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Optimal  Maintenance,  Repairmen,  and  Control 

Strategies  for Systems with  Breakdowms 

V.V.S. SARMA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND MANSOOR  ALAM 

Abstract-Optimal  preventive  maintenance  and  repairmen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApolicies for  a 
system of machines subject to degradation with age and intermittent 
breakdowns and  repairs  are  derived using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoptimal control  theory.  When 
this system of  machines forms part of a  dynamic process control system,  a 
method of obtaining optimal closed-loop control law is indicated. 

I .   INTRODUC~ON 

Many large industrial systems have two distinct kinds of problems, the 

problems of management and the problems of operation. The former are 
mostly economic decision problems such as resource allocation, mainte- 

nance, repair and replacement of equipment, personnel, etc. The second 
type deals with efficient t e c h c a l  operation of the processes and is in the 
domain of automatic control. It is being increasingly realized that both 
these types of problems are amenable for solution via control theory and 
mathematical programming. There  are also interactions between the two 

kinds of problems which need coordination at both levels for efficient 
operation of the  integrated system. As an example, we might consider 
the  management and operation of a large interconnected power system. 

The  maintenance scheduling of generators,  replacement of older 

machines, and man power planning form part of the economic decision 

aspect while the technical operation of the system involves maintaining 

appropriate voltage levels at various points; regulating the active and 
reactive power flows while maintaining the  dynamic stability of the 

system in the face of machine shut  down  due to maintenance or 

breakdowns. 
The problem of optimal maintenance of equipment  has been the 

subject of considerable research [I], [2]. Thompson [3] considered a 
machine's degradation with age and obtained  optimal preventive mainte- 
nance  (PM) policy via Pontryagin's maximum principle. His results were 
subsequently generalized in several recent papers [4H8]. Sworder and 
Kazangey [9] modeled a  production process with several machines 
breaking down at random  points in time as an LQG problem with jump 
parameters and derived an optimal feedback controller. 

In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh s  short paper, we consider a generalization of Thompson's model 
[3] for a system of machines taking into account  intermittent  break- 

downs and repairs to obtain  optimal PM and repairmen policies. Then 

a'e examine the implications of these in a process control situation in 

which this system of machines forms a  part, using Sworder's approach 

[91. 

11. O P ~ U L  MAIMENANCE .~ND REPAIRMEN 

POLICIES FOR A NUMBER OF MACHIKES 

In this section, the various models are described in a form amenable 
for solution via optimal  control theory. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  Model for Machine Deferioration 

Following Thompson [3], the model for the gradual deterioration of a 
system of machines with age, which can be partly offset via PM, is  given 

by 

d S ( t ) / d r =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- d ( t ) + f ( t ) u ( t ) .  (1) 

In (l), S ( t )  is the salvage value of the system of machines in dollars, d ( t )  
is the inferiority gadient, f ( r )  is the maintenance effectiveness function, 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu( t ) ,  (0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG u ( t )  < U), is the  number of dollars spent  on  PM, over and 
above necessary repairs. 
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Remark I :  It may, however, be noted that the simple linear model (1) 
may not completely represent the observed economic behavior. In gen- 

erd,  an equation such as 

d S ( t ) / d t = - d ( t ) + g ( S ( t ) , u ( t ) )  (2) 

may be more appropriate. Usually g ( .  . . ) satisfies conditions such as 1) 
g(S,O)=O, implying that S ( f )  satisfies the linear relation when PM is 

zero and 2) g,,(S, u) > 0, indicating  that  a positive maintenance is always 
beneficial. Conditions on g,(S,u) and g,,(S,u) may also be used if PM 
is not uniformly effective at all conditions of the machine and  at all 
times. The simpler model (1) satisfies conditions 1) and 2). Luenberger 

[IO] recently considered models analogous to (2). Arora and Lele's model 
[4] is a special case of (1) and (2) [6]. 

Remark 2: Extension of Thompson's model for a single machine to a 
system of machines involves the assumption that all machines are  bought 
at  the same time. If they are bought at different times, equations of the 
form (1) may be written for separate machines to  determine individual 

PM policies. Otherwise, a policy of the form u( t )= 1 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall machines 
gives rise to the problem of maintenance allocation. 

B. Model for Intennittent Breakdowns and Repairs 

We assume that the machines normally require no human  care and 
that there are N machines and m(m < A') repairmen in the system. At 

any time t ,  a machine may fail and call for service. Repair work is 
initiated immediately after breakdown if a  repairman is free or else a 

broken  down machine joins a  queue. The system of machines, at time t ,  
is characterized by state i, where i=O, 1,2;. . , N  denotes  the  number of 
inoperative machines at  f .  If A and p characterize the  breakdown and 

repair processes of each machine assumed exponential, the  equations 
governing the probabilities Pim(t) of finding  the system in state i are 
given by [ 111 

A=ho-A,U (4) 

where X, is the breakdown rate uithout PM and A, denotes the effective- 

ness of PM in bringing down the breakdown rate. In practice, A,<A,  
such that A is always positive, thus implying that  PM cannot prevent 

breakdowns. 

C. Performance Index 

The objective is to choose the optimal PM policy u*, the  optimum 
number of repairmen m* and the sale date T to maximize the expected 
profit from the given system of machines. The performance index V ( T )  
denotes discounted profit during the life of the system of machines plus 
the discounted solvage value at time T 

E (  V ( T ) } = S ( T ) e - ' =  

In ( 5 )  p is the production rate  at t ,  defined as output value at  t/salvage 
value t, r is the rate of interest, T is the sale date, and y is the  labor  rate 
per unit time. The parameters a and k (O< a,-, < a,v-,< e - .  a,<a, 
< 1) and ( k ,  < k2 <. . . < k,) characterize the decreased productivity 
and the increase in additional  repair expenditure as the  number of 
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inoperative machines increases. It is assumed that the  output of the 
machine is obtained only when the machines are workmg and  that the 
down time, because of PM and repairs, is negligible compared to the 

total  planning horizon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. 
The state  equations ( I )  and (3) and the  performance index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5) are now 

in a form amenable for solution via the maximum principle [12]. The 
number of repairmen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm may be treated as  a  constant throughout the 
planning horizon and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI" optimal control problems may be solved with 
m = 1, 2: . . , N to  obtain  the optimal number of repairmen. Otherwise 
m(r) may be assumed a  control  function and solved to  obtain  the 
optimal repairmen policy along with optimal policy. Several examples 

are considered in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111. Numerical solutions are obtained by using 
the conjugate gradent algorithm developed by Pagurek and Woodside 
[ 131 for optimal control problems with bounded control variables. Con- 
vergence to optimum is obtained in a small number of iterations and the 
details are given in [14]. 

I I I. EUMPLES 

Example I: (A single machine case.) We consider Thompson's exam- 
ple [3 ]  with intermittent breakdowns and repairs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS(O)= 100, d ( t ) = 2 ,  

p=O.I, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr=0.05, k , = l ,  y=0.5, U=1, f ( t )=2 / (1+ t ) i ,  X0=0.05, A,= 
0.005, and p =  0.5. Thompson's policy (without  breakdowns) is as 
follows: 

u*( t )= l ,  O < t <  10.6 

= 0,  10.6 < f < 34.8 
sale date = 34.8. 

Optimal PM policy with breakdowns and repairs is as follows: 

u*( t )= l ,  O <  t ~ 6 . 7  

= 0. 6.7 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt < 26.2 

sale date= 26.2. 

Example 2: (A two machine case-number of repairmen  constant 

throughout  the planning horizon.) For the two machine  problem 
without PM dependent breakdown rate. the probability equations (3) 
may be solved analytically. 

1) N = 2 ,   m =  1, for Pd(O)= I ,  P,'(O)=O, and P:(O)=O. 

1 e-(A+p)r+rL')[G e - ( A + p ) t - r \ f G  Pd ( I ) =  ~ 

l+p+p'+I[ l + p - G  + I+p+V/P 1 

The optimal PM policy for th is  case is  given  by u*( t )= U if 

f ( t ) > e - " / [ p { e - " ( l / p + A ' + B ' e - ' A + + ' ) T )  

-e - "  ( A ' +  ~ ' e - ( ~ + @ ) l ) } l  

where A ' =  - p / ( X + p ) r ,  B ' = - h / ( h + p )  (X+c+r ) .  and u*( t )=O 
otherwise. 

The following numerical values of various parameters were employed 
for computation of optimal  maintenance policies. 

S(0)=200,d(f)=4,p=0.2.r=0.05,a,=~,k,=1,k2=2 

f ( t )=4/ (1+t ) f ,h=0.05 ,~=I .O,y=0.5 ,  U = l .  

The results are shown in Table I. The optimal number of repairmen= 1. 
Example 3: (A two machine case-optimal repairmen policies.) Here 

m( t )  is treated as a  control variable and (5) is maximized subject to (1) 
and (3) and constraints 0 < u(r)  < U and 1 < m(r )  < 2. The numerical 

values assumed are S(O)=200, d ( t ) = 4 , p = 0 . 2 ,   r = O . O 5 , f ( t ) = 2 / ( 1 + r ) ~ ,  
A=0.05, p =  I, U =  1, a,= f .  k , =  1. and k2=2 .  The results are shown in 

Table 11. 

IV. PROCESS CONTROL SYSTEM 

While the economic decision aspect of optimizing return  from an 
equipment is almost similar for several applications. the process control 
aspect depends  on  a particular application. The breakdowns and repairs 
of the machines affect the process control indirectly as seen from the 
power system example and this aspect can be modeled using Sworder's 
approach [9]. 

Let us assume that the system of machines considered in Section I1 
forms part of a process control system described by the  state equation 

d r ( r ) / d t = A ( t ) x ( t ) + B ( t ) v ( t ) ,  x(O)=x,. (6) 

Matrices A and B depend upon the  operational  status of the system, i.e., 

the number of inoperative machines. Breakdowns of machines cause 

jumps in parameter matrices of the system 

[ A o , B o l ~ [ A , , B , l ~ . . . [ A  ,,B,l (7) 

while repair causes transitions in the opposite direction. If we return to 
the analogy of power systems considered in the  introduction  the  state 
variables x in (6) are voltage deviations and power fluctuations and this 
dynamic process is to be controlled by the control vector v ( t )  describing 
the action of voltage regulators and speed control governors. Break- 

downs in the system and repairs affect the  dynamic  performance as 
shown by (6) and (7).  There exists a matrix Q""(t) which governs the 
transition between the dynamic modes of the system (6) such that 

P r { ~ A ( r + A ) , B ( f + h ) ~ = ~ A j . B , ~ ~ A ( f ) , B ( ~ ) ~ = ~ A i , B i ~ )  

= q r ( t ) A + O ( A ) .  izj 

= I + q i y ( t ) A + O ( A ) ,  i = j ;  i j = O , i ; . . . N  (8) 
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TABLE I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
O m  " T N A N C E  POLICIES FOR THE Two MA- CASE 

Parameters of Optimal 
Number of Maintenance Policy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu*(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOptimal Net Optimal  Profit 
repairmen  Profit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ( T )  per Unit  Time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m Stop  Maintenance Sale Date 
T' T 

1 50.5  606.8 10.6 
2 

56.9 
58.6  595.1 10.1 52 

.TABLE I1 
O m  MAINTENANCE AND 0- REPAIRMEN POLICES FOR THE Two MACHINE CASE 

Parameters of Optimal 
Serial  Labor  Maintenance Policy U* Optimal 

Number  Rate  Profit Optimal Repairmen Policy m* 

Stop  Maintenance  Sale Date 
T* T 

1 0.0 

2  0.005 

28.6 

27.5 

47.2 

45.3 

502.3 

501 .O 

m*= 2, O <  t ~ 4 7 . 2  
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG t < 0.3 

0.3 < t < 45.3 

0.3<1<44.1 
0 < t < 0.3 

44.1 < t < 45.3 

0 < t < 0.9 
0.9<1<44.1 

44.1 < t < 45.3 

O < t < 1 2  
1.2< t < 16.0 
16.0< t < 17.2 
17.2< t 4 45.2 

0 G t < 45.2 
O<t<45.1 
OGK45.1 
O ~ t ~ 4 4 . 5  
0 ~ 1 ~ 4 3 . 3  

m*= [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 
3 0.01 27.2 45.3 500.9 

4  0.02 27.2 45.3 500.5 

5  0.03 27.1 45.2 500.1 

6 0.05 
7 
8 

0.1 

9 
0.2 
0.4 

10 1 .o 

45.2 
45.1 
45.1 
44.5 
43.3 

499.2 
498.3 
496.4 
492.5 
480.9 

m*= 1, 
m*= 1, 
m*= 1, 
m*= 1, 
m*= 1, 

27.1 
27.1 
27.0 
26.7 
26.2 

where E$o qov(t)=O, i=O, 1; . . , N. Superscripts m and u denote 

dependence of the  elements of Q on the  number of repairmen and PM. 
In the process control  situation, an  LQG formulation is appropriate and 
the  objective is to choose an optimal  feedback  control v* ( t )  to minimize 
a  performance  index of the  form 

K,(T)=O, j=O,l ; . . ,N (11) 

where integers j denote the operational  modes of the system, i.e., the 
number of machines not working at any  time t. 

v. CONCLUDING REMARKS 

This short paper  presents an approach  for  obtaining  the  optimal 
preventive  maintenance policies and optimal  repairmen policies for 
machines  subject to deterioration,  intermittent  breakdowns, and repairs. 

The waiting line  formed at the service facility is considered and the usual 
steady-state  assumption on the  queue is relaxed by directly  considering 
the  Chapman-Kolmogorov  equations  as  state  equations of the system. It 
may be observed  that we obtain  open-loop  optimal policies for the 
economic  decision model. On the other  hand,  when  the system of 
machines is part of a process control system the  effect of breakdowns 
and repairs on feedback  control laws  is examined.  Results  show that the 
optimal  process  control law involves feedback of process  states and 

information  feedback on the  operational  status of the machines. It may, 
however, be  noted  that  detailed  replacement  analysis is not  considered in 
this  short  paper. If a  longer  planning  horizon is considered,  technological 
innovations of challenging machines are  to  be  considered  together with 
the  obsolescence of previous  inachines and these will have some  effect 
on PM policies. 
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The advantages of this  performance index are well known in process 
control.  Combined  optimal  strategies u*, m*, and u* for the  integrated 
system may be  obtained by optimizing an overall index of the  form 
f(J, V). But to  make  the  problem  more  tractable,  the  problems may be 

solved sequentially with the  solution of the  economic model being an 
input to the process control model. The optimal PM policy u*(t) and 
m*(t)  are  obtained by the  methods of Sections I1 and 111. u* and m* 
determine  the  matrix em"(?) of (8). An optimal  feedback  controller 

u* (x ( t ) , t )  for  the process control system may be obtained by minimizing 
(9) subject to (6) and is given by [9] 

c * ( t , x ( t ) , j ) =  - B j * q ( t ) x ( t )  ( 10) 

where 4(t) are  the  solutions of 
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On the  Exact  Model  Matching  Controller Design 

s. G. TZAFESTAS, X W B E R ,  IEEE, AND 

P. N. PARASKEVOPOULOS 

Abstract-The problem of designing a  static state feedback controller 

which matches a given multivariable system to a desired ideal system 
(model) is treated. The system under control is assumed in state space 
form while the model is assumed in transfer matrk form. An algorithm is 
developed which separates the conditions which  must be satisfied by the 
system under control and  the model to be matched from the equations 
which must be solved to find the gains of the feedback controller. Two 
examples are included. 

I. IXTRODUCTION 

The model-matching problem by using feedback (static or dynamic) is 

of primary importance in  the automatic control field and involves pole 
assignment, zero assignment, the input-output decoupling problem, etc., 

as special cases. Most of the available results [1H4] concern the case of 
static feedback. and only in  [3].  [4] the dynamic feedback case is stubied. 

The mathematical tools used are algebraic due to the  nature of the exact 
model-matching (or model-following) problem although some authors 
have  treated  the problem from an optimal regulator point of view  [5].  (61. 

In the present short paper we present a new approach in which the 

system under control is in the state space representation form while the 
model is in transfer matrix function  form. The system under control is 
treated directly in the time domain and converted in the  iaput-output 
form.  Comparing the input-output form of the system to that of the 
given model gives a set of equations the solution of which provides the 
feedback law required. 
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To solve these equations an iterative algorithm is utilized which 
essentially splits them into two sets, the first set does not depend on the 
feedback gains sought but only upon  the system under control-model 
pair, and the second depends  both on the system-model pair and the 

feedback gains F and G. The first set is actually the set of exact 
model-matchng conditions while the second one is the  set of the exact 
model-matching design equations. 

The set of exact model-matching design equations is nonlinear in F 
and G and the general solution so far has not been derived. Here, we 
present solutions in three particular cases which, however, possess a 
great degree of generality, involve all known results as special cases and 

cover new situations not  treated in the past. Finally, the model-matching 

problem by output feedback is treated and two examples are given which 

illustrate the applicabdity of the theory. 

11. F O W L A T I O N  OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATHE hOBLEh1 

Consider a linear time-invariant system in state-space of the  type 

. i = A x + B u ,   y = C x + D u  (1) 

where x(?)€&. u(r)€R,,,, y ( t ) € % ,  and A ,  B,  C ,  and D given constant 
matrices of appropriate sizes. Now, consider a  dynamic model with given 

transfer matrix function of the type 

where Mk are p x  r constant matrices and ~ ( s )  is the characteristic 
polynomial of the model. 

The problem of exact model-matching can  be stated  as follows. Gicen 
a  dynamic system of the form (1) determine a linear state feedback law 

u = Fx + Go such that  the transfer function  (input-output description) of 
the closed-loop system 

X = ( A + B F ) x + B G w ,   y = ( C + D F ) x + D G o  (3) 

is the same as that of a given model. 

111. SOLLTION OF THE PROBLEM 

The transfer  function of the closed-loop system (3) is T,(s)=(C+ OF) 
(SI - A - B F ) -  ‘BG + DG: and hence for exact model-matching the pair 
( F .  G )  must be selected such that 

T, (SI = 7, (s). (4) 

Equation (4) is the first form (the “crudest” form) of the relation 
which must be satisfied for exact model-matching by state feedback. 

Several investigators [ IH2] have based their work directly on (4) and 
tried to  determine { F, G } by using and working on  the above form of 
T=(S).  Here we shall adopt a  kind of reverse procedure, namely, that of 
computing T,(s) utilizing the description (1) directly in the time domain. 
This procedure of calculating T,(s) is as follows. 

1) Obtain  the time derivatives up to  the  nth  one of the output vectory 

in the closed-loop system (3). 
2) Utilize the Cayley-Hamilton theorem 

n - l  

( A  + B F ) ” =  2 p k ( F ) ( A  + BF)k  
k = O  

where p , ( F )  are scalars depending on A + BF (since A and B are fixed, 
these scalars actually depend only on F): in the result of 1) to eliminate 

3) Take  the Laplace transform of the  equation resulted in 2) with zero 
initial conditions. 

Equating the resulting transfer function T,(s) in 3) with the model- 

transfer function Tm(s) and after some algebraic manipulation we get the 

following set of equations: 

X .  

DG= H, ( 5 4  

( C + D f ) ( A + B F ) k B G = H , - , _ , ?  k=O,I; . . ,n-l  (5b) 


