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The single shooting method is used identify optimal manoeuvres in the lateral dyna-

mics of partially-supported wings of very low stiffness. The aim is to identify actuation

strategies in the design of aircraft manoeuvres in which large wing deflections can sub-

stantially modify the vehicle structural and aerodynamic features. Preliminary studies are

presented for a representative high-altitude long-endurance aircraft wing in hinged confi-

guration. Nonlinear effects due to large deflections are captured coupling a geometrically

exact beam model with an unsteady vortex lattice method for the aerodynamics. The

optimal control problem is solved via a gradient-based algorithm. When lowering the wing

stiffness, the nonlinearities connected to the system — such as the fore-shortening effect

due to large bending deflections — increase the wing lateral stability but at the same time

they also reduce aileron authority. The single-shooting optimisation is shown to capture

these features and to provide satisfactory results, not only when refining a predetermined

actuation law but also when designing it from zero.

Nomenclature

CRV Cartesian rotation vector
CVP Control vector parametrisation
FoR Frame of reference
GEBM Geometrically-exact beam model
UVLM Unsteady Vortex lattice method

Symbols

β Ailerons deflection
Φn n-th basis function of the control parametrisation
σ Wing stiffness parameter
τn n-th control point used for the B-splines parametrisation

A Body-attached frame of reference
B Local frame of reference defined along the beam mean axis s
c Column vector for the optimisation problems constrains
G Global frame of reference
I Cost function for the optimisation problems
L Wing half span length
m Order of B-spline basis
Nτ Number of control points for the B-spline parametrisation
Nc Size of the basis used to parametrise the control
R Residual form of the physical system
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s Beam mean axis
T Final time of the dynamic simulations
t Time
u Control function
x Column vector containing the design variables for the optimisation problems
y Physical system state

I. Introduction

Historically, aeronautical design has been characterised by relatively stiff structures exhibiting relatively
small structural deformations. The design of flight control laws for conventional aircraft has been, therefore,
usually based on linearised models around a reference flying condition. Typically, the first step of this process
consists in linearising the rigid body dynamic equations associated to the vehicle, which allows to express
changes of the rigid vehicle attitude in the form of a linear time invariant system. If deformations are small,
the gains of such a system can be corrected to account for flexibility effects performing a linear aeroelastic
analysis of the reference configuration itself. For years these approaches have been successfully applied to
both the control design and stability analysis of conventional aircraft configurations.1

As high-efficiency requirements are pushing for lighter and more slender designs, wings of novel aircraft
concepts are likely to exhibit large geometrical deformations. The design and manoeuvring of these aircraft
presents a number of additional challenges with respect to conventional, stiffer, vehicles.2 In first instance
the higher structural flexibility has the direct effect of lowering the elastic modes natural frequencies, thus
strengthening the coupling between flexible and rigid body dynamics. Due to the high flexibility, moreover,
large geometrical changes — that significantly impact the wing aerodynamic performance and the overall
vehicle stability features — occur not only within different points of the flight envelope but also during a
single manoeuvre.

In this context, classical approaches for open-loop control laws design and stability analysis may require
adjustments. A typical solution for stability and flutter analysis consists on linearising the aeroelastic system
around a fixed trimmed configuration, so as to account for changes in the aeroelastic features of the vehicle
if large deflections are present.3 This process, in particular, needs to be repeated for each point of the
flight envelope. In a similar way, and under the same assumption of small displacements with respect to the
reference deformed shape, flight control laws can be designed. These approaches are, however, better suitable
for those cases in which the desired flight conditions are easily determined, such as when the aim is to design
a control to ensure steady flight conditions4. In the attempt of seeking for optimal performance, however, a
methodology should potentially allow large changes in geometry — and thus in dynamical features — during
the manoeuvre itself and, in general, be able to deal with the nonlinear behaviour of a flexible wing as an
opportunity for extra performance, rather than a constraint. Previous works aimed to address this point
focusing on the development of feedback control laws for trajectory control.5

With the aim of maximising the performance of a nonlinear system that can exhibit complex and unintu-
itive behaviours, the task of designing aircraft manoeuvres via very flexible wings can, instead, be recast as
an open-loop optimal control problem where the unknowns are the time histories of the wing aerodynamic
control surfaces. In theory, these problems can be solved enforcing an optimality condition on the equa-
tions describing the system dynamics (e.g. Pontryagin’s principle).1;6 However, this approach would be too
complex — with respect to both the analytical and numerical development — to be applied to the coupled
nonlinear flexible-rigid body flight dynamic model of a flexible aircraft. A way around consists, instead, in
parametrising the control signal and solving the problem numerically via nonlinear programming techniques
for optimisation (direct methods). Single and multiple shooting methods, in particular, are directly linked to
single and multidisciplinary optimisation (MDO): once a parametrisation is chosen, in fact, the coefficients
of the parametrisation are directly handled by the optimisation algorithm.7 An appealing feature of this ap-
proach is that it can be extended to a combined optimisation problems with relatively little effort: once the
actuation is parametrised, in fact, there is no formal difference, at the optimiser level, between the open-loop
optimal control solution and the optimisation with respect to any other aircraft design parameter.6;8
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In this work, an optimisation framework has been built around the aeroelastic simulation environment
SHARPy (simulation of high aspect ratio planes in Python).9–11 The nonlinear aeroelastic solution is ob-
tained by loosely coupling a geometrically exact beam model (GEBM) with an unsteady vortex lattice
method (UVLM) for the rigid and flexible vehicle aerodynamics. Both the GEBM and the UVLM have
been designed to capture large deflections and, importantly, the fore-shortening effect due to large bending
displacements.12 The coupling between rigid-body and flexible modes dynamics is also accounted for. The
aeroelastic model is initially used to assess key manoeuvrability features of flexible wing. To this aim, a
model of a high-altitude long-endurance (HALE) representative wing9;13 in hinged configuration has been
built. This set of constraints, in particular, allows to isolate the dynamics associated to the wing flexibility
from that of the rest of the aircraft. Finally, using the single shooting (or control vector parametrisation,
CVP) technique, the time histories of the wing control surface deflections have been optimised via a gradient
based method.

II. Methodology

This section introduces the modelling approach for nonlinear aeroelastic analysis built in SHARPy
(Sec. II.A). The main features of the model are the coupling between rigid and flexible body dynamics
and the ability to capture the impact on the aerodynamic loads of large deformations during a prescribed
manoeuvre. The control surface actuation is approximated by the deflection of the wing panels. Sec. II.B
introduces instead the single shooting method as a solution to optimal control problems and describes the
set-up chosen for the optimisation.

II.A. Aeroelastic Model

The nonlinear time dependent aeroelastic analysis required to simulate the wing behaviour when, possibly,
large geometrical changes occur will be performed within the SHARPy environment.9–11 The solver, which
has been extensively verified in previous studies,11;14;15 loosely couples a GEBM16;17 with a free-wake UVLM
solver.

The coupled flexible-rigid body dynamic structural model is described using the notation introduced by
Hesse et al,11 with frames of reference (FoRs) and relevant vectors being shown in Fig. 1. The rigid body

G

A

B

r

R

Figure 1: Definition of frames of reference

dynamics is expressed in terms of translational (vA) and rotational (ωA) velocity vectors of a FoR attached
to the body, A, with respect to the ground FoR G — note that the subscript stands for the FoR in which
quantities are projected. In the GEBM local deformations are assumed to be small, thus allowing to use
a linear material model. At each section of the beam, force and moment strains are expressed into a local
FoR B, defined along the beam mean axis s.16 As this latter can move and rotate with respect to the body
FoR A, large displacements and rotations can be captured accurately. In particular, the local orientation
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with respect to the body-fixed axes A is expressed using the Cartesian rotation vector, Ψ(s). The coupled
nonlinear rigid body dynamics is finally expressed as:

M(η)

{

η̈

χ̇

}

+

{

Qs
gyr(η, η̇, χ)

Qr
gyr(η, η̇, χ)

}

+

{

Qs
stif (η)

0

}

=

{

Qs
ext(η, η̇, ζ, t)

Qr
ext(η, η̇, ζ, t)

}

, (1)

where χT =
{

vTA, ω
T
A

}

, η is a vector containing nodal rotation and displacements, and Qgyr, Qstiff , Qext

are, respectively, gyroscopic, stiffness and external forcing terms.11 The external force Qext includes both
gravitational and aerodynamic contributions. This is expressed in terms of quaternions such that ζT =
{ζ0, ζ

T
v }. The scalar (ζ0) and vector (ζv) parts of ζ are obtained via integration of FoR A angular velocity

ωA according to:18

ζ̇0 = −
1

2
ωT
Aζv , ζ̇v = −

1

2
(ζ0ωA − ω̃Aζv) (2)

where ( ˜ ) is the skew symmetric matrix operator. Spherical joint boundary conditions (BCs) have been
implemented by setting the velocity of the body FoR vA to be zero. Hinge BCs can be derived similarly,
allowing rotations only along one axis.

The aerodynamic component of the external forcing term Qext is computed via the UVLM, for which
a detailed description is provided by Murua et al.9 The flow is assumed to be incompressible, inviscid and
irrotational, thus allowing to express the velocity field in term of a potential function. These hypothesis are
a realistic assumption when dealing with low Mach numbers and fully attached flows. The no separation
hypothesis implies that changes in wing geometry occur slowly in respect to the flow characteristic time scales.
Under these conditions, the notion of vortex ring can be introduced and used to discretise the aerodynamic
surfaces and the wake. Being Γ the circulation strength associate to each of them, the velocity induced by a
single vortex can be computed using the Biot-Savart law and the global velocity field can be derived using
the superposition principle. At each time step, vorticity is shed at the trailing edge, thus building up the
wake. To fully capture the effect of large deformations, in particular, the wake geometry is not prescribed
but is computed as part of the solution on the basis of convecting the vortex rings in the wake with the local
flow velocity. The vorticity field at the time-step n is solved by enforcing the non-penetration condition at
a number of collocation points distributed over the wing, thus leading to:

AbΓ
n
b +AwΓ

n
w + wn = 0 (3)

In eq. (3) Γb and Γw are the surface (bound) and wave strength circulation vectors, while Ab and Aw are
the wing-wing and wing-wake aerodynamics influence coefficients matrices. The first two terms in eq. (3)
return the velocity induced by the vortex rings system on the collocation points, while the vector w contains
the normal velocity of the collocation points due to the wing deformations and rigid body motion, as well
as the movement of aerodynamic control surfaces and gust induced velocity. The third term determines the
coupling with the structural and control disciplines. Once the vorticity is solved for, the global velocity field
can be computed and used to derive the forces on the vortex rings — and thus the aerodynamic loads — by
means of Joukowski’s theorem.10 These lead to an expression for the aerodynamic component of the external
forcing term Qext appearing in eq. (1), thus closing the coupling between structural and aerodynamic solvers.

II.B. Optimal Control via Single Shooting

The optimal control of a flexible aircraft can be seen as an optimisation problem in which the design variable
is a time-dependent function, the control input u(t). This can be written in standard form as:

minimise I = I(u, y, ẏ)

with respect to u(t), y(t)

subject to c(u, y) ≥ 0

R(t, u, y, ẏ) = 0

(4)
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In problem (4) y = {η, χ, ζ,Γb,Γw}
T
is the state of the aeroelastic system, I is the cost functional to minimise

while c and R define design and discipline constraints. The set of equations R is linked instead to the solution
of the aeroelastic system defined by eq. (1), (2) and (3) over the time horizon [0, T ]. The design constraints
c = {co, cc}, can be used to meet control specific (cc) and general (co) design requirement. In this work the
control input at time t is provided by the ailerons deflection β(t) and bound constraints are enforced to limit
both their amplitude and rate of change:

|β(t)| ≤ βmax(t)

|β̇(t)| ≤ β̇max(t)
, t ǫ [0, T ] (5)

In direct transcription (DT) deriving methods, both state and control are discretised in time and treated
as design variables. From a MDO point of view, the method is equivalent to an all-at-once (AAO) or
simultaneous analysis and optimisation (SAND) architecture, with the optimiser solving for the physics and
optimal control simultaneously. While DT deriving methods are capable to explore infeasible and unstable
states, thus possibly leading to a faster convergence of the optimisation, the number of design variables
is drastically increased and convergence issues are also likely to arise when integrating the approach in a
multidisciplinary analysis context.

Here the aeroelastic analysis is solved at each iteration for the state, y, and problem (4) can be recast in
the form of a multidisciplinary feasible architecture (MDF),19

min. I = I (u, y(u), ẏ(y, u))

w.r.t. u

s.t. co(u, y(u)) ≥ 0

cc(u, y(u)) ≥ 0

(6)

where the dependency of the state on the control, y = y(u), has been explicitly stated. In the single shooting
approach, the control signal is expressed as a linear combination of Nc basis functions, φn(t), defined over
the time horizon [0, T ]:

u =

Nc
∑

n=1

un φn(t) (7)

and the optimisation problem (6) is solved with respect to the coefficients of the parametrisation, un. In most
control problems, a piecewise constant parametrisation is used: in addition to being easy to implement, this
scheme offers good convergence properties.7 However, to describe the movement of typical control actuators
on a relatively large time domain, piecewise constant or linear parametrisations would lead to set of basis
functions of substantial size. While from a computational point of view adjoint methods can deal effectively
with an increased numbers of design variables, these present the additional development cost of building the
adjoint model itself.

With the purpose of modelling smooth actuation signals while limiting the number of coefficients used
to parametrise the control, Nc, only C1 continuous or higher parametrisations were considered for this work.
In particular, B-splines have been chosen for their smoothness properties.8 A set of B-splines basis functions
of order p can be built recursively over a set of Nτ control points τn as:20

φ(0)
n (t) =







1 if τn < t < τn+1

0 else
(8)

and

φ(p)
n (t) =

t− τn
τn+p − τn

φ(p−1)
n (t) +

τn+p+1 − t

τn+p+1 − τn+1
φ
(p−1)
n+1 (t) p > 0 (9)
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Note that, if Nτ control points are used, the number of spline basis required is Nc = Nτ +p− 1. Convergence
studies have showed that third order B-splines provide good and smooth reconstructions for the applications
in this work. The frequency range of actuation can be regulated by noticing that, in order to capture a
maximum frequency fmax, a spacing between control points ∆τ = 1/2fmax is necessary (Nyquist criterion).

In line with previous works in optimal control of dynamical systems20;21 a standard quasi-Newton method,
the SLSQP optimisation algorithm,22 has been used to solve the final optimal control problem. The imple-
mentation is monolithic and uses finite differences for the gradient evaluation. In all the problems considered,
cost and constraint functions, as well as design parameters, are scaled to achieve comparable orders of mag-
nitude. If all the constraints are verified, the optimisation process is stopped whenever the relative change
in cost and constrains is below a tolerance value of 0.1%.

III. Numerical Studies

In the first part of this section, key aspects of rolling manoeuvrability using flexible wings are investigated.
To isolate the dynamics associated to the wing flexibility, a model of a hinged HALE wing has been created
(Sec. II.A). The rolling performance for a prescribed aileron deflection are then analysed in Sec. III.B when
lowering the stiffness of the wing itself. This section, in particular, outlines how large bending deflection
and asymmetric deformations affect the rolling performance. Finally, it is shown in Sec. III.C how the single
shooting can be used to define aileron deflection time histories for manoeuvring the wing.

III.A. Wing Model Description

With the aim of isolating the impact of wing flexibility on the aircraft rolling performance, a model of a wing
hinged at its mid-span has been created. This setting allows to block pitch and yaw attitudes, thus stabilising
the wing without horizontal and vertical tail planes. Two different set-up are presented. In a first case the
wing is simply hinged and invested by the airflow. In the second set-up, the hinged wing is also allowed to
move sideways, so as to emulate the impact of side-slip in the manoeuvre. The hinged-wing model is built
based on a HALE representative configuration first introduced by Patil et al.13 As proposed by Murua et
al9 and with the aim of investigating the impact of the wing flexibility on its manoeuvring performance,
the stiffness of the original model is parameterised by mean of a stiffness factor, σ. The properties of the
resulting model are summarised in Tab. 1. In the studies presented in this work, the stiffness parameter σ
is varied in the range 1 ÷ 10, where σ = 1 corresponds to the original configuration proposed by Patil et
al.13 The wing is always assumed to fly at an altitude of 20 km and, unless otherwise specified, at a speed
of 25m s−1.

Property Value

Chord 1 m

Wing span 32 m

Elastic axis 0.5 m

Inertial axis 0.5 m

Mass per unit length 0.75 kgm−1

Moment of inertia 10−1 kgm

Extensional stiffness 1010 Nm2

Torsional stiffness σ · 104 Nm2

Spanwise bending stiffness 2σ · 104 Nm2

Chordwise bending stiffness 5 · 106 Nm2

Table 1: Hinged wing properties.

Large bending deflections, comparable to the wing span, can be observed as the wing flexibility is in-
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Figure 2: Pitch attitude required by wings of different stiffness, flying at a speed of 25m s−1 and an altitude
of 20 km, to provide a lift of 488N and related tip displacements.

creased. This is shown in Fig. 2a, where the wing tip displacements, ∆Rt, for different values of σ are
reported. The wings pitch attitude was adjusted so as to produce a lift of 488N (Fig. 2b). When the
wing stiffness is reduced, in fact, larger torsional deformations increase the wing cross-sections local angle
of attack, allowing the wing to achieve a considerably higher lifting force. In Fig. 2a all displacements have
been normalised with respect to the wing half span length, L = 16 m, but the component of displacements
in the x (span-wise) and y (chord-wise) directions have been magnified by a factor of 10 and 102 respec-
tively. For the σ = 1 wing the vertical tip deflection reach a maximum value of 0.22L, which was found
to be in good agreement with previous CFD based studies.23 Compatibly to the stiffness properties defined
in Tab. 1, span-wise and chord-wise deflections (∆Rtx and ∆Rty) are, respectively, one and two orders of
magnitude smaller then vertical deflections. Nonetheless, it will be shown that these can still contribute to
change the handling performance of the wing. In particular, the fore-shortening effect caused by the large
bending deformations (up to 3% of the half wing span for the σ = 1 wing) reduces the moment arm of the
aerodynamic control surfaces, diminishing their control authority. Also the chord-wise displacements can
generate a small swept angle (0.20 deg for σ = 1) that contributes to the lateral stability of the wing.

The onset of flutter was investigated for the σ = 1 configuration at a pitch attitude of 4 deg and was found
to occur over a velocity of 21.4m s−1 with a frequency of 3.27Hz. These values were found to be in good
agreement with those reported by Patil et al13 — who used a finite-state air-loads model.24 A cantilever
model of the HALE semi-wing, discretised by mean of 16 quadratic beam elements, is used in this study. It is
worth mentioning, however, that applying a hinge to the wing does not affect the flutter speed so predicted.
This was verified by a time-domain analysis and applying an anti-symmetric aileron deflection so as to excite
its anti-symmetric modes. For this study, the wake length was fixed to be 30 times the chords and the airflow
speed was increased with steps of 0.1m s−1. The wing panelling and the simulation time-step were chosen
so as to ensure an accurate resolution of the range of reduced frequencies for which flutter was expected. No
variation in flutter speed was observed for small amplitude ailerons input. When these become large enough
to induce relevant changes on the deformed wing shape, however, flutter could be seen to initiate at a lower
speed on the semi-wing where tip deflections would be higher. The link between tip deflections and flutter
speed has been already reported in literature13;25 and is not discussed further in this work.

III.B. Impact of Wing Flexibility on Rolling Performance

The rolling performance of hinged flexible wings can now be investigated. All wings are assumed to fly at a
speed of 25m s−1 and the pitch attitude has been chosen as per Fig. 2b, so as to ensure that they all produce
the same total lift. It is worth noticing that for the most flexible wings (σ < 1.5) the free stream velocity
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Figure 3: Ailerons deflection used for the study of the rolling manoeuvre performance of flexible wings.
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Figure 4: Roll attitude time history for an ailerons antisymmetric deflection with different values of the
stiffness parameter σ.

is beyond the flutter boundary. This is high-frequency with respect to the characteristic frequencies of the
manoeuvres considered (see Sec. III.A) and could be easily stabilised using a feedback control. However, this
was not necessary as the raise time of the instability was always found to be large as compared to the total
time of the manoeuvre. These cases were, therefore, included in the study to assess the impact of very large
deformations (above 25% of the semi-wing span) on the wing manoeuvrability. For the numerical analysis,
the wing structure has been discretised using 32 quadratic beam elements. The UVLM wake length was
fixed to be 25 chords and 4 chord-wise panels were used to discretise the wing surface. Rolling is induced
applying an anti-symmetric aileron deflection (Fig. 3) so as to move the right (starboard) wing upwards; the
deflections of the left and right control surfaces, βL and βR, are assumed to be positive when increasing the
local lift.

Fig. 4 shows the roll attitude, measured at the hinge point, of wings of stiffness parameters ranging
between σ = 1 and σ = 10 with (Fig. 4b) and without (Fig. 4a) side slip effects being accounted for. The
maximum side force achieved during the manoeuvre (normalised with respect to the initial lift of 488N) and
the decay rate observed as the wing rolls back to its original attitude are summarised in Tab. 2. In first place,
the lateral stability of a rigid (σ = 10) hinged wing with no dihedral and sweep is briefly discussed. Such
a wing is in a neutral equilibrium position with respect to rolling. This is observed in Fig. 4: whether or
not side-slip is accounted for, soon after the ailerons are retreated the wing finds a new equilibrium position
around a roll angle of 33 deg. In absence of dihedral and sweep angles the side-slip velocity only impacts the
lateral force achieved during the manoeuvre: this drops of 6.4% when the wing is allowed to move side way,
due to the reduction in effective angle of attach produced by the relative motion with respect to the air flow
(Tab. 2).

With the increase of wing flexibility, two main effects can be observed. In first place, the authority of
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Without side slip With side slip

σ max{FX/FZ} decay rate max{FX/FZ} decay rate

[%] [N s−1] [%] [N s−1]

1.0 37.7 -5.86 35.3 -10.93

1.1 37.9 -5.37 36.3 -9.27

1.5 39.6 -3.27 38.8 -5.51

2.0 40.7 -1.76 40.2 -4.93

3.0 42.8 -1.07 41.8 -2.73

10.0 45.7 -0.05 44.9 -1.27

Table 2: Maximum side force and decay rate during rolling manoeuvre. The side force is express in percent-
ages of the total lift at the beginning of the manoeuvre (488N).
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Figure 5: Comparison of loads distribution at different times of the rolling manoeuvre for wings having a
stiffness of σ = 1 and σ = 10.

the control surfaces is reduced: as it can be seen in Fig. 4, the more flexible the wing, the smaller is the
roll angle achieved during the manoeuvre. As a result, the side force generated during the manoeuvre drops
17.6% and 21.3% (depending on whether side-slip is allowed or not) when going from a very stiff (σ = 10)
to a very flexible (σ = 1) structural design (Tab. 2). In a second phase, a stabilising moment, which tends
to restore the original roll attitude, arises once the ailerons are retreated. Again, this effect intensifies with
the increase of geometrical changes and when side-slip motion is allowed. While the stiffer wing (σ = 10)
maintains a constant side force at the end of the manoeuvre, this decays at a rate as high as 10.9N s−1 when
the wing becomes very flexible (σ = 1) and side slip is allowed.

The reduction in control authority can be mainly attributed to the large bending and torsional deforma-
tions. Bending deflections are connected to the fore-shortening effect: as these increase, the wing tips get
closer to the axis of rotation (see, for instance, the span-wise tip displacements in Fig. 2a) and, consequently,
the moment arm available is reduced. The negative impact of large torsional deformations is, instead, more
clearly understood by looking at wing loads during the manoeuvre. Fig. 5a compares the aerodynamic loads
2 s into the rolling manoeuvre — when the ailerons are fully deployed and the rolling rate is steady — along
the span of a stiff (σ = 10) and flexible (σ = 1) wing. To allow a fair comparison, the force components
are projected in the body attached FoR A. Larger torsional deformations increase the local angle of attach
of the flexible wing cross-section: consequently, while a higher lifting force is obtained on the right, moving
upwards, wing, the lift reduction of the left wing is for the same reason limited. This effect results into a loss
of rolling moment with respect to the rigid wing. Also the center wing load distribution can be observed to
negatively counteract the rolling moment due to the ailerons deflections.
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Figure 6: Tip bending deflection (normalised against the semi-wing span) and torsion during a rolling
manoeuvre for a wing of stiffness σ = 1.5.

The mutual interaction between torsional deformations and fore-shortening can, furthermore, amplify the
unfavourable influence on the handling of flexible wings. As the wing rolls, in fact, the left wing stretches up
as the total aerodynamic load decreases. On the other hand, the starboard wing (which also experiences a
small reduction in loads due to the reduction in effective angle of attack associated to the rigid-body rotation
and the upward velocity) maintains larger bending deformation and, therefore, a stronger fore-shortening
effect. The resulting asymmetry is shown in more detail in Fig. 6a for a wing with stiffness parameter
σ = 1.5: as the wing rolls steadily the difference in tip deflection is at its peak.

The stabilising rolling moment observed once the aileron deflection is returned to zero is also connected
to the bending deformations of the wing, which give the wing a dihedral angle. As the axis of rotation is
not aligned with the air stream, in fact, the cross sections of the port wing, moving downwards, will tend to
have a higher angle of attack than those of the right side of the wing. This can be observed in Fig. 5, where
the span-wise aerodynamic load distribution at time t = 6 s (i.e. when the ailerons are not loger deflected)
is shown for a very flexible (σ = 1) and an almost rigid wing (σ = 10). While the stiffer wing shows, as
expected, a symmetric loads distribution, the flexible one is characterised by a higher lift on the left wing. It
is worth underlining that this effect would also be observed on a rigid wing with dihedral angle, despite the
presence of side-slip velocity. However, it would disappear if the wing was rotating about an axis parallel to
the free air stream velocity as, in this case, no change in local angle of attack would be connected to bending.

As shown for the reduction in control authority, the asymmetry in the wing deformation contributes to
increase the magnitude of the stabilising moment. As seen in Fig. 6a for a σ = 1.5 wing, as this rolls back
to its initial equilibrium position (t > 4 s), the port wing remains more stretched. This, together with the
effect of the rigid body rotations, guarantees a higher angle of attack then on the right wing. Torsional
deformations, on the other hand, do not to contribute significantly to increase the differences between the
two sides of the wing. Fig. 6b shows the x component of the CRV at the tips of the σ = 1.1 wing, which can
be used to quantify the torsion at the tip cross-sections. Once the ailerons are returned to a zero angle of
attack, no major difference is observed between left and right wing tips. Also gravity does not play a major
rule here: for this manoeuvre, in fact, the same stabilising effect is observed without gravity.

All the effects discussed are observed whether side-slip is accounted for or not. When side-slip is allowed,
however, the dihedral effect amplifies the restoring moment, causing the decay rate of the total side force to
almost double (Tab. 2). The overall restoring moment can become particularly intense as the wing bending
deformations become larger. This is shown comparing the response of a σ = 1.1 and a σ = 10 wing flying
at 30m s−1 to the aileron input in Fig. 3: in this configuration the σ = 1.1 has tip vertical deflections up
to the 30% of the half winf span L. Note that, in order to stabilise these wings to flutter, their torsional
stiffness was increased by a factor of 3. As it can be observed in both Fig. 7 and Fig. 8 where, respectively,
the roll attitude and the snapshots of the manoeuvre are shown, the σ = 1.1 wing eventually returns to its
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Figure 7: Roll attitude of a rigid (σ = 10) and a flexible (σ = 1.1) wing flying at a speed of 30m s−1 in
response to the aileron input shown in Fig. 3 and when accounting for side-slip.
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Figure 8: Snapshots of the short and long term response of two wings of stiffness σ = 1.1 and σ = 10 to
the aileron input shown in Fig. 3 at 30m s−1. Note that the sideways movement of the wing during the
manoeuvre is not shown.

original equilibrium position. The snapshots in Fig. 8 help to gather an idea of how strong the dihedral effect
can be when large geometrical deformations occur. When the highest roll attitude is reached (t ≈ 6 s) the
right side (moving upwards) of the σ = 1.1 wing has a very large angle with respect to the horizontal plane
— in Fig. 8a its elastic axis can be seen to almost overlap with that of the σ = 10 wing — and experiences,
therefore, a lift reduction due to side slip. The left wing, on the other hand, remains almost parallel to
the horizontal plane and is almost unaffected by the lateral velocity generated during the manoeuvre. This
unbalance in lift distribution is the additional contribution that intensifies the restoring moment acting on
the very flexible wings.

III.C. Optimal Control of Flexible Wings

Results in Sec. III.B have shown that the flight dynamics of flexible wings is substantially more complex
compared to that of rigid wings. The larger deflections, in fact, affect the wing manoeuvrability features and
make the scheduling of actuation deflection nearly impossible. In this section, the use of the single shooting
method is proposed to overcome this extra degree of complexity and design their manoeuvres laws.

To this aim, the time history of the control surfaces deflections has been parametrised via a set of B-
splines, as shown in eq. (7), (8) and (9). The optimal manoeuvre can then be obtained as solution to the
optimal control problem (6). For this study, the control laws are designed so as to obtain a target lateral
force Fr — equal to the 41% of the initial lift — within a time t = Tv and then to maintain it constant for
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a time period Ts. The cost function I has been, therefore, defined as the average relative error

I =
1

Ts

∫ Tv+Ts

Tv

∣

∣

∣

∣

FX(t)

Fr

− 1

∣

∣

∣

∣

dt , (10)

where FX is the lateral aerodynamic force in the global FoR G. The total time for the manoeuvre is T =
Tv+Ts = 7 s. Bound constraints as per eq. (5) have been used to enforce realistic control surfaces travel limits
and a maximum rate of deflection. The limit values were chosen to be βmax = 10.5 deg and β̇max = 15deg s−1.
While the aileron deflections at time t = 0 s are zero, at time t = T the amplitude required to counteract the
stabilising rolling moment is found as a solution of the optimisation problem. The number of basis functions
used to represent the actuation signal has a strong impact on the highest frequency that the control can
capture.8 As the focus is on low-frequency dynamics, and in order not to excite the modes of the structure in
this exploratory study, the aileron input was parametrised using Nτ = 14 control points (resulting in Nc = 16
splines), so as to achieve a maximum nominal excitation frequency of 1Hz. To investigate the impact of the
wing flexibility on the optimal actuation, the rolling manoeuvre is designed for wings of different stiffness
parameters. In all cases, they are assumed to be flying at a speed of 25m s−1 and, as per Sec. III.B, the
pitch attitude is adjusted to ensure all the wings produce the same lift (Fig. 2b). The ailerons deflection is
constrained to be antisymmetric (βR = −βL) and the time allowed to reach the target later force, Tv, was
chosen to be equal to 75% and 50% of the total time of the analysis, so as to test the method for a less
and more aggressive control, respectively. Unless otherwise stated, at the beginning of the optimisation the
initial aileron deflections time histories are constant and equal to zero.

When a less aggressive control is required, the optimiser manages to achieve a good level of performance
for all the cases considered. This is observed in Fig. 10a, where the side force obtained during the manoeuvre
is shown for σ = 1.1 and σ = 3. The optimal actuations associated to these cases are shown in Fig. 11a:
as expected, the loss in authority of the control surfaces on the most flexible wing is compensated by larger
levels of actuation. As a result, the side force trends are seen to converge (Fig. 10a) and in both cases the
final cost is below 1%. Nonetheless, a delay in meeting the target side force is observed. In this respect, a
comparison with the results obtained with a more aggressive control (Tv = 50% T ) show that, using larger
amplitude ailerons deflections (Fig. 12b), the raise time of the side force can be increases further with both
σ = 1.1 and σ = 3 (Fig. 10b). The delay observed using the Tv = 75% control, therefore, is connected to the
optimisation process itself and not to the dynamics of the wings.

When the wing flexibility is increased, more aggressive actuations also cause larger amplitude oscillations
around the final reference side force Fr (Fig. 10b). These are more clearly visible in the ailerons time
histories shown in Fig. 12b and are connected not only to the faster dynamics but also to the fact that a
terminal condition on the final state was not specified in the optimal control problem definition. The final
cost achieved in these cases ranges between 3% and 1%, with the highest values being associated to the
most flexible wing designs. In all cases, the roll attitude follows the same trend as the side force (Fig. 11).
The impact of a larger flexibility is, however, reflected in the lower roll angle required with σ = 1.1 to achieve
the target side force. As observed in Fig. 5a, in fact, the large bending deflections induce a non negligible
lateral component of the aerodynamic force and this effect can be exploited during the manoeuvre.

To further investigate the performance of the method, the impact of the initial guess used is the optimi-
sation is studied. To this aim, the control laws for the Tv = 50% T case are recomputed starting from the
actuation time history shown in Fig. 13a (continuous curve). In this problem, the gradient-based optimiser
is expected to minimise the cost function I locally. For all the wings considered, the actuation signal is
successfully refined (Fig. 13), and the final cost is reduced from 6.1% to 2.5% for the σ = 1.1 case and
from 6.9% to 1.3% for the σ = 3 case. These values compare well with those obtained using a zero initial
guess, showing that for the manoeuvres considered the design space is smooth enough to allow the use of
a gradient-based method to design the actuations laws. A delay in reaching the target side force is still
observed. For the most flexible wing (σ = 1.1) this shows that the wing dynamics is not fast enough — the
deflection amplitude and raising time are as large as they can be when t < Tv. For the stiffer wing (σ = 3), on
the other hand, the actuation amplitude is not bounded to the maximum constraint, and why the optimiser
does not increase it further is still under investigation.
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Figure 10: Aerodynamic side force in response to the optimal anti-symmetric actuation, βL = −βR, obtained
starting from a zero initial guess and using wings of different stiffness. The plots also show the target lateral
force required and the time of average Tv.

Finally, the method is tested to define the control laws for a more complex manoeuvre, aiming, initially,
to roll the wing so as to maximise the lateral force FX in the time interval [0, Tv] and, in a second phase, to
restore the wing original attitude. The cost function for the problem has been formulated as follows:

I =

∫ Tv

0

FXdt− κ

∫ Tv+Ts

Tv

|FX(t)| dt , (11)

where κ = 10 is a scaling parameter and the characteristic times Tv and Ts were chosen to be Tv = 10 s
and Ts = 5 s. For this case, the flying speed was set to 30m s−1 and a wing of stiffness parameter σ = 1.1
was used (as done in Sec. III.B, its torsional stiffness was increased by a factor of 3 to avoid flutter). The
optimal ailerons deflection time history obtained is shown in Fig. 14, together with the actuation signal used
as initial guess for the optimisation. As expected, in the first part of the manoeuvre (t < 6 s) the ailerons are
fully deployed, so as to roll the wing as fast as possible and maximise the side force (Fig. 14b); in a second
stage (t > 6 s), they deflect in the opposite direction, moving the system back to its initial configuration.
Note, however, that this time the control can exploit the stabilising rolling to increase the rolling speed and,
as a result, the time span during which the ailerons are at their maximum travel limit is reduced. As seen
in the previous cases, even here the fast dynamics and the fact that an integral condition — second term
in eq. (11) — was chosen to determine the final state of the system cause the ailerons to oscillate around
zero for t > Ts; however, this has minimal impact in the resulting side force (Fig. 14b, t > Tv). During the
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Figure 11: Roll attitude during the for optimal anti-symmetric actuation βL = −βR obtained starting from
a zero initial guess and using wings of different stiffness. The plots also show the time of average Tv.
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Figure 12: Optimal anti-symmetric actuation βL = −βR for different levels of stiffness and zero initial guess.

manoeuvre, geometrical changes are large enough to impact the wing dynamical features (Sec. III.B). This
is shown in Fig. 15a, where the tip vertical displacements magnitude reaches a maximum of 10% of the half
wing span.

IV. Conclusions

The single shooting method has been used to define the open-loop control laws of the control surfaces
of very flexible hinged wings, with the objective of enhancing the system rolling performance. To account
for large geometrical changes during the manoeuvre, the wing structure has been modelled via a GEBM
and coupled with a UVLM aerodynamic model. The deflection time history of the control surfaces has been
parametrised via a set of B-splines basis and the optimal actuation has been driven by a SLSQP algorithm.

In the first part of the work, key aspects of the rolling performance of flexible wings have been analysed.
As the stiffness is reduced, it was shown that the fore-shortening effect connected to large bending deflection
reduces the control surfaces authority. In comparison to rigid wings with no dihedral or sweep, however,
flexible wings were found to be more stable. This was shown to be connected to a number of nonlinear
features, such as changes in local angle of attack associated to bending and asymmetric deflections between
starboard and port sides of the wing during rolling. The dihedral effect linked to bending was, instead, found
to be particularly intense when the wing was allowed to move side-ways.
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Figure 13: Anti-symmetric ailerons deflection and aerodynamic side force obtained from a non zero initial
guess and using wings of different stiffness. The plot also shows the target lateral force and the time of
average Tv.
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Figure 14: Optimal antisymmetric aileron deflection time history and side force obtained during the ma-
noeuvre defined through the cost function in eq. (11).

Optimal actuation time histories for rolling have been finally designed starting from a zero initial guess.
Regardless of the level of flexibility of the wing, the single shooting approach managed to capture the system
features and lead to satisfactory results. Performance were, in particular, found to be comparable to those
obtained using the optimisation for the refinement of an actuation law designed for rigid wings. While the
robustness of the method when dealing with more complex dynamics still requires a further assessment, the
approach, which can be easily extended to deal with the simultaneous wing/controller optimisation problem,
has shown that optimal control provides a valuable tool to define actuation strategies in nonlinear aeroelastic
wings.
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