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Optimal Maintenance Strategies for Wind Turbine
Systems Under Stochastic Weather Conditions
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Abstract—We examine optimal repair strategies for wind tur-
bines operated under stochastic weather conditions. In-situ sen-
sors installed at wind turbines produce useful information about
the physical conditions of the system, allowing wind farm opera-
tors to make informed decisions. Based on the information from
sensors, our research objective is to derive an optimal preventive
maintenance policy that minimizes the expected average cost over
an infinite horizon. Specifically, we formulate the problem as a par-
tially observed Markov decision process. Several critical factors,
such as weather conditions, lengthy lead times, and production
losses, which are unique to wind farm operations, are considered.
We derive a set of closed-form expressions for the optimal policy,
and show that it belongs to the class of monotonic four-region poli-
cies. Under special conditions, the optimal policy also belongs to
the class of monotonic three-region policies. The structural results
of the optimal policy reflect the practical implications of the tur-
bine deterioration process.

Index Terms—Dynamic programming, partially observed
Markov decision process, random deterioration, stochastic envi-
ronment, wind turbine operations and maintenance.

ACRONYMS
NA no action
PM preventive maintenance
OB observation
CM corrective maintenance
O&M operations and maintenance
CBM condition-based monitoring
POMDP  partially observed Markov decision process
AM4R At-Most-Four-Region
AM3R At-Most-Three-Region
NOTATION
T information state
T information state when
system is stopped for
repairs
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1. INTRODUCTION

N MANY INDUSTRIES, machines are operated under

more or less stationary conditions. However, wind turbines
suffer from stochastic loadings. Wind speed varies season by
season, and day by day [1], [2]. These stochastic loadings
make the degradation process rather complex. In addition,
the feasibility of conducting maintenance is constrained by
weather. Current maintenance practice for wind farms mainly
consists of scheduled maintenance, and corrective maintenance
(CM). According to [3], and [4], scheduled maintenance is
carried out usually twice a year for a turbine, and there are
on average 2.2 failures per turbine per year requiring major
repairs. Considering today’s trend of large-scale wind farms,
and their long distance from operation centers, the cost for
these maintenance visits is substantial.

Thanks to the advancement of sensor technology, many tur-
bine manufacturers began to install condition-based monitoring
(CBM) equipment, with many sensors within turbines. With
these sensor signals, one can presumably estimate the turbine’s
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physical condition, and make decisions regarding which main-
tenance actions to take. Consequently, wind farm operators can
reduce the number of unnecessary visits, and avoid unexpected,
sometimes catastrophic, failures.

CBM equipment provides abundant information, but it does
not solve the uncertainty issue perfectly [5]. Fault diagnosis
based on sensor measurements is nontrivial due to the fact that
wind turbines operate under non-steady operating conditions.
Often, it is not possible to conclude the exact state of a tur-
bine component. Instead, one has to estimate the actual state in
a probabilistic sense.

Three stochastic factors need to be considered in modeling
wind turbine maintenance. The first factor is weather condi-
tions, which may constrain the feasibility of maintenance ac-
tions. For example, under high wind speeds of more than 20
meters per second (m/s), climbing up a turbine is not allowed.
Under wind speeds higher than 30 m/s, the site becomes inacces-
sible [6]. On the other hand, wind farms are inevitably located on
windy sites to maximize electricity generation. For this reason,
repair actions cannot be carried out often. In a study using a
Monte-Carlo simulation, wind turbine availability remains only
at 85%—-94% in a 100 unit wind farm, situated about 35 kilome-
ters off the Dutch coast [7]. The main reason for this relatively
low availability is the farm’s poor accessibility, which is on av-
erage around 60%. In another study by Bussel [3], the avail-
ability of a wind farm was 76%.

The second factor is repairing interruption and delay. Most
wind farm-related repairs take several days to several weeks
to complete. This relatively long duration increases the like-
lihood that a repair is interrupted by adverse weather condi-
tions. When the weather becomes adverse, the crew must stop
working, and wait until weather conditions become favorable.
These delays cause revenue losses because wind turbines can
no longer be operated until the repairs are completed. The third
factor is long lead time for assembling maintenance crews, and
obtaining spare parts, which also significantly affects wind tur-
bine downtime. For example, it can take several weeks for parts,
such as a gearbox, to be delivered [8].

Due to the aforementioned uncertainty, and stochastic issues,
we believe that a properly timed, well-planned preventive main-
tenance strategy is pressingly needed in the wind power in-
dustry. Taking all of the above issues into consideration, we
derive the optimal repair strategies that minimize the average
long-run cost for wind turbine maintenance under stochastic
conditions. We emphasize the main contributions of this study
with the following points:

1) We develop a dynamic optimization model by formulating
the problem as a partially observed Markov decision
process (POMDP), which considers the costs associated
with different actions, and other critical aspects. To the
best of our knowledge, the proposed model is the first
mathematical model for wind turbine maintenance.

2) We analytically derive the optimal control limits for each
action as a set of closed-form expressions. We provide the
necessary and sufficient conditions under which preventive
maintenance will be optimal. The sufficient conditions for
other actions to be optimal are also derived.
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3) We establish several structural properties, such as the
monotonicity of the optimal policy. We show that the
structure of the optimal policy is similar to those studied
in the previous POMDP literature, but our policy structure
requires weaker assumptions. Optimality results for other
policy structures, not previously proved in the literature,
are also presented. We examine the practical implications
of these properties in wind turbine maintenance.

The remainder of the paper is organized as follows. We
start off with reviewing related work in Section II. Then, we
present the POMDP model in Section III. In Section IV, several
structural properties of the optimal policy are discussed. In
Section V, we derive an algorithm for finding the optimal policy
based on the structural properties established in the previous
section. The computational results are reported in Section VI.
Finally, we conclude the paper in Section VII.

II. LITERATURE REVIEW

Several studies have been conducted to find critical factors
which affect the operations and maintenance (O&M) costs of
wind turbines. Pacot et al. [8] discuss key performance indica-
tors in wind farm management, and review the effects of several
factors such as turbine age, turbine size, and location. Bussel
[3] presents an expert system to determine the availability and
O&M costs. Rademakers et al. [7] describe two simulation
models for O&M, and illustrate the features and benefits of
their models through a case study of a 100 MW offshore wind
farm.

An insightful review of recent CBM work for wind turbines
is provided by Caselitz & Giebhardt [9]. The most widely used
monitoring system is vibration monitoring. The other moni-
toring systems include measuring the temperature of bearings,
lubrication oil particulate content analysis, and optical strain
measurements [10]. Nilsson & Bertling [4] discuss the benefits
of CBM with a case study of two wind farms by breaking down
the entire maintenance costs into several components. McMillan
& Ault [6] also quantify the cost-effectiveness of CBM using a
Monte Carlo simulation.

Several mathematical models that incorporate information
from CBM sensors have recently been introduced. Although
these models are not specifically developed for wind turbine
maintenance, they provide insights into how CBM sensory
information can be utilized. Maillart [11] uses POMDPs to
adaptively schedule observations, and to decide the appropriate
maintenance actions based on the state information from CBM
sensors. Gebraeel [12] integrates the real-time sensory signals
with a population-specific aging process so to capture the
degradation behavior of individual components. Similarly,
Ghassemi et al. [13] represent a system’s deterioration process
with two sources. One source is the average aging behavior
that is usually provided by the manufacturer or estimated using
survival data. The other source is the system utilization that can
be diagnosed by using CBM data.

Several studies examine the structural properties of POMDP
maintenance models [11], [14]-[19]. Although these studies
use different state definitions and cost structures, they establish
a similar structural property of the optimal policy called the
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monotonic “At-Most-Four-Region” (AM4R) structure. The
monotonic AM4R structure implies that, along ordered subsets
of deterioration state spaces, the optimal policy regions are
divided into at most four regions with the following order: no
action — observation (or, inspection) — no action — preven-
tive maintenance. For detailed reviews of these AM4R studies,
we refer the reader to [11].

Few quantitative studies have been done for systems oper-
ating under stochastic environments. Thomas et al. [20] investi-
gate the repair strategies to maximize the expected survival time
until a catastrophic event occurs in an uncertain, stochastic en-
vironment. These authors consider the situation where a system
should be stopped during inspection or maintenance action. If
specific events, called “initiating events”, take place when a
system is down, or being replaced, it is denoted a catastrophic
event. They show that similar AM4R structural results hold for
a simple system where a system state takes only binary values,
i.e., operating or failed.

In this study, we devise a multistate, POMDP model to repre-
sent the degradation process of wind turbines, and to decide the
optimal maintenance strategies. Our model extends the model
introduced in [11] by incorporating several unique character-
istics of wind turbine operations. To represent the stochastic
weather conditions, our extended model adopts the “initiating
events” idea, proposed in [20]. This approach is applicable be-
cause the occurrence of harsh weather conditions delay repairs,
and cause significant revenue losses, making the circumstances
analogous to those discussed in [20]. Other aspects of wind tur-
bine operations, such as the long lead time after an unplanned
failure, and the resulting production losses, are also included in
our model.

III. MATHEMATICAL MODELS

In this section, we formulate the wind turbine maintenance
problem, and introduce the existing algorithm to numerically
solve it. In later sections, we present a computationally im-
proved algorithm after analysing the structural properties of the
proposed model.

A. Model Formulation

‘We consider a system whose deterioration conditions are clas-
sified into a finite number of levels 1,---,m + 1. Status 1 de-
notes the best condition, “new”. Status m denotes the most de-
teriorated condition, and status m + 1 is the failed condition.
Often, one does not know a system’s physical condition pre-
cisely. We therefore choose to define a state in a probabilistic
sense to represent the belief over the actual deteriorated condi-
tion, and formulate the problem using a POMDP model. That
is, the state of a system is defined as

T = [T, T2, Tmt1]s )
where m;, ¢« = 1,---,m + 1 is the probability that the system
is in deterioration level ¢. Please note that this state definition
is consistent with what has been used in the POMDP literature
[19], where 7 is commonly known as an information state. Be-
cause wind turbines do not properly operate upon failure, we

say that Z’Zﬂzl m; = 1 when the system is not failed; if it fails,
Tm+1 = 1.

We assume that wind farm operators make decisions in dis-
crete time. Conceptually, each decision period can be of any
length of time. But, we consider that decisions are made fre-
quently (e.g. weekly) because wind farm operators want to make
timely decisions based on the stream of sensor signals from
CBM equipment. When decisions are made frequently, a dis-
count rate is close to 1. Therefore, we formulate the problem as
an average expected cost model as suggested in Puterman [21],
and we examine the policies to minimize the expected cost per
unit period.

Given the information state 7, one of the following three ac-
tions is available for an operating system at the beginning of
each period.

» No Action (N A): continue the operation without any in-
tervention. The system undergoes Markovian deteriora-
tion according to a known transition probability matrix,
P = [pijl(m+1)x (m+1) [22], [23]. Suppose that the current
information state is 7, and no action is taken. The proba-
bility that the system will still operate until the next deci-
sion pointis R(w) = 1 — Y I" | m;Di m+1. In the literature,
R(m) is often referred to as the reliability of the system.
Maillart [11] shows that the information state after the next
transition, given the system is not failed, is

Zj;l"fipij .
W7 ‘].:1727...7777/ (2)
0, j=m+1

As such, the system is transited to the next state
'(r) = [7}(x),---,x,(7),0] with probability R(r). If
it fails with probability 1 — R(r), the state becomes €, +1
in the next period.

* Preventive Maintenance (PM): repair the system at cost
Cpur (< Ceon). PM takes one full period. We assume
that, to complete PM, weather conditions should be fa-
vorable during one full period. In the case that weather be-
comes harsh during PM, the crew hold the repair work
until the weather becomes favorable. This delay incurs 7
revenue losses per period because wind turbines cannot be
operated until PM is completed. Let 7 denote the state
when the system is stopped for repairs. After P M, the state
is returned to an as-good-as-new state.

e Observation (O B): evaluate the exact deterioration level
atcost Cop (Cop +Cpar < Ceonr). OB instantaneously
reveals the system state with certainty. So the information
state reverts to state e;, where ¢; = [0,---,1,---,0] is an
(m + 1) x 1 dimensional row vector with a 1 in the ith
position, and O elsewhere. After observation, the decision
maker will choose either VA, or PM in that same decision
period, based on the updated information state.

Upon a failure, parts are ordered, and a maintenance crew is
arranged, which takes 7" lead time. When all of the parts and
crew are available, C' M is carried out for one full period at cost
Cc v if weather conditions are conducive to repair work. Oth-
erwise, C'M has to wait until weather conditions become favor-
able. Unless CM is completed, wind turbines cannot be oper-
ated, and it causes 7 revenue losses per period. After C M, the

Authorized licensed use limited to: Texas A M University. Downloaded on June 10,2010 at 16:00:59 UTC from IEEE Xplore. Restrictions apply.



396

failure occurs CM is completed
' ¢ ! \\ L * >

T periods
(lead time)

Decision made
to carry out CM

Ready to
carry out CM

Fig. 1. Corrective maintenance after a failure occurs when maintenance crew
and spares are available, and weather conditions are conducive to carry out C'M .

system is renewed to an as-good-as-new state, e;. Fig. 1 illus-
trates the process after a failure.

When Wppr or Weps > 0, it implies that the stochastic op-
erating conditions affect maintenance feasibility. On the con-
trary, Wpyr = Wepr = 0 represents a static environment in
which repair actions can be taken at any time. Because C'M
requires more complicated repair jobs than PM, C'M needs
better weather conditions than PM . Therefore, W > Wear
in many practical cases. We assume that the events of these ad-
verse weather conditions occur randomly.

Let V;,(7) denote the minimum expected total cost from the
current period n to the terminal period (or, cost-to-go) when
the current state is 7. We formulate the problem as the average
expected cost model

N Ay (1) = (FT+C Mg (e ) (1=R(r))

+ Voo (7 (7)) R(7)
Va(m)=ming PMy(m)=(1=Wpa)(T+Cpru+Va-i(e1))
+ Wpn(T+PM,_1(7))
OB, (m)=Cop+Y i~ Post,(e;)m;
3)
where

CMn—T—l(em-I-l) :(I_WC]\[) (T + CC]\,[ + Vn—T—Z(el))

+ Weum (1+ CMy—r_2(emt1)), 4

PM,_1(7) =(1 = Wpu) (1+ Cppr + Vi—a(e1))
+ Wpu (1+ PMy,—o(7)) , (%)
Posty(e;) = min {NA,(e;), PM,(e;)} (6)

In N A, (), the first term 77 reflects revenue losses during lead
time after a failure. OB,, (), and Post, () together represent
that, after each observation at cost Cp g, the state is updated to
e; with probability m;, and then we choose either N A or PM in
the same decision period. CM,,_7_1(em+1), and PM,,_1(7)
consider weather constraints when carrying out CM, or PM,
respectively.

Because the system is renewed after CM or PM as long as
weather conditions are good, the model is unichain! for 0 <
Wenm < 1,and 0 < Wpps < 1 [11]. For these kinds of prob-
lems, Puterman [21] shows that V,,(7) approaches a line with
slope g, and intercept b(w), as n becomes large. That is,

lim Valr) _ =g, and lim (V,(7) — ng)

n— 00 n n— o0

=b(r) (D

IThat is, the transition matrix corresponding to each action consists of a single
recurrent class.
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Here, g denotes the average cost per unit time under the optimal
policy, and b(r) is the bias, or the relative cost when the infor-
mation state starts from 7.

Taking the limits of both sides of (3), and then applying (7)
in both sides, yields

bya(m) = ((T = 9)T + b(em+ )) (1= R(m))
+0 (' (7)) R(m )
b(7r) = min bp]\,[(ﬂ): (l—Wp]\[)( +Cp]\[)
+ Wpar (b(7) +7) —
bop(r) = Cop + 322, blei)mi )
Applying the same technique to (4), and (5), respectively, yields
_ T—=9
b(em+1) =Con +b(er) + T~ Wenr ©
o T—g
b(7) =Cpn + bler) + T Won (10)

Because b(r) is the relative difference in total cost that results
from starting the process in state 7 instead of in any other state,
Puterman [21] suggests to set b(7") = 0 for an arbitrary 7°. In-
tuitively, we set b(e1) = 0in (9), and (10). Let us now define the
new maintenance costs which compound weather effects, lead
time, and production losses by Cg s and Cy p, respectively, as

-9
Clyy =C, _ —qg)T 11
cm =Com + 72 WCM +(r-9) (1)
cL. =C 9 12
P =Cpr + T~ Wor (12)

Note that both Cf,, and C,, are increasing in Weay, and
Wpar, respectively. This increase implies that a higher fre-
quency of harsh weather conditions incurs higher repair costs.
Here, we assume that 7 > g; that is, the revenue losses are
greater than or equal to the average cost per period. There-
fore, the added costs due to an unplanned failure (that is,
Cts — Chpyy) arise from the following three factors: increased
repair costs (for doing C'M), increased possibility of repair
delays due to more restricted weather requirements to carry
out C' M, and production losses caused by the waiting time to
prepare resources after a failure.

Substituting Cf,;, and Cp,, into (8)—(9) simplifies these
equations to

bna(m)=Cgp(1=R(m))+b (7' (7)) R(m)—g,
b(m)=min < bpr (1) =Chyy,
bop(m)=Cop+Y i, b(ei)m;

13)

B. Solution Method—Pure Recursive Technique

First, let us consider a sample path emanating from an in-
formation state 7. By a sample path, we mean the sequence of
information states over time when no action is taken, which is
denoted by {m, 72, -, 1I(7)} where 72 = 7' (7)), 73 = 7' (7?),
and so on. II(r), defined by II(7) = 7*", where k* = min{k :
||rF+L — 7*|| < €} with small € > 0, is a stationary state, or an
absorbing state. Maillart [11] shows, by referring to [24], that
when the Markov chain is acyclic, TT() exists for any € > 0.

Let us call the sequence of states emanating from one of the
extreme points b(e; ), Vi, in (13) an extreme sample path. All the
biases at the states on the extreme sample paths and average cost
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g can be obtained by applying policy iteration (or value itera-
tion) methods to the states only on the extreme sample paths
[21]. Then, bop(w), and bpps(7) in (13) can be directly com-
puted.

Now, we only need to compute by 4(7) to get b(). Mail-
lart [25] introduces the following recursive technique. First, we
solve (13) for II() by

byva (I(7)) = CIC]L[ - %7

bpa (I(7)) = Cpyys

bop (I(r)) = Cop + >0, b(eim(}?ﬁ)
Then, we apply b(II(7)) to (13) to find the optimal policy at the
previous state. By solving the recursive set of equations back-
wards, we can get the optimal policy along the states on the
sample path emanating from the original state 7.

However, this recursive technique might be computationally
inefficient when we want to find the optimal policies at a large
number of states in a high dimensional state space. This ineffi-
ciency is because we have to apply each recursive set of equa-
tions for each state. These computational difficulties motivate
us to study the structural properties of the model.

b (TI(m)) = min

IV. STRUCTURAL PROPERTIES

In this section, we establish several structural properties of
the optimal policy. More specifically, we derive a set of closed
expressions for the optimal policy including the exact control
limits for PM. In later sections, we show how these results
help attain optimal polices. We also show that the model ex-
hibits the monotonous AM4R policy structure. This finding is
an extension of a previous study in [11]. In [11], the AM4R
results are shown, for a simpler model than the one presented
here, and are obtained under specific assumptions on the tran-
sition matrix, and information states. We relax the assumptions
while proving the results, and establish the conditions when the
optimal policy is simplified to a more intuitive “At-Most-Three-
Region” (AM3R) structure.

A. Preliminary Results

We first introduce several definitions which are often used in
POMDP studies. These definitions can be found, for example,
in [15], [16], and [18].

Definition 1: Information state 7 is stochastically less (or
smaller) than 7, denoted as m < 7 iff Z:’:;l m < Z:’;ﬁl 7
forallj =1,---,m+ 1.

Definition 2: Information state 7 is less (or smaller) in like-
lihood ratio than 7, denoted as m <, 7 iff m;7; — m;m; > 0 for
all j > i.

These two definitions present the binary relations of the two
states in the sense of deterioration. Both definitions imply that,
when the system is less deteriorated, the state is stochastically
(or in the likelihood ratio) less than another [19]. However,
Proposition 1(a) (see below) suggests that the <;,- relationship
is stronger than the <; relationship [16]. We also need addi-
tional definitions regarding the transition matrix P.

Definition 3: A transition matrix P has an Increasing Failure
Rate (IFR) if Z].kai]- < ZjZk pir; for all i’ > ¢, and Vk.

Definition 4: A transition matrix P is Totally Positive of
order 2 (TPZ) ifpijpi/j/ 2 DitjPij for all 4/ Z i, and j/ Z j

These definitions imply that the more deteriorated system
tends to more likely deteriorate further, and/or fail [11]. Similar
to the stochastic relations defined in Definition 1, and Definition
2, T P2 is a more stringent assumption than I F'R due to the fol-
lowing Proposition 1(b) [16].

Proposition 1: (Rosenfield [16]) (a) If 7 <. 7, then® <4 7.
(b) If P is TP2, then P is IFR.

Before presenting our results, we introduce
well-known results in the following two Propositions.

Proposition 2: (Derman [26]) For any column vector v such
that v; < v;41, Ve, if T <5 7, then 7 - v < 7Tw.

Proposition 3: (a) (Maillart [11]) Suppose that P is IFR. If
T <gt 7, then R(m) > R(7). (b) (Maillart & Zheltova [19]) If
PisIFR and w <4 7, then 7P <4 7P.

Now, Proposition 4 establishes that, when P is IFR, the sto-
chastic ordering of two states are maintained after the transi-
tions. Proofs of all propositions, lemmas, and theorems are in-
cluded in the Appendix, or on the author’s website [34].

Proposition 4: Suppose that P is IFR. If 7 < 7, 7' (7) <t
7' (7).

The following Proposition 5 demonstrates that the optimal
cost-to-go for a failed system is always greater than, or equal to,
the cost-to-go when it is stopped for PM.

Proposition 5: (a) CM,(em+1) — Com > PM,(w) —
CpprVn where C M, (em+1), and PM,,(7) are defined in (4),
and (3), respectively. (b) CM,(epm+1) > PM,(m)Vn.

The above Propositions allow us to derive the monotonicity
of V,,(m) in <;-ordering, as shown in Lemma 1.

Lemma 1: If P is IFR, b(7) in (13) is non-decreasing in < ;.

The claim of Lemma 1 extends the result presented in [11]
where the monotonicity of the optimal cost function in <;,.-or-
dering on the 7' P2 transition matrix is shown. Also, unlike our
model, the model in [11] assumes 7 = 0, T' = 0, and static en-
vironments (that is, Wy = Wpas = 0). Therefore, the result
of Lemma 1 is more general, and can be applied to other general
aging systems.

several

B. Closed Expressions for Optimal Policy Regions

In this section, we present the closed boundary expressions
for the optimal policy. Let 6*() denote the stationary optimal
policy (or decision rule) at 7. Also, let Qna(7), Qop(n),
Qpy(m) be the set of information states with 6*(7) = NA,
6*(r) = OB, and 6*(w) = PM, respectively. To get the
optimal policy to minimize the long-run average cost, we need
to compare by A(7), bpar (), and bo ().

First, the following Lemma 2 explains when N A is preferred
to P M, and vice versa. To prove the claim, we apply a technique
similar to the one used in [13].

Lemma 2: Suppose that P is IFR and upper-triangular.
60*(m) # PM if R(r) > 1 — g/(ClLy; — Chyy). Also,
0*(m) # NAIf R(m) < 1—g/(Ctpy —Chpy) form < o' ().

The claim of Lemma 2 is intuitive. As the system deteriorates,
its reliability monotonically decreases. When its reliability is
lower than a threshold (here, itis 1 — g/(Capy — Cpas))s itis
better to take some actions rather than do nothing. On the con-
trary, we do not need to carry out costly maintenance action for
a highly reliable system. Note that the second part of Lemma
2 requires the assumption m < 7’(7), which implies that the
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next state is more deteriorated than the current state in a proba-
bilistic sense. This assumption should hold in most commonly
encountered aging systems.

With the result of Lemma 2, b g() in (13) can be reformu-
lated as

bos(r) = Cop+ Y _ {bnale) - I(R(e;) > )
i=1
+ bp]\/[(ei) . I(R(el) < a)}m (15)
Here, I(-) is the indicator function, and &« = 1 — ¢g/(Cpp —
Char). OBy (m) in (3) can be reformulated likewise.

Next, let us compare bop(w) with bpy (7). If Cp,, <
Cos + Y, b(ei)m;, PM is preferred to OB. As a result, if
R(r) <1-9/(Cony—Chpar)-and Cpyy < Cop+3_; blei)mi,
the optimal policy is PM. Also, from the facts that bo () is
non-decreasing in <g;-ordering, and that bps(7) is constant,
we can derive the control limit for PM in closed form. Many
previous maintenance studies based on a POMDP simply
prove the “existence” of the control limit for P M. But for this
problem, we analytically obtain the necessary and sufficient
condition. Theorem 1 summarizes the results.

Theorem 1: Suppose that P is IFR, and upper-triangular. (a)
For m < 7'(m), the region where the optimal policy is PM
is defined by Qpy = {m R(m) < 1 - g/(Copr — Cppy)
Cpry < Cop + > b(e;)m;}, whereas PM cannot be optimal
for m € Qpyy. (b) Furthermore, if 6*(7) = PM, 6*(7) = PM
for m <4 7.

This PM region in Theorem 1 defines the optimal PM re-
gion of the AM4R policy, as we will discuss in Section IV-D.

Corollary 1: Suppose that P is IFR, and upper-triangular.
@ If R(m) < 1—9/(Copr = Cppy), and Cpyy > Cop +
>ob(ey)m;, 6*(m) = OB form <4 ©'(7w). (b) If R(w) > 1 —
9/(Ceprr — Cpar)s and Oy < Cop + 30 b(ei)mi, 6% () =
NA.

Finally, let us compare by 4 () with bo (7). We present the
conditions under which N A is preferred to O B, and vice versa,
in Lemma 3, and Lemma 4.

Lemma 3: If R(W) Z (CIC]\[ — COB — Z b(ei)m —
9)/(Clos = Cos — 3. bled)w?). then 8% () # OB.

Similar to Lemma 2, Lemma 3 also explains that when the
system is in a fairly good condition with a high reliability, we
do not need to carry out costly inspection of the system. Along
with Lemma 2, the following Corollary 2 specifies the sufficient
condition for N A to be optimal; its proof follows directly from
Lemma 2, and Lemma 3.

Corollary 2: If R(m) > max{1—g/(Ctyr—Chur): (Cons—
Cop— 3 bei)mi — 9)/(Cenr — Cop — 2o b(ei)n?), then
6*(r) = NA.

And, Lemma 4 specifies the sufficient condition under which
OB is optimal.

Lemma4: Suppose that R(m) < (C&p—Cos—y_ b(ei)mi—
9)/(Clrr—Cop—>_ ble;)n?). 1f §*(w?) = OB, then §* () =
OB.

C. Structural Properties Along Sample Path

By extending the claim of Proposition 4, we can easily show
that, when P is IFR, all of the states in the sample path ema-
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nating from any 7 is in increasing stochastic order as long as
7 <4 72. This allows us to apply all of the results developed
in Section IV-B to the states along a sample path in increasing
stochastic order. The following Corollary 3 summarizes them.

Corollary 3: Suppose that P is IFR, and upper-triangular.

Then the states along a sample path satisfy the following prop-
erties for m < 7' (7).

(a) Any sample pathisin <¢;-increasing order. Thatis, T <s;
72 <ty ey <s H(T).

(b) V,(x), and b(w) are non-decreasing along any sample
path.

(¢) Suppose that R(7?) > 1 — g/(Clyy — Chpy)- 6% (7F) #
PM for Yk < q. On the contrary, if R(7?) < 1 —
9/(Clas — Cpar)s 6*(7F) # N A for Vk > g.

(d) There exists a critical number k* such that §*(7*) =
PM,Vk > k*, and §*(7*) # PM otherwise. And, such
k* is given by k* = max{k1(r), k2(m)} where

g
k2(r) = min {k; Con+ Y blei)r! > C;M} . an

k1(m) :min{k;R(wk) <1-

D. The Monotonic At-Most-Four-Region Policy

Several previous studies establish the AM4R policy structure
along an ordered subset of state space for POMDP problems
in different maintenance settings. For example, Maillart [11]
presents the AM4R structure along any straight line of <,.-or-
dered information states when P is T'P2 in her model.

In this section, we establish similar results for the presented
problem under less stringent assumptions on the transition
matrix, and information states. Specifically, we show that the
optimal policy has the AM4R structure along a straight line
of <4-ordered states on I F'R transition matrix. Consider two
states 7, and 7, for m <4; 7. Let us denote a state between 7,
and 7 by 7(A) = Ar + (1 — A)7, 0 < A < 1. Here, higher A
implies a more deteriorated condition (we will show the reason
in Theorem 2). Then, there exist at most three numbers A1, Ao,
A3 to divide the optimal policy regions as follows.

NA, ifA<)Aord <A<Ag
5% (1(\)) = min { OB, ifA <A< (18)
PM, ifA > A3

That is, as A increases, the optimal policy regions are divided
into at most four regions with the order NA — OB — NA —
PM. To establish this AM4R structure, we first show the con-
cavity of V,,(m).

Lemma 5: V,,(7) is piecewise linear concave for all 7.

Now, we are ready to prove the monotonic AM4R structure
along a <;-increasing line.

Theorem 2: If P is IFR, the optimal policy has the monotonic
AMA4R structure along any straight line of information states in
< s¢-increasing order. Furthermore, the control limit to define
optimal PM policy is defined by \* = inf{); R(7()\)) < 1 —
9/(Cenr = Cpur)» Cpar < Cop + X2 b(ei)m(A)i}

As Rosenfield [16] points out, the second N A region in the
AMA4R structure may seem counter-intuitive. In the following
discussions, we establish the conditions under which we have
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Fig. 2. The optimal policy structure: (a) monotonic AM4R structure; (b) monotonic AM3R structure.

the more intuitive AM3R policy structure. Let us define the crit-
ical numbers to divide the optimal policy regions as follows.

ANA<PM =max {)\§R(7r()\)) >1- %} (19)
Con = Cpur

AoB<PM =maz {)\; CoB + Z blei)m(A); < C}M} (20)

Note that, for A\ < Ay a<par, IV A is preferred to PM, and vice
versa. Similarly, for A < Aog<par, OB is preferred to PM,
and vice versa.

Corollary 4: If Axa<pm < AoB<pw, the optimal policy
has the monotonic AM3R structure along any <;-increasing
straight line of information states with the order of NA —
OB — PM. The optimal policy region for PM is given by
{m(A\): Cpar < Cop + 2 b(ei)m(A)i}-

Fig. 2 compares the two policy structures. Whether the op-
timal policy structure exhibits the AM4R or AM3R is highly
dependent on the costs of P M. When the PM costs are relatively
larger compared to the costs related to other actions, the struc-
ture is more likely to result in the AM4R structure, as shown in
Fig. 2(a). Otherwise, when PM costs are comparable to other
costs, the AM3R structure is more likely, as shown in Fig. 2(b).

In wind turbine operations, the repair costs (C,,) after an
unplanned failure are considerably larger compared to the P M
costs (C'%,,), as explained in Sections I and III. Also, in most
cases, OB costs are not negligible because inspecting the phys-
ical condition by dispatching a crew is costly due to the high
labor costs, and the long distance of wind farms from the op-
eration centers [27]. This high cost implies that the presented
optimal policy would more likely lead to the AM3R structure in
wind turbine maintenance problems.

V. ALGORITHM

In Section III-B, we introduced the pure recursive technique
to get the optimal policy. Now, using the structural policies de-
veloped so far, we can reduce the computational efforts substan-
tially.

First, given the parameter values (Ccar, Cpar, Cos, Wenr,
Wpu, P, 7, and T), we obtain b(e;), ¢ = 1,---,m + 1, and
average cost g by applying policy (or value) iteration to the

states on the extreme sample paths. Then, C(;,,, and Cp,, in
(11), and (12) can be computed, respectively, as discussed in
Section III-A. Then, we apply the following decision rules to
attain the optimal policy for a given 7.

* Suppose that there exists a 7 at which the optimal policy is
PM. Then 6*(7) = PM forw <4 7, V7.

* Suppose that R(m) < 1—¢g/(Cé&pr — Cpar)- M bop(mw) >
bpnr (), then 6*(mw) = PM. Otherwise, 6*(w) = OB.

* Suppose that R(7) > 1—g/(Ctp;—Cpps)- Then 6*(m) =
NAif bOB(ﬂ') > bp]\/j(ﬂ), or lfR(W) > (CICM —CoB —
Y ble)mi — 9)/(Conr — Cop — 3o blei)r?).

* Suppose that 1 — g/(Cep, — Cpyy) < R(m) < (Cgpp —
Cop — - blei)mi — 9)/(Ctar — Con — 32 b(ei)r?), and
bos(m) < bpar. We apply the following recursive method,
which improves the pure recursive technique.

—Step 1. Set k = 1;

—Step 2. If R(7*) < 1—g/(CL = Clops)s thenb(n*) =
min{bop(7"),bpar(7*)}. Then apply the recursive set
of equations (13) backward to get b(7*~1),--- b(n).
Otherwise, kK = k + 1, and go to Step 3.

— Step 3. If ||7F+1 — 7*|| < €, we apply (14) to get b(7*),
and then step backwards along the path by comparing
by a and bop to get b(rF~1), - b(r). Otherwise, k =
k + 1, and go back to Step 2.

The above method results in an optimal policy that can

be analytically obtained from the closed-form expressions.

We need to apply the recursive method only for the states

whose reliabilities are between 1 — g/(ClLy; — Chay),

and (Ctpy — Cop — D b(ei)mi — 9)/(Copy — Cob —
> b(e;)m?). Even for the recursive method itself, as Step

2 shows, we do not have to proceed until we meet the

stationary state II(7). Along the sample path, once we

find the state whose optimal policy is not VA (that is,

R(r*) < 1 - g/(CL,; — Cp,,) for some %), we can

compute b(7*) by comparing bpas with bog(7*). Then

we can step backwards by applying (13) until we get 7. On
the contrary, Step 3 occurs when the reliability at the sta-
tionary state is greater than 1 — g/(C{,; — Cpyy). In this
case, PM cannot be optimal at all of the states along the
sample path originating from 7. Therefore, we only need to
compare by 4 (7*) with boz(7*) when we step backwards
to m.
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Fig. 3. Optimal policies. (a) Wpy = 0.1, Wy = 04. (b)) Wpy = 04, Wonur = 0.4

VI. NUMERICAL EXAMPLES

McMillan & Ault [6] show that the most critical failures in
wind turbines are associated with the gearbox because of high
capital cost, long lead time for repairs, difficulty in replacing
a gearbox, and lengthy downtime compounded by adverse
weather conditions. Therefore, we choose a gearbox among
several components of a wind turbine to illustrate the presented
methodology.

A. Example for Gearbox Maintenance

We choose appropriate parameter values based on published
data, and discussions with our industry partners. For the costs to
repair a gearbox, we refer to [27]. The total direct costs for C M,
which include labor costs, crane rental, materials, and consum-
ables, are Ccopy = 12,720. The PM costs are about half that
of the CM costs: C'py; = 6,360. For a 2.5 MW turbine, rev-
enue loss during one week is 7 = 8, 820. We set Cop = 1, 000,
according to the suggestions of our industry partners. The mon-
etary unit of each cost factor in this example is euros.

Typical downtime after failures may take from 600 hours (25
days) up to 60 days [6], [10], [28]. The major contribution of
this lengthy down time is the long lead time when the spare
parts and/or crew are not available. In this study, we assume
that, upon failure, the lead time (7°) for assembling repair crew
and spare parts and travel time takes six weeks. We also assume
that repairs can be carried out in about one week [6].

Generally, a transition matrix P can be generated from his-
torical data by taking a long-run history about the deterioration
states, and counting transitions. Due to the relatively short his-
tory of preventive maintenance practices in wind turbine indus-
tries, we do not yet have a transition matrix generated from an
actual aging gearbox. So we use a P similar to the one used
in the example in [11] with slight modifications. We will ex-
amine the sensitivity of P in the next subsection. We assume that

the weekly-based deterioration process follows a Markovian be-
havior with the following I F'R, upper-triangular P matrix.

0.90 0.05 0.03 0.02
0.00 0.85 0.10 0.05

P= 0.00 0.00 0.92 0.08 D
0.00 0.00 0.00 1.00

Based on (1), we can represent the state of the gearbox as a
four-dimensional row vector, 1 = {71, w2, 3, 74 }. The values
1, T2, and w3 represent the probabilities of being in a normal,
alert, and alarm state, respectively. The value 74 represents the
probability of being in a failed state.

Fig. 3 illustrates the optimal policies with two different sto-
chastic weather environments. We can see that Qo g, and Qps
are convex sets. Also, if we draw a line between any two points,
the policy regions are divided into at most three regions in most
cases, which is consistent with the previous discussions that the
AM3R structure might dominate over the AM4R structure in
most real applications. Also notice that Qpjy; gets smaller as
the chance of adverse weather conditions to prohibit PM in-
creases. That is, with higher frequency of adverse weather con-
ditions (that is, with higher Wp;,), wind farm operators should
be more conservative in carrying out PM because of possible
production losses caused by interrupted or delayed jobs during
harsh weather.

Fig. 4 superimposes the control limits developed in
Section IV-B on the optimal policy for the same example
in Fig. 3(a). Line 1 depicts the preference of NA to PM,
or vice versa, with R(r) = 1 — ¢g/(Cgy — Chpy)- Line
2 is obtained from the comparison of bop and bp,, with
Cpy = Cos + >, be;)m;. Finally, Line 3 defines the area
where IV A is preferred to O B. The optimal policy of each area
is as follows.

e PM in states above Line 1, and Line 2 (by Theorem 1).

* OB instates above Line 1, and below Line 2 (by Corollary

1(a)).
e N A in states below Line 1, and Line 3 (by Lemma 2, and
Lemma 3).
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Fig. 5. Performance comparison where “m + 1” denotes the dimension of
states, and “# states” denotes the number of states that we evaluate to optimal
policies.

e N A in states in the triangular area surrounded by Line 1,
Line 2, and Line 3 (by Corollary 1(b)).

The only states whose optimal policy are not straightforward
from these control limits are shown in the region surrounded by
the dashed lines in Fig. 4. The optimal policy in this region is ob-
tained by applying the improved recursive technique discussed
in Section V.

B. Performance Comparison

Suppose that we want to find the optimal policy at every grid
point, as shown in Figs. 3 and 4. As the dimension of states in-
creases, computation time significantly increases when we use
the pure recursive algorithm. Fig. 5 compares the performance
of the suggested algorithm with the pure recursive technique.
We use the same parameter values in the previous examples,
and Wpyr = 0.1 and Wy = 0.4, but vary the transition ma-
trix along a state size. The results indicate that the closed form
of decision boundaries compounded by the improved recursive
technique reduces the computation time by more than 70% over
various sizes of the problem instances.

C. Sensitivity Analysis of Transition Matrix P

Considering difficulties to get a transition matrix P, we ana-
lyse the sensitivity of a transition matrix by applying four addi-

TABLE 1
SENSITIVITY ANALYSIS ON P

P | AP, g g AGg
P | 10.3% 2549.0 2599.4 2.0%
P, | 6.1% 25490 25765 1.1%
Py | 57% 2549.0 2572.8 0.9%
Py | 10.1% 2549.0 25963 1.9%
tional, different matrices, F;,z = 1, - - -, 4. P represents a more

slowly deteriorating system in a stochastic sense than P in (21).
That is, each row vector of P; is stochastically less than the cor-
responding row vector of P. Let us denote this relationship by
Py <4 P. Similarly, P, <4 P, and also P; <4 P>. On the
other hand, Ps, and P, represent more rapidly deteriorating sys-
tems than P, such that P <,; P35 <, Pj.

We quantify the speeds of deterioration of a system with P,

k=1, ---,4, compared to P, with the measure
AP (%) = — x 100 (22)
22 )

where P(i, 7) is the element in the th row and jth column of P
matrix, and Py (1, 7) is similarly defined. Note that the lower off-
diagonal elements are not involved in (22) because we consider
upper-triangular matrices. AP, implies the relative difference
of Py, compared to P.

To measure the sensitivity of a transition matrix, we use simu-
lation. Suppose that the actual system undergoes a deterioration
process following a transition matrix P. We simulate the trajec-
tories of system states following P from 136 different starting
points. Here, 136 starting points are the points in the grid, sim-
ilar to the grid points shown in Fig. 4. But to speed up the sim-
ulations, we use a coarser grid such that the distance between
adjacent grid points is 2/3. From each starting point, the simu-
lation is performed over 1,000 periods. At each period, we take
actions as the optimal policy suggests. Then the costs are av-
eraged. This process is repeated 30 times. That is, we gain the
average cost g by the simulations on 136 different starting points
x 1,000 periods x 30 trajectories (runs).

However, suppose that we do not know the transition matrix
exactly, so we incorrectly use the transition matrix P, to attain
optimal policies, while the actual deterioration process follows
P. We apply the similar simulation process, but we use P}, to
decide the optimal policy. Then, we compute the average cost
gr.. From the results of the simulations, we quantitatively mea-
sure the sensitivity of each transition matrix by

AG, = 579« 100.
g

(23)

Table I summarizes the results. The fourth column (that is, gx)
shows that the average costs increase as the assumed transition
matrix P}, deviates from the actual transition matrix P. How-
ever, the difference is not significant, as the fifth column (that is,
AG},) indicates. Even when the values of the actual transition
matrix deviates from the assumed transition matrix values by
about 10% such as P; and P4, the increased cost is about 2.0%
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on average. When the element values are different by 5—6% such
as P, and Ps, average costs are increased by around 1%.

Although the results show that the average costs are not seri-
ously affected by the deviation of the assumed transition matrix
from the actual one, we recommend making considerable efforts
to accumulate data regarding system deterioration. Rademakers
et al. [27] also suggest that industry parties should share data
for the improvement of O&M for wind turbines. For conven-
tional power systems, these data for critical equipment such as
circuit breakers and transformers have been accumulated, and
several preventive maintenance strategies have been introduced
based on historical data [29]-[31]. Similar efforts are necessary
in wind power industries.

VII. SUMMARY

Despite the vast potential capacity of wind power, the share
of wind energy still remains a small portion of the entire energy
market. One of the critical factors for enhancing marketability of
wind energy is reducing O&M costs. This factor exists because
dispatching maintenance crews with heavy-duty equipment to
remote wind farm sites is very expensive. O&M for wind tur-
bines has unique aspects that call for a new maintenance model,
and further analysis. Wind turbines are typically located in re-
mote areas, and operate under irregular, non-stationary condi-
tions. So the suitability of executing or continuing a repair job
depends on stochastic weather conditions. However, most main-
tenance studies in the literature consider static environmental
conditions. Also, lead time for repairs is typically longer than
for other equipment, and revenue losses upon failures are sig-
nificant.

In this study, we use probabilistic cost modeling to quantify
risks and uncertainties, and develop an O&M decision model
for wind turbines that incorporates these practical aspects. The
model has potential to provide practical operations and main-
tenance guidelines, to reduce repair costs, and increase mar-
ketability of wind energy. We also provide an analysis that gives
insights into the model structure, and enables efficient numerical
solutions. We analytically derive a set of closed-form expres-
sions for the optimal policy, and show how these results can be
utilized to solve large problems. We extend the AM4R structure
under weaker assumptions than a previous study in the litera-
ture, and demonstrate the conditions under which this AM4R
structure becomes the AM3R structure. We believe that these
results can be applicable to other general aging systems.

As future work, we plan to extend the model to incorpo-
rate multiple wind turbines. In this study, we assume indepen-
dence of each turbine operation. However, when turbines are
operating, the rotating blades change wind speeds, and can af-
fect the operation of other wind turbines, a condition known as
“wake effects”. It would be interesting to see how robust the
recommended maintenance policy can perform in a wind farm
that houses many wind turbines. As a part of our ongoing re-
search, we have been developing a large-scale simulation model
for wind farm operations using the discrete event specification
(DEVS) formalism [32] with hundreds of wind turbines [33].
We plan to integrate the DEVS simulation model with the pro-
posed O&M model to validate optimal policies, and to see if
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further modifications are necessary when we consider multiple
turbines.

APPENDIX

To save space, we only provide the proofs of Lemma 2, The-
orem 1, Lemma 5, and Theorem 2 which we believe are the most
important claims in our theoretical findings. The proofs of other
claims are also available from the corresponding author’s web-
site [34].

Proof of Lemma 2:

bNA(W) - bp]\/[(’/’r)

= Cenr (1= R(m) +b(n*)R(1) — g — Cpyp (24)

= (Cenr — Cpar)(1 = R(m))

=9+ (b(x*) = Cpar) R(m) (25)

Note that b(72) < C’p,,. Consequently, if (Cfy; — Clppr)(1—
R(m))—g < 0 (orequivalently, R(m) > 1—g/(ClLy —Coas)s
N A is preferred to PM.

Next, Consider the case that (Ciy —Cpa)(1— R(w))—g >
0. Let us assume that 6*(7) = N A. Then,

b(n*) — b(r)
=b(r?) = (Conr (1 = R(m)) + b(x*)R(m) = g) (26)
= (b(7*) = Cpyy) (1 = R())

—(Corr — Cpar) (L= R(m)) + g. (27
Equation (26) holds from the assumption é*(7) = NA; and
thus, b(w) = CLy (1 — R()) + b(x?)R(w) — g. Note that
in (27), b(7?) < C’p,,. Therefore, when (Cly, — Clopf)(1 —
R(m)) — g > 0, b(7?) < b(w) with the assumption of §*(7) =
N A. But this result contradicts that b(7%) > b(r) for m <
n’(m) from Lemma 1. Therefore, when (Cgp, — Chpp)(1 —
R(m))—g > 0, orequivalently, R(7) < 1—g/(Ctp —Cpar)s
N A cannot be optimal. ]

Proof of Theorem 1: The first part is straightforward from
Lemma 2, and the above discussions. Regarding the second part,
N A cannot be optimal at 7 from the fact that R(7) < R(w) for
T < 7. Also, because b(e;) is non-decreasing in 4, y . b(e; )m;
is also non-decreasing in <;-ordering from Proposition 2, and
s0 is bop(w). This result leads to bop(7) > bop(w). But,
bpar(m) is constant. Thus, when 6*(w) = PM, OB cannot
be optimal at 7 as well, which concludes the second part of the
Theorem. ]

Proof of Lemma 5: We apply the similar induction
technique used in [11]. Suppose that C My(em+1) = Conr-
Also, suppose that Vo(w) = 0 for Vr for an operating
system. NA;(m) = Com(l — R(w)) is linear in 7. OB, ()
is a hyperplane of m, and PM,(7) is constant in 7w Vn.
Therefore, Vi(w) is piecewise linear concave because the
minimum of linear functions is piecewise linear concave.
Now, suppose that V, () is piecewise linear concave such
that V,,(r) = min{r - alja, € A,} where a, is a
1 X (m + 1) dimensional column vector. We only need
to examine N A, 1(7) to show the piecewise linear con-
cavity of Vj,41(m). The first term of NA,41(7), (that is,
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(TT + CMn_T_l(em + 1))(1 —
second term of N A,,41(7) is

R())) is linear in 7. The

R(m)V,(7%) = R(m)min {x* - ala, € A,} (28)
_ Riovmin L [P ( Py (7P)m
— i {[ ERe Sy ol
T o € A, } (29)
—mm{[(ﬂP) ( P)a, -+ (7 P)m, 0]
alia, € An} (30)
=min {7r . agﬂ;anﬂ € An+1} (€2))

Because R(7)V,(w?) is the minimum of hyperplanes, it is
piecewise linear concave, which makes N A,,;1(7) also piece-
wise linear concave. Consequently, V;, 11 () is piecewise linear
concave. And the claim holds Vn by induction. ]

Proof of Theorem 2: Consider the two states (A1), and
m(A2) between m, and 7 (7 < @) where w()\;) = A\jm +
(L—=Xj)7, forj =1,2,and 0 < Ay < Ay < 1. Then, from

ZiZj T <st )\1 ZiZj T + (1 - )\1) ZiZj '/:r1 <st ZiZj '/:ri,»
we have m <5 m(A1) < 7. In a similar way, we can easily
show that w(\1) <s m(A2) <st 7. Therefore, w(\) is <s¢-in-
creasing in A\, which implies that by 4 (7())), and bo (7w (N)) is
non-decreasing in A. But, bpps(m())) is constant. Hence, there
exists a control limit A* such that for any A > \*, PM is
optimal. The value of \* is straightforward from Theorem 1.
Next, let us consider 0 < A < \*. For this region, we al-
ready know that PM cannot be optimal from Theorem 1. In
Lemma 5, we show that N A, () is piecewise linear concave.
Thus by () is also piecewise linear concave, but bop() is
a hyperplane. Thus, {m;bya(7w) > bop(m)} is a convex set,
and thus, {\;bya(m(N)) > bop(m(N)),0 < A < A*}isalsoa
convex set. This concludes the AM4R structure. [ |
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