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Abstract

This paper reexamines the Malliavin weighting functions introduced by Fournié et al. (1999) as a

new method for efficient and fast computations of the Greeks. Reexpressing the weighting function

generator in terms of its Skorohod integrand, we show that these weighting functions have to satisfy

necessary and sufficient conditions expressed as conditional expectations. We then derive the weighting

function with the smallest total variance. This is of particular interest as it bridges the method of

Malliavin weights and the one of likelihood ratio, as introduced by Broadie and Glasserman (1996).

The likelihood ratio is precisely the weighting function with the smallest total variance. We finally

examine when to use Malliavin method and when to prefer finite difference.

1 Introduction

The growing emphasis on risk management issues as well as the development of more and more complicated

financial products have urged to develop efficient techniques for the computation of price sensitivities with

respect to model parameters. Furthermore, these Greeks are not only very useful for the risk management

and hedging strategy but also for the pricing of the product. Price sensitivities contribute directly to the

price quote since the bid and ask spread is often taken as a proportion of some Greeks. They are also used

to estimate the pricing error as they show the impact of a parameter that may be inappropriate or vary

during the life of the product. Last but not least, the computation is not only done as the trader level or

book level but also at the firm level, especially for the global computation of VAR and credit adjustment,

leading to raising concern about computational time. Unfortunately, in many cases, these risk ratios can

not be expressed as closed form and require numerical methods. One of the most flexible method is the

Monte Carlo one.

However, a straightforward simulation, spiced up by various variance reduction techniques, is inefficient

in the case of options with discontinuous payoff. This comes from the way the Greeks are computed.

Defined mathematically as derivatives of the price function with respect to specific parameters, the Greeks

are traditionally estimated by means of a finite difference approximation. One calculates a price, bumps

the parameters and reprices it. This approximation contains two errors: one on the approximation of the
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derivative function by means of its finite difference and another one on the numerical computation of the

expectation.

To overcome this poor convergence rate, many methods have been suggested, out of which two have

emerged as being very efficient. On the one hand, Broadie and Glasserman (1996) advocated to differentiate

the density function, introducing the likelihood ratio. On the other hand, Fournié, Lasry, Lions, Lebuchoux,

Touzi (1999) suggested to smoothen the function to be estimated by an integration by parts. The approach,

similar to a result of Elworthy (1992) consists in shifting the differential operator from the payoff functional

to the diffusion kernel, introducing a weighting function. Their work proved that the common Greeks can

be rewritten as an expected value of the payoff times a weighting function.

Greek = E
Q
[
e−

∫ T
0 rsdsf(XT ).weight

]
(1.1)

Their results were given for particular examples of weighting functions. However, many points remained

unsolved. What is the link between the likelihood ratio of Broadie and Glasserman and the Malliavin

weighting function of Fournié et al.? What are the different admissible weighting functions? Can we

determine some necessary and sufficient conditions for a weighting function to be satisfied? What is the

best weighting function, according to the total variance of the expectation to be calculated?

The contributions of this paper is precisely to provide an answer to these questions. To do so, we

introduce the weighting function generator defined as its Skorohod integrand. We show that these weighting

functions can be characterized by necessary and sufficient conditions on their generator, by means of some

conditional expectation. We then provide a closed formula for the weighting function of minimal variance.

This enables us to find a relationship between the approach of Broadie and Glasserman and the one of

Fournié et al. We prove that the weighting function with minimal variance is precisely the likelihood ratio

of Broadie and Glasserman for diffusions with explicit density function. We finally describe when to and

when not to apply the Malliavin weighting method.

The remainder of this article is organized as follows. In section 2, we review briefly the different methods.

Section 3 shows how to derive the necessary and sufficient conditions for the weighting function generator.

Section 4 examines the case of the weighting function with minimal variance and shows that this particular

solution is precisely the likelihood ratio. We finally examine, in section 5, some numerical examples of

Malliavin calculus.

2 Previous Methods

2.1 Convergence results

Theoretical results about the convergence of price sensitivities via Monte Carlo are well known. Glynn

(1989) showed that the quality of this approximation was depending on the way of approximating the

derivative function: forward, central or even backward difference scheme. In the case of the forward

((P (x+ ε)− P (x)) /ε) or backward ((P (x)− P (x− ε)) /ε) difference scheme, if the simulation of the two

expectations is drawn independently, he proved that the best theoretical convergence rate is n−1/4. As of

the central ((P (x+ ε)− P (x− ε)) /2ε) difference scheme, the optimal rate is n−1/3.When taking common

random numbers, this optimal rate becomes n−1/2. This is the best to be expected by standard Monte Carlo

simulation. However, the finite difference method is inefficient when dealing with discontinuous payoffs.

This restriction applies to many of the exotic options such as digital, corridor, Asian and lookback options.
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2.2 Brief review of previous works

To overcome the poor convergence rate for exotic options, Curran (1994) suggested to take the differential

of the payoff function inside the expectation. Later, Broadie and Glasserman (1996) suggested to take

the derivative of the density function and introduced the likelihood ratio defined as ∂
∂θ ln p (XT , θ) where

p (XT , θ) represents the density function of an underlying asset with a parameter θ. This leads to a

smoothened expression for the Greek where the payoff function is not differentiated:

∂

∂θ
E [f (XT )] = E

[
f (XT )

∂

∂θ
ln p (XT , θ)

]
(2.1)

This method has however the disadvantage to require an explicit expression of the density function. To avoid

the need of a closed formula of the density function, Fournié et al.(1999) introduced a new method based

on Malliavin calculus. This method requires only the definition of the diffusion equation. Its problem is the

flexibility of the weighting functions as well as the exact derivation of the weighting functions. Avellaneda

et al . (2000) suggested another method for deriving the weighting function, inspired by Kullback Leibler

relative entropy maximization. The weighting function is obtained by perturbing the vector of probability

obtained by the Monte Carlo simulation. Kohatsu-Higa (2000) studied the property of the of variance

reduction implied by the Malliavin weighting functions. Pikovsky (2000) gave sufficient conditions on the

diffusion parameters to be able to interchange the expectation and derivation operator. There has been

many extensions to the initial work: see Benhamou (2000a) for more results on the Asian option, Gobet

and Kohatsu-Higa (2001) for Malliavin weights for barrier and lookback options, Fournié, Lasry, Lebuchoux

and Lions (2000) for results on conditional expectations and Lions and Régnier (2000) for the case of the

American options.

3 Characterization of the weighting functions

3.1 Mathematical framework

We consider a continuous time trading economy with a finite horizon t ∈ [0, T ], with a complete market

in which there exists a risk neutral probability measure Q uniquely defined by the no-arbitrage condition.

The uncertainty in this economy is classically modeled by a complete probability space (Ω, F,Q) . The

information evolves according to the augmented filtration {Ft, t ∈ [0, T ]} generated by a standard one

dimensional standard Wiener process (Wt)t∈[0,T ]. To avoid heavy notations, and for clarity reason, we

present our results in one dimension. However, our results can easily be extended to the multi-dimensional

case. The evolution of the underlying price, Ito process (Xt)t∈[0,T ] , is described by a general stochastic

differential equation (SDE):

dXt = b (t,Xt) dt+ σ(t,Xt)dWt (3.1)

with the initial condition X0 = x, x ∈ R. The function b : R
+×R → R represents the determinist drift of

our process and the function σ : R
+×R → R its volatility. The risk free interest rate is denoted by r (t,Xt).

We assume that the functions b and σ are Cb
1: continuously differentiable with bounded derivatives. This

implies in particular that they satisfy Lipschitz conditions1, i.e., there exists a constant K < +∞ such that

|b (t, x)− b (t, y)|+ |σ (t, x)− σ (t, y)| ≤ K |x− y| (3.2)

|b (t, x)|+ |σ (t, x)| ≤ K (1 + |x|) (3.3)

1Inequalities (3.2) and (3.3) ensure the existence and unicity of a continuous, strong solution of the SDE (3.1) with its

initial condition.
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We denote by Xx
t the continuous, strong solution Xt starting at x. We assume as well that the diffusion

function σ (t, x) is uniformly elliptic:

∃ε > 0, ∀t ∈ [0, T ] ,∀x ∈ R |σ (t, x)| ≥ ε (3.4)

We denote by (Yt)t∈[0,T ] the first variation process of (Xt)t∈[0,T ], which is characterized as the unique

strong continuous solution of the linear stochastic differential equation (3.5) with initial condition (Yt=0 = 1):

dYt
Yt

= b′(t,Xt)dt+ σ′(t,Xt)dWt (3.5)

where the prime stands for the derivatives with respect to the second variable. We can show that the first

variation process is the derivative of (Xt)t∈[0,T ] with respect to x,
(
Yt = ∂

∂xXt

)
. Malliavin calculus theory

(see Nualart (1995) Theorem 2.3.1 page 110) proves that the Malliavin derivative can be written as an

expression of the first variation process and the volatility function:

DsXt = Yt Y
−1
s σ(s,Xs)1{s≤t}a.s. (3.6)

To be as general as possible, we assume that our payoff is depending on a finite set of payment dates:

t1, t2, ..., tm with the convention that t0 = 0 and tm = T. The price P (x) of the contingent claim given an

initial value of the underlying price x is traditionally computed as the expectation under the risk neutral

probability measure of discounted future cash flow:

P (x) = E
Q
x

[
e−

∫ T
0 r(s,Xs)dsf (Xt1 ,Xt2 , ...,Xtm)

]
with the traditional shortcut notation E

Q
x [.] = E

Q [.|X0 = x]. The function f : R × R×...×R → R denotes

the payoff, and is supposed to be first order differentiable with a derivative with polynomial growth. We

denote by F the discounted payoff F = e−
∫ T
0 r(s,Xs)dsf (Xt1 ,Xt2 , ...,Xtm). If we need to specify that the

underlying is a function of the initial value x, we denote the discounted payoff by F x.

3.2 Generators of a Weighting function

The work of Fournié et al. proved that any Greeks could be written as an expected value of the payoff

times a weighting function (1.1). This comes from an integration by parts formula given by the Malliavin

calculus theory. One can also re-expressed that in the dual form.

Let C∞
p (Rm) be the set of C∞ functions f : R

m → R with polynomial growth and derivatives of all

orders with polynomial growth. Let S be the set of real random variable of the form f (Xt1 ,Xt2 , ...,Xtm)

and D
1,2 the Banach space which is the completion of S with respect to the norm:

‖F‖1,2 =
(
E
[
F 2

])1/2
+


 m∑
i=1

E


(∫ T

0

∂

∂xi
f (Xt1 ,Xt2 , ...,Xtm)DsXti

)2





1/2

The adjoint of the closed unbounded operator D : D
1,2 → L2 ([0, T ]× Ω) is usually denoted by δ and is

called the Skorohod integral. Its domain is characterized as the set of measurable process u ∈ L2 ([0, T ]× Ω)

such that there exists a positive constant C that may depend on u such that

E

(∫ T

0

DtFutdt

)
≤ C ‖F‖1,2

Writing the weighting function weight as a Skorohod integral, we call weighting function generator or

generator w the Skorohod integrand

weight = δ (w) (3.7)
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To ensure the existence of the Skorohod integral, we impose that the weight function is L2 integrable:

E
[
weight2

]1/2
< ∞ (3.8)

The point of view taken here is to characterize the weighting function by its generator. We have the

following theorem, proved in this paper for the delta. Extension to other Greeks is straightforward and can

be found in Benhamou (2000b)

Theorem 1 Necessary and sufficient conditions for the weighting functions generator

There exist necessary and sufficient conditions for a function w to serve as a generator. The first condition

is the Skorohod integrability of this function. The second condition, summarized in table 1, depends only

on the underlying diffusion characteristics and is independent from the payoff function.

Proof: in the appendix section.�

Greeks
Necessary and Sufficient conditions

on the Malliavin Weights

delta

(C1.1) :
E
Q
x,Xt1 ,...,Xtm

[
DC (0, T )Yti

∫ ti
0

σ(t,Xt)
Yt

wdelta (t) dt
]

= E
Q
x,Xt1 ,...,Xtm

[DC (0, T )Yti ]

(C1.2) :
E
Q
x,Xt1 ,...,Xtm

[
DC (0, T )

∫
0=t≤s≤T r′ (s,Xs)

Ysσ(t,Xt)
Yt

wdelta (t) dtds
]

= E
Q
x,Xt1 ,...,Xtm

[
DC (0, T )

∫ T
0

r′ (s,Xs)Ysds
]

Table 1: Necessary and Sufficient conditions for the Weighting Function

Generators of a delta

In the table 1, we denote by E
Q
x,Xt1 ,...,Xtm

the conditional expectation with respect to Xt1 , ...,Xtm ,

i.e. E
Q
x,Xt1 ,...,Xtm

[.] = E
Q
x [|Xt1 , ...,Xtm ]. We denote by DC (0, T ) the stochastic discount factor term

e−
∫ T
0 r(u,Xx

u)du.

4 The minimal variance weighting function

4.0.1 Optimal weighting function

To find the weighting function with the minimal variance, we just need to re-interprate the formula for the

Greeks. It is in fact the scalar product of the weighting function with a function Xt1 , ...,Xtm measurable.

Without more information, we know using a standard projection theorem, that the weighting function with

minimal variance is the conditional expectation of any weighting function with respect to the variables

Xt1 , ...,Xtm . This results is stated in the following proposition.

Proposition 2 The weighting function with minimal variance denoted by π0 is the conditional expectation

of any weighting function with respect to the variables Xt1 , ...,Xtm

π0 = E
Q
x,Xt1 ,...,Xtm

[weight] (4.1)

Proof: Let π be any weighting function and π0 its conditional expectation with respect to Xt1 , ...,Xtm

(π0 = E
Q
x,Xt1 ,...,Xtm

[weight]) which is uniquely defined. The Greek can be expressed as the expected value

of the scalar product of the discounted payoff denoted by F with the weighting function π

Greek = E [F.π]
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One can see that the variance V of the estimate F.π, V = E

[
(F.π −Greek)2

]
, can be expressed with

respect to π0

V = E

[
(F. (π − π0))

2
]
+ E

[
(F.π0 −Greek)2

]
+2E [(F. (π − π0)) . (F.π0 −Greek)]

The last term in the equation above is equal to zero since

E [(F. (π − π0)) . (F.π0 −Greek)] = E [E [(F. (π − π0)) . (F.π0 −Greek) |Xt1 , ...,Xtm ]]

= E [E [(F. (π − π0)) |Xt1 , ...,Xtm ] . (F.π0 −Greek)]

= 0

where we have used first the fact that (F.π0 −Greek) and F are Xt1 , ...,Xtm measurable.�
This is a strong result. It indicates that the best weighting function should always be the oneXt1 , ...,Xtm

measurable. It indicates as well that without any more specification on the pay-off function, the variance

is lower-bounded by the variance of this particular weighting function π0. To improve this lower bound, we

need to have additional information on the payoff function. It is worth noticing that the set of the Malliavin

weighting function is defined by conditions which are independent from the payoff function. However, the

optimal solution in the sense of the total variance crucially depends from the payoff’s state variables.

4.1 Link with the likelihood ratio

In the case of an explicit density function, Broadie and Glasserman (1996) showed that the Greek can

be written as the expectation of the payoff function times the likelihood ratio. Since the Ito integral and

Skorohod integral coincide over the set of adapted functions, the likelihood ratio can be seen as a Malliavin

weighting function. Moreover, The likelihood ratio is a function of the different state variables of the payoff

function or more precisely is Xt1 , ...,Xtm measurable. This indicates that the likelihood ratio is precisely

the weighting function with minimal variance. Unfortunately, the derivation of the likelihood ratio requires

the explicit knowledge of the density function while the Malliavin theory enables us to derive the optimal

weight with much less information.

5 Numerical results

5.1 The failure of finite difference for discontinuous payoff options

The variance of a finite difference scheme depends on the variance of (P (x+ ε)− P (x)) /ε, proportional

to

V ar (P (x)) + V ar (P (x+ ε))− 2Cov (P (x+ ε) , P (x))

Common random numbers will improve the convergence as it will increase the covariance between the

bumped price P (x+ ε) and the standard price P (x) . Furthermore, the above equation shows that the

method relies on the fast mean-square convergence of P (x+ ε) to P (x) . The theoretical optimal rate of

convergence of n−1/2 unfortunately does not apply in all cases. It is easy to see that the more discontinuous

the payoff function is, the slower the mean-square convergence of P (x+ ε) to P (x) is. For example, let

us examine the case of the digital call, an option paying 1 in the case of an underlying above the strike

XT > K and zero elsewhere. The difference between the shifted digital call P (x+ ε) and the regular

digital call P (x) is given by a probability times a discount rate squared:

E

[
|P (x+ ε)− P (x)|2

]
= e−2rTP [XT < K < XT (ε)]
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Assuming an homogeneous underlying process, XT (ε) = XT ∗ (1 + ε
x

)
, it leads to a convergence rate of

ε for this probability. Writing with Landau notation, we get that the convergence of P (x+ ε) to P (x) is

only linear in ε :

E

[
|P (X0 + ε)− P (X0)|2

]
= O (ε)

On the contrary, in the case of the plain vanilla call option, it can be shown (see for example Broadie

and Glasserman (1996)) that for the geometric Brownian motion, the convergence rate is of ε2

E

[
|P (x+ ε)− P (x)|2

]
≤ E

[
|XT (ε)−Xt|2

]
≤ ε2

E

[
e(r−µ)T+σ

√
TZ

]
where Z is a normal variable N (0, 1), leading to

E

[
|P (x+ ε)− P (x)|2

]
= O

(
ε2
)

This is why the methodology of finite difference under-performs for all discontinuous type options like

simple digital, corridor (option which pays 1 if the underlying at time T is inside an interval L < XT < H),

barrier option and so on.

5.2 Characteristic of Malliavin weighting method

We remind important characteristics of Malliavin weights:

• All Greeks can be written as the expected value of the payoff times a weight function. The weight

functions are independent from the payoff function. This has two implications.

– First, the Malliavin method will comparatively (to finite difference) increased its efficiency for

discontinuous payoff options. As a rule of thumb, the Malliavin method is appropriate for option

for which the mean-square convergence of a shifted option P (X0 + ε) to the normal one P (X0)

is linear in ε. This is the case of any option with a payoff expressed as a probability that a

certain event occurs conditionally to the underlying level at a certain time (case of any binary

and corridor option).

– Second, no extra computation is required for other payoff function as long as the payoff is a

function of the same points of the Brownian trajectory since the weight does not change.

• There is an infinity of solutions for the generator function. However, the optimal weighting function

is the one Xt1 , ...,Xtm measurable. This means in practice that the weight functions will be expressed

with the same points of the Brownian motion trajectory as the option payoff, therefore requiring no

extra points computation.

• The weighthing function smoothens the function to simulate (as the payoff function does not require

to be numerically differentiated) but introduces some extra noise. It smoothens twice the payoff

function in the case of the gamma as it reduces a second order differentiation to no differentiation,

leading to high efficiency for the simulation of the gamma (see figure1 for the comparative efficiency

of the Malliavin method in the case of the gamma of a corridor option). It introduces a lot of noise

in the simulation as the weighting function explodes for short maturities options.

• For homogeneous model, like Black Scholes, various tricks can be used to derive one Greeks from

the others. In particular, the computation of the vega is similar to the gamma since there is a

7



direct proportionality between the gamma and vega. This has two implications: first, the simu-

lation of gamma and vega can be done at once and second, the convergence of the vega is very

similar to the one of the gamma. The similarity of the vega with the gamma can also be un-

derstood by the fact that the the vega is a compound differentiation ∂
∂σf

(
S0e

(
r−σ2

2

)
t+σWt

)
=

f ′
(
S0e

(
r−σ2

2

)
t+σWt

)
∂
∂σ e

(
r−σ2

2

)
t+σWt , which can be re-interpreted by an integration by parts as a

second order derivatives.

• The Malliavin method leads to weighting functions which are roughly (polynomial) functions of the

Brownian motion. The variance of the weighting function increases for high values of the Brownian

motion. This implies that if the payoff function is very small for high value of the Brownian motion,

the variance is going to be low. This indicates that Malliavin formulae are more efficient for put than

call options. Two remarks should be made. First, it is more appropriate to use the put-call parity and

therefore to calculate Greeks only for a put, second, one should use a localization of the Malliavin

weight only at the discontinuity of the payoff and elsewhere avoid introducing extra noise with the

Malliavin weight.

In order to illustrate these remarks, we show two simulations done for the gamma of a European corridor

and call option in a Black Scholes model. Formulae for Malliavin weight can be found in Fournié et al.

(1999) or Benhamou (2000b) and are summarized for the European option in table 2. Figure 1 is a school

case of an appropriate use of Malliavin method. The payoff of a corridor option has two discontinuities, the

mean square convergence of the bumped price is only linear in ε and the Malliavin method smoothens twice

the Greek to simulate in the case of the gamma. Figure 2 is an example of inappropriate use of Malliavin

method. The mean square convergence of the bumped price is quadratic, the payoff is not discontinuous,

it is only its derivative function that has only one discontinuity at the strike. The Malliavin method

introduces extra noise in the simulation with the weight to simulate. The call put parity was not used,

therefore creating high variance for high values of the Brownian motion.
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Figure 1: Efficiency of the Malliavin weighted scheme for the computation of the gamma of a Corridor

option. The parameters of this option are: S0 = 100, r = 5%, σ = 15%, T = 1year, Smin =

95, Smax = 105

Greek Name Malliavin weight

delta WT

Tσx

gamma 1
σT 2x

(
W 2

T

σT − 1
σ −WT

)
vega W 2

T

σT − 1
σ −WT

rho WT

σ − T
Table 2: Optimal Malliavin weighting function for a European option in

a Black Schoes model

6 Conclusion

In this paper, we have shown that the weighting functions as introduced by Fournié, Lasry, Lions, Lebu-

choux, Touzi (1999) can be characterized by necessary and sufficient conditions given as conditional expec-

tation. We have derived the weighting function with minimal variance expressed a conditional expectation

of any weighting function with respect to the different state variable of the payoff function. We have given

the relationship between the likelihood ratio of Broadie and Glasserman (1996) and the Malliavin weighting

function of Fournié et al. (1999). We have given some general indications for an appropriate use of the

Malliavin weights methods.

Extension to this work encompasses the impact of a localization of the Malliavin weighted method as

suggested in Fournié et al. (1999) and later in Benhamou (2000a).

A Appendix

We provide the proof for the delta. Results and proofs for the gamma, vega and rho follow similar methods

and can be found in Benhamou (2000b).
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Figure 2: Efficiency of the Malliavin weighted scheme for the computation of the delta of a call option.

The parameters are similar to the corridor option with a strike of 100

A.1 Proof of the delta formula

In this section, we prove that the weighting function for the delta should satisfy necessary and sufficient

conditions. For the sake of simplicity, we denote in this section wdelta by w, and denote by a prime the

derivative with respect to the second variable. The part of the proof based on integration by parts is quite

short and follows the one of Elworthy (1992). The technical difficulty here is to justify rigorously the use

of weaker assumptions. It can be divided into three major steps:

1. first preliminary: weaker conditions on the payoff function f : show that if the result holds for any

function of C∞
K (set of infinitely differentiable functions with compact support), it also holds for any

element of L2.

2. second preliminary: interchange of the order of differentiation and expectation: show that one can

interchange the order of differentiation and expectation.

3. integration by parts:

(a) necessary condition.

(b) sufficient condition.

A.1.1 First preliminary: Weaker assumptions

We denote in the following f the payoff function and F the payoff function times the discount factor. The

idea of the first technical point is the following: taking f as an element of L2 is the same as assuming f

infinitely differentiable with a compact support. It is based on a density argument using Cauchy Schwartz

inequality and the continuity of the expectation operator.

More precisely, let us assume the result is true for any function of C∞
K (set of infinitely differentiable

functions with compact support). Let f be now only in L2. Using the density of C∞
K [0, T ] in L2, there

exits a sequence (fn)n∈N of C∞
K elements that converges to f in L2. Let’s denote u (x) = E

Q
x [F ] and

un = E
Q
x [Fn] the prices associated with the discounted payoff functions F and Fn (F and Fn are the
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function f and fn times the discount factor function). x is the starting point of the underlying security

price. Since L2 convergence implies L1 convergence, we know that the set of functions un converges simply

to the function u.

∀x ∈ R un (x) →
n→∞ u (x)

Since the result is true for payoff functions element of C∞
K , the derivative of the un function can be written

as the expectation of the discounted payoff function fn times a suitable ”Malliavin” weight δ (w) defined

as the Skorohod integral of a function w:

∂

∂x
un (x) = E

Q
x [Fnδ (w)]

Let’s denote by g the function obtained as the expectation of the discounted payoff function f times the

Malliavin weight δ (w) : g (x) = E
Q
x [Fδ (w)] . By Cauchy Schwartz inequality∣∣∣∣g (x)− ∂

∂x
un (x)

∣∣∣∣ = ∣∣EQx [(F − Fn) δ (w)]
∣∣ ≤ h (x) εn (x) (A.1)

with

h (x) = EQ
x

[
(δ (w))2

]1/2
εn (x) = EQ

x

[
(F − Fn)

2
]1/2

By definition, the L2 convergence of un means εn (x) converges simply to zero as n tends to infinity.

Therefore we already know that the function sequence
(
∂
∂xun

)
n∈N converges simply to the function g. By

property of Lebesgue compacity and the fact that the functions F and Fn are continuous and that h (x) is

bounded (non-explosive condition (3.8)), inequality (A.1) proves that this convergence is uniform on any

compact subsets K of R..

We conclude using the fact that if a sequence of functions (un)n∈N
converges simply to a function u

and the sequence of function’s derivative
(
∂
∂xun

)
n∈N

converges uniformly to a function g on any compact

subsets of R, the limit function u is continuously differentiable with its derivative equal to the limit function

of the sequence of function’s derivative
(
∂
∂xun

)
n∈N

leading to the final result:

∂

∂x
EQ
x [F ] = E

Q
x [Fδ (w)]

�

A.1.2 Second preliminary: Interchanging the order of expectation and differentiation

The second technical point is to show that we can interchange the order of expectation and differentiation

(using the dominated convergence theorem).

More precisely, since because of the first preliminary, f is assumed to be element of C∞
K and therefore

is continuously differentiable with bounded derivative, we have

F x+h − F x

‖h‖ −
〈
∂
∂xF, h

〉
‖h‖ →

‖h‖→0.
0 a.s.

An elementary calculation gives us

∂

∂x
F =

(
e−

∫ T
0 r(s,Xx

s )ds
∑m

i=1 ∂if
(
Xx
t1 ,X

x
t2 , ...,X

x
tm

)
∂
∂xX

x
ti

−F
∫ T
0

r′ (s,Xx
s )

∂
∂xX

x
s ds

)

Since f has bounded derivative,first, 〈
∂

∂xF,h〉
‖h‖ is uniformly integrable in h and second, by Taylor Lagrange

theorem, ∥∥∥∥F x+h − F x

‖h‖
∥∥∥∥ ≤ M

m∑
i=1

∥∥Xx+h
ti −Xx

ti

∥∥
‖h‖

11



Using the result that
∑m

i=1

‖Xx+h
ti

−Xx
ti
‖

‖h‖ is uniformly integrable in h (See Theorem 2.4 p 362 Chapter

IX Stochastic Differential Equations, Revuz and Yor (1994)) leads to the uniform integrability in h of∥∥∥Fx+h−Fx

‖h‖
∥∥∥

This in turn tells us that Fx+h−Fx

‖h‖ − 〈 ∂
∂xF,h〉
‖h‖ is uniformly integrable in h. Since it converges to zero

a.s., the dominated convergence theorem gives us that it converges also to zero in L1. We conclude that

∂

∂x
u (Xx) = E

Q
x

[
∂

∂x
F

]
(A.2)

�

A.1.3 Integration by parts:

Necessary condition: In this subsection, we examine the necessary condition to be satisfied by the

weighting function. The delta is defined as the derivative of the price function with respect to the initial

condition x

delta =
∂

∂x
E
Q
x

[
e−

∫ T
0 r(s,Xx

s )dsf
(
Xx
t1 ,X

x
t2 , ...,X

x
tm

)]
(A.3)

Writing the delta in terms of its weighting function generator and using the property of adjoint of the

Skorohod integral leads to:

delta = E
Q
x

[〈
e−

∫ T
0 r(s,Xx

s )dsf
(
Xx
t1 ,X

x
t2 , ...,X

x
tm

)
, δ (w)

〉]
= EQ

x

[〈
Dt

(
e−

∫ T
0 r(s,Xx

s )dsf
(
Xx
t1 ,X

x
t2 , ...,X

x
tm

))
, w (t)

〉]

= E
Q
x

[
e−

∫ T
0 r(s,Xx

s )ds
∑m

i=1 ∂if
(
Xx
t1 ,X

x
t2 , ...,X

x
tm

) ∫ T
t=0

DtX
x
tiw (t) dt

−F
∫ T
t=0

∫ T
s=0

∂
∂X r (s,Xx

s )DtXsw (t) dsdt

]

where in the last line, we have used the property of Malliavin derivatives for compound functions and the

fact that we only deal here with one dimension processes. Using the relationship between the Malliavin

derivative and the first variation process (3.6), we can replace the expression of DtXu u ≥ t in the equation

above, leading to

E
Q
x




e−
∫ T
0 r(s,Xx

s )ds
∑m

i=1 ∂if
(
Xx
t1 ,X

x
t2 , ...,X

x
tm

)
∫ T
0

Yti Y
−1
t σ(t,Xx

t )w (t) 1{t≤ti}dt

−F
∫ T
s=0

∫ T
t=0

∂
∂X r (s,Xx

s )YsY
−1
t σ(t,Xx

t )w (t) t1{t≤s}dtds




On the other hand, the delta is defined as the derivative of the price function with respect to the initial

condition x. Using (3.6) and the second preliminary’s results (A.2), we can change the LHS of (A.3)

delta

= E
Q
x

[
e−

∫ T
0 r(s,Xx

s )ds
∑m

i=1 ∂if
(
Xx
t1 ,X

x
t2 , ...,X

x
tm

)
∂
∂xXti

−F
∫ T
0

r′ (s,Xx
s )

∂
∂xXsds

]

= E
Q
x

[
e−

∫ T
0 r(s,Xx

s )ds
∑m

i=1 ∂if
(
Xx
t1 ,X

x
t2 , ...,X

x
tm

)
Yti

−F
∫ T
0

r′ (s,Xx
s )Ysds

]

At this stage, equalling the two expressions of delta gives us:

E
Q
x




e−
∫ T
0 r(s,Xx

s )ds
∑m

i=1 ∂if
(
Xx
t1 ,X

x
t2 , ...,X

x
tm

)
∫ T
0

YtiY
−1
t σ(t,Xt)w (t) 1{t≤ti}dt

−F
∫ T
s=0

∫ T
t=0

r′ (s,Xx
s )YsY

−1
t σ(t,Xt)w (t) t1{t≤s}dtds




= E
Q
x

[
e−

∫ T
0 r(s,Xx

s )ds
∑m

i=1 ∂if
(
Xx
t1 ,X

x
t2 , ...,X

x
tm

)
Yti

−F
∫ T
0

r′ (s,Xx
s )Ys ds

]
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Using the fact that this should hold for any f element of C∞
K and any function r (., .) also element of

C∞
K , we get that the following two quantities should be equal on any functions measurable,leading to

conditions expressed with conditional expectations (where to simplify notations the x in superscript have

been omitted):

E
Q
x

[
e−

∫ T
0 r(s,Xx

s )ds

∫ ti

0

Ytiσ(t,Xt)
Yt

w (t) dt|Xt1 , ...,Xtm

]

= E
Q
x

[
e−

∫ T
0 r(s,Xx

s )dsYti |Xt1 , ...,Xtm

]
∀i = 1...m (A.4)

E
Q
x

[
e−

∫ T
0 r(u,Xx

u)du

∫ T

s=0

∫ T

t=0

r′ (s,Xs)YsY −1
t σ(t,Xt)w (t) t1{t≤s}dtds|Xt1 , ...,Xtm

]

= E
Q
x

[
e−

∫ T
0 r(u,Xx

u)du

∫ T

0

r′ (s,Xs)Ysds|Xt1 , ...,Xtm

]
(A.5)

this is exactly (M1) when the interest rate is a only function of the time �

Sufficient condition: If we know a function w that verifies two equations (A.4) and (A.5) and its

Skorohod integral is L2 integrable, the above proof can be conducted backwards:

delta =
∂

∂x
E
Q
x

[(
e−

∫ T
0 r(s,Xs)dsf (Xt1 ,Xt2 , ...,Xtm)

)]

= E
Q
x


 ∑m

i=1 e
− ∫ T

0 r(s,Xs)ds∂if (Xt1 ,Xt2 , ...,Xtm)
∂
∂xXti

−
(
e−

∫ T
0 r(s,Xs)dsf (Xt1 ,Xt2 , ...,Xtm)

) ∫ T
0

r′ (s,Xs) ∂
∂xXsds




then using the necessary conditions, we get

E
Q
x




∑m
i=1 e

− ∫ T
0 r(s,Xs)ds∂if (Xt1 ,Xt2 , ...,Xtm)∫ T

0
Yti Y

−1
t σ(t,Xt)w (t) 1{t≤ti}dt

−F
∫ T
s=0

∫ T
t=0

r′ (s,Xs)Ys Y −1
t σ(t,Xt)w (t) t1{t≤s}dtds




= E
Q
x

[
e−

∫ T
0 r(s,Xs)ds

∑m
i=1 ∇if (Xt1 ,Xt2 , ...,Xtm)

∫ T
t=0

DtXtiw (t) dt

−F
∫ T
t=0

∫ T
s=0

r′ (s,Xs)DtXsw (t) dsdt

]

which then using the expression of the Malliavin derivative in terms of the first variation process, leads to

E
Q
x

[〈
Dt

(
e−

∫ T
0 r(s,Xs)dsf (Xt1 ,Xt2 , ...,Xtm)

)
, w (t)

〉]
leading to the final result:

delta = E
Q
x [Fδ (w)]

where in the last step, we made use of the integration by parts formula.�
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