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ABSTRACT 

 

The quality of leak detection and quantification, and calibration for friction coefficients, in 

pipelines and networks by the inverse transient method are dependent on the quantity and 

location of data measurement sites.  This paper presents an approach for determining the 

configuration of measurement sites that produces optimal results.  Three performance 

indicators, two that are based on A- and D-optimality criteria and one that is based on the 

sensitivities of the heads with respect to the parameters, show which configurations are 

superior.  These are illustrated by two case studies, the first of which is a small pipe network 

in which all configurations are considered directly (fully enumerable) and the second is a 

larger pipe network in which statistics are drawn from a sampling of configurations.  For the 

large network, a genetic algorithm—with a new crossover operator—performs a search of 

                                                 
1
 Research Associate, School of Civil and Environmental Engineering, University of 

Adelaide, Adelaide SA 5005, Australia. (Corresponding Author) 

Email: jvitkovs@civeng.adelaide.edu.au;  Tel: +61 8 8303 4324;  Fax: +61 8 8303 4324 

2
 Professor Emeritus, School of Civil and Environmental Engineering, Cornell University, 

Ithaca, NY 14853-3501, USA.  Email: jal8@cornell.edu 

3
 Associate Professor, School of Civil and Environmental Engineering, University of 

Adelaide, Adelaide SA 5005, Australia.  Email: asimpson@civeng.adelaide.edu.au 

4
 Senior Lecturer, School of Civil and Environmental Engineering, University of Adelaide, 

Adelaide SA 5005, Australia.  Email: mlambert@civeng.adelaide.edu.au 



 2 

possible measurement site configurations to determine the optimal measurement locations.  

The number of sites as well as time length of data at each site are considered also.  

 

 

INTRODUCTION 

 

Inverse analysis has been applied in a variety of fields to determine parameters of problems, 

boundary conditions and even the basic equations governing a process.  By definition an 

inverse problem is one where measurements of one or more events are known but the 

parameters defining the physical condition, the boundary or initial conditions, and/or the 

governing equations are unknown.  Inverse analysis has been applied under transient 

conditions to leak detection and friction factor calibration in pipelines and pipe networks by 

Liggett and Chen (1994) and Vítkovský (2001).  It typically requires a large quantity of data 

for accurate calculation, and an unsteady event provides much more data than a steady event. 

 

The basic objective of inverse analysis in a piping system is to find leaks, but Liggett and 

Chen (1994) noted that unless the frictional properties are well knownwhich is seldom the 

caseleak detection and quantification could not be carried out with sufficient precision.  

Thus, the analysis requires a simultaneous calibration for friction factors and leak areas.  In 

addition, wave speed in a pipe is seldom known accurately and that factor is often included in 

the sought-for parameters.  Although the primary objective has been leak detection and 

quantification, the calibration aspect forms a major side benefit as the frictional properties are 

required for the analysis of a network, design of additional infrastructure and maintenance of 

networks. 
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A transient event in a pipeline system can be generated using a change in valve or pump 

conditions.  The measured data are the pressures observed periodically and simultaneously at 

various locations in a pipe or pipe network during the transient event.  Since flow rates are 

more difficult and expensive to measure they are not generally used. 

 

There are two methods to obtain an inverse solution, a direct and an indirect method.  Each 

has advantages and disadvantages (Neuman 1973).  The direct method treats the model 

parameters as the dependent variables in a formal inverse boundary value problem from 

which a direct solution of the parameters is made.  The direct method requires that the data 

(and derivatives of the data) are exact and complete.  Errors in the data may cause the 

problem to become improperly posed and solutions might only exist for certain restricted 

conditions.  The indirect method minimizes the difference between measured and calculated 

data.  Essentially, the indirect method uses a “guided search” by a minimization algorithm.  

An advantage of the indirect method is that data (and derivatives of the data) need not be 

known at all points and times in the network.  In pipe networks, the data are measured at 

particular locations and certainly not over the entire domain of the dependent variables 

(required by the direct method).  Hence, the indirect method is used in this research. 

 

Accuracy of the inverse method is very dependent on the quality and quantity of 

measurements.  However, all measurements are not equally effective.  The objective of this 

paper is to explore data collection methods that make transient inverse analysis effective and 

economical.  Questions include: 

1. How many measurement sites are necessary in a network for adequate results? 

2. Where should these measurement sites be placed to produce the best results? 

3. What (time) length of data is needed to produce accurate results? 
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4. What degree of confidence is associated with the results? 

 

The optimum location of measurement sites is a combinatorial problem, i.e., for a given 

number of measurement sites there are many combinations of site configurations.  Two case 

studies are considered.  One is a completely enumerable network (meaning that all possible 

measurement sites and measurement configurations are considered); the other is a large 

network where full enumeration is not practicable. 

 

The “optimal sampling design” consists of a plan of measurement sites that optimize the 

inverse solution.  Historically, the field of groundwater monitoring has made considerable 

inroads into optimal sampling design.  Carrera and Neuman (1986) suggested the reduction of 

parameter variances (A-optimality criterion) be used to determine the optimal locations to 

make measurements.  Knopman and Voss (1989) optimized the accuracy to which the 

parameters are determined, cost of sampling and even the type of model used.  Their 

optimization contained multiple objectives and produced an optimal front of solutions.  

Loaiciga et al. (1992) give a review of groundwater sampling design. 

 

In the context of this paper, sampling design is applied to water distribution systems.  Walski 

(1983) suggested some rules-of-thumb for the steady state calibration of water distribution 

systems based on practical experience.  Yu and Powell (1994) determined optimal sampling 

designs using a decision-tree technique for optimization based on the A-optimality criterion, 

sampling cost and distance from the sampling locations to a control center.  Bush and Uber 

(1998) used a ranking of three different criteria based on sensitivities to generate near optimal 

sampling designs for calibration.  Their results compared well with the D-optimality criterion.  

Meier and Barkdoll (2000) considered the calibration problem using a number of different 
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flow tests generated by the opening of fire hydrants.  Genetic algorithms determined where 

and what number of hydrants were to be opened to ensure satisfactory network coverage.  De 

Schaetzen et al. (2000) defined a single objective function from a weighted combination of 

Shannon’s entropy (related to sensitivity) ands the cost of measurement.  Genetic algorithms 

were used to optimize the sampling design problem. 

 

All approaches for optimal sampling design (including this paper) depend on (i) the decision 

of what constitutes a good sampling design, (ii) definition of criteria that indicate a good 

sampling design, and (iii) an optimization technique to determine the optimal design or 

optimal front of sampling designs.  This paper approaches the selection of measurement sites 

for the inverse transient problem in a similar fashion.  Indicators are defined that assess the 

performance of particular sampling designs for the inverse transient problem.  Additionally, 

the calculation of these indicators should be efficient.  Optimal sampling designs are 

determined in the following sections for a fully enumerable network and a larger network, 

where full enumeration is not practical, in which the search for the optimal design is 

performed using a genetic algorithm. 

 

 

PERFORMANCE INDICATORS 

 

Liggett and Chen (1994) suggested that sensitivities with respect to the parameters be used to 

decide where measurement sites should be placed, i.e., that points of measurement be located 

where the desired parameters are sensitive to the measurements.  Secondly, they suggested 

that the degree of confidence that one has in an inverse-transient result largely depends on the 

sensitivity.  If in the forward problem, the variables at measurement points are insensitive to 



 6 

the parameters, then a large change in the parameters has little effect on the variables, or 

conversely, a small error in measurement has an unreasonably large effect on the parameters 

and thus those parameters will be poorly determined. 

 

Liggett and Chen (1994) used two measures of sensitivity for the inverse transient problem.  

The first uses an objective function, E, which is frequently expressed as the sum of the of the 

squares of the differences of one or more observed variables (usually head, H) and the 

calculated variables based on a set of values of the parameters (e.g., E=(H
m
Hcalc)

2
 where 

H
m
 is measured head and Hcalc is calculated head).  The sensitivity with respect to each of the 

parameters can be measured by the partial derivatives of the objective function, E, with 

respect to each of the parameters, aj 
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which is the gradient vector (length NP, where NP is the number of parameters) of the 

objective function.  These derivatives represent a measure of the convergence rate towards the 

inverse transient solution and also indicate the slope of the objective function surface.  For 

small values of the gradients, a large range of parameter values will satisfy the minimizing 

criterion, and thus the parameters will not be well determined under experimental error.  

However, at the point where the inverse transient method has found a minimum,   01 jM ; 

therefore, it is not a particularly useful quantity for determining probable inverse transient 

performance. 

 

A second sensitivity measure is the partial derivative of the head, H, in each of the sampling 

points with respect to the parameters, 
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in which  2

ijM  is a Jacobian (size NPNM, where NM is the total number of measured data 

points) and Hi is the head.   2

ijM  indicates directly the influence of a parameter on the head in 

both the temporal and spatial domains.  For example, if the pressure at a leak is low in a 

region of the pipe network, then the sensitivity of the heads in that region with respect to a 

leak is lower than a similarly sized leak in a higher pressure region due to the fact that a leak 

in low pressure will discharge less fluid than a leak under high pressure.  Thus, a leak in a 

low-pressure region will be found with less precision than a similarly sized leak in a high-

pressure region.  As a general rule, measurement points should be placed in locations of high 

values of  2

ijM . 

 

In addition to the indicators defined by Eqs. 1 and 2, an alternative indicator of inverse 

transient analysis performance is given by the probable error in the solution parameters.  The 

size of the probable error depends on a number of factors such as the parameters to be 

determined, length of measured data and type of transient test, but arguably the most 

important factors are the number and location of measurement sites.  By choosing 

measurement site configurations that minimize the probable error in the parameters, a superior 

inverse transient result is ensured.  For steady state systems, the analysis of error using a first-

order error approximation has been performed previously for pressure and flow uncertainty 

(Bargiela and Hainsworth 1989), for reliability (Xu and Goulter 1998) and for calibration 

(Lansey et al. 2001).  The inverse transient problem can be defined as {a} = f({H
m
}) where 

the elements of the parameter vector, {a}, are a function of the measured heads, {H
m
}.  Using 

maximum likelihood estimators (Press et al. 1992), the chi-square statistic for a least-squares 

fit is 
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where 2
mH

 = variance of the measured head data.  Using a first order Taylor Series expansion 

about the correct parameter values, the error propagation equation for a parameter aj is 
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If the errors are uncorrelated with each other then the error propagation equation reduces to 
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Typically, the partial derivatives in Eq. 5 cannot be calculated easily.  If, however, the 

minimization is accomplished by a method that uses the Hessian of E, an efficient method of 

calculation is available.  The curvature matrix of the objective function, [], is defined as half 

the Hessian matrix (Press et al. 1992) 
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The covariance matrix of the parameters, [C], is defined such that it is equal to the inverse of 

the curvature matrix of the objective function, 

     1
C  (7) 

The variance of the error in parameter aj is the j
th

 diagonal element of [C], 

 jja C
j
2  (8) 

Similarly, the covariance of the errors between two parameters aj and ak is the element 

 jkaa C
kj
  (9) 

[C] is commonly called the covariance matrix.  An element of the Hessian matrix, used in the 

calculation of [C], can be estimated efficiently from Jacobian elements using 



 9 

 
 












 M

m
i

N

i k

i

j

i

Hkj a

H

a

H

aa

E

1
2

2 1
2  (10) 

Liggett and Chen (1994), Nash and Karney (1999) and Vítkovský (2001) give methods of 

efficiently calculating the Jacobian, although Nash and Karney’s method was only applied to 

a two-pipe series pipeline.  If similar measurement devices are used at different measurement 

sites, the variance in the errors of the measured signals will be similar.  Based on this 

assumption, both the curvature and covariance matrices may be normalized using the common 

variance in the measured data.  The resulting normalized curvature matrix approximation [
*
] 

is  
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and the normalized covariance matrix approximation [C
*
] is 
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The normalized covariance matrix element *

jjC  represents the measurement error transmission 

to the parameter error in parameter aj.  Both [
*
] and [C

*
] are independent of both the 

measured head data, H
m
, and the error in the measured head data, 2

mH
 .   

 

In the following section, the quantities in Eqs. 2, 11 and 12 are used to define a performance 

indicator for a particular measurement site configuration. 
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OPTIMAL PERFORMANCE 

 

The performance of the inverse transient method for a particular configuration of 

measurement sites can be estimated using a performance indicator, J, based on the Jacobian 

of the heads in the objective function, 

 
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where NS = number of measurement sites and NL = number of measurements per site.  Note 

that the definition of the head (Hij) in Eq. 13 differs from the definition of the head (Hi) in the 

preceding equations such that Hi represents all measurements (i = 1, …, NM) and Hij 

represents all measurements on a site-by-site basis (i = 1, …, NL and j = 1, …, NS where NM = 

NSNL).  For the indicator J, the optimal set of measurement sites is determined when J is 

maximized.  A second performance indicator, A, based on the variance of the parameter 

errors is 

   
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
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j

*

jj
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A CC
1

trace  (14) 

For A, the optimal set of measurement sites is achieved when the indicator is minimized.  

Although A only includes the diagonal elements of [C
*
], corresponding to the variance of the 

error in each parameter, other definitions might also include the covariances.  An alternative 

indicator definition is max( *

jjC ) where the maximum diagonal element of [C
*
] is minimized 

when searching for optimal measurement site configurations.  Possibly [C
*
] might not exist 

for parameters that have no influence on the heads at the locations of the measurements.  In 

that case, the partial derivatives H/a are zero for a particular parameter, creating both a 

column and a row of zeros in the Hessian so that it is singular and cannot be inverted.  

However, the use of singular-value decomposition (SVD, see Press et al. 1992) can be used to 
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solve for those parameters that do have an influence on the head where measurements are 

made.  Conditions where [C
*
] does not exist are those when the inverse problem is under-

determined or mixed-determined, for example when using short-duration transients in a large 

pipe network so that a signal from a leak does not have time to reach a measurement point 

during the period of measurement. 

 

The A indicator is an A-optimality criterion where the objective is to minimize the sum of the 

estimated variances of the model parameters (or minimize A).  An alternative to an A-

optimality criterion is a D-optimality criterion, which maximizes the determinant of [
*
] 

(Bush and Uber 1998), 

  *

D  det  (15) 

An advantage of the D-optimality criterion is that det[
*
] is more efficiently calculated than 

[
*
]
1

.  Maximization of D also tends to reduce the correlation between parameters and is not 

susceptible to the dominance of large parameter variances, as compared with A.  For these 

reasons D is usually preferred over A.  If the inverse problem is indeterminate for some 

parameters but not all parameters (as is the case for an inverse transient problem with short 

lengths of measurement data), then det[
*
] will equal zero resulting in an impossible 

minimization problem.  Again, SVD is used to calculate rank[
*
], which determines the 

number of solvable parameters.  If rank[
*
] < NP then some parameters are unsolvable.  After 

finding which of the parameters can be determined, D is calculated using only the solvable 

parameters.  Note that inverse transient parameters can be indeterminable for three reasons, 

the first being that the sensitivity of head at the measurement sites with respect to a parameter 

is zero (short lengths of data or a network configuration in which a signal is not transmitted to 

some parts).  The second is that there is a perfect correlation between two parameters 

resulting in an infinite number of solutions for those two parameters.  The third is that the 
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sensitivity of a parameter is very low (but not zero), such that either under measurement error 

the parameter is undeterminable or round-off errors due the machine accuracy fully 

contaminate the determination of that parameter.  In these situations, where some parameters 

are not determinable, the optimal sampling design problem using the indicators previously 

defined is not well-posed and should only be attempted subject to all parameters being 

solvable.  Additionally, if some parameters are indeterminable then any solution must be sub-

optimal. 

 

Only heads with corresponding measurements are used in optimization in this paper, although 

it would be possible to do it for flows also if they could economically be measured 

instantaneously.  Determination of both leak areas and friction factors form a minor 

complication in that the sensitivities with respect to the leaks are typically three orders of 

magnitude greater than those with respect to the friction factors.  This mismatch in 

sensitivities means that optimization will be carried out for the leak parameters rather than for 

both parameter types.  Simply scaling the sensitivities is equivalent to using a weighting 

function that emphasizes any selected parameter.  Examples of scaling factors are the 

quantities |H/a| or [C
*
].  The use of prior estimates of parameters also can improve the 

performance of inverse transient solutions (Kapelan et al. 2001) by better conditioning the 

inverse transient problem. 

 

The following section determines optimal measurement sites configurations for a small, “fully 

enumerable” pipe network. 
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FULLY ENUMERABLE EXAMPLE 

 

The network in Figure 1 has been previously investigated in other studies and is based on one 

in Pudar and Liggett (1992) and Liggett and Chen (1994).  The network is partly gravity fed 

with a constant inflow of 20 L/s at node 7 and consists of eleven pipes and seven nodes.  All 

of the pipes share a common diameter of 254 mm, a common length of 762 m and a common 

wave speed of 1,316 m/s.  Leaks are assumed to occur at the nodes except at the reservoir.  A 

valve at node 4 was partially closed at a time of 2.0 s, reducing the initial outflow from 58 to 

28 L/s in a linear fashion in 10 s then opened restoring the flow to 58 L/s in another 10 s.  All 

pipes have a Courant number of unity so no interpolation is necessary, thus minimizing the 

numerical error.  The “measured” pressure heads are obtained using a transient solver and are 

specified at nodes 2, 3, 4, 5, 6 and 7 (node 1 being a constant head reservoir).  The variation in 

the head during the transient at the possible measurement sites is shown in Figure 2. 

 

The analysis presented in the following sections establishes how the inverse transient method 

should be best applied for the small example network.  Since the true leak sizes and locations, 

if any exist, are not known before the inverse transient method is implemented, the analysis 

assumes equally sized small leaks at all nodes except node 1. 

 

The Objective 

 

The search for the optimal location of measurement sites requires an objective function, F, to 

distinguish between different configurations.  In the case of the indicators J, A and D, F is 

optimized so that 

      DAJF  maxorminormax  (16) 
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All of these objectives can be used to find preferred measurement site configurations that 

maximize confidence in the resulting parameters.  The number of possible measurement site 

combinations is 
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where NTS = total number of possible measurement sites and NS = number of measurement 

sites selected.  For a small network the number of measurement site combinations is small 

enough to be enumerated, but for large networks the calculation time for complete 

enumeration becomes impracticable.  If all numbers of measurement sites are considered then 

the total number of possible configurations is 12 TSN
.  In the current example the total 

number of measurement site combinations is 63, all shown in Table 1. 

 

Optimal Location of Measurement Sites 

 

Using the indicators J, A and D for particular measurement site configurations, the 

example network was completely enumerated for all configurations of measurement sites.  A 

total measured data length of 40.0 s is used in the analysis.  Table 2 shows the optimal 

measurement site configurations for each number of measurement sites based on both 

indicators.  Figure 3 shows the optimal front that allows the selection of optimal measurement 

site configurations given a certain number of measurement sites for the data in Table 2. 

 

Figure 3 indicates that more measurement sites leads to a better solution.  However, the 

incremental improvement in the solution falls rapidly as the number of sites increases.  In any 

practical problem, the user must decide whether the improvement in the solution is worth the 

effort of extra measurements.  The analysis leading to Figure 3 will aid in such a decision. 
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The consideration of each parameter’s component in J and A indicates the confidence with 

which that parameter will be determined from the inverse transient method.  For example, 

each parameter’s component in both J and A for the example network using all 40.0 s of 

measurement data is shown in Figure 4.  Figure 4 shows that for both the J and A indicators 

the parameter corresponding to a leak at node 4 would be more accurately determined than the 

other parameters.  Additionally, if the variance in the measurement error is known then the 

variance in the solution parameters can be calculated in a manner similar to the calculation of 

A. 

 

 

Consideration of the Number of Measurement Sites 

 

Figure 3 is useful for deciding how many measurement sites are necessary.  The indicators A 

and D show a large improvement in the inverse transient solution when a small number of 

measurement sites are increased.  However, there is little improvement in the inverse transient 

solution when large numbers of measurements are increased.  The indicator J does not depict 

this behavior, although it does show improvement of the inverse transient solution with 

increasing numbers of measurement sites. 

 

Figure 3 shows an apparent correlation between both the optimal measurement site 

configuration and number of measurement sites that should be considered in the optimization.  

However, when considering a certain number of measurement sites, say n, the indicator for 

the optimal measurement site configuration for n sites will always be worse than the indicator 

for the optimal measurement site configuration for n + 1 sites, because the optimal 
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measurement site configuration for n sites is a sub-set of the search space for the optimal 

measurement configuration for n + 1 sites.  The extra site contains extra measured data and 

must improve the optimal indicator value. 

 

Figure 5 considers the optimal measurement location fronts when different lengths of 

transient data are used.  In general, the optimal measurement site configurations change little 

when using different data lengths, but they do change.  The families of curves show that for 

each indicator, the curves do not intersect one another.  The optimal indicator value for a 

certain number of measurement sites always improves as the data length increases.  Other 

considerations about the length of data are presented in the following section. 

 

Consideration of the Length of Measurement Data 

 

It is logical to suggest that the longer the length of data used in the inverse transient method, 

the more confidence one would have in the results.  The performance indicators can be used 

to observe the parameter confidence for differing lengths of measurement data.  The curve 

plotting the indicator value versus length of measurement data is a useful tool for making the 

decision of what length of data is sufficient.  Such a curve is determined for the small 

example network for two measurement sites at nodes 4 and 6 in which the inverse problem is 

to determine the existence of a leak using leak candidates at all nodes except at the reservoir.  

Figure 6 shows the performance indicators J, A and D and number of solvable parameters 

as a function of the length in time of the measurement data. 

 

Initially at time t = 0.0 s, the inverse problem is indeterminate, i.e. there is one measurement 

at each of nodes 4 and 6 and six unknown leak parameters.  At this time the calculation of the 
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indicator A is impossible ([
*
]
1

 is undefined).  At later times with greater measurement 

lengths per node singular-value decomposition (SVD) is used to invert [
*
] since it may still 

be singular.  The singular values that result from the SVD show which parameters can be 

determined.  In some cases, parameters in portions of the pipe network are determinable, 

while in other cases the whole inverse problem is unsolvable until a sufficient time has 

elapsed for the information from each leak location to be propagated to all of the 

measurement sites.  For the current example, the SVD analysis shows that all six leak 

parameters are determinable at times greater than 3.5 s, which coincides to the time taken for 

the initial transient (generated at node 4 at a time t = 2.0 s) to reach node 7.  The value of the 

indicator A decreases and the values of J and D increase as the length of measurement data 

increases after t = 3.5 s, which means that the more data, the better the inverse transient 

results.  From the point at which all parameters are determinable, the magnitude of the A 

indicator decreases by approximately four orders of magnitude.  As the measurement data 

length increases in Figure 6, the trade-off curve begins to flatten out.  The asymptotic 

behavior of the predicted inverse transient performance corresponds to the dying out of the 

transient (see Figure 2), after which steady state conditions return to the system and additional 

measurement data have little effect on the performance of the inverse transient method. 

 

Steady state measurement can gather an equal amount of data as transient measurement only 

if a (large) number of different steady states are used, each of which takes much longer to set 

up and to be sure that the flow is really steady.  But even with data collected from several 

steady states, the inverse analysis may not determine the parameters as accurately as transient 

analysis.  Consider the example and assume that measurements are taken at all nodes in the 

small pipe network to determine six unknown leak areas (one at each node).  Now consider 

two different scenarios where (i) no transient event is generated but measurements are made 
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at several steady state conditions, and (ii) a transient event is generated in a manner similar to 

that previously described. 

 

Figure 7(a) shows a plot of the partial derivative (the change) of the head at node 3 with 

respect to the leak area at node 2.  By definition, the steady state value does not vary with 

time.  The transient derivative, on the other hand, does vary with time and presents a large 

change in values, many of which are larger than the steady value.  At many points the 

transient the head at node 3 is more sensitive to a leak at node 2 than the steady head.  Even if 

the user were wise enough to choose a steady state where the leak at node 2 is near the 

maximum sensitivity, it is likely that would not be the case for other nodes.  Thus, by passing 

through a range of sensitivities, the transient analysis can better determine parameters than a 

series of steady states.  This idea is illustrated in the dramatic difference between the steady 

J, A and D and the transient J, A and D values (indicators of the error magnitude in the 

solution parameters), as shown in Figures 7(b), 7(c) and 7(d).  In the case of A, if the partial 

derivative of the head with respect to the parameters is constant, as it is in the steady case, 

then the indicator A using NL data points per site is equal to 1/NL(A)1, where (A)1 

corresponds to the indicator value using 1 data point per site.  When using all 40 seconds of 

transient data, the transient A is three orders of magnitude smaller than the steady A, 

showing that inverse transient analysis will by far outperform inverse steady analysis for 

similar measurement data lengths. 

 

This section highlights the influence of measurement data length on inverse transient results 

with respect to measurement error and solvability of the parameters.  However, there are other 

data length issues not considered here.  There are arguably six data length issues to consider 

that influence inverse transient results: 
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1. The solvability of parameters (as discussed previously) that promotes a minimum data 

length below which the information from the transient event has not yet propagated to all 

measurement sites. 

2. The effect of measurement error (also discussed previously) that indicates a long data 

length should be used. 

3. The effect of model error (e.g., caused by inaccurate model properties or exclusion of 

unsteady friction) that promotes shorter data lengths where the transient model prediction 

is the most accurate. 

4. The dynamic nature of distribution systems whereby demands and tank levels are not 

static, suggesting that short data lengths should be used to reduce the variation of such 

system properties. 

5. The expense of computation times, which increases with long data lengths. 

6. The possibility of contamination of measured data by uncontrolled events, which is less 

likely for short sampling periods. 

 

These six considerations have competing objectives suggesting that the optimal data length is 

most probably an optimal front of some kind.  For example, there is a correlation between the 

number of measurement sites and the length of measurement data used (i.e., longer data 

lengths and less measurement sites may produce equally good results as shorter data lengths 

and many sites).  In addition, careful planning can improve inverse transient results, such as 

conducting tests at 3am when there is little variation in demands.  A full consideration of 

these effects suggests further study is required.  Indeed, some considerations are site specific 

and thus general rules are difficult to make. 
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Discussion of the Small Example Network Results 

 

The optimal measurement sites for the example network were found in the previous sections 

through the full enumeration of measurement site combinations.  The use of each performance 

indicator (J, A and D) produces different sets of optimal measurement sites.  A reason for 

this difference is better explained in the next section based on a larger network.  Using results 

from the small example network, a strategy for the selection of optimal measurement site 

configurations can be formed as follows: 

 

1. Define the inverse transient problem including model data. 

2. For a given pipe network identify the desired parameters to be determined. 

3. Decide on the strength, sharpness and location of the initial transient. 

4. Determine possible measurement site locations. 

5. Set the measured data length to an estimate of the predictive range of the transient model. 

6. Using performance indicators (perhaps D), determine the optimal measurement site front 

for both location and number of measurement sites. 

7. Using engineering judgement (perhaps based on cost of measuring data at a number of 

sites) to choose the number of measurement sites and associated optimal measurement site 

configuration. 

8. Perform inverse transient analysis. 

9. Calculate the expected variance (using A) and solvability of parameters to assess the 

confidence of the inverse transient solution. 

 

This method to find the optimal site configuration could also incorporate pipe roughness 

calibration as well as the leak areas as illustrated in the previous sections.  The same 
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principles are applicable to find the optimal number and locations to estimate pipe 

roughnesses.  A difference in sensitivity magnitudes (as, e.g., the three order-of-magnitude 

difference in leak and friction sensitivities) would be manifested in the performance indicators 

since they are all dependent on some form of partial derivative (e.g., H/a).  A suitable 

scaling of each performance indicator alleviates this problem. 

 

In a real pipe network, with a large number of pipes, performing a complete enumeration for 

every possible combination of measurement sites is impracticable.  Alternatively, a sample 

optimal curve can be constructed by randomly generating a set of site configurations and then 

computing their respective expected inverse transient performance (using the indicators) and 

creating a curve that is an approximation of the true optimal front curve. 

 

In general, the use of more measurement sites will provide better inverse transient results than 

a less number of sites.  The approach for deciding the optimal number of measurement sites is 

the based on the trade-off between the cost of setting up such measurement sites and the 

predicted inverse transient performance (as indicated by the indicators).  Ultimately, the 

inverse transient practitioner would decide how many sites to use. 

 

As shown in the analysis, the longer the measured data length, the better the inverse transient 

results.  This suggests that long data lengths will dictate the choice of the best data length.  

However, the best data length is more likely to be related directly to the predictive range of 

the transient model.  Therefore, the predictive range of the model should be used to set the 

measured data length.  In addition, a short sampling period may be useful in minimizing the 

possibility of contamination by uncontrolled factors in the pipe network (such as induced 

transients from an uncontrolled source). 
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APPROACH FOR LARGE NETWORKS 

 

Finding the optimal number of measurement sites and their locations is a more difficult 

problem (and it is more important to find a solution) in a large pipe network as compared to a 

small pipe network.  Different solutions to the problem are presented in this section. 

 

The Optimization Method 

 

Finding the optimum number of measurement sites and their locations has two objectives.  

One is to use the least number for the desired accuracy.  The second is to find what 

combination gives the optimal inverse transient performance.  The genetic algorithm (GA) is 

well suited as an optimization technique to meet these objectives.  It is evolutionary-based 

whereby a population of solution strings are maintained and subjected to evolutionary 

pressures.  Each solution string is comprised of bits, which for the optimal measurement site 

case is a string of possible sites.  The fitness of each string is evaluated using a performance 

indicator.  The population evolves through the application of genetic operators such as 

selection, crossover and mutation.  After a number of generations the stings converge to the 

solution that maximizes the fitness of the strings.  GAs perform an efficient optimization by 

only searching a small proportion of the search space.  GAs have been used as the 

minimization algorithm in the inverse transient method by Vítkovský et al. (2000). 

 

The GA optimization is only required for the indicators A and D.  The optimal measurement 

site configuration using the indicator J is determined by simply calculating J value for each 
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separate measurement site, ranking these values and selecting the sites with the highest 

rankings to form the optimal measurement site configuration.  In this respect, the set of 

optimal measurement locations for n sites is a superset of the set of optimal measurement 

locations for n – 1 sites.  This ranking process may be performed because the calculation of J 

is a summation of independent components for each measurement site (see Eq. 13). 

 

New Genetic Algorithm Operators 

 

Within a genetic algorithm formulation the operators of selection and mutation are applied in 

the standard manner (Goldberg 1989) for the combinatorial search problem.  Binary 

tournament selection and random mutation (excluding the creation of illegal chromosomes) 

have been used here.  However, standard N-point crossover and partially mapped crossover 

(PMX), described in Goldberg (1989), do not work for this problem for a variety of reasons.  

In the case of N-point crossover, there is no facility by which the genetic algorithm operator 

can deal with the non-repeatability of bits in a chromosome.  PMX can ensure that bits are not 

repeated in the chromosome, given that the number of bit values is equal to the chromosome 

length.  However, when applying it to a chromosome where ordering is not important and 

there are a greater number of possible bit values than the chromosome length (such as in the 

problem at hand), PMX can form illegal chromosomes.  The non-ordered, extended-set, 

combinatorial crossover (NOESCX) provides a flexible crossover operator that does not 

create illegal chromosomes.  Figure 8 shows the process for NOESCX.  Essentially each bit 

that is located in the crossover zone of one chromosome is checked to see if there is a 

matching bit in the other chromosome.  If there is no match, then the bit is copied to the 

corresponding position in the other chromosome.  The NOESCX operator produces no 
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repeated bit values in the chromosomes (if both parent chromosomes are legal) and order is 

not important. 

 

Mutation is performed by randomly choosing a string from the population given some 

probability of mutation.  Then one bit in the string is randomly chosen and replaced with a 

randomly generated value.  If the new string is illegal, such as containing two identical 

measurement sites, the process is repeated until a legal string is achieved. 

 

These genetic operators (together with selection) can be used to create a new population.  

Before the strings’ fitnesses are evaluated, the entire population is checked for multiple copies 

of the same measurement site configuration, thus preventing evaluations of identical strings 

and reducing unneeded evaluations.  The production of successive generations is repeated 

until convergence, or until the number of generations exceeds some maximum number.  

Anderson and Simpson (1996) developed the base source code used for this GA.  For low 

numbers of configurations, the number of possible combinations may be lower than the 

expected number of function evaluations used by the GA, in which case full enumeration is 

used.  The combination of full enumeration and the genetic algorithm is referred to as EGA 

searching. 

 

 

LARGE NETWORK EXAMPLE 

 

The configuration of the large network is shown in Figure 9 and is based on one used by 

Jeppson (1976).  This network is large compared to the fully enumerable network previously 

used, but not as large as those commonly found in practice.  In practice, isolating portions of 
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the network using valves can reduce their size.  The system is gravity fed by three reservoirs 

and consists of 51 pipes and 35 nodes.  The transient event was generated by instantaneously 

closing a valve that discharged to the atmosphere at node 7 at time t = 1.0 s.  There were 

constant demands at all non-reservoir nodes with the exception of nodes 2, 16, 18, 20 and 31.  

The pipe properties for the network ranged between 400 and 900 m for pipe lengths, 0.3 and 

1.5 m for diameters and 1,100 and 1,400 m/s for wave speeds.  Some pipes of the original 

network were divided into two or more pipes so the minimum Courant number is 0.8 for 

computational accuracy, thus increasing the size to 75 pipes and 59 nodes.  A cubic timeline 

scheme was used to minimize interpolation errors (Yang and Hsu 1990).  A simulation time 

of 40.0 s was used, which was a more than adequate time for the transient to reach every part 

of the network.  All parameters can be theoretically determined, although some parameters are 

better determined than others. 

 

Possible measurement sites are located at all nodes, excluding those added from the pipe 

division and the reservoir nodes, making a total of 32.  The number of measurement sites was 

limited to ten because it is likely that, in reality, there will be considerably fewer measurement 

sites than nodes in a pipe network.  Table 3 shows the number of possible site configurations 

as a function of the number of sites (up to ten).  Full enumeration was used for configurations 

with the number of sites equal to or less than four, whereas GA optimization was used for 

higher numbers.  The GA parameters used for the optimization of the measurement site 

location are a population size of 1,000, tournament selection, a probability of crossover 0.7, 

and a probability of mutation 0.01.  The maximum number of generations allowed is 100 

(although, typically, the GA converged in less than 50 generations).  The maximum number 

of evaluations of J, A or D used by the GA is 100,000.  Therefore, if the number of 

possible site configurations for a particular number of sites is less than 100,000, full 
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enumeration is used, if not then a GA search is used.  GAs are stochastic algorithms and are 

not guaranteed find to true global minimum.  In this paper three GA runs with different seeds 

for the random number generator were used for each optimization.  If the same optimal 

solution was not determined in two of the three differently seeded GA runs, additional GA 

runs were performed. 

 

Sampled Results 

 

Due to the large number of measurement site combinations, the calculation of the 

performance indicator for every possible configuration is too computationally intensive.  Only 

a few sample configurations are used to generate an approximation of the optimal site front 

and the optimal curve.  The sample results are representative of the population results given 

that the sample size is adequately large.  Figure 10 shows approximate curves for the average 

indicator values from 30 randomly chosen configurations.  These curves can be used to 

determine quickly an adequate number of sites for the inverse transient method.  The best 

measurement site configuration for each number of sites selected is shown in Tables 4, 5 and 

6 together with its corresponding indicator value. 

 

In addition to being useful for the consideration of the number of measurement sites for the 

inverse transient method, the result also serves as a check for the EGA optimization to find 

the best locations of sites (presented in the following section).  The following section applies 

the EGA technique to produce better optimal configurations than by taking random samples. 

 

Optimization Results 
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The search space sizes for the different numbers of measurement site combinations dictates 

what type of strategy should be used in the EGA optimization.  Full enumeration was used for 

numbers of sites equal to 1, 2, 3, and 4, and the genetic algorithm was used for higher 

numbers.  Figure 10 shows the optimal front formed by either EGA optimization for A and 

D ranking for J for the placement of measurement sites where each point on the optimal 

curve front represents a configuration that provides the best indicator values (largest J or D, 

smallest A) for the large network.  The optimal front bounds the sampled results (from 30 

randomly generated configurations) indicating that the optimization is working.  Tables 4, 5 

and 6 shows the optimal sites and the indicator values for each number of sites considered.  

Some measurement sites such as sites 11, 12, 23 and 34 are consistently found in the optimal 

set (see Tables 4, 5 and 6).  These will produce good convergence of the minimization 

algorithm due to their high sensitivities. 

 

The optimal configurations as indicated by each performance indicator are different.  The 

optimal sites using J typically cluster near the point at which the transient was generated 

(node 7), which corresponds to the highest H/a sensitivity values.  The optimal sites using 

A and D are well distributed throughout the network and correspond to the locations that 

minimize the effect of measurement error on the calculation of parameters.  Essentially, J 

favors those parameters that are located near the transient generation point, resulting in poor 

inverse transient performance for parameters located further away from the transient 

generation point.  Is this sense, the optimal configuration using J does not adequately solve 

the original problem where the inverse transient performance for all parameters, be they close 

or far from the transient generation point, must be optimized.  Ultimately, the best indicator of 

inverse transient performance is D and it should be used when determining the optimal 
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location of measurement sites.  In contrast, A is more computationally intensive, favors 

correlated parameters and may be dominated by high variance parameters. 

 

 

INVERSE TRANSIENT STATISTICS 

 

The expected variance of the parameters for a particular solution from the inverse transient 

method is a useful quantity.  It can be used to predict how much confidence to associate with 

each solved parameter and, ultimately, how successful the inverse transient method has been.  

In previous sections of this paper, the indicator A has been shown to predict the overall 

performance from the inverse transient method given a particular configuration of 

measurement sites.  The variances in the parameters and covariances between parameters 

(Eqs. 8 and 9) are determined during the calculation of A.  The marginal probability 

distribution function (Yevjevich 1972) is 
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where f(x) = probability density function of a parameter x, x = mean of parameter x and x = 

standard deviation of parameter x.  A further step can be taken by considering the expected 

covariance (also found when calculating the expected variance, see Eqs. 4 to 9).  The 

covariance can be used to check if leak areas are correlated.  Similarly to Eq. 18, a bivariate 

probability density function, f(x,y), written for two normally distributed parameters x and y, is 
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where the variable Q is equal to 
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The correlation coefficient, , calculated between any two parameters (Yevjevich, 1972) is 

defined as 
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where x = standard deviation in parameter x, y = standard deviation in parameter y and xy = 

covariance between parameters x and y.  A value of  = 1.0 represents exact correlation and 

 = 0 is no correlation.  In the small pipe network case study presented earlier Figure 11 

shows the bivariate probability density function calculated between leak areas (CdAL)4 and 

(CdAL)6 and between (CdAL)5 and (CdAL)7 representing both low and high correlation pairs of 

parameters, respectively.  Figure 11 uses standardized leak areas, calculated by subtracting its 

mean then dividing by its standard deviation. 

 

Little correlation exists between the two leak areas at nodes 4 and 6 (as indicated by the near 

circular concentric rings on the bivariate probability density contour plot) whose correlation 

coefficient is equal to 0.13.  A different bivariate distribution is observed between the lumped 

leak areas at node 5 and 7 where the correlation coefficient is equal to –0.80.  The correlation 

between the leak areas at nodes 5 and 7 is indicated by the elliptic shape of the contours with 

the major axis of the ellipse along the diagonal y = x.  Although the correlation between 

the leak areas at nodes 5 and 7 is high, it is not perfect.  A unique solution for each leak area 

exists; however, if the measurements contain error then those pairs of leak areas with high 

correlation and high variances and covariance (compared to other parameters) may not be 

well determined.  The correlation between the lumped leak areas is visualized using the 

correlation matrix.  Figure 12 shows the correlation matrix for the inverse transient problem 
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for the determination of six unknown leaks.  If the parameters were friction factors, the 

correlation matrix would be useful for indicating which friction factors might be lumped 

together to improve their overall sensitivity (Vítkovský 2001). 

 

For the small example network, the first-order parameter error estimates as calculated in the 

preceding paragraphs were verified using a Monte Carlo method (Vítkovský 2001).  Monte 

Carlo methods are stochastic techniques used for investigation of probabilistic problems.  For 

each Monte Carlo simulation the measurement data were contaminated with an artificial, 

normally-distributed error of zero mean, then the leak areas determined using the inverse 

transient method.  After a number of such simulations, when the error in the leak areas 

becomes ergodic, the leak area statistics are calculated.  The leak area error statistics 

demonstrate the effect of measurement error.  One hundred thousand Monte Carlo simulations 

were used to calculate parameter values.  A standard Levenberg-Marquardt (Press et al. 1992) 

minimization algorithm was used in the inverse transient method.  The two methods of 

calculation produced nearly identical results for all marginal and bivariate probability density 

functions. 

 

If the measurement error becomes too large, first-order error analysis is invalid because the 

linearized Taylor series expansion does not adequately represent the nonlinear behavior.  

However, failure to match the first-order error analysis might not be due solely to nonlinear 

effects.  A major cause of failure of the inverse transient method for large measurement errors 

is the minimization algorithm.  The measurement data contain a greater proportion of outliers 

when the error becomes large.  These outliers cause problems such as local minima for the 

least-squares fitting algorithm, slow convergence and non-convergence.  The shuffled 

complex evolution algorithm, used with the inverse transient method, avoids some of the 
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pitfalls of other minimization methods and has been successful where the Levenberg-

Marquardt algorithm failed, thus suggesting that the non-convergence was caused by the 

failure of the minimization algorithm rather than nonlinear effects.  In inverse transient tests 

applied to experimentally collected laboratory data, a global-minimization algorithm was 

required (Vítkovský 2001). 

 

 

CONCLUSIONS 

 

Currently engineering judgment is used to locate measurement sites for the inverse transient 

method.  Better site locations are determined using formal optimization combined with 

engineering judgment.  Given the large number of combinations of site configurations in a 

large pipe network, optimization algorithms outperform human intuition due to the size of the 

problem.  However, the optimal configuration gained through an optimization algorithm may 

not be practical; therefore, engineering judgement is still required, but at a higher level.  The 

use of a genetic algorithm produces a number of near-optimal solutions; thus, if the optimal 

solution is impractical then one of the near-optimal solutions might be used.  The formation of 

an optimal curve for D (or A) and NS shows that there is never one solution, rather an 

optimal curve of solutions.  Again, engineering judgment must be used to decide what level of 

error is acceptable in the parameters versus the cost of additional sites. 

 

The characterization of inverse transient analysis performance using performance indicators 

allows comparison between different measurement site configurations.  Although three such 

indicators have been investigated in this paper, other types of indicators exist, with each 

indictor yielding slightly different optimal solutions.  As to which indicator is the best, the 



 32 

answer depends on how the indicator performance is judged, e.g., computational efficiency, 

projected parameter error, etc.  Considering the large network example in this paper, the D 

indicator is preferred over both the J and A indicators. 

 

In the same way that the performance indicators have been used to determine optimal 

measurement site locations, the method presented herein could be used to determine where a 

transient should be generated or even the transient type.  In addition, there is a correlation 

between the number of measurement sites and the length of measurement data (i.e., longer 

data lengths and less measurement sites may produce equally good results as shorter data 

lengths and many sites).  Expanding the inverse transient design problem to its fullest, the 

location of the measurement sites, transient generation location and length of measurement 

data used at each site could all be optimized simultaneously forming a multi-objective 

optimization problem.  The methods discussed in this paper can be applied to inverse 

problems other than the inverse transient problem where measurement of data may occur at a 

number of discrete locations. 
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NOTATION 

 

The following symbols are used in this paper: 

 

aj or {a} = generic parameter representing CdAL or f; 

[C] = covariance matrix; 

[C
*
] = normalized covariance matrix; 

CdAL = effective leak area; 

E = objective function, chi-square statistic; 

f = Darcy-Weisbach friction factor, probability density distribution; 

F = optimization objective; 

H = head; 

m

iH  or {H
m
} = measured head; 

 1

jM  = sensitivity measure based on objective function; 

 2

ijM  = sensitivity measure based on Jacobian; 

NC = number of measurement site combinations; 

NL = number of measurement data per site; 

NM = total number of measurement data (=NSNL); 

NP = number of parameters; 

NS = number of measurement sites; 

NTS = total number of measurement sites; 

Q = bivariate distribution variable; 

A = performance indicator based on the A-optimality criterion; 

D = performance indicator based on the D-optimality criterion; 
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J = performance indicator based on the Jacobian of H; 

[] = curvature matrix; 

[
*
] = normalized curvature matrix; 

xy = correlation between x and y; 

x = standard deviation of x; 

2

x  = variance of x; 

xy = covariance between x and y. 
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Figure 1.  Layout of small example network 
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Figure 2.  Measured head variation for the small example network 
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Figure 3.  Optimal measurement site location curve (small example network) 

 



 42 

 

0

0.2

0.4

0.6

0.8

2 3 4 5 6 7

Leak Parameter Node Number


J

 (


1
0


6
)

(a
im

 t
o

 m
a

x
im

iz
e)

(a)
  

0

5

10

15

20

2 3 4 5 6 7

Leak Parameter Node Number


A

 (


1
0

9
)

(a
im

 t
o

 m
in

im
iz

e)

(b)
 

 

Figure 4.  Decomposition of indicators by leak parameter component (small example 

network) 
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Figure 5.  Data length effect on optimal measurement site locations curve (small example 

network) 
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Figure 6.  Data length effect on the number of determinable parameters and 

performance indicators (small example network) 
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Figure 7.  Steady and transient comparison of sensitivity and performance indicators 
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Figure 8.  Non-ordered, extended-set, combinatorial crossover (NOESCX) 
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Figure 9.  Layout of the large example network 
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Figure 10.  Optimal measurement site location curves (large example network) 
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Figure 11.  Bivariate probability distribution functions.  Leak areas are standardized by 

subtracting their mean and dividing by their standard deviation.  Probability density 

function multiplier is shown in top right-hand corner of plots. 
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Figure 12.  Correlation matrix for all parameters 
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Table 1.  Measurement site combinations for the small example network 

NS NC* Possible Measurement Site Configurations* 

1 6 {2}, {3}, {4}, {5}, {6}, {7} 

2 15 

{2,3}, {2,4}, {2,5}, {2,6}, {2,7}, 

{3,4}, {3,5}, {3,6}, {3,7}, {4,5}, 

{4,6}, {4,7}, {5,6}, {5,7}, {6,7} 

3 20 

{2,3,4}, {2,3,5}, {2,3,6}, {2,3,7}, {2,4,5}, 

{2,4,6}, {2,4,7}, {2,5,6}, {2,5,7}, {2,6,7}, 

{3,4,5}, {3,4,6}, {3,4,7}, {3,5,6}, {3,5,7}, 

{3,6,7}, {4,5,6}, {4,5,7}, {4,6,7}, {5,6,7} 

4 15 

{2,3,4,5}, {2,3,4,6}, {2,3,4,7}, {2,3,5,6}, {2,3,5,7}, 

{2,3,6,7}, {2,4,5,6}, {2,4,5,7}, {2,4,6,7}, {2,5,6,7}, 

{3,4,5,6}, {3,4,5,7}, {3,4,6,7}, {3,5,6,7}, {4,5,6,7} 

5 6 
{2,3,4,5,6}, {2,4,5,6,7}, {2,3,5,6,7}, 

{2,3,4,6,7}, {2,3,4,5,7}, {3,4,5,6,7} 

6 1 {2,3,4,5,6,7} 

* Head measurement was not allowed at the reservoir (node 1) 
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Table 2.  Optimal measurement site locations for the small example network 

NS 
Best Meas. Site 

Config. Using J 

Best 

J 

Best Meas. Site 

Config. Using A 

Best 

A 

Best Meas. Site 

Config. Using D 

Best 

D 

1 6 9.410
6
 4 1.810

7
 4 1.910

49
 

2 4, 6 18.710
6
 4, 6 7.210

8
 4, 6 7.310

50
 

3 4, 6, 7 27.510
6
 3, 4, 6 5.110

8
 4, 6, 7 3.910

51
 

4 4, 5, 6, 7 34.710
6
 3, 4, 6, 7 4.110

8
 3, 4, 6, 7 1.310

52
 

5 2, 4, 5, 6, 7 41.710
6
 2, 3, 4, 6, 7 3.510

8
 3, 4, 5, 6, 7 3.110

52
 

6 2, 3, 4, 5, 6, 7 47.710
6
 2, 3, 4, 5, 6, 7 3.110

8
 2, 3, 4, 5, 6, 7 6.510

52
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Table 3.  Number of measurement site combinations (large example network) in which 

Ns is the number of sites and Nc is the number of configurations. 

NS NC Analysis Type
*
 

1 32 E 

2 496 E 

3 4,960 E 

4 35,960 E 

5 201,376 GA 

6 906,192 GA 

7 3,365,856 GA 

8 10,518,300 GA 

9 28,048,800 GA 

10 64,512,240 GA 
*
 E = Full Enumeration, GA = Genetic Algorithm 
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Table 4. Best of sampled sites and optimal ranked sites using J (large example network) 

NS 
Best of Sampled Measurement 

Site Configurations 
J 

Optimal Ranked Measurement 

Site Configurations 
J 

1 5 4.910
4
 11 4.910

4
 

2 6, 12 9.610
4
 5, 11 9.710

4
 

3 5, 6, 19 1.310
5
 5, 11, 12 1.410

5
 

4 5, 11, 14, 19 1.610
5
 5, 6, 11, 12 1.910

5
 

5 4, 5, 14, 18, 33 1.810
5
 4, 5, 6, 11, 12 2.410

5
 

6 4, 5, 6, 8, 12, 14 2.610
5
 4, 5, 6, 10, 11, 12 2.710

5
 

7 3, 4, 5, 10, 15, 18, 19 2.710
5
 4, 5, 6, 9, 10, 11, 12 3.110

5
 

8 3, 5, 9, 10, 12, 13, 16, 18 2.810
5
 4, 5, 6, 9, 10, 11, 12, 15 3.510

5
 

9 3, 4, 6, 11, 12, 14, 16, 27, 28 3.310
5
 4, 5, 6, 9, 10, 11, 12, 14, 15 3.810

5
 

10 4, 6, 8, 9, 11, 15, 19, 22, 26, 34 3.610
5
 4, 5, 6, 8, 9, 10, 11, 12, 14, 15 4.210

5
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Table 5. Best of sampled sites and optimal EGA sites using A (large example network) 

NS 
Best of Sampled Measurement 

Site Configurations 
A 

Optimal EGA Measurement 

Site Configurations 
A 

1 5 231 11 181 

2 10, 11 33.4 11, 23 31.7 

3 11, 14, 23 21.0 10, 12, 23 9.51 

4 4, 10, 12, 16 11.8 10, 11, 12, 23 4.92 

5 5, 7, 12, 15, 23 5.94 10, 11, 12, 23, 34 3.66 

6 3, 11, 19, 23, 28, 34 5.78 10, 11, 12, 23, 24, 34 2.92 

7 7, 10, 11, 13, 23, 24, 32 4.20 6, 10, 11, 12, 23, 24, 34 2.39 

8 6, 7, 13, 14, 15, 18, 23, 28 5.51 6, 10, 11, 12, 16, 23, 24, 34 2.05 

9 5, 7, 10, 11, 23, 26, 29, 32, 33 3.11 4, 6, 10, 11, 12, 16, 23, 24, 34 1.80 

10 6, 7, 10, 12, 15, 16, 23, 26, 27, 32 2.26 4, 6, 10, 11, 12, 16, 23, 24, 33, 34 1.61 
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Table 6. Best of sampled sites and optimal EGA sites using D (large example network) 

NS 
Best of Sampled Measurement 

Site Configurations 
D 

Optimal EGA Measurement 

Site Configurations 
D 

1 7 1.610
60

 11 1.310
62

 

2 10, 11 1.510
83

 7, 11 8.610
87

 

3 11, 14, 23 5.710
93

 7, 10, 11 3.010
101

 

4 4, 10, 12, 16 1.610
104

 10, 11, 12, 23 1.210
112

 

5 5, 7, 12, 15, 23 4.110
113

 7, 10, 11, 12, 23 1.710
120

 

6 3, 11, 19, 23, 28, 34 9.510
119

 7, 10, 11, 12, 23, 34 1.310
126

 

7 7, 10, 11, 13, 23, 24, 32 3.110
125

 4, 7, 10, 11, 12, 23, 34 1.610
131

 

8 3, 6, 7, 8, 11, 14, 17, 22 1.110
128

 4, 7, 10, 11, 12, 16, 23, 34 3.810
135

 

9 5, 7, 10, 11, 23, 26, 29, 32, 33 3.410
134

 4, 7, 8, 10, 11, 12, 16, 23, 34 5.810
139

 

10 6, 7, 10, 12, 15, 16, 23, 26, 27, 32 2.810
136

 3, 4, 7, 8, 10, 11, 12, 16, 23, 34 5.910
143

 

 


