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Abstract

The shape and differentiation of human mesenchymal stem cells is especially sensitive to the rigidity

of their environment; the physical mechanisms involved are unknown. A theoretical model and

experiments demonstrate here that the polarization/alignment of stress-fibers within stem cells is a

non-monotonic function of matrix rigidity. We treat the cell as an active elastic inclusion in a

surrounding matrix whose polarizability, unlike dead matter, depends on the feedback of cellular

forces that develop in response to matrix stresses. The theory correctly predicts the monotonic

increase of the cellular forces with the matrix rigidity and the alignment of stress-fibers parallel to

the long axis of cells. We show that the anisotropy of this alignment depends non-monotonically on

matrix rigidity and demonstrate it experimentally by quantifying the orientational distribution of

stress-fibers in stem cells. These findings offer a first physical insight for the dependence of stem

cell differentiation on tissue elasticity.

Recent research has shown that the regulation of important cellular processes such as

proliferation, differentiation and apoptosis, is controlled by the mechanical properties and

geometry of the cells and their environment [1–11]. Cell differentiation and other cellular

processes were shown to optimize in a range of matrix rigidities that is characteristic of the

native tissue environment [4–8]. Engler et al. [7] have shown that the rigidity of the

environment can direct the shape and lineage specification of stem cells. When plated on

substrates whose rigidity mimicked that of brain, muscle and bone, differentiation markers

corresponding to these tissue-cells were expressed in the stem cells after few days and showed

a maximum on the respective substrates. Significant differences in cell morphology, however,

emerge within the first 24 hours. The extent of cell elongation (aspect ratio) depended non-

monotonically on the rigidity of the matrix [7], adopting the characteristic polarized

morphology of muscle cells only when placed on a matrix whose rigidity matched the typical

stiffness of muscle tissue (E ≈ 10 kPa).
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In this paper, we focus on the alignment of the contractile, acto-myosin stress-fibers in the

cytoskeleton of adhering cells since they were shown to play an essential role in the active,

mechano-sensitivity of cells [12], particularly in the determination of cell shape [13] and

differentiation [14]. We predict theoretically and demonstrate experimentally that the matrix

rigidity and the cell shape regulate the polarization of stress-fibers in cells, and dictate the

preferential alignment of the stress-fibers along the long axis of the cell [15–17]. We show that

the alignment of stress-fibers in stem cells depends non-monotonically on the matrix rigidity,

attaining a maximum value when the cell and matrix rigidity are similar.

We model the cell as an active, elastic inclusion in an infinite, homogeneous and isotropic

medium and consider both 2D and 3D geometries. The theory includes both the passive forces

arising from the elasticity of the cell and the surrounding medium as well as the active forces

generated and regulated by the cells; this extends the treatment of passive inclusions in solids

to living matter. We show that a small asymmetry in the early-time shape of an adhering cell

(see Supplementary figure 2) results in a symmetry breaking of the elastic stress in the cell that

in turn, may direct the spontaneous polarization of the stress-fibers in the cell. We invoke the

use of an active cell polarizability that reflects the feedback between the elastic stresses in the

cell and the active forces that the cell generates to predict the anisotropic polarization of the

forces in the cell and its dependence on the cell shape and elastic characteristics.

Experiments were carried out to systematically analyze the alignment of stress-fibers in human

mesenchymal stem cells (hMSCs) as a function of the cell shape and the rigidity of the

environment. Cells were cultured on substrates of varying stiffness and sorted by their aspect

ratio. We show a quantitative analysis of stress-fiber polarization in cells by staining for

both actin and non-muscle myosin IIa (NMMIIa) and applying a segmentation algorithm to

map their spatial organization in the cell.

Our results suggest a generic mechanical coupling between the cell shape, the rigidity of the

surroundings and the organization of stress-fiber in the cytoskeleton of stem cells. This

elucidates a mechanical property of cells – stress-fiber polarization – that is maximized at an

optimal substrate rigidity, analogous to the optimal rigidity found in stem cell differentiation

(e.g., to muscle cells).

I. THEORY OF CELL ADHESION AND ACTO-MYOSIN POLARIZATION

The anchoring of a cell to the extracellular matrix as well as the active spreading of a cell on

a surface involve a shape and volume deformation that produces elastic stresses in the cell and

the matrix [17–22]. Nascent protein adhesion complexes (often termed focal complexes [12])

that anchor the cell to the surrounding matrix, grow in response to these forces [23] providing

mechanical support for stronger, organized and more prominent acto-myosin stress-fibers in

the cell. The theory shows how the adhesion-induced stresses can initiate a feedback that

controls the amount and alignment of the stress-fibers in the cell; we begin with a simple 1D

spring model [24] and then extended it in full elastic 2D and 3D models.

In the spring model (Fig. 2), the passive elasticity of the cell and the matrix are represented by

springs with rigidities, kc and km, respectively. We denote by  the relaxed length of the cellular

spring as it would exist in a soft environment of vanishing rigidity. This length is determined,

in part, by active forces, f0, (not shown in Fig. 2) arising from the initial, isotropic distribution

of myosin motors that locally compresses the cytoskeleton. We begin with the first stage of

cell adhesion (Fig. 2a→b) where the cell anchors to the matrix or spreads isotropically [18] on

a surface and an elastic stress develops in the cell. Experiments show that the spreading area

and the force exerted by cells increase with the matrix rigidity [4,6,16,25]. We denote by

 the elastic deformation that would arise if the cellular springs were maximally
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stretched, as appropriate to spreading on a substrate of infinite rigidity; where  denotes the

fully stretched size of the cellular spring as it exist in an infinitely rigid matrix.

We now consider the equilibrium spring lengths, lc and lm, including the matrix deformation,

but not yet including the feedback that leads to well developed acto-myosin stress fibers (Fig.

2b). To calculate the equilibrium spring lengths we solve the force balance equation:

 along with the (boundary) condition ; here  is the

equilibrium length of the matrix spring. This results in the following relation:

, where .

A simple feedback mechanism is next included in which the modulation of the active

actomyosin force exerted by the cell, fa = f − f0, due to the assembly of organized anisotropic

stress-fibers in the cell, is proportional to the stress within the cell; f is the total acto-myosin

force. We write this feedback as follows: . Here, α > 0, is

a phenomenological “polarizability” that relates the stress in the cytoskeleton to the number,

size and orientation of the stress-fibers and focal adhesions in the cell. In the presence of these

active forces, the force balance equation reads: . This allows us to

predict the magnitude of the average force and strain that develop in a cell as a function of the

cell and matrix rigidity (Fig. 2c). For the cellular strain we find:

(1)

Here, k̃c = (1 + α) kc is the effective rigidity of the cell; an active cell is effectively more rigid

(for α > 0) since the stretching by the matrix springs enhances the active contractile forces in

the cell that further opposes the matrix stretch. In addition, the net, anisotropic polarized acto-

myosin force is given by:

(2)

This expression correctly captures the experimentally observed monotonic increase and

saturation of the contractile cellular force with the matrix rigidity, see Supplementary figure 3

and Ref. [16].

The 1D spring model is useful for understanding the increase in cell contractility but is unable

to account for the anisotropic polarization of the forces in the cell. To this end, we use

approaches from solid mechanics, and generalize the well-known inclusion problem [26,27]

to include the “live” nature of cells, that is their ability to actively regulate their forces. We do

this both for 2D and 3D systems; see Supporting Information for details.

We model the cell as an isotropic and homogeneous ellipsoid embedded in an infinite 3D

matrix; the same formalism applies to an elliptical cell embedded in a 2D sheet under conditions

of generalized plane stress [28,29]. We denote by Cc and Cm the mean elastic moduli of the

cell and the matrix, respectively. Bold face letters are used to designate fourth-rank tensors and

a product of the form Agij denotes Aijkl gkl, and similarly AB gij = AijmnBmnkl gkl, where

summation over repeated indices is implied. The isotropic modulus, Cc, refers to the cell

elasticity upon adhesion, as it exists before the stress-fibers have become numerous and

oriented; this includes contributions from other cytoskeletal components and from actin that
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is in an isotropic, gel state. We denote by  the early time strain associated with cell

adhesion and spreading in an infinitely rigid environment (analogous to  in the spring

model); this produces a restoring stress  in the cytoskeleton that initiates the

polarization response.

The active acto-myosin forces in the cytoskeleton are modeled by a local distribution of “force

dipoles” [30–32] that arise from the equal and opposite forces exerted by myosin motors at

two nearby points on actin filaments. These are represented by a tensor quantity 〈pij〉 which is

the average (active) dipole density per unit volume. We assume that these force-dipoles polarize

in response to the local stress in the cell, changing their magnitude and orientation from their

average, isotropic initial value . We denote by, , the anisotropic

polarization tensor of the force dipoles in the cytoskeleton and in analogy to the spring model,

we assume a feedback response of the form:

(3)

where α denotes the active cellular polarizability (see Supporting Information) and

, is the mean stress developed in the cell [26]. The strain and the forces that develop

in the cell due to this feedback response are given by the self-consistent solution of the elastic

equations along with the feedback effect of Eq. 3. This predicts that the strain and the cell force

are given by:

(4)

and

(5)

with, ; I is the unit tensor. The quantity C ̃c = (I + α) Cc is the

effective elastic modulus of the cell (analogous to k̃ in the spring model). This tensor embodies

the “live” properties of cells via the cell polarizability, α. The tensor, Sm is the Eshelby tensor

[26,27], a function of the cell shape and the Poisson ratio of the matrix. Eqs. 4 and 5 allow us

to explore the relation between the cell shape and the polarization of the forces, and to predict

how anisotropic stress fibers first arise. While the establishment of cell shape and polarization

of stress-fibers occur on a time scale of hours to days, during which the elastic properties of

cytoskeleton and cell shape vary, the final steady-state of the cell, emerges from an early time

breaking of symmetry, whose origin and mechanical consequences are described by our model.

II. PREDICTIONS AND EXPERIMENTAL OBSERVATIONS

Experimentally, focal adhesions and stress-fibers have been shown to grow and develop

parallel to the direction of an applied force [33], consistent with the more general observation

that cells tend to polarize in the direction of stronger elastic resistance [34]. We thus consider

the simplest model in which a cell responds to stresses by locally modulating its active

actomyosin forces only in directions parallel to the local stress. In this case, the isotropic fourth

rank tensor, α, can be replaced by a single positive scalar quantity, α, and 
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(see Eq. 3). In the Supporting Information we discuss an alternative form for α, but the

conclusions of the main body of the paper are unaltered in that model as well.

To illustrate how the shape of the cell alone can be responsible for the polarization anisotropy,

we assume, for simplicity, and in line with experiments [18] that the initial-time adhesion-

induced stress, , is isotropic, including the contribution arising from the early-time, force

dipoles, i.e., . Nevertheless, the global shape change (elongation of the

cell) that accompanies the polarization of stress-fibers in the cell may involve an additional

axial stretching of the cytoskeleton. This effect is considered below, but we first focus on the

consequences of the isotropic forces exerted by the cell. While the actual proportion of isotropic

dipolar forces, , in the total stress exerted by the cell, , is unknown, for simplicity,

and without loss of generality we use  in the calculations presented below. We model

cells in 3D as spheroids whose long axis (taken to be in the z direction) has a length c and

whose short axis (taken to be in the x − y plane) has a radius a. Similarly, in our 2D model the

cell is modeled by an ellipse with long and short axes c and a respectively; in both cases r =

c/a is the aspect ratio of the cell.

Figure 3 shows our results for both the 2D and 3D systems. In the upper panels we plot the

normalized dipole elements  and , as a function of the ratio of the Young’s

modulus of the matrix and the cell, Em/Ec; for two values of the aspect ratio r. Consistent with

experiment [16], our 1D spring model, and our estimate of the total myosin content in the stress-

fibers (Supplementary figure 3) we find that the magnitude of the cellular forces in both the

x and z directions, increases monotonically with the rigidity of the matrix up to the same

saturation value, . For intermediate values of the matrix rigidity, the

matrix tractions that oppose the cellular forces turn out to be stronger along the long axis of

the cell. This fact, which is entirely due to the anisotropic shape of the cell, is responsible for

the stronger polarization of the forces along the long axis of the cell. Thus for rod-like cells

oriented parallel to the z axis, we find that . The preferential alignment of stress-

fibers (as well as of the sarcomeres in muscle cells) parallel to the long axis of cells is a common

experimental observation [15–17], that has not been explained theoretically.

Our theory shows that the polarization of the stress-fibers in the cell should depend non-

monotonically on the matrix rigidity. To illustrate this behavior we plot in the main panel of

Fig. 3 the normalized difference, , that can be shown to

be equal to the orientational order parameter of the dipoles; here p is the trace of the mean

dipole tensor, 〈pij〉. In both 2D and 3D we find the same, generic, Lorentzian-type (i.e., a

Lorentzian multiplied by the linear factor Em/Ec) of functional dependence for S as a function

of the Young’s moduli ratio: S = a(Em/Ec)/[b ((Em − E0)/Ec)
2 + 1]; where a, b, E0 are

complicated functions of the aspect ratio, cell polarizability, Poisson ratio of the cell and matrix

and dimensionality of the system.

We find that the polarization of the forces in the cell is maximal at an optimal ratio of the matrix

and cell rigidities, (Em/Ec)
★. The explanation for this important feature is the following.

Consider the two extreme limits of a cell in an infinitely rigid and infinitely soft matrix. In the

former case, since the matrix exerts strong tractions that completely oppose the initial, isotropic,

inward pulling forces of the cell, , the early-time (tensile) stress that develops,

, is also isotropic (cf. Eq. 6 in the Supporting Information); this results

in an isotropic polarization of the stress-fibers because  (where ).

In the opposite limit of an infinitely soft matrix, the matrix resistance, and consequently the
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cellular stress, drops to zero in all directions, thus providing no orientational cue for the

polarization of stress-fibers in the cell. Between these two limits, the forces in different

directions increase with different rates with the matrix rigidity as seen in the upper panels of

Fig. 3. Because the saturation values are independent of direction the difference in the

polarization, parallel and perpendicular to the long axis of the cell, has a maximum at a certain

value of the matrix rigidity.

Interestingly, we predict that the optimal ratio, (Em/Ec)
★, scales as  (see Supporting

Information). Since α is, in general a cell-type specific parameter this scaling suggest that

different cell types would possess a different level of sensitivity to the anisotropy of the stress

in the cell. In addition, our theory shows that the stress-fiber polarization in 2D is larger by a

factor of ≈ 2 compared with 3D. In 3D the cell is surrounded by a matrix that more strongly

suppresses the anisotropy of the elastic stress in the cell. In the Supporting Information we

present a more quantitative analysis of these arguments.

Thus far we considered the sole effect of the stress anisotropy that results from the cell shape.

This gives rise to a non-monotonic dependence of stress-fiber polarization on the matrix

rigidity. The stress-fiber polarization however is often accompanied by a simultaneous

narrowing and elongation of the cell; see Fig. 1. To model the consequences of the stress

associated with cell elongation we include an axial contribution to the early-time elastic stress

 exerted by the cell and calculate its effect on the polarization of stress-fibers in the cell.

We note that this is an approximation since the cell shape changes continuously but

nevertheless it captures an important elastic consequence of cell spreading anisotropy. We thus

write  where the second term is an axial stress along the z-axis - the

direction of cell elongation. Like the separate elements of the stress tensor  and  in the

previous case, the stress resulting from this axial contribution increases with the matrix rigidity.

The upper panel of Fig. 4 shows the predicted effect of this axial stress on the polarization of

the stress-fibers in the cell. Rather than dropping to zero as the matrix rigidity increases, the

order parameter saturates to a finite value given by ηα/(ηα + d + dα) where d = 2, 3 is the

dimensionality.

To test the predictions of our model we imaged actin and NMMIIa in hMSCs sparsely grown

on substrates of different elasticities. The overall aspect ratio r of the cell and the orientation

of the contractile stress-fibers have been determined; to quantify the polarization response we

calculated the order parameter S = 〈cos2θ〉, where θ is the angle between each stress-fiber in

the cell and the long axis of the fitted ellipse. see Methods section for details.

Cells imaged one hour after plating on the substrate showed aspect ratios, r, slightly greater

than unity (see Supplementary Figure 2), and although some stress fibers already developed

there was no significant polarization yielding order parameters S close to zero. This situation

clarifies 4 hours after plating the cells; the order parameter S increases and shows a non-

monotonic behavior as a function of the matrix rigidity, as shown in the inset of Fig. 4.

After 24 hours, both the morphology of the cells and cytoskeletal organization is significantly

different (p < 0.05) on the substrates of 1, 11, and 34 kPa. Fig. 1 shows that cells on the 11

kPa substrate, whose rigidity is comparable to that of the cells, show an elongated, spindle-

like morphology and exhibit a closer alignment of the stress-fibers with the major axis of the

cell, as predicted by our model. In contrast, the cells on the 1 kPa and 34 kPa substrates are

more isotropic in their overall shape and their stress-fibers are less well aligned with the long

axis of the cell.
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Fig. 4 shows the mean values of the order parameter, S, for different substrate elasticities Em,

24 hours after the cells were plated on the substrate. Because of the natural variation of the

shape of the cells, we regrouped the cells for each matrix elasticity Em according to their

different aspect ratios r = 1.5, 2.5, and 3.5. For each of these subgroups the order-parameter

plots show a non-monotonic dependence on the matrix rigidity and in general S is higher for

cells with higher aspect ratio r. The non-monotonic dependence however is most pronounced

for cells with low aspect ratio, r = 1.5. For the groups with higher aspect ratio, the curves

saturate to higher values. This is likely to reflect the axial stress resulting from the concurrent

cell elongation, as predicted by our model. Our simplified models thus capture the correct

qualitative behavior of stress-fiber polarization in stem cells as seen in Figs. 3 and 4. Our

findings thus suggest a mechanism that allows stem cells to adopt different internal structures

in different mechanical environments and may provide a physical basis for the

mechanosensitivity of stem cell differentiation [7].

III. METHODS

Elastic polyacrylamide (PA) gels with a Young’s elastic modulus Em of 1, 5, 11, 20, and 34

kPa were prepared as reported elsewhere [7,35,36]. Additionally, hyaluronic acid (HA) gels

with a stiffness of 5 and 20 kPa and glass slides were prepared as described earlier [7]. The

elasticity of the matrix was verified by force indentation measurements with an atomic force

microscope (MFP-3D, Asylum Research) using a modified Hertz model. We performed force

indentation curves at ten different spots (10 curves each) to ensure a homogeneous elastic

modulus Em throughout the whole gel. For cell adhesion, collagen type I (rat tail, BD

Biosciences) was covalently attached to the hydrogels and to amino-silane coated glass with

the bifunctional cross-linker Sulfo-SANPAH (Pierce) assuring the same ligand density on

substrates of different stiffness. Scanning force microscopy of the surface after coating revealed

a homogeneous smooth surface without structured inhomogeneities. hMSCs, obtained from

Lonza, were cultured in standard tissue culture treated plastic flasks (Corning) using MSC

growth medium (low glucose DMEM (Invitrogen) supplemented with 10 % fetal bovine serum

(Sigma) and 1 % penicillin/streptomycin (Invitrogen)). 500 cells per cm2 were plated on the

substrates to ensure cells being. For immuno-staining and imaging the cells were fixed with a

10 % solution of formaldehyde (Sigma) in PBS and subsequently permeabilized with a 0.5 %

solution of Triton X 100 (Sigma) in PBS. NMMIIa was immunostained with a primary antibody

produced in rabbit (Sigma) followed by a secondary antibody (Alexa Fluor 488 donkey anti-

rabbit IgG, Invitrogen) and F-actin was visualized using rhodamine-phalloidin (Fluka). The

nucleus was stained with a Hoechst stain (#33342, Invitrogen). Fluorescence images were taken

on an inverted microscope (IX 71, Olympus) equipped with a 20x phase contrast objective

using a 1.6x post magnification lens. To obtain unbiased cell images single nuclei were

searched that looked healthy and had no close neighbors. Only then actin and NMMIIa images

were taken. Supplementary figure 1 shows a composite fluorescence image (A) and the raw

fluorescence intensity image of NMMIIa (B) that is used to determine cytoskeletal

organization. In order to obtain sufficient statistics at least 60 cells per condition were analyzed.

Image Analysis

Cell area, orientation and the major and minor axes of the cell were computed from the moments

up to the second order of the thresholded binary image of the cell using NIH ImageJ [37]; the

aspect ratio r is the ratio of major to minor axis.

Segmentation and orientation analysis of cell stress-fibers was performed using a custom

automated image analysis algorithm written in Mathematica (Wolfram Research, Champaign,

IL). The segmentation uses a series of elongated Laplace of Gaussian (eLoG) kernels [38].

These are generated from n anisotropic Gaussians of the form
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that are each rotated in steps of π/n where n goes from 0 to π − π/n. For the results presented

here we used n = 15. The Gaussian kernels are then convolved with a Laplacian filter given

by

The n eLoG kernels are each convolved with the original images producing n response images.

The maximum over the n response images at each xy–pixel is then used to create a single

maximum response image. The segmentation shown in Supplementary Figure 1C is the

maximum response image after it has been thresholded using the Otsu method [39], which

determines a threshold based only on the image intensity histogram and so does not introduce

any experimenter bias. Finally, connected circular spots with a diameter greater than 10 pixels

are removed from the thresholded image to reduce the contribution of bright non-fibrous points

in the original image that lead to isotropic spots to the filtered image because the response of

each eLoG kernel survives the threshold if the intensity in the original image is sufficiently

high. The rotation angle of the filter that gave the maximum response at each pixel is taken as

that pixels orientation and is represented as the different colors. The average fiber orientation

and order parameter are determined from the histogram of the individual pixel orientations.

To compare the alignment of the stress-fibers for a single cell shape, the cells were regrouped

according to their aspect ratios and the averaged orientational order parameter of the stress-

fibers S has been determined for each of these groups. These values are plotted in Fig. 4 and

are listed in table I:

To determine the amount of NMMIIa, we used thresholded binary images of the determined

stress-fibers as a mask for the fluorescence images of NMMIIa. The total intensity after

multiplication of the mask with the fluorescence image gives an estimate of the active

contractile NMMIIa in stress fibers without including the diffuse background intensity from

cytosolic NMMIIa. This is a measure of the total amount of contractile dipoles in the cell that

increases with increasing substrate stiffness (see Supplementary Figure 3).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Acto-myosin stress-fiber alignment in hMSCs sparsely plated on 2D substrates of different

elasticity. The top row shows hMSCs immuno-stained for non-muscle myosin IIa (NMMIIa)

24 hours after plating on elastic substrates with a Young’s modulus Em of 1 kPa, 11 kPa, and

34 kPa that are the most representative cells of the mean values obtained for cell area A, aspect

ratio of long to short axis r, and stress-fiber order parameter S = 〈cos2θ〉; where θ is the angle

between each stress-fiber in the cell and the long axis of the fitted ellipse. The bottom row

shows the respective orientational plots, where the different orientations of myosin filaments

are depicted with different colours. The dark gray dashed ellipses are best fits to the cell edge

and the red line indicates the mean orientation of the stress-fibers as determined by the

automated algorithm. ξ is the angle between the mean stress-fiber orientation and the principal

axis of the ellipse. From symmetry considerations we need only consider the absolute value of

ξ between 0 and π/2; thus, a completely random distribution has an average ξ = π/4. Values

given for r and S are the mean values of at least 60 cells per condition. All scale bars represent

50 μm.
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Figure 2.

Cell adhesion and polarization represented by a 1D spring model. Springs with constants kc

and km represent the elasticity of the cell and matrix respectively. Elastic morphological

changes upon cell adhesion (a → b) are represented here by a change in the cellular spring

length . This triggers an internal feedback mechanism (b→c) that results in an

enhancement of the active forces (see Eq. 2).
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Figure 3.

Cell polarization as a function of the ratio of the Young’s modulus of the matrix, Em, and the

cell, Ec, in both our two- and three-dimensional models; the plots are shown for different values

of the cellular aspect ratio, r. The upper panels show (magenta: r = 5, red: r = 2) the normalized

average dipole elements  (solid lines) and  (dashed lines) corresponding to the forces

in the directions that are respectively parallel (ẑ) and perpendicular (x̂) to the long axis of the

cell. The bottom panels show the calculated orientational order parameter of the stress-fibers

that is given by the normalized difference . The color coding indicates the

aspect ratio. In this plot the Poisson ratio of the matrix and the cellular domain are taken to be,

νm = 0.45, νc = 0.3 and the magnitude of the polarizability is α = 3.
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Figure 4.

The effect of axial cell elongation on stress-fiber polarization and experimental values of the

order parameter S for different elastic substrates. Upper panel shows a calculation of the 2D

order parameter as a function of the matrix rigidity, for two cases: (i) (black curve) the cell

spreads isotropically on the substrate, η = 0, and (ii) (red curve) the cell spreads anisotropically

on the substrate, η = 1, see text. The two illustrations left of the curves show top views over

the cell, before (shown as blank) and after (shown as shaded) cell spreading. In the asymmetric

spreading case, r corresponds to the cell shape in an infinitely rigid matrix. For both curves we

used r = 2, α = 2 and Poisson ratios as in Fig. 3. The bottom panel shows the experimental
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values of the stress-fiber order parameter, S = 〈cos2θ〉, 24 hours after plating the cells, for the

three groups of cells (of aspect ratios r = 1.5, 2.5, 3.5) as a function of the Young’s modulus

of the matrix, Em; θ is the angle between each stress-fiber in the cell and the long axis of the

fitted ellipse. Within each of the different groups, S is maximal for Em = 11 kPa and generally

increases with aspect ratio r, in agreement with our theoretical predictions. Error bars denote

the standard error of the mean and theory curves (dotted lines) calculated from the simplified

expansion of S (supporting Information) are shown to guide the eye.
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