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Optimal Management Strategy of a Battery-Based

Storage System to Improve Renewable Energy

Integration in Distribution Networks
Samuele Grillo, Member, IEEE, Mattia Marinelli, Member, IEEE, Stefano Massucco, Member, IEEE, and

Federico Silvestro, Member, IEEE

Abstract—The paper proposes the modeling and the optimal

management of a hot-temperature (sodium nickel chloride)

battery system coupled with wind generators connected to a

medium voltage grid. A discrete-time model of the storage device

reproducing the battery main dynamics (i.e., state of charge,

temperature, current, protection, and limitation systems) has

been developed. The model has been validated through some

experimental tests. An optimal management strategy has been im-

plemented based on a forward dynamic programming algorithm,

specifically developed to exploit the energy price arbitrage along

the optimization time horizon (“generation shifting”). Taking

advantage of this strategy wind generation performances can be

enhanced and adapted to load demand, obtaining an increased

economic gain measured by the difference between the economic

revenue obtained with and without the proposed generation

shifting policy.

Index Terms—Battery plants, dynamic programming, power

generation dispatch, renewable power generation, smart grids,

storage systems.

NOMENCLATURE

The following symbols are defined in this paper.

Day ahead market.

Point of common coupling.

Sodium nickel chloride battery.

State of charge.

I. INTRODUCTION

I N THESE YEARS electric power systems are experiencing

quite a big revolution due to the increase of power gener-

ators fed by renewable sources like wind and sun. In addition

to that, this trend has been mixing with the concurrent course
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in power generation practice of preferring distributed and dis-

persed medium and small power generators instead of few lo-

calized large power plants [1]. Beyond the great benefits that

the combination of these two tendencies can achieve, there are

still some significant drawbacks [2], [3]. In fact the intermit-

tency which naturally characterizes the power production of

renewable sources is one of the main concerns and some ac-

tions both from a technical and a regulatory point of view (e.g.,

adequate reservoir and incentive tariffs) have to be envisaged.

The combination of intermittency and diffusion may also bring

out and worsen problems in transmission and distribution net-

works. Using a traditional approach the solution can be provided

only by transmission and distribution equipment reinforcement,

which is, for sure, the most costly way to work out the complex

problems posed by this new context.

A different solution is offered by energy storage devices

which can be used to effectively improve renewable energy

sources behavior from a grid perspective. Moreover storage

systems can be exploited by owners and investors to mitigate

the uncertainty deriving from renewable energy randomness.

In fact, energy storage can be seen not only as an “energy

buffer” to be used to keep the energy delivered at PCC as close

as possible to the declared value at DAM closure, but also as

reservoirs that can store the energy produced by renewable

energy sources in off-peak periods in order to sell it when the

energy price rises (on-peak periods) [4], [5]. This use of storage

devices is similar to what done in the management of water

basins: i) energy production during the day and, especially,

during on-peak hours; ii) pumping of water to the basin—and,

consequently, power consumption—at night, when energy

price is usually low.

However, for the moment, the integrated storage and energy

sources systems are not generally allowed to draw energy from

the grid and so this policy cannot be applied unless the energy

stored in the reservoirs is that produced by the local energy

sources themselves. This difference let themanagement strategy

previously described be defined as “generation shifting” since it

is not an increase of load when price is low (as a consequence of

a general decrease of power demand) but a shift in power pro-

duction.

The “energy buffer” function that storage devices can accom-

plish is extremely important, but is strictly related to the regula-

tory framework. Although the intermittent nature of renewable

energy sources is considered a problem, regulatory rules slightly

penalize bad forecasts and slightly incentivize good practices.

1949-3053/$31.00 © 2012 IEEE
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Consequently the mere respect of forecasted generation pro-

files is not sufficiently remunerative. In order to justify the in-

stallation of storage system it is necessary to identify manage-

ment procedures that increment the final outcome. The proposed

“generation shifting,” in principle, can be applied in every con-

figuration and in every regulatory framework.

The aim of this paper is twofold. On one hand the discrete-

time model which implements the battery main dynamics (i.e.,

state of charge, temperature, current, protection, and limitation

systems) is described. The models are strongly nonlinear and

this fact requires a complexity reduction through a linearization

of some parameters in order to obtain a closed-form solution of

the discrete-time dynamic behavior of the batteries and the use

of an algorithm suited for handling the intrinsic correlation with

time introduced by the storage devices.

On the other hand an economical cost-benefit analysis has

been performed. Taking advantage of the increased capabilities

given by the combined use of renewable energy sources and

storage devices, wind generation can be enhanced and adapted

to load demand, obtaining an economical gain.

A dynamic-programming based algorithm [6] has been de-

veloped in order to define the optimal generation profile of the

whole generation facility. Given an estimation of battery life and

of economic gain the battery maximum expected cost to reach

the break even point before the end of battery life has been eval-

uated.

In order to carry out the proposed analysis a simulated test

facility representative of an on-the-field test site has been set

up. The model of the storage equipment, made up of 280 17.8

kW-rated units, has been derived both from literature and ex-

perimental tests on a specific SNC battery. The wind genera-

tion profiles have been derived from a statistical analysis of the

power production of six 850 kW-rated wind generators located

in Sicily (Italy).

II. PROBLEM FORMULATION

A. The Optimization Problem

The optimization problem which lies under the “generation

shifting” objective can be formulated as the maximization of a

profit function. This profit derives from the coordinated man-

agement of renewable energy resources and storage facilities.

The problem can be viewed as finding the optimal value of en-

ergy sold to the grid using both renewable sources and storage

devices. Let

(1)

be the total profit deriving from selling, at the price specified by

, the amount of energy , which is the algebraic sum of ,

the energy that renewable sources are foreseen to produce, and

, the energy produced/stored by the batteries according

to what defined by the control vector which sets the mission

of the storage devices. Thus, the solution of the problem can be

expressed as finding the optimal values of the control vector

so as to maximize the overall profit

(2)

Fig. 1. First order model of SNC cell ( is the open-circuit cell voltage and
is the equivalent cell resistance).

The energy on which the maximization is carried out is the

production profile exposed to the grid by the plant. As shown

in (1), directly depends on the production forecasts of both

renewable energy sources and energy market prices, which are

supposed to be given. For what concerns energy prices, it is

worth noting that energy can be paid according to some bilateral

contracts, thus making the prices be known a priori.

B. Discrete-Time Models for Storage Equipment

The models of the energy storage equipment are intrinsically

continuous. However, the plan of the amount of energy that will

be provided to the grid is settled in the DAM some hours—usu-

ally one day—before the actual exchange would take place and

on a (quarter-)hourly basis. This means that within the scheduler

framework the coupling between energy storage devices and re-

newable energy sources is done by means of averaged models.

The proposed model of the SNC battery is composed by a set

of units, each of which with nominal values of 17.8 kW-14.2

kWh [7]. Each unit is composed by parallels of cells con-

nected in series. It is assumed that all the cells are perfectly

balanced and thus the tasks requested to the storage system are

equally divided among the units that constitute the storage

system.

Under these assumptions all the dynamics are built in the

single equivalent cell. The modeled dynamics regard SOC be-

havior, electrochemical conversion, and thermal characteriza-

tion. The model used in the present work is shown in Fig. 1 [8].

Usually, complete models involve the presence of at least one

parallel R-C branch in series with in order to take account of

mid- and fast-acting dynamics and describe the battery behavior

in amore complete way [9]. However, the exact characterization

on the batteries is out of the scope of the present work, which

is mainly focused on the long-term management of this kind of

storage devices.

The discrete-time model of the storage device system can be

expressed as

(3)

where is the sum of the battery cur-

rents, is the cell capacity, is the bat-

tery voltage, is the cell equivalent resistance,

is the overall equivalent resistance of the storage device, is
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TABLE I
VALUES OF THE MAIN BATTERY PARAMETERS

Fig. 2. Cell internal resistance during a controlled discharging cycle at .

the thermal power dissipated due to Joule effect, is the elec-

trical energy flowing through the batteries, is the temperature

of the storage system at time , is the electrical power used

by auxiliary services (i.e., heaters and coolers), and are

heat resistance and capacity, is the heat transfer due to

auxiliary service intervention, is the room temperature, and

is the amount of time auxiliary services are ac-

tive. The numerical values of these parameters are reported in

Table I.

One of the main drawbacks of hot-temperature batteries is

that, even though provided with good thermal shields, they have

thermal losses due to natural cooling. For the 17.8 kW module

used in the present work these losses reach the value of al-

most at the cell internal nominal working tempera-

ture of . Moreover, if left in stand-by, the batteries cool

down to room temperature in 7 days. These two values

(i.e., thermal losses and cooling time) were used to estimate the

thermal parameters of the battery model. In fact the equivalent

thermal resistance has been evaluated as the ratio between

the temperature gap and the thermal losses

whereas the thermal time constant

has been used to estimate the thermal capacity.

In order to use this model the solutions for SOC, temper-

ature and supplied energy—the “state variables” of problem

(3)—have been derived in closed form using a symbolic res-

olution tool. Being a nonlinear function of SOC and tempera-

ture, the equivalent internal resistance was linearized through

least squares minimization in order to obtain convergence for

the symbolic resolution process.

1) Equivalent Internal Resistance Linearization: The equiv-

alent internal cell resistance for the considered SNC battery can

be written as

(4)

Fig. 3. Plot of the nonlinear cell equivalent resistance, function of SOC and
temperature as described in (4).

TABLE II
VALUES OF THE PARAMETERS OF THE EXPRESSION OF INTERNAL RESISTANCE

AS FUNCTION OF SOC AND TEMPERATURE

where is a constant term, is the reference value for SOC

(i.e., that through which the internal resistance is only func-

tion of temperature), is the weight of dependence on SOC,

and is the thermal coefficient. Function (4) has been derived

from [10]–[12] while the parameters were estimated from ex-

perimental measurements provided by the battery manufacturer.

Data, shown in Fig. 2, have been derived by measuring the ratio

between voltage step amplitudes and the corresponding cur-

rents during a controlled discharging cycle from to

with cell temperature within . For

the considered SNC batteries these parameters were set to the

values shown in Table II [13]. The plot of function (4) is shown

in Fig. 3. Data and parameters of the adopted model are related

to the activity mentioned in [7].

The least squares minimization algorithmwas used to find the

coefficients—values are reported in Table III—of the plane

(5)

that best approximate the surface (4) according to

(6)

Fig. 4 shows the error done in using the linear model instead

of the nonlinear one. It can be clearly seen that the average

error is below 5% and that it increases at border conditions (i.e.,

low/high SOC and low/high temperatures) where the battery is
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Fig. 4. Percentage error between the nonlinear and the linear models of the
internal cell resistance.

TABLE III
VALUES OF THE PARAMETERS OF THE LINEAR APPROXIMATION OF THE

INTERNAL RESISTANCE

likely to dwell only occasionally due to the intervention of the

protection and limitation systems.

C. Dynamic Programming Algorithm

The dynamic programming algorithm was used to solve

problem (3). The usual set-up of backward dynamic program-

ming could not be used in this context [6]. In fact, using this

approach, the algorithm starts from the final state, let say at

time , and goes backward to the initial state, let say at time ,

minimizing the overall cost through a recursive definition of

the cost itself. However, in the problem under study it cannot

be identified a priori a final state to which the whole system

should converge because there are neither a desired SOC nor a

particular state of the battery (in terms of temperature, protec-

tions, auxiliary services) that should be reached as an objective

for the optimization. For this reason the forward approach has

been followed.

Let a generic dynamical system be defined as

(7)

where is the -dimensional state vector at time , being

the initial condition and the control vector that “brings”

the system from state to state . Let also assume that for

every time the state space of the admissible states is reduced

to non-empty subsets of

(8)

and that, similarly, the control vector is constrained to belong to

nonempty subsets of that can generally depend on the current

state vector

(9)

Fig. 5. Graph representing the maximization process.

The cost function to be maximized can thus be written as

(10)

where is the transition cost from state to state using

the control vector . The graph associated to this problem is

depicted in Fig. 5.

The problem of finding the optimal value of energy sold to the

grid at PCC can bewritten as in (10). Obviously this is a case of a

maximization problem and the “cost” function should bemore

properly called “profit” function. However, since this term has

been widely accepted and there cannot be misunderstandings

about the nature of this function, will be called cost function

throughout this paper.

Let the space vector be defined as

(11)

where the three components are the state of charge, battery

temperature and auxiliary services activation state. The con-

trol vector is the energy supplied to the grid through the

PCC. Obviously, for every instant, the energy requested from

(supplied to) the battery is the difference between the energy

generated by the wind farm and . It is worth noting

that while is a boolean variable and is a state

variable used only to trigger auxiliary services activation and

protection and limitation systems, is the state variable

that rules over the maximization process. In fact the transition

from a certain SOC at time to another SOC value at time

is achieved through a supply of energy to or from the battery,

thus modifying the amount of energy that can be supplied to

the grid and, consequently, the revenue.

This means that the state of charge is not only a state vari-

able, but also a control variable. In evaluating the transitions

from one state to another all possible states of charge should be

considered. If this were done the problem would have no so-

lution since there are infinite combinations due to the fact that

there are infinite states of charge.

The first remark to this scenario is that starting from a state of

charge not all states of charge can be reached. In fact some tran-

sitions would involve currents above the limits, thus making the
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Fig. 6. Pseudocode of the forward dynamic programming.

cost of these transitions infinite. This means that a discrete sam-

pling of the states of charge is suitable in order to avoid a useless

computational burden. Thus, in the graph of Fig. 5 the rows can

be associated to different levels of SOC. Obviously care must

be taken when setting the SOC sampling step. During the sim-

ulations a step of 0.016 pu—which corresponds to 64 kWh and

different states of charge—was set. The

cost function can, thus, be written as

(12)

where is the energy price at time .

The pseudocode of the forward dynamic programming algo-

rithm is shown in Fig. 6 and explained into detail in the fol-

lowing text.

Starting from the energies related to all the connections

between the initial state and every state at are evaluated

along with the amounts of energy supplied to PCC and supplied

to or requested from the storage system. These energy values are

used to evaluate the transitions costs. In fact, for every transition

the storage system behavior is simulated using the closed-form

equations derived by (3). If some of these values (basically tem-

perature and current) happen to hit the thresholds (i.e., max-

imum or minimum temperature, maximum current for the ac-

tual SOC) those transitions are set to have infinite cost and are

therefore considered to bring the system to an unfeasible state.

This behavior may seem to be overly restrictive, especially for

what concerns limitations, since, due to their intervention, the

storage system would be brought to another—feasible—state.

However limitations are supposed to be triggered for operating

conditions close to limit which are usually not reached by the

dynamic programming output. This behavior, making the graph

more sparse, is a valuable aid in avoiding the curse of dimen-

sionality. If neither protections nor limitations are triggered, but

Fig. 7. Simple example of the proposed forward dynamic programming algo-
rithm.

auxiliary services are activated the activation time is deduced by

an iterative procedure that finds the time at which temper-

ature hits either minimum or maximum values and the needed

amount of energy supposed to be supplied by the renewable en-

ergy sources, thus reducing the total amount of available energy

at PCC. For every “arrival” state the connection associated with

highest cost is chosen.

This process is repeated at each time step for all the connec-

tions starting from a feasible state and going to another feasible

state and for every feasible “arrival” state. It is worth noting that

the feasible states are not “constant” at each stage and depend

on the starting state. In fact to different starting states at time

can—and in principle do—correspond different feasible

states at time .

The dynamic programming algorithm ends when is

reached. Then the state with the maximum value of the cost

function is chosen, thus, solving problem (2). This last state

brings within itself all the previous choices done at each stage,

thus, identifying a “path” both for the storage system and for the

energy supplied at PCC. For a better understanding of the algo-

rithm one can refer to the pseudocode in Fig. 6 and the simple

example of Fig. 7.

The numbers on the arrows represent the transition costs

from -th state at to -th state at (when set to they

indicate an unfeasible transition); the numbers inside the states

are the cumulative optimal values of the cost function .

In this example final decision is taken at and no constraint

is set on the final state. Red dashed arrow shows what would be

the best decision at whereas green solid arrow shows the

optimal solution. No constraint is set on the final state in order

to let the algorithm choose the best path (i.e., the best energy

profile for battery and PCC).

III. SIMULATIONS AND RESULTS

The main input that must be given to the dynamic-program-

ming-based optimal scheduler are prices and wind profiles. For

what concerns energy prices, a statistical analysis on Italian en-

ergy prices in 2010 has been carried out. The price considered in

this analysis is the so-called PUN (the hourly Unique National
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Fig. 8. Box plot graph for 2010 week day Italian energy prices.

Fig. 9. Mean energy prices for the Italian Power Exchange (IPEX) in 2010.

energy Price as it comes from the DAM closure). The values

were split between week days and weekend days, since some

difference may occur in spread (the distance between peak and

valley prices) and in peak price location. In Fig. 8 the statisti-

cally obtained box plots of 2010 weekday Italian energy prices

are shown.

From this study two mean profiles (i.e., one representative of

week days and the other of weekend days) have been derived.

These profiles are made up of the median value for each hour

(Fig. 9).

For what concerns renewable power production profiles, the

generated power of six 850 kW-rated wind turbines located in

Sicily (Italy) have been measured with a 5-s sample time in a

one-year campaign and have been analyzed. From this statistical

analysis, similar to that carried out for energy prices, a power

production profile for the whole set of turbines have been de-

rived [see Fig. 10(a)] starting from the median values. It is worth

noting that the peak production value shown in Fig. 10(a) is far

below the rated value of the wind power plant (5 MW). This is

because the production profile was built from the median pro-

duction values. Nevertheless this assumption is sound since the

energy related to this profile sums up to approximately 21 GWh

per day which correspond to approximately 7.6 GWh in a year,

which is the equivalent production of the whole wind power

plant operating at nominal rated power for 1500 h, reasonably

close to the standard wind farm production equivalent time in

Italy.

Obviously the location of the peak in power production

depends on the site from which wind data come. In order to

avoid this dependence of the final results on the peak power

production location the peak has been shifted twenty-three

times, keeping constant the integral energy value, as shown in

Fig. 10.

The results obtained by applying the 24 power production

profiles are shown in Fig. 11. The economical gain is evaluated

with respect to the profit from selling the energy harvested from

the wind without the presence of the storage devices

(13)

From this formulation it is straightforward that the storage

system should accomplish the “generation shifting” in order to

have a positive gain.

Each of the 24 gain values pairs have been used to define

the yearly gain (i.e., 52 times the weekly gain, made up of

five week-day gain and two weekend-day gain) for the twenty-

four values (Fig. 12). It is clear that the best exploitation of the

storage system occurs during night time when the wind produc-

tion is at its peak and the cost of energy is low. The maximum

gain is obtained when the wind peak overlaps with the week day

energy minimum price. For this case the break down of the main

storage system parameters is shown in Fig. 13.

In these first simulations no constraint has been set on the final

state of charge of the storage system and the starting SOC was

set to 0.2 pu. It has been also verified that the maximum gain

was obtained with final SOC equal to 0.2 pu. New simulations

were set up in order to find the sensitiveness of economical gain

to the initial SOC of the storage system. In these simulations

the constraint on the final SOC was set. For each simulation the

storage system was forced to come back to the initial state of

charge by applying a penalty weight to the final states different

to that corresponding to the starting SOC. This action was nec-

essary in order to avoid the distortion of the results. In fact, if

there were not this kind of constraint the scheduler could use the

energy exceeding the minimum value, regarding it as some sort

of “dowry” coming from the previous day. In this way energy

can be sold at peak price hours without taking account of the fact

that the energy dowry has been stored at the expense of a pos-

sible gain, i.e., with a hidden cost. During operation this kind of

behavior could be acceptable, but in the presented study, which

considers a “mean behavior” in order to find the profitability of

an investment, it is unacceptable. By forcing the storage system

to return to the starting SOC value this misbehavior is avoided.

The week and weekend days gain for different starting SOCs

are shown in Fig. 14. From this plot is clear that the maximum

gain is obtained when the starting SOC is minimum, thus vali-

dating the results obtained by first round of simulations. This is
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Fig. 10. Power profiles of wind turbines generation used for the simulations (a) the original wind profile, with peak at , coming from the statistical analysis
on wind measurements (b)–(f) five examples of the twenty-three outcomes of the “peak shifting” procedure used for obtaining the sensitiveness of the revenue
with respect to the time at which the wind peak occurs.

Fig. 11. Economical gains for week and weekend days obtained by exploiting
the coupling of the storage system with the wind farm.

also a demonstration that, in the absence of further knowledge

on wind or energy price forecasts spanning more than one day,

a management strategy that tries to decouple subsequent days is

more valuable.

IV. CONCLUSION

The paper has addressed the problem of renewable genera-

tion integration into the grid by proposing an optimization al-

gorithm capable of suggesting optimal management strategies

for a combined wind power generation and storage system. A

forward dynamic-programming based algorithm has been de-

veloped in order to define the optimal generation profile of the

Fig. 12. Estimated yearly gain obtained from the week and weekend days re-
sults.

whole generation facility thus allowing the better exploitation

of the intrinsically intermittent wind power generation. A dis-

crete-time model of the storage device has been developed in

order to introduce the main battery system dynamics (i.e., state

of charge, temperature, current, protection, and limitation sys-

tems) in the optimization algorithm.

Storage system integration and coordinated management

with renewable energy sources can open the way to larger level

of renewable penetration into electric distribution networks.

Under proper and reasonable assumptions of battery life and of

economic gain the maximum expected battery cost to reach a

revenue before the end of the battery life has been evaluated.
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Fig. 13. Breakdown of the main parameters of the storage system (power sup-
plied to or requested from the storage system, state of charge and storage system
temperature) for the simulation with wind peak production at . Blue
solid lines correspond to weekday simulation, red dashed lines correspond to
weekend day simulation.

Fig. 14. Estimated daily gain obtained starting from different states of charge
of the storage system.

The renewable integration study has been tested by simula-

tion of a real scenario offered by six medium sized wind gen-

erators and the results have shown a good exploitation of the

energy price arbitrage during the optimization time horizon by

adequately operating a generation shifting. The economical gain

has been evaluated by considering the ratio between the eco-

nomic revenue obtained with and without the proposed genera-

tion shifting policy).

Future expected investigations will concern medium-to-long

term analyses of the coupled wind generation park with the an-

alyzed storage system, dynamic model validation, analysis of

potential ancillary services provided by the combined plant.
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