well as eliminating any chance that the

system operates in the out-of-control state in the next period, and the benefit of sensor replacement

increases with the sensor age, less evidence is needed that the system is in the out-of-control state

to conduct a full inspection if the sensor is older. The threshold π∗(t) is not, in general, monotone

over the range of sensor ages for which it is optimal not to replace the sensor at a full inspection.

Without sensor replacement, an older sensor reports noisier observations of the state of the system

after both continue operating and full inspection; the only difference is that the probability that

the system is in the out-of-control state is zero following a full inspection. The consequence of

receiving noisier observations could be that, at a subsequent decision epoch, system operation is

continued whereas with more precise observations the decision would have been to conduct a full

inspection, or vice versa. This effect causes an increase in future expected discounted cost, but it is

unclear whether that increase is higher for π = 0 or any other π ∈ [0, 1]; moreover, this may differ

from one sensor age to the other. Consequently, π∗(t) can be non-monotone in t.

Combining Theorems 1 and 2, we may conclude in general that the optimal policy always has a

threshold structure. That is, the optimal policy under condition (2), as established in Theorem 1,
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can in principle be viewed as having the threshold structure of Theorem 2 with π∗(t) = 1 for all

t ∈ N0.

3.4 Special Case without Sensor Deterioration

A special case arises when the observation matrix does not depend on the sensor age, i.e., Q(t) = Q

for all t ∈ N0, implying that the sensor does not deteriorate. Note that this case satisfies Q(t) �B

Q(t+ 1) because X(t) can be taken to be the identity matrix of size y + 1, for all t ∈ N0. It is of

interest to study the implications of our structural results in this special case because that allows

us to draw a comparison with results available in the literature. These existing results have been

developed for maintenance optimization models that, as discussed in the literature review, do not

incorporate sensor deterioration.

Without sensor deterioration, there is no point in replacing the sensor, and there is also no

reason to adapt decisions to the sensor age. Therefore, in this special case, we may exclude action

R from the action space and drop the sensor age t from the state description, so that actions are to

be taken solely based on the probability π ∈ [0, 1] that the system is in the out-of-control state; we

will refer to the model thus obtained as “the simplified model for the special case without sensor

deterioration.” From Theorems 1 and 2, we have the following corollaries.

Corollary 1. Consider the simplified model for the special case without sensor deterioration. Let

the policy δ be defined by δ(π) = C for all π ∈ [0, 1] and the value function V be defined by

V (π) = βp12(1− β)−1(1− β(p22 − p12))
−1cd + π(1− β(p22 − p12))

−1cd

for all π ∈ [0, 1]. Then, δ∗ = δ and V ∗ = V if and only if condition (2) holds.

Corollary 2. Consider the simplified model for the special case without sensor deterioration. If

condition (4) holds, then there exists a π∗ ∈ [0, 1) such that

δ∗(π) =




C, 0 ≤ π ≤ π∗,

S, π∗ < π ≤ 1.

Closest to the results of Corollaries 1 and 2, in spite of some differences in the model setup,

are results in White [40]. Analogous to our Corollary 1, White’s Theorem 5.10(a) identifies a

necessary and sufficient condition for the optimality of never taking any maintenance action, and

his Lemma 5.9 provides a closed-form expression for the value function attained by this policy. A

combination of three of White’s results corresponds to our Corollary 2: Lemma 5.8 of White [40]

says that the optimal policy has a threshold structure; Lemma 5.7 states that continue operating

is the optimal action if it is certain that the system is in the in-control state; and Theorem 5.10(b)

states that if the condition of Theorem 5.10(a) is not met, (system) replacement is the optimal

action if it is certain that the system is in the out-of-control state.
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The model formulated by White [40] is more general than ours in that it has separate actions for

inspection and replacement and that it allows for the possibility that observations obtained by costly

inspections are imperfect. However, one of the key results for the comparison with Corollaries 1

and 2, Lemma 5.8 in which the threshold structure is established, is derived under the condition

that observations obtained by a costly inspection are less informative than costless observations,

which ensures that it is never optimal to conduct an inspection. Without inspection (because it

is also assumed that the cost of a replacement does not depend on the state of the system) the

model of White [40] reduces to a model similar to ours with cr = 0 (as in Remark 2). That our

results show the optimality of a threshold policy when cr > 0 is important because in practice a

maintenance engineer often first inspects the system to assess the degree of maintenance needed

before taking any actions, and then the cost of maintenance depends on the state of the system.

There is another respect in which Corollaries 1 and 2 are more general than the corresponding

results of White [40]. Whereas White [40] assumes that p22 = 1, we make no assumptions on the

transition probability matrix. Because most systems cannot recover from an out-of-control state

by themselves, this generalization is mainly of theoretical interest.

Other papers provide a less complete characterization of the optimal policy structure or make

at least as strong assumptions on the transition probability matrix and the cost parameters. For

example, Givon and Grosfeld-Nir [12] develop a model for the replacement of TV shows that can

also be applied to the replacement of binary-state systems, and their Proposition 1 is akin to our

Corollary 1, but they assume that cr = 0 and p22 = 1. Structural results by Ohnishi et al. [30] on

the optimal inspection and replacement policy for multi-state systems imply a threshold structure

for the optimal policy in the binary-state case, but their results do not characterize this threshold

structure in the same detail as in Corollaries 1 and 2, and their assumptions require cd ≥ cr and

p22 ≥ p12. The special case we consider here also is a special case of the model of Dada and Marcellus

[7], who distinguish between “routine maintenance” and “learning maintenance.” When the cost

of learning maintenance is so high that such maintenance is never optimal, their Proposition 2 is

similar to our Corollary 1, and their Proposition 7 is similar to our Corollary 2. Their assumptions

include cr = 0 and p22 = 1.

4 Value of Coordinating System and Sensor Maintenance

Theorem 2 of Section 3.3 shows that the optimal policy coordinates system and sensor maintenance,

if it is ever optimal to replace the sensor. On the one hand, when the sensor age exceeds t∗, and

it is optimal to replace the sensor at the earliest opportunity, a full inspection is performed only

if the probability that the system is out of control justifies doing so. On the other hand, the

threshold for performing a full inspection, π∗(t), is adapted to the sensor age t in that it is lower

when the benefit of sensor replacement is higher, i.e., π∗(t) decreases in t for t > t∗. To assess
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the value of coordinating system and sensor maintenance, in this section we present numerical

examples to benchmark the optimal policy against two heuristic policies that apply a weaker form

of coordination.

4.1 Heuristics

The first heuristic policy, termed heuristic H1, relaxes the coordination between system and sensor

maintenance by using a sensor-age-independent threshold on π. Specifically, heuristic H1 is defined

as the best policy (yielding the lowest total expected discounted cost for initial information state

(0, 0)) within the class of policies that can be described by a threshold πH1 ∈ [0, 1] as

δ(π, t) =




C, π ≤ πH1 ,

S, π > πH1 ,

or by thresholds πH1 ∈ [0, 1] and tH1 ∈ N0 as

δ(π, t) =





C, π ≤ πH1 ,

S, π > πH1 , t ≤ tH1 ,

R, π > πH1 , t > tH1 .

(5)

Thus, heuristic H1 prescribes a full inspection whenever π > πH1 , and the sensor is either never

replaced, or replaced at every full inspection when the sensor age exceeds a threshold tH1 . This

heuristic is system-directed in the sense that it is the probability that the system is in the out-of-

control state that determines whether or not a full inspection is conducted, and the threshold πH1

is not adapted to the sensor age. We denote its total expected discounted cost, as a function of the

initial information state (π, t) ∈ Ω, by V H1(π, t).

The second heuristic policy, termed heuristic H2, conducts a full inspection if either π exceeds

a sensor-age-independent threshold, or t exceeds an age threshold, or both. Specifically, heuristic

H2 is the best policy within the class of policies described by a threshold πH2 ∈ [0, 1] as

δ(π, t) =




C, π ≤ πH2 ,

S, π > πH2 ,

or by thresholds πH2 ∈ [0, 1] and tH2 ∈ N0 as

δ(π, t) =





C, π ≤ πH2 , t ≤ tH2 ,

S, π > πH2 , t ≤ tH2 ,

R, t > tH2 .

Under this heuristic, the sensor is replaced periodically because either it is never replaced (i.e., the

interval between sensor replacements is infinite), or a full inspection with sensor replacement is
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performed every tH2 + 1 periods. A full inspection without sensor replacement is performed when

π > πH2 if the sensor age is tH2 or lower, or if the sensor is never replaced. This heuristic employs

the least coordination between system and sensor maintenance: the only coordination is when the

sensor age prompts a full inspection to replace the sensor, the system is also replaced if it is found

to be in the out-of-control state. We denote its total expected discounted cost, as a function of the

initial information state (π, t) ∈ Ω, by V H2(π, t).

We note that in exchange for sacrificing coordination between system and sensor maintenance,

the heuristic policies have a simpler structure, leading to easier implementation. In the heuristic

H1, the milder form of coordination eliminates the need to store a different threshold value for each

sensor age. Heuristic H2 has the additional advantage that some full inspections can be planned in

advance.

4.2 Solution Method

If condition (2) is satisfied, then Theorem 1 provides a closed-form expression for the optimal value

function and indicates that it is optimal to never apply any maintenance. Since the heuristic policies

achieve the same behavior by setting πH1 = πH2 = 1, the optimal policy and the heuristics coincide.

However, here we will be interested in settings in which condition (4) is satisfied. Therefore, we

need methods to compute the optimal and heuristic policies numerically.

Our numerical examples consider instances in which, at some sensor age, the sensor stops

deteriorating and reaches a stationary level of informativeness. That is, there exists a minimum

sensor age tmax such that Q(t) = Q(tmax ) for all t ≥ tmax . As an example of the stationary level of

informativeness that may be reached, sensor observations are completely uninformative beyond tmax

if the observation matrix Q(t), t ≥ tmax , has identical rows, i.e., q1k(t) = q2k(t) for all k ∈ O (it then

holds that Q̂ �B Q(t) for all observation matrices Q̂). Given that sensor observations are equally

informative for all sensor ages t ≥ tmax , in our numerical examples, we truncate the countably

infinite state space S × N0 to the finite state space S × {0, 1, . . . , tmax}, in which we reinterpret

the sensor age in states (i, tmax ), i ∈ S, as being larger than or equal to tmax . Consequently, the

information state space is denoted by Ω̃ = [0, 1] × {0, 1, . . . , tmax}.

Unfortunately, infinite-horizon POMDP models are computationally intractable, even with a

finite underlying state space. Although methods have been developed to compute ǫ-optimal policies

(see overviews by Lovejoy [24] and Poupart [31]), these have limited applicability, as the computa-

tional burden grows exponentially with the cardinality of the observation space, as well as the state

and action spaces. Grid-based approximation techniques are a widely used alternative (Lovejoy

[24], Hauskrecht [16]). The basic idea is to approximate the optimal value function using interpo-

lation between a finite number of grid points in the information state space, and then to derive an

approximate optimal policy. It is this approach that we will use to solve the numerical examples.
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One reason why it is especially attractive to use grid-based techniques for our model is that

we have two possible system states. Generally, in a uniform grid, an increase in grid resolution

(i.e., the number of intervals in which each dimension of the belief space is subdivided) leads to

an exponential growth of the number of grid points (Hauskrecht [16]); however, in our case, the

belief about the state of the system is expressed as a scalar, and the number of grid points and the

associated computational requirements grow only linearly in the resolution. Another advantage is

that by choosing different interpolation rules, we can utilize the structural results of Section 3 to

generate bounds on the optimal value function. Finally, we can easily evaluate a given policy using

a grid-based approximation, which is useful for constructing and evaluating the heuristic policies

(since that requires identification of the best policy within a class of policies); for evaluating a given

policy no exact method is known to exist (Hansen [15]).

To facilitate the exposition of the solution method described below, we define the function

H by H(π, t, V ) = mina∈AH
a(π, t, V ) for all (π, t) ∈ Ω̃ and V ∈ V, so that we can succinctly

write the optimality equations in (1) as V (π, t) = H(π, t, V ) for all (π, t) ∈ Ω̃. Our grid-based

approach is then detailed as follows. Initially, we set a grid resolution z ∈ N and define a set

of z + 1 equally spaced points in the interval [0, 1], G = {0, 1/z, . . . , 1}, to construct the uniform

grid Ω̄ = G × {0, 1, . . . , tmax}. For deriving a lower bound on the optimal value function, following

Lovejoy [25], we replace the function H in the optimality equations with another function HL that

performs a dynamic programming update only at grid points in Ω̄ and applies linear interpolation

in between. That is, for all V ∈ V, HL is defined by HL(π, t, V ) = H(π, t, V ) for (π, t) ∈ Ω̄ and

HL(π, t, V ) = (⌈πz⌉ − πz)H(⌊πz⌋/z, t, V ) + (πz − ⌊πz⌋)H(⌈πz⌉/z, t, V )

for (π, t) ∈ Ω̃ \ Ω̄, where ⌈πz⌉ denotes the smallest integer larger than or equal to πz, and ⌊πz⌋

denotes the largest integer smaller than or equal to πz. The set of equations V (π, t) = HL(π, t, V )

for all (π, t) ∈ Ω̃ are the optimality equations associated with an MDP in which updating the

belief about the state of the system is done by stochastically rounding the output of Bayes’ rule

to one of the nearest elements in G. We use a non-convex interpolation rule (in the terminology

of Hauskrecht [16]) to derive an upper bound. For all V ∈ V, the function HU is defined by

HU (π, t, V ) = H(π, t, V ) for (π, t) ∈ Ω̄ and

HU (π, t, V ) = H(⌈πz⌉/z, t, V )− (⌈πz⌉/z − π)cr

for (π, t) ∈ Ω̃ \ Ω̄. The set of equations V (π, t) = HU (π, t, V ) for all (π, t) ∈ Ω̃ are the optimality

equations associated with an MDP in which the output of Bayes’ rule is rounded up and the

immediate expected cost of all actions is lowered. The following theorem states the relationship

between the solutions to the optimality equations obtained using HL, H, and HU .

Theorem 3. Let VL and VU be value functions such that VL(π, t) = HL(π, t, VL) and VU (π, t) =
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HU (π, t, VU ) for all (π, t) ∈ Ω̃. If condition (4) holds, then VL(π, t) ≤ V ∗(π, t) ≤ VU (π, t) for all

(π, t) ∈ Ω̃.

The proof of Theorem 3, which is in the Appendix, uses general principles for POMDPs to

establish the validity of the lower bound. That VU provides an upper bound is specific to our

problem and relies on the analytical result on the form of the optimal value function obtained in

Lemma 1.

We use value iteration algorithms based on the functions HL and HU to compute the value

functions VL and VU as defined in Theorem 3. These algorithms converge to VL and VU and require

computing values of the iterates VL,n and VU,n, in all iterations n ∈ N, only at grid points in Ω̄ (cf.

Hauskrecht [16]). Upon terminating with bounds on the optimal value function, we construct an

approximate optimal policy δ̄∗ using the lower bound. We let δ̄∗(π, t) = argmina∈AH
a
L(π, t, VL)

for all (π, t) ∈ Ω̃, where we define, for all a ∈ A and V ∈ V, Ha
L(π, t, V ) = Ha(π, t, V ) for (π, t) ∈ Ω̄

and

Ha
L(π, t, V ) = (⌈πz⌉ − πz)Ha(⌊πz⌋/z, t, V ) + (πz − ⌊πz⌋)Ha(⌈πz⌉/z, t, V )

for (π, t) ∈ Ω̃ \ Ω̄.

To obtain an approximation for heuristic H1, we enumerate all policies determined by the

threshold values (πH1 , tH1) ∈ Ω̄ via (5). (This search space includes policies in which the sensor is

never replaced — with the truncated state space, this behavior is achieved by setting tH1 = tmax .)

For each policy δ, we approximate its total expected discounted cost by computing the value

function V̄ δ that satisfies V̄ δ(π, t) = H
δ(π,t)
L (π, t, V̄ δ) for all (π, t) ∈ Ω̃. Thus, we solve a system of

|Ω̄| linear equations to obtain V̄ δ(π, t) for all (π, t) ∈ Ω̄ and use linear interpolation to determine

V̄ δ(π, t) for all (π, t) ∈ Ω̃ \ Ω̄. We take as the approximate H1 heuristic the policy δ that yields

the lowest value of V̄ δ(0, 0) and let V̄ H1 = V̄ δ be the corresponding approximate total expected

discounted cost. An analogous procedure is used to obtain the approximate H2 heuristic and its

approximate total expected discounted cost V̄ H2 .

4.3 Numerical Examples

Considered are two examples, which both use the discount factor β = 0.999. As announced in

Section 4.2, the other problem parameters are chosen such that condition (4) is satisfied; therefore,

the optimal policies have the structure described in Theorem 2. We compute the (approximate)

optimal policy using z = 5000 and the (approximate) heuristic policy H1 and heuristic policy H2

using z = 500 as the grid resolution. Optimality gaps of the heuristic policies are calculated via

(V̄ H1(0, 0) − VL(0, 0))/VL(0, 0) and (V̄ H2(0, 0) − VL(0, 0))/VL(0, 0).

Example 1. Let the cost parameters be cd = 100, cs = 75, cr = 50, and ci = 20, and let the state
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of the system evolve according to the transition probability matrix

P =

(
0.9 0.1

0 1

)
.

Suppose that the sensor observation is binomially distributed with parameters y and pi(t), where

pi(t) depends on the state of the system i ∈ S and the sensor age t ∈ N0. Thus, for all t ∈ N0, the

elements of observation matrix Q(t) are given by

qik(t) =

(
y

k

)
pi(t)

k(1− pi(t))
y−k,

for all i ∈ S, k ∈ O. Let y = 50, and let p1(t) = 0.4+0.015t and p2(t) = 0.7−0.015t for t ≤ 10, and

p1(t) = p2(t) = 0.55 for t > 10. This implies that the sensor stops deteriorating at age tmax = 10,

and when the sensor’s age is higher than 10, its observations are completely uninformative.

[Figure 1 about here.]

With p1(t) ≤ p2(t) for all t ∈ N0, if p1(t) is increasing in t and p2(t) is decreasing in t, as

in this example, then sensor observations become less discriminatory as the sensor ages; Figure 1

illustrates how the conditional probability distributions of the sensor observation, given the state

of the system, converge as t increases to tmax . Intuitively, this means that the performance of the

sensor decreases over time, i.e., the sensor is subject to deterioration. Indeed, it can be established

that the assumption Q(t) �B Q(t+ 1), for all t ∈ N0, is satisfied. One can verify that for t < tmax

the matrix X(t) with elements

xkl(t) =

min{l,y−k}∑

w=max{l−k,0}

(
k

l −w

)
ξ(t)l−w(1− ξ(t))k−l+w

(
y − k

w

)
ζ(t)w(1− ζ(t))y−k−w (6)

for all k, l ∈ O, where

ξ(t) =
p2(t+ 1)− p1(t+ 1) + p1(t+ 1)p2(t)− p1(t)p2(t+ 1)

p2(t)− p1(t)
,

ζ(t) =
p1(t+ 1)p2(t)− p1(t)p2(t+ 1)

p2(t)− p1(t)
,

is a stochastic matrix such that Q(t + 1) = Q(t)X(t). For t ≥ tmax , X(t) can simply be taken to

be the identity matrix of dimension y + 1.

The elements of the matrix X(t) defined via (6) can be given a probabilistic interpretation.

The idea is that an observation by a sensor of age t + 1, which may be seen as the outcome of

a binomial experiment with y trials and success probability pi(t + 1), may also be viewed as the

outcome of a two-stage experiment. The first stage is a binomial experiment with y trials and

success probability pi(t), whose outcome corresponds to an observation by a sensor of age t, and

the second stage adds random noise. Specifically, in the second stage, a success trial is changed to a
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failure with probability 1− ξ(t) and unchanged with probability ξ(t), and a failure trial is changed

to a success with probability ζ(t) and unchanged with probability 1− ζ(t). (That ξ(t) and ζ(t) are

in [0, 1] follows from our assumptions on p1(t) and p2(t).) The equivalence holds because ξ(t) and

ζ(t) are such that pi(t)ξ(t) + (1 − pi(t))ζ(t) = pi(t+ 1) for all i ∈ S. It is important to note that,

conditionally on the number of successes in the first stage, the outcome of the two-stage experiment

is independent of the state of the system i ∈ S. Therefore, the relationship Q(t+1) = Q(t)X(t) can

be satisfied by letting xkl(t), for all k, l ∈ O, be the conditional probability that, given that the first

stage resulted in k successes, the outcome of the experiment is l. Since the experiment’s outcome

is distributed as the sum of two independent binomial random variables, one with parameters k

and ξ(t) and one with parameters y − k and ζ(t), application of the discrete convolution formula

yields Equation (6).

[Figures 2–4 about here.]

The optimal policy, the H1 heuristic policy, and the H2 heuristic policy for this example are

depicted in Figures 2–4. It can be seen that in the optimal policy, when a full inspection is

conducted, the sensor is replaced if its age is higher than t̄∗ = 2. Furthermore, in accordance with

Theorem 2, the threshold π̄∗(t) is nonincreasing in t for t > t̄∗; it is lowest when the sensor age

is tmax = 10 or higher. The policy structure also exemplifies that, as we discussed in Section 3.3,

the threshold π̄∗(t) may not be monotone in t for t ≤ t̄∗. Looking at the heuristic policies, we

see that heuristic H1 uses similar threshold values as the optimal policy. The sensor age threshold

is the same (t̄H1 = t̄∗), and the threshold on the probability that the system is in the out-of-

control state is between the lowest and highest value of the optimal sensor-age-dependent threshold

(mint π̄
∗(t) < π̄H1 < maxt π̄

∗(t)). The H2 heuristic uses much higher threshold values (t̄H2 > t̄∗,

while π̄H2 is close to maxt π̄
∗(t)). The differences in performance are in line with these policy

differences: for initial information state (0, 0), the bounds on the total expected discounted cost

under the optimal policy are VL(0, 0) = 23,931.7 and VU (0, 0) = 23,946.8, and the heuristic policies

achieve total expected discounted costs V̄ H1(0, 0) = 24,175.1 and V̄ H2(0, 0) = 26,781.9. Thus,

whereas the optimality gap of the H1 heuristic is only 1.0%, using heuristic H2 results in an

increase in total expected discounted cost of 11.9% relative to the optimal policy.

The policy differences between the H2 heuristic and the optimal policy observed in Example 1,

as well as the corresponding difference in performance, can be explained as follows. Using this

heuristic policy, when the sensor age exceeds tH2 , a full inspection with sensor replacement is

always performed. However, if there is no indication that the system is in the out-of-control

state, conducting a full inspection is inefficient, and it is more beneficial to continue operation and

postpone full inspection. Therefore, to diminish the chance that the probability that the system is

in the out-of-control state is very small when the sensor age reaches tH2 +1, a relatively high value

is used for tH2 . Consequently, for some sensor ages less than tH2 + 1, the sensor is not replaced at
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a full inspection while, given that a full inspection is conducted, it would have been beneficial to

do so. Hence full inspections are less attractive, so the value for πH2 is also relatively high.

Realistically, for a safety-critical system, the optimal thresholds on the probability that the

system is in the out-of-control state might be considerably lower than in Example 1. Therefore, in

the next example, we choose parameter values for which the thresholds are lower. It turns out that

the comparison between the policies remains virtually the same.

Example 2. Let the cost parameters be cd = 500, cs = 50, cr = 100, and ci = 10, and let the state

of the system evolve according to the transition probability matrix

P =

(
0.98 0.02

0 1

)
.

Suppose that the sensor observation is binomially distributed with parameters Y and pi, where Y

is itself a binomially distributed random variable with parameters y and θ(t), pi depends on the

state of the system i ∈ S, and θ(t) depends on the sensor age t ∈ N0. This compound distribution

is in fact equivalent to a binomial distribution with parameters y and piθ(t), so for all t ∈ N0, the

elements of observation matrix Q(t) are given by

qik(t) =

(
y

k

)
(piθ(t))

k(1− piθ(t))
y−k,

for all i ∈ S, k ∈ O. Let y = 50, let p1 = 0.3 and p2 = 0.6, and let θ(t) = 1 − 0.1t for t ≤ 10,

and θ(t) = 0 for t > 10. Thus, again, sensor deterioration ends at sensor age tmax = 10, and

observations from an older sensor are completely uninformative.

[Figure 5 about here.]

If θ(t) is decreasing in t, as in this example, then the sensor generates a weaker signal as it

ages (the random variable Y is stochastically smaller for a higher sensor age t), resulting in lower

observations. Figure 5 depicts how, for both states of the system, the sensor observation gets

stochastically smaller over time until it equals zero with probability 1. That sensor observations

carry less information with a weaker signal is intuitive. It can be established that the assumption

that, for all t ∈ N0, Q(t) �B Q(t + 1) is satisfied by verifying that, for t < tmax , the matrix X(t)

with elements

xkl(t) =





(
k
l

) (θ(t+1)
θ(t)

)l (
1− θ(t+1)

θ(t)

)k−l

, k ≥ l,

0, k < l,

is a stochastic matrix such that Q(t + 1) = Q(t)X(t). This matrix corresponds to a similar

noise corruption of sensor observations as was described in Example 1, but now with parameters

ξ(t) = θ(t+ 1)/θ(t) and ζ(t) = 0.

[Figures 6–8 about here.]
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Figures 6–8 respectively depict the optimal policy, the H1 heuristic policy, and the H2 heuristic

policy. The H2 policy deviates more from the optimal policy and uses higher threshold values

than the H1 policy. The total expected discounted cost is bounded by VL(0, 0) = 11,507.2 and

VU (0, 0) = 11,574.6 for the optimal policy, and is V̄ H1(0, 0) = 11,684.1 and V̄ H2(0, 0) = 13,208.5

for the heuristics, showing that the optimality gap of the H2 heuristic (14.8%) is significantly larger

than that of the H1 heuristic (1.5%).

5 Conclusions

In this paper, we have studied the joint optimal system and sensor maintenance policy for a safety-

critical system monitored by a deteriorating sensor. We developed a POMDP model to address

the problem of scheduling full inspections and sensor replacements to minimize the infinite-horizon

total expected discounted cost. In it, sensor deterioration is modeled by means of the Blackwell

order. We derived a necessary and sufficient condition for the optimality of never applying any

maintenance, and we showed that, in general, the optimal policy has a threshold structure with

respect to the probability that the system is in the out-of-control state and the sensor age. These

structural results are theoretically relevant also for the special case without sensor deterioration.

Additionally, we provided numerical examples to highlight how the total expected discounted cost

increases with a lower degree of coordination between system and sensor maintenance.

In the setting we studied, only one sensor is used to monitor the state of a safety-critical system.

However, many condition monitoring systems combine multiple sensors to measure the state of a

system. Therefore, a natural direction for future research is to examine an extension of our model

in which the safety-critical system can be monitored by multiple deteriorating sensors, or a combi-

nation of deteriorating and non-deteriorating sensors. Computation of the (approximate) optimal

policy may become difficult because the age of all deteriorating sensors needs to be considered

in deciding on maintenance actions, and as such, most dynamic programming methods will suffer

from the curse of dimensionality. Yet, it might be possible to achieve an acceptable performance

with approximate dynamic programming methods. More importantly, we expect that sensor main-

tenance and coordination between system and sensor maintenance will still be important elements

of the optimal maintenance policy, and that such insights could help to guide the development of

effective heuristic policies.

It would also be interesting to consider alternate forms of sensor deterioration. We assumed that

the sensor observations only depend on the state of the system, according to a probabilistic relation

determined by the sensor age. Although this assumption is convenient because it allows decisions

to be based on the probability that the system is in the out-of-control state and the (known)

sensor age, in reality sensor observations might also depend on previous sensor observations, and

the relation between sensor observations and the state of the system might change randomly as
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the sensor ages. Finally, whereas our focus was on binary-state systems, future research could

investigate the optimal maintenance policy when the condition of the system can be classified into

multiple states. At a full inspection, it will then need to be decided whether or not to replace the

system and the sensor depending on the state in which the system is found.
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Appendix

Proof of Theorem 1. For notational brevity, define d ≡ βp12(1−β)−1(1−β(p22− p12))
−1cd and

b ≡ (1−β(p22 − p12))
−1cd. Then, the value function in (3) can be expressed as V (π, t) = d+πb for

all (π, t) ∈ Ω and condition (2) can be written as b ≤ cs+cr. It is easy to verify that d = β(d+p12b)

and b = cd + β(p22 − p12)b. Therefore, for all (π, t) ∈ Ω,

HC(π, t, V ) = πcd + β
∑

k∈O

σ(k;π, t)V (ψ(π, t, k), t + 1)

= πcd + β
∑

k∈O

σ(k;π, t)(d + ψ(π, t, k)b)

= πcd + βd+ β
∑

k∈O

((1 − π)p12 + πp22)q2k(t+ 1)b

= πcd + βd+ βp12b+ πβ(p22 − p12)b = d+ πb;

HS(π, t, V ) = HC(0, t, V ) + cs + πcr = d+ cs + πcr;

HR(π, t, V ) = HC(0, 0, V ) + cs + ci + πcr = d+ cs + ci + πcr.

Note that V (π, t) = HC(π, t, V ) for all (π, t) ∈ Ω; thus, V gives the total expected discounted cost

attained by policy δ. Next, we check whether V satisfies the optimality equations. If condition (2)

holds, then

min
a∈A

Ha(π, t, V ) = HC(π, t, V ) = V (π, t)

for all (π, t) ∈ Ω, so we conclude that δ = δ∗ and V = V ∗. If condition (2) does not hold, then

min
a∈A

Ha(1, t, V ) = HS(1, t, V ) < V (1, t)

for all t ∈ N0, so we conclude that δ 6= δ∗ and V > V ∗, meaning V (π, t) ≥ V ∗(π, t) for all (π, t) ∈ Ω

with strict inequality for some (π, t) ∈ Ω (in particular, V (1, t) > V ∗(1, t) for all t ∈ N0).

The proof of Lemma 1 will employ the monotonic relationships established in the following

proposition.

Proposition 1. Let t ∈ N0. Suppose Q(t + 1) is TP2 and such that, for all k, l ∈ O with k ≤ l,

q2k(t+ 1) > 0 implies q2l(t+ 1) > 0.

(i) Let π ∈ [0, 1] and k, l ∈ O such that k ≤ l. Then ψ(π, t, k) ≤ ψ(π, t, l).

(ii) Let π, π̂ ∈ [0, 1] such that π ≤ π̂ and k ∈ O. If p22 ≥ (≤) p12, then ψ(π, t, k) ≤ (≥) ψ(π̂, t, k).

(iii) Let π, π̂ ∈ [0, 1] such that π ≤ π̂ and l ∈ O. If p22 ≥ (≤) p12, then
∑

k≥l σ(k;π, t) ≤

(≥)
∑

k≥l σ(k; π̂, t).

Proof of Proposition 1.
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(i) Clearly, if ψ(π, t, k) = 0, then ψ(π, t, k) ≤ ψ(π, t, l). Else if ψ(π, t, k) > 0, it must be that

q2k(t+ 1) > 0 and, therefore, q2l(t+ 1) > 0. Consequently, the TP2 property of Q(t+ 1) can

be used to obtain

1− ψ(π, t, k)

ψ(π, t, k)
=

(
(1− π)p11 + πp21
(1− π)p12 + πp22

)(
q1k(t+ 1)

q2k(t+ 1)

)

≥

(
(1− π)p11 + πp21
(1− π)p12 + πp22

)(
q1l(t+ 1)

q2l(t+ 1)

)
=

1− ψ(π, t, l)

ψ(π, t, l)
,

which implies ψ(π, t, k) ≤ ψ(π, t, l).

(ii) Suppose p22 ≥ p12. Clearly, if ψ(π, t, k) = 0, then ψ(π, t, k) ≤ ψ(π̂, t, k). Else if ψ(π, t, k) > 0,

because π(p21 − p11) ≥ π̂(p21 − p11) and π(p22 − p12) ≤ π̂(p22 − p12),

1− ψ(π, t, k)

ψ(π, t, k)
=

(
(1− π)p11 + πp21
(1− π)p12 + πp22

)(
q1k(t+ 1)

q2k(t+ 1)

)

≥

(
(1− π̂)p11 + π̂p21
(1− π̂)p12 + π̂p22

)(
q1k(t+ 1)

q2k(t+ 1)

)
=

1− ψ(π̂, t, k)

ψ(π̂, t, k)
,

which implies ψ(π, t, k) ≤ ψ(π̂, t, k). The proof for the case p22 ≤ p12 is analogous.

(iii) By the TP2 property of Q(t+ 1),
∑

k≥l q1k(t+ 1) ≤
∑

k≥l q2k(t+ 1) (see, e.g., Proposition 1

in Albright [1]). Therefore, if p22 ≥ (≤) p12,

∑

k≥l

(σ(k;π, t) − σ(k; π̂, t)) = (π − π̂)(p21 − p11)
∑

k≥l

q1k(t+ 1)

+ (π − π̂)(p22 − p12)
∑

k≥l

q2k(t+ 1)

= (π − π̂)(p22 − p12)
∑

k≥l

(q2k(t+ 1)− q1k(t+ 1)) ≤ (≥) 0.

In the proof of Lemma 1, we will also make use of the following technical result (cf. Puterman

[32], Lemma 4.7.2).

Proposition 2. Let f and g be probability mass functions on O such that
∑

k≥l f(k) ≤
∑

k≥l g(k)

for all l ∈ O. Then
∑

k∈O f(k)h(k) ≤
∑

k∈O g(k)h(k) for all nondecreasing functions h : O → R.

Proof of Lemma 1. We assume without loss of generality that Q(t) satisfies the condition of

Proposition 1 for all t ∈ N0 (see Remark 3). The proof proceeds by induction on the iterates of the

value iteration algorithm (see Puterman [32], Section 6.3). We denote by Vn the value function at

the nth iteration, for all n ∈ N0. We let V0 be defined as in (3). The successive value functions

are obtained through the dynamic programming recursion Vn+1(π, t) = mina∈AH
a(π, t, Vn) for all

(π, t) ∈ Ω, for all n ∈ N0. Two cases must be distinguished: (a) p22 ≥ p12 and (b) p22 < p12.

Case (a) p22 ≥ p12. We will prove that, in all iterations n ∈ N0,

Vn(π̂, t)− Vn(π, t) ≥ (π̂ − π)cr (7)
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for all π, π̂ ∈ [0, 1] such that π ≤ π̂ and t ∈ N0. In iteration 0, inequality (7) is valid because

(1 − β(p22 − p12))
−1cd > cr by condition (4). We make the induction hypothesis that (7) holds in

iteration m. In iteration m+ 1, for all π, π̂ ∈ [0, 1] such that π ≤ π̂ and t ∈ N0,

HC(π̂, t, Vm)−HC(π, t, Vm) = (π̂ − π)cd + β
∑

k∈O

σ(k; π̂, t)Vm(ψ(π̂, t, k), t + 1)

− β
∑

k∈O

σ(k;π, t)Vm(ψ(π, t, k), t + 1). (8)

The key to the induction step is to determine a lower bound on (8). For that, we bound the second

term on the right-hand side:

β
∑

k∈O

σ(k; π̂, t)Vm(ψ(π̂, t, k), t+ 1)

≥ β
∑

k∈O

σ(k; π̂, t)
[
Vm(ψ(π, t, k), t + 1) + (ψ(π̂, t, k) − ψ(π, t, k))cr

]
(9)

= β((1 − π̂)p12 + π̂p22)cr + β
∑

k∈O

σ(k; π̂, t)
[
Vm(ψ(π, t, k), t + 1)− ψ(π, t, k)cr

]

≥ β((1 − π̂)p12 + π̂p22)cr + β
∑

k∈O

σ(k;π, t)
[
Vm(ψ(π, t, k), t + 1)− ψ(π, t, k)cr

]
(10)

= (π̂ − π)β(p22 − p12)cr + β
∑

k∈O

σ(k;π, t)Vm(ψ(π, t, k), t + 1).

Inequality (9) follows from Proposition 1(ii) and the induction hypothesis. Proposition 2 can be

applied to obtain inequality (10), using Proposition 1(iii) and the fact that, by Proposition 1(i) and

the induction hypothesis, Vm(ψ(π, t, k), t + 1)− ψ(π, t, k)cr is nondecreasing in k. Thus, we have

HC(π̂, t, Vm)−HC(π, t, Vm) ≥ (π̂ − π) (cd + β(p22 − p12)cr) . (11)

Using that cd + β(p22 − p12)cr > cr by condition (4), we can complete the induction step. For all

π, π̂ ∈ [0, 1] such that π ≤ π̂ and t ∈ N0,

Vm+1(π̂, t)− Vm+1(π, t) = min
a∈A

Ha(π̂, t, Vm)−min
a∈A

Ha(π, t, Vm)

≥ min
a∈A

(Ha(π̂, t, Vm)−Ha(π, t, Vm))

≥ min{(π̂ − π) (cd + β(p22 − p12)cr) , (π̂ − π)cr, (π̂ − π)cr}

= (π̂ − π)cr,

showing that (7) holds in iteration m+1. By induction, we conclude that (7) holds in all iterations

n ∈ N0, and the result follows by noting that V ∗ = limn→∞ Vn.

Case (b) p22 < p12. We repeat the steps taken in case (a), but for the induction to go through,

we now need to strengthen the induction hypothesis by additionally propagating an upper bound

on Vn(π̂, t)− Vn(π, t). We will prove that, in all iterations n ∈ N0,

(π̂ − π)cr ≤ Vn(π̂, t)− Vn(π, t) ≤ (π̂ − π)(cd + β(p22 − p12)cr) (12)
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for all π, π̂ ∈ [0, 1] such that π ≤ π̂ and t ∈ N0. Note that the base case (i.e., (12) holds in iteration

0) is still obtained directly from condition (4): if p22 < p12, then by applying this condition twice,

we obtain

cr < (1− β(p22 − p12))
−1cd = cd + β(p22 − p12)(1− β(p22 − p12))

−1cd ≤ cd + β(p22 − p12)cr.

We make the induction hypothesis that (12) holds in iteration m. In iteration m + 1, we wish to

bound HC(π̂, t, Vm)−HC(π, t, Vm) for all π, π̂ ∈ [0, 1] such that π ≤ π̂ and t ∈ N0. When we apply

the same method as in case (a), the inequalities (9) and (10) reverse in accordance with the sign

changes in parts (ii) and (iii) of Proposition 1. This yields an upper bound

HC(π̂, t, Vm)−HC(π, t, Vm) ≤ (π̂ − π) (cd + β(p22 − p12)cr) .

A lower bound can be obtained by a similar derivation, with the difference that (again, as a

consequence of the sign changes in Proposition 1) the upper bound of the induction hypothesis

must be used. We get

β
∑

k∈O

σ(k; π̂, t)Vm(ψ(π̂, t, k), t+ 1)

≥ β
∑

k∈O

σ(k; π̂, t)
[
Vm(ψ(π, t, k), t + 1) + (ψ(π̂, t, k) − ψ(π, t, k))(cd + β(p22 − p12)cr)

]

= β((1 − π̂)p12 + π̂p22)(cd + β(p22 − p12)cr)

+ β
∑

k∈O

σ(k; π̂, t)
[
Vm(ψ(π, t, k), t + 1)− ψ(π, t, k)(cd + β(p22 − p12)cr)

]

≥ β((1 − π̂)p12 + π̂p22)(cd + β(p22 − p12)cr)

+ β
∑

k∈O

σ(k;π, t)
[
Vm(ψ(π, t, k), t + 1)− ψ(π, t, k)(cd + β(p22 − p12)cr)

]

= (π̂ − π)β(p22 − p12)(cd + β(p22 − p12)cr) + β
∑

k∈O

σ(k;π, t)Vm(ψ(π, t, k), t + 1);

therefore,

HC(π̂, t, Vm)−HC(π, t, Vm) ≥ (π̂ − π) [cd + β(p22 − p12)(cd + β(p22 − p12)cr)] .

To complete the induction step, we notice that by condition (4),

cd + β(p22 − p12)(cd + β(p22 − p12)cr) = (1 + β(p22 − p12))cd + (β(p22 − p12))
2cr

> (1 + β(p22 − p12))(1 − β(p22 − p12))cr + (β(p22 − p12))
2cr

= cr,

so Vm+1(π̂, t)− Vm+1(π, t) ≥ (π̂ − π)cr follows in the same way as in part (a). Furthermore, using
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that cr < cd + β(p22 − p12)cr by condition (4), we have

Vm+1(π̂, t)− Vm+1(π, t) = min
a∈A

Ha(π̂, t, Vm)−min
a∈A

Ha(π, t, Vm)

≤ max
a∈A

(Ha(π̂, t, Vm)−Ha(π, t, Vm))

≤ max{(π̂ − π) (cd + β(p22 − p12)cr) , (π̂ − π)cr, (π̂ − π)cr}

= (π̂ − π) (cd + β(p22 − p12)cr) .

This shows that (12) holds in iteration m + 1. By induction, we conclude that (12) holds in all

iterations n ∈ N0, and the result follows by noting that V ∗ = limn→∞ Vn.

For the proof of Lemma 2, it is useful to recall a central result in the theory of POMDPs

by Smallwood and Sondik [37]. They consider a general POMDP formulation where rewards are

maximized and show that the total expected discounted reward over a finite horizon is piecewise

linear and convex in the information state. For our model, where the objective is to minimize the

total expected discounted cost and the information state contains a completely observable variable,

their result implies the following property of the value iteration algorithm we have used in the proof

of Lemma 1.

Proposition 3. If V0(π, t) is piecewise linear and concave in π ∈ [0, 1] for all t ∈ N0, then in all

iterations n ∈ N0, Vn(π, t) is piecewise linear and concave in π ∈ [0, 1] for all t ∈ N0.

Proof of Lemma 2. As in the proof of Lemma 1, we will be using induction on the iterations of

the value iteration algorithm. Again, we let V0 be defined as in (3). (Note that V0 satisfies the

condition of Proposition 3.) We will prove that, in all iterations n ∈ N0,

Vn(π, t) ≤ Vn(π, t+ 1) (13)

for all (π, t) ∈ Ω. Observe that in iteration 0, (13) holds with equality. We make the induc-

tion hypothesis that (13) holds in iteration m. In the induction step, we start by showing that

HC(π, t, Vm) ≤ HC(π, t + 1, Vm) for all (π, t) ∈ Ω. Consider a fixed (π, t) ∈ Ω and let l ∈ O such

that σ(l;π, t + 1) > 0. The relation Q(t + 1) �B Q(t + 2) allows writing ψ(π, t + 1, l) as a convex

combination of ψ(π, t, k), k ∈ O. Specifically,

ψ(π, t+ 1, l) =
∑

k∈O

(
σ(k;π, t)xkl(t+ 1)

σ(l;π, t + 1)

)
ψ(π, t, k),

where ∑

k∈O

(
σ(k;π, t)xkl(t+ 1)

σ(l;π, t + 1)

)
= 1.

With the concavity of Vm (see Proposition 3), by Jensen’s inequality this implies

∑

k∈O

(
σ(k;π, t)xkl(t+ 1)

σ(l;π, t+ 1)

)
Vm(ψ(π, t, k), t + 1) ≤ Vm(ψ(π, t + 1, l), t + 1).
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Upon rewriting and summing over all l ∈ O, including values of l such that σ(l;π, t + 1) =
∑

k∈O σ(k;π, t)xkl(t+ 1) = 0, we get

∑

k,l∈O

σ(k;π, t)xkl(t+ 1)Vm(ψ(π, t, k), t + 1) ≤
∑

l∈O

σ(l;π, t+ 1)Vm(ψ(π, t+ 1, l), t + 1). (14)

The immediate cost does not depend on t; therefore, from (14),

HC(π, t, Vm) = πcd + β
∑

k∈O

σ(k;π, t)Vm(ψ(π, t, k), t + 1)

= πcd + β
∑

k,l∈O

σ(k;π, t)xkl(t+ 1)Vm(ψ(π, t, k), t + 1)

≤ πcd + β
∑

l∈O

σ(l;π, t+ 1)Vm(ψ(π, t + 1, l), t+ 1)

≤ πcd + β
∑

l∈O

σ(l;π, t+ 1)Vm(ψ(π, t + 1, l), t+ 2) (15)

= HC(π, t+ 1, Vm),

where inequality (15) holds by the induction hypothesis. Because, in particular, the above shows

that HC(0, t, Vm) ≤ HC(0, t+ 1, Vm) for all t ∈ N0, it follows that H
S(π, t, Vm) ≤ HS(π, t+ 1, Vm)

for all (π, t) ∈ Ω. Further, clearly, HR(π, t, Vm) ≤ HR(π, t + 1, Vm) holds with equality for all

(π, t) ∈ Ω. To complete the induction step, we combine the inequalities for each action into

Vm+1(π, t) = min
a∈A

Ha(π, t, Vm) ≤ min
a∈A

Ha(π, t+ 1, Vm) = Vm+1(π, t+ 1)

for all (π, t) ∈ Ω. This establishes that (13) holds in iteration m + 1. By induction, we conclude

that (13) holds in all iterations n ∈ N0, and the result follows by noting that V ∗ = limn→∞ Vn.

We will give two lemmas with results on the optimal policy under condition (4), which together

lead to the conclusion of Theorem 2. The first lemma provides results to establish, for all t ∈ N0,

the existence of a threshold π∗(t) ∈ [0, 1) such that δ∗(π, t) = C if and only if π ≤ π∗(t).

Lemma 3. If condition (4) holds, then

(i) if π, π̂ ∈ [0, 1] such that π ≤ π̂, then δ∗(π̂, t) = C implies δ∗(π, t) = C, for all t ∈ N0;

(ii) δ∗(0, t) = C, for all t ∈ N0;

(iii) δ∗(1, t) ∈ {S,R}, for all t ∈ N0.

Proof.

(i) Let π, π̂ ∈ [0, 1] such that π ≤ π̂ and t ∈ N0. From Lemma 1, we can derive that

min
a∈{S,R}

Ha(π, t, V ∗)−HC(π, t, V ∗) = min
a∈{S,R}

Ha(π̂, t, V ∗)− (π̂ − π)cr −HC(π, t, V ∗)

≥ min
a∈{S,R}

Ha(π̂, t, V ∗)−HC(π̂, t, V ∗).

It follows that if δ∗(π̂, t) = C, then also δ∗(π, t) = C.
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(ii) For t = 0, because it is clear that HC(0, 0, V ∗) < HS(0, 0, V ∗) < HR(0, 0, V ∗), the result

δ∗(0, t) = C is immediate. So let us consider t > 0. Again, it is clear that HC(0, t, V ∗) <

HS(0, t, V ∗) and, therefore, δ∗(0, t) 6= S. To also prove that δ∗(0, t) 6= R, we proceed by

establishing inequalities with respect to HC(0, t, V ∗) and HR(0, t, V ∗). We have

HC(0, t, V ∗) = β
∑

k∈O

σ(k; 0, t)V ∗(ψ(0, t, k), t + 1)

≤ β
∑

k∈O

σ(k; 0, t)HR(ψ(0, t, k), t + 1, V ∗)

= β
∑

k∈O

σ(k; 0, t)(cs + ci + ψ(0, t, k)cr +HC(0, 0, V ∗))

= β
∑

k∈O

σ(k; 0, t)(cs + ci + ψ(0, t, k)cr + V ∗(0, 0)) (16)

= β(cs + ci + p12cr + V ∗(0, 0)),

where Equation (16) is valid because δ∗(0, 0) = C, and on the other hand,

HR(0, t, V ∗) = cs + ci + β
∑

k∈O

σ(k; 0, 0)V ∗(ψ(0, 0, k), 1)

≥ cs + ci + β
∑

k∈O

σ(k; 0, 0)V ∗(ψ(0, 0, k), 0) (17)

≥ cs + ci + β
∑

k∈O

σ(k; 0, 0)(ψ(0, 0, k)cr + V ∗(0, 0)) (18)

= cs + ci + β(p12cr + V ∗(0, 0)),

where Equations (17) and (18) are obtained using Lemmas 2 and 1, respectively. These

inequalities imply

HC(0, t, V ∗) ≤ β(cs + ci + p12cr + V ∗(0, 0)) < cs + ci + β(p12cr + V ∗(0, 0)) ≤ HR(0, t, V ∗).

We conclude that δ∗(0, t) = C.

(iii) Let t ∈ N0, and let the value function V be defined as in (3). We first show that maxπ∈[0,1](V (π, t)−

V ∗(π, t)) = V (1, t) − V ∗(1, t). The maximum exists and is attained at either π = 0 or π = 1

because V (π, t) is linear in π and, by Proposition 3 and convergence of the value iteration

algorithm, V ∗(π, t) is concave in π. To prove that the maximum is attained at π = 1, we argue

by contradiction. Suppose that maxπ∈[0,1](V (π, t)−V ∗(π, t)) = V (0, t)−V ∗(0, t). Given that

we have established in the proof of Theorem 1 that V (0, t) = HC(0, t, V ) and, by part (ii) of
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this lemma, V ∗(0, t) = HC(0, t, V ∗), we have

V (0, t) − V ∗(0, t) = HC(0, t, V )−HC(0, t, V ∗)

= β
∑

k∈O

σ(k; 0, t) [V (ψ(0, t, k), t + 1)− V ∗(ψ(0, t, k), t + 1)]

= β
∑

k∈O

σ(k; 0, t) [V (ψ(0, t, k), t) − V ∗(ψ(0, t, k), t + 1)]

≤ β
∑

k∈O

σ(k; 0, t) [V (ψ(0, t, k), t) − V ∗(ψ(0, t, k), t)] (19)

≤ β
∑

k∈O

σ(k; 0, t) [V (0, t) − V ∗(0, t)] (20)

= β(V (0, t) − V ∗(0, t)),

where inequality (19) is obtained by Lemma 2 and inequality (20) is a consequence of the

assumption that maxπ∈[0,1](V (π, t) − V ∗(π, t)) = V (0, t) − V ∗(0, t). Because β < 1, from the

above we get V (0, t) − V ∗(0, t) ≤ 0, which would mean maxπ∈[0,1](V (π, t) − V ∗(π, t)) ≤ 0.

However, this gives a contradiction with V (1, t)− V ∗(1, t) > 0 as has been established in the

proof of Theorem 1. Hence, it must hold that maxπ∈[0,1](V (π, t)−V ∗(π, t)) = V (1, t)−V ∗(1, t).

We are now ready to prove that δ∗(1, t) ∈ {S,R}. Again, we argue by contradiction. Suppose

that δ∗(1, t) = C. Following the same steps as above, we get

V (1, t) − V ∗(1, t) = HC(1, t, V )−HC(1, t, V ∗)

= β
∑

k∈O

σ(k; 1, t) [V (ψ(1, t, k), t + 1)− V ∗(ψ(1, t, k), t + 1)]

= β
∑

k∈O

σ(k; 1, t) [V (ψ(1, t, k), t) − V ∗(ψ(1, t, k), t + 1)]

≤ β
∑

k∈O

σ(k; 1, t) [V (ψ(1, t, k), t) − V ∗(ψ(1, t, k), t)]

≤ β
∑

k∈O

σ(k; 1, t) [V (1, t) − V ∗(1, t)]

= β(V (1, t) − V ∗(1, t)).

As before, because this would mean that V (1, t) − V ∗(1, t) ≤ 0, we arrive at a contradiction

with V (1, t) − V ∗(1, t) > 0 as has been established in the proof of Theorem 1. We conclude

that δ∗(1, t) ∈ {S,R}.

The results in the second lemma are to show that if there is an information state in which full

inspection with sensor replacement is optimal, then there exists a threshold t∗ ∈ N0 such that for

all π ∈ [0, 1], δ∗(π, t) ∈ {C,S} if t ≤ t∗ and δ∗(π, t) ∈ {C,R} if t > t∗, and π∗(t) is nonincreasing in

t for t > t∗.

Lemma 4. If condition (4) holds, then
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(i) δ∗(1, t) = R implies δ∗(1, t+ 1) = R, for all t ∈ N0;

(ii) for all t ∈ N0, if δ∗(1, t) = S, then δ∗(π, t) ∈ {C,S} for all π ∈ [0, 1], and conversely, if

δ∗(1, t) = R, then δ∗(π, t) ∈ {C,R} for all π ∈ [0, 1];

(iii) δ∗(1, 0) = S;

(iv) δ∗(π, t) = R implies δ∗(π, t+ 1) = R, for all (π, t) ∈ Ω.

Proof.

(i) Let t ∈ N0. From Lemma 2, we can derive that

HR(1, t, V ∗)−HS(1, t, V ∗) ≥ HR(1, t, V ∗)−HS(1, t+ 1, V ∗)

= HR(1, t+ 1, V ∗)−HS(1, t+ 1, V ∗).

Because Lemma 3(iii) indicates that δ∗(1, t) ∈ {S,R} and δ∗(1, t+1) ∈ {S,R}, it follows that

if δ∗(1, t) = R, then also δ∗(1, t + 1) = R.

(ii) The result holds because HR(π, t, V ∗)−HS(π, t, V ∗) is constant in π, for all t ∈ N0.

(iii) Lemma 3(iii) gives δ∗(1, 0) ∈ {S,R}, and it is obvious that HS(1, 0, V ∗) < HR(1, 0, V ∗).

Hence, δ∗(1, 0) = S.

(iv) Let (π, t) ∈ Ω. If δ∗(π, t) = R, then parts (i) and (ii) of this lemma guarantee that δ∗(π, t+1) ∈

{C,R}. In addition, we can derive from Lemma 2 that

HR(π, t, V ∗)−HC(π, t, V ∗) ≥ HR(π, t, V ∗)−HC(π, t+ 1, V ∗)

= HR(π, t+ 1, V ∗)−HC(π, t+ 1, V ∗).

It follows that if δ∗(π, t) = R, then also δ∗(π, t+ 1) = R.

Proof of Theorem 2. The result follows directly from Lemmas 3 and 4.

Proof of Theorem 3. For all (π, t) ∈ Ω̃ \ Ω̄, it holds that

HL(π, t, V
∗) = (⌈πz⌉ − πz)H(⌊πz⌋/z, t, V ∗) + (πz − ⌊πz⌋)H(⌈πz⌉/z, t, V ∗)

= (⌈πz⌉ − πz)V ∗(⌊πz⌋/z, t) + (πz − ⌊πz⌋)V ∗(⌈πz⌉/z, t)

≤ V ∗(π, t) (21)

≤ V ∗(⌈πz⌉/z, t) − (⌈πz⌉/z − π)cr (22)

= H(⌈πz⌉/z, t, V ∗)− (⌈πz⌉/z − π)cr

= HU(π, t, V
∗).

The concavity of V ∗(π, t) in π (which follows from Proposition 3 and convergence of the value

iteration algorithm) implies inequality (21), while inequality (22) is valid because of Lemma 1.

Since for (π, t) ∈ Ω̄,

HL(π, t, V
∗) = H(π, t, V ∗) = V ∗(π, t) = H(π, t, V ∗) = HU (π, t, V

∗),

34



this means that we have V ∗(π, t) ≥ HL(π, t, V
∗) and V ∗(π, t) ≤ HU (π, t, V

∗) for all (π, t) ∈ Ω̃.

Hence, using parts (a) and (b) of Theorem 6.2.2 in Puterman [32], we conclude that V ∗(π, t) ≥

VL(π, t) and V
∗(π, t) ≤ VU (π, t) for all (π, t) ∈ Ω̃.
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Figure 1: Probability mass function of the sensor observation as a function of the sensor age in Example 1.
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Figure 2: Optimal policy for Example 1. The threshold values are π̄∗(0) = 0.456, π̄∗(1) = 0.453,

π̄∗(2) = 0.473, π̄∗(3) = 0.427, π̄∗(4) = 0.376, π̄∗(5) = 0.323, π̄∗(6) = 0.272, π̄∗(7) = 0.231,

π̄∗(8) = 0.206, π̄∗(9) = 0.200, π̄∗(10) = 0.200, and t̄∗ = 2.
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Figure 3: Heuristic policy H1 for Example 1. The threshold values are π̄H1 = 0.248 and t̄H1 = 2.
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Figure 4: Heuristic policy H2 for Example 1. The threshold values are π̄H2 = 0.462 and t̄H2 = 8.
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Figure 5: Probability mass function of the sensor observation as a function of the sensor age in Example 2.
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Figure 6: Optimal policy for Example 2. The threshold values are π̄∗(0) = 0.089, π̄∗(1) = 0.089,

π̄∗(2) = 0.080, π̄∗(3) = 0.067, π̄∗(4) = 0.056, π̄∗(5) = 0.044, π̄∗(6) = 0.036, π̄∗(7) = 0.028,

π̄∗(8) = 0.022, π̄∗(9) = 0.019, π̄∗(10) = 0.019, and t̄∗ = 1.
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Figure 7: Heuristic policy H1 for Example 2. The threshold values are π̄H1 = 0.028 and t̄H1 = 1.
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Figure 8: Heuristic policy H2 for Example 2. The threshold values are π̄H2 = 0.086 and t̄H2 = 8.
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