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In signal detection theory, an observer’s responses are often modeled as being based on a decision variable obtained by 
cross-correlating the stimulus with a template, possibly after corruption by external and internal noise. The response 
classification method estimates an observer’s template by measuring the influence of each pixel of external noise on the 
observer’s responses. A map that shows the influence of each pixel is called a classification image. Other authors have 
shown how to calculate classification images from external noise fields, but the optimal calculation has never been 
determined, and the quality of the resulting classification images has never been evaluated. Here we derive the optimal 
weighted sum of noise fields for calculating classification images in several experimental designs, and we derive the 
signal-to-noise ratio (SNR) of the resulting classification images. Using the expressions for the SNR, we show how to 
choose experimental parameters, such as the observer’s performance level and the external noise power, to obtain 
classification images with a high SNR. We discuss two-alternative identification experiments in which the stimulus is 
presented at one or more contrast levels, in which each stimulus is presented twice so that we can estimate the power of 
the internal noise from the consistency of the observer’s responses, and in which the observer rates the confidence of his 
responses. We illustrate these methods in a series of contrast increment detection experiments. 
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 Introduction 

In signal detection theory, an observer’s responses are 

often modeled as being based on a decision variable s 

obtained by cross-correlating a stimulus I with a template 

T, possibly after corruption by an external Gaussian white 

noise N and an internal Gaussian white noise Z. The 

decision variable for this noisy cross-correlator can be 

written as 

( ) .s I N Z T= + + ⊗  (1) 

In a two-alternative identification task, the observer sets a 

criterion a, and gives one response if s ≥ a, and the other 

response if s < a (Green & Swets, 1974; Peterson, 

Birdsall, & Fox, 1954). This model gives a good account 

of many aspects of observers’ performance in many 

perceptual tasks. In the “General Discussion,” we briefly 

review the evidence for the model. 

The response classification method estimates an 

observer’s template T by measuring the influence of each 

pixel of an external noise field on the observer’s responses 

(Ahumada & Lovell, 1971; Beard & Ahumada, 1998). 

An image that shows the influence of each noise pixel is 

called a classification image. Other authors have derived 

methods of calculating classification images whose 

expected value is proportional to the template T (Abbey, 

Eckstein, & Bochud, 1999; Richards & Zhu, 1994), but 

the optimal calculation has never been determined, and 

the quality of the resulting classification images has never 

been evaluated. Response classification experiments 

require large amounts of data, so it would be useful to 

know how to use the data most efficiently and to know 

how the quality of a classification image depends on 

experimental variables, such as the number of trials and 

the observer’s level of performance. Here we show how to 

calculate a classification image by taking a weighted sum 

of external noise fields from individual trials, in such a 

way as to maximize the signal-to-noise ratio (SNR) of the 

classification image, and we give expressions for the SNR. 

We derive optimal methods for two-alternative 

identification experiments in which the stimulus is 

presented at one or more contrast levels, in which each 

stimulus is presented on two separate trials so that we can 

estimate the power of the internal noise from the 

consistency of the observer’s responses, and in which an 

observer rates the confidence of his responses. From the 
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expressions for the SNR, we show how to choose 

experimental parameters, such as the observer's 

performance level and the power of the external noise, to 

obtain classification images with a high SNR. We 

illustrate these methods in a series of contrast increment 

detection experiments. 

Here 2
i

i

U = U∑  is the vector magnitude of U,  

is the expected value of M, and 

[ ]E M

2
Mσ  is the variance of 

each pixel of M. [Some authors define SNR as the square 

root of the right-hand side of (2).] In “Appendix A” we 

show that in general the SNRs of the estimates of T given 

by individual noise fields in the four classes of trials are 

not equal. Specifically, noise fields have higher SNRs on 

trials where the observer gives the incorrect response than 

on trials where the observer gives the correct response, so 

it is inefficient to combine noise fields in a weighted 

average that does not distinguish between correct and 

incorrect trials. 

In this study, we derive the optimal weighted sum of 

noise fields for calculating classification images. It is an 

open question whether more elaborate calculations, e.g., 

multiple linear regression, can improve on the optimal 

weighted sum. 

As a compromise between the need for a 

straightforward user’s guide to response classification 

methods and the need to prove our theoretical results, we 

state the most useful results in the main text and give the 

proofs in appendices. 
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Identification at a Single 
Contrast Level 

On each trial of a typical two-alternative 

identification experiment, one of two signals, A or B, is 

presented in Gaussian white noise N, and the observer’s 

task is to state which signal was presented. On some trials, 

the noise causes the observer to make mistakes if, by 

chance, the noise is distributed in such a way as to make 

A look more like B, or to make B look more like A. The 

response matrix of such an experiment has four cells, 

corresponding to the four stimulus-response pairs: AA, 

AB, BA, and BB (Figure 1). Other authors have shown 

that if the observer is a linear discriminator who responds 

‘A’ if a decision variable s of form (1) is greater than some 

criterion a and responds ‘B’ otherwise, then the expected 

value of the external noise field N on trials where the 

observer responds ‘A’ is proportional to the template T, 

and the expected value on trials where the observer 

responds ‘B’ is proportional to the negated template –T 

(Abbey et al., 1999; Richards & Zhu, 1994). Hence we 

can estimate the template by finding the average of the 

external noise fields N over trials where the observer 

responds ‘A’, and subtracting the average of the noise 

fields over trials where the observer responds ‘B’. 

Figure 1. Response matrix of a two-alternative identification 

experiment. 

In “Appendix A,” we show that if the observer is 

unbiased, the weighted sum of noise fields that gives the 

highest SNR is 

( ) ( ) .AA BA AB BBC N N N N= + − +  (3) 

However, this difference of averages does not make 

efficient use of the data. We use the following definition 

of the SNR to measure the quality of a stochastic image M 

contaminated by white noise: 

2

2

[ ]
[ ]

M

E M
SNR M

σ
=  (2) 

We use SRN  to denote the average of the external noise 

fields in a stimulus-response class of trials, e.g., ABN  is 

the average of the external noise fields presented on trials 

where the stimulus was A and the observer responded ‘B’. 

Expression (3) states that in a two-alternative 

identification experiment, the best classification image is 

obtained by calculating the average of the noise fields 

within each of the four classes of trials, then adding 

together the means of classes AA and BA and subtracting 

the means of classes AB and BB. This is the formula for 

calculating classification images that appears most often 

in the psychophysics literature (e.g., Beard & Ahumada, 

1998), and in “Appendix A,” we show that it is the 

optimal weighted sum of noise fields when the observer is 

unbiased. In “Appendix A,” we also derive the optimal 

weighted sum (A10) for a biased observer. Although (3) is 

the most commonly used formula, other formulas have 

been proposed that are suboptimal because they weight 

correct and incorrect trials equally, and do not take 

account of observer bias (Abbey et al., 1999; Richards & 
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Zhu, 1994). The optimal expression (3) follows from the 

noisy cross-correlator model (1), but it is an empirical 

question whether it is actually optimal for human 

observers. In Experiment 2, we report data from a 

contrast increment detection experiment that indicate 

that (3) is the optimal expression. 

In “Appendix A,” we also show that the SNR of the 

classification image calculated as in (3) is 

( )
2 2

2 2

( '/ 2)
[ ] .

( '/ 2) ( '/ 2)

N

N Z

n g d
SNR C

G d G d

σ

σ σ
= ⋅

−+
 (4) 

Here n is the total number of trials, 2
Nσ  is the variance of 

each pixel of external noise N, 2
Zσ  is the variance of each 

pixel of internal noise Z, and d' is the observer’s 

performance level. The function g is the standard normal 

probability density function, and G is the standard 

normal cumulative distribution function. 

Expression (4) reveals the influence of several 

variables on the SNR. The SNR is proportional to the 

number of trials n. The SNR depends nonlinearly on d', 

varying as . As shown in 2( '/ 2) / ( '/ 2) ( '/ 2)g d G d G d−

2 2 2/( )

Figure 

2, this means that the quality of the classification image 

declines rapidly at high performance levels, but does not 

vary greatly below approximately 75% correct (e.g., the 

SNR at 60% correct is only 15% higher than the SNR at 

75% correct). Finally, the SNR is proportional to the 

ratio of the external noise variance to the total noise 

variance, N N Zσ σ σ+ , indicating that the more the 

observer’s performance is limited by internal noise, the 

lower the quality of the classification image. Internal 

noise is typically the sum of a noise of fixed variance 2
ZFσ  

and a noise whose variance 2
ZPσ  is proportional to a 

weighted sum of the signal energy E and the external 

noise variance 2
Nσ : 2 2 ( 2 )Z ZF q kE Nσ σ= +

/(

σ+

2 2

 (Burgess & 

Colborne, 1988; Lillywhite, 1981; Lu & Dosher, 1998). 

This implies that the noise ratio 2 )N N Zσ σ +

2g

σ  is highest 

when the external noise power is high. In many foveal 

tasks, the power spectral density of the fixed internal 

noise is on the order of  and the constant 

of proportionality of the internal proportional noise is 

approximately , so the internal noise variance is 

given by 

2 610 deZFσ −=

1q ≈
2 6 2 210 deg ( )Z NkEσ σ−≈ + +

2 2/(

 (e.g., Burgess & 

Colborne, 1988; Pelli & Farell, 1999). This suggests that 

to obtain a high noise ratio 2 )N N Zσ σ +σ , the power of 

the external noise should be several times the power of 

the internal fixed noise, e.g., at least 10-5 deg2, which at a 

typical pixel width of 0.02 degrees corresponds to a root 

mean square (RMS) noise contrast of 16%. 

0.6

0.5

0.4

0.3

0.2

0.1

0.0

g
(d

'/2
)2

/G
(d

'/2
)G

(-
d

'/2
)

2.52.01.51.00.50.0

d'

Proportion correct

0.50 0.60 0.70 0.80 0.90

 
Figure 2. Effect of an observer’s performance level on the 

signal-to-noise ratio of a classification image. 

Experiment 1: Identification at 
Several Contrast Levels 

We often interleave several signal contrast levels in an 

identification experiment,e.g., to measure a threshold or a 

psychometric function. When calculating a classification 

image, how should we combine noise fields across trials 

with different signal contrast levels? Intuitively, we expect 

the informativeness of a noise field from a given trial to 

depend on both the signal contrast level and the 

correctness of the observer’s response on that trial. For 

instance, we expect noise fields on incorrect trials to be 

more informative at high contrast levels than at low 

contrast levels, because at high contrast levels the noise 

must provide a larger amount of misleading evidence to 

induce an incorrect response. Conversely, we expect noise 

fields on correct trials to be more informative at low-

contrast levels than at high contrast levels. The expression 

for the SNR of a single noise field confirms these 

intuitions [Equation (A4), derived in “Appendix A”], 

although this expression shows that the SNR is actually a 

function of the observer’s performance level, and not of 

the signal contrast per se. It is less obvious whether the 

increase in information from the incorrect trials exceeds 

the decrease in information from the correct trials at 

higher performance levels, but our discussion of the SNR 

(4) of a classification image showed that the SNR is lower 

at higher performance levels, declining as 

. In “2( '/ 2) / ( '/ 2) ( '/ 2)g d G d G d− Appendix B,” we show 

that the optimal method of summing noise fields across 

trials with different performance levels is first to calculate 

separate classification images Ci from the trials at each 
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contrast level i, using Equation (3), and then to take the 

following weighted sum of the separate classification 

images Ci, in which each classification image is weighted 

according to the number of trials ni and observer’s 

performance level d'i at the corresponding contrast level: 

( ' / 2)i i

i

C n g d=∑ iC  (5) 

This is the optimal method of summing the noise 

fields across contrast levels, and it follows (see “Appendix 

E") that the SNR of the classification image C is the sum 

of the SNRs of the classification images Ci at each 

contrast level: 

( )
2 2

2 2

( ' / 2)
[ ]

( ' / 2) ( ' / 2)

N i i

i iiN Z

n g d
SNR C

G d G d

σ

σ σ
=

−+
∑  (6) 

This SNR depends on the noise variances 2
Nσ  and 2

Zσ  in 

the same way as the single-contrast classification image (3) 

discussed in the previous section. Furthermore, this SNR 

is highest when most trials are collected at low 

performance levels d'i. 

Taking account of the performance levels at which 

noise fields are presented can appreciably improve the 

quality of a classification image. When we measure a 

contrast threshold or a psychometric function in a two-

alternative identification task, we typically use contrast 

levels that cover a performance range of 60% to 90% 

correct. Figure 2 shows that the SNR varies by 

approximately a factor of two across this range. It would 

be very inefficient to calculate classification images using 

expression (3) that we derived for the case of a single 

contrast level, as this would weight noise fields from high-

performance trials as heavily as noise fields from low-

performance trials. In the following experiment, we show 

that the weighting in (5) does improve the quality of 

classification images obtained in a contrast increment 

detection task. 

In this experiment, and in the ones that follow, we 

compare new methods for calculating classification 

images that we have derived for particular experimental 

paradigms, to method (3), which we refer to as the 

standard method. The standard method was originally 

proposed for the case of an unbiased observer making 

binary responses to stimuli presented at a single contrast 

level, and as we have shown, in this case it is the optimal 

method. In the following experiments, we use the 

standard method as a benchmark against which to 

compare methods derived for different paradigms, 

without meaning to imply that it was ever intended for 

these paradigms. We use the standard method merely as a 

plausible alternative for calculating classification images, 

to see whether other methods can improve on it. 

Methods 

Participants 
Three undergraduate students at the University of 

Toronto, Toronto, Canada, participated. All had normal 

or corrected-to-normal Snellen acuity and were naïve as to 

the purpose of the experiment. 

Stimuli 

The signal was a contrast increment in one of two 

disks shown in Gaussian white noise (Figure 3). The 

radius of each disk was 0.11 degrees of visual angle, and 

the center of each disk was 0.50 degrees to the left or 

right of a small fixation point. The base contrast of each 

disk was 10% Weber contrast, and the contrast increment 

varied from trial to trial, as explained in “Procedure.” The 

noise formed a rectangle 1.0 degrees high and 2.0 degrees 

wide, centered on the fixation point, and its root mean 

square (RMS) Weber contrast was 20%. The noise was 

Gaussian, except that pixels more than two standard 

deviations from the mean were rejected and resampled, to 

keep contrast levels within the range displayable on the 

monitor. The stimulus duration was 200 ms. 

Stimuli were displayed on an AppleVision monitor 

(640 × 480 resolution, pixel size 0.467 mm, refresh rate 

67 Hz). Observers viewed the stimuli binocularly from a 

distance of 1 m, and head position was stabilized using a 

chin-and-forehead rest. 

 

Figure 3. Stimulus in Experiment 1. The left disk has a contrast 

increment of 7%. Movie of the stimulus. 

Procedure  

Each observer participated in five one-hour sessions 

of 2,000 trials. Each trial began with a 500-ms fixation 

interval, followed by the 200-ms stimulus, followed by a 

response interval in which the observer pressed one of 

two keys to indicate whether the contrast increment 

occurred in the left or right disk. Auditory feedback 

indicated whether the observer’s response was correct. 
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Both the pedestal disks and the fixation point were shown 

throughout the entire trial. The method of constant 

stimuli was used to vary the magnitude of the contrast 

increment across trials. The contrast increments were 

chosen to span each observer’s psychometric function, 

based on a pilot session. For observers A.N.C. and 

A.N.S., they were 2.0%, 2.7%, 3.8%, 5.4%, 7.5%, 11%, 

15%, 22%, and 30% Weber contrast, and for observer 

O.R.W., they were 1.0%, 1.4%, 2.0%, 2.7%, 3.8%, 5.4%, 

7.5%, 11%, 15%, and 21% Weber contrast. These values 

indicate the amount of contrast that was added to the 

pedestal contrast, not the proportion by which the 

pedestal contrast was increased; when we refer to a 5% 

contrast increment, we mean that a 10% contrast pedestal 

was increased to 15% contrast, not that it was increased 

to 10.5% contrast. 

Results and Discussion 
Figure 4 shows each observer’s psychometric 

function, plotting d' versus the contrast increment. The 

signal levels covered a wide performance range, from d' 

near zero to approximately 4.0, which in terms of 

proportion correct covers a range of 0.50 to 0.98. When 

measured in terms of d', performance was an 

approximately linear function of signal contrast, at least 

up to high performance levels (around d' = 3.5, which 

corresponds to 96% percent correct) at which point even 

infrequent keypress errors and lapses of attention can 

cause performance to level off. This linearity is consistent 

with the noisy cross-correlator model (1), and with the 

findings of earlier studies of contrast increment detection 

(Legge, Kersten, & Burgess, 1987). 

We calculated classification images for each observer 

using both the optimal weighted sum (5) that weights 

noise fields according to the observer’s performance at 

each contrast level and the standard method (3) that does 

not take account of the varying contrast level (Figure 5). 

How can we compare the quality of the optimal and 

suboptimal classification images? A classification image is 

a random variable that can be written as kT+NC, i.e., as 

the sum of a signal kT that is proportional to the 

observer’s template T, and a sampling noise NC. If we 

scale the template T to have unit energy, the signal energy 

in the classification image is k2, the noise variance is the 

pixelwise variance of the sampling noise σC
2, and the SNR 

of the classification image is 2 2/ Ck σ . If we knew the 

observer’s template T exactly, we could estimate the SNRs 

of the optimal and suboptimal classification images. First, 

the classification image is a weighted sum of noise fields, 

i i

i

C w= N∑ , so if the weights and noise fields are 

independent, then the pixelwise variance of the 

classification image is 2
C

2
i

i

w 2
Nσ σ∑= . The weights and 

noise fields are not independent (e.g., the weight assigned 

to a noise field depends on the observer’s response to the 

noise field, which in turn depends on how similar the 

noise field is to the observer’s template), but in 

“Appendix A” [Equation (A5)], we show that this 

approximation to 2
Cσ  is very accurate and gives a simple 

and effective way of calculating the variance of the 

classification image. Second, if we knew the observer’s 

template T, we could calculate the signal energy k2 from 

the cross-correlation ( CT N )T k⊗ + , which has an 

expected value of k. Of course, we do not know the 

observer’s template T exactly, so we cannot directly 

compare the SNRs of the optimal and suboptimal 

classification images this way.
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Figure 4. Results of Experiment 1. Psychometric functions plotting performance against contrast increment. The error bars show 

standard errors, and in most cases are smaller than the data points. 



Murray, Bennett, & Sekuler  84 

 

 

Figure 5. Results of Experiment 1. Optimal and suboptimal classification images. Although the optimal and suboptimal classification 

images look quite similar, the optimal images are measurably better estimates of the observers’ templates than the suboptimal images. 

This can be shown by calculating the SNR of the optimal and suboptimal images, as explained in the text. 

However, using an approximation T' to the observer’s 

template with unit amplitude ( 'T =1 ), we can calculate 

the SNR to within a scale factor. We define the relative 

SNR (rSNR) of a stochastic image M as 

2

2

( ' )
[ ] 1.

C

T M
rSNR M

σ
⊗

= −  (7) 

For classification images, this amounts to 

2

2

( ' ( ))
[ ] C

C

C

T kT N
rSNR kT N

σ
⊗ +

+ = −1

2

 (8) 

which a straightforward evaluation shows to have an 

expected value of k T2 2( ' ) / CT σ⊗ . (The –1 term corrects 

for a bias introduced by squaring T .) That is, the 

rSNR is proportional to the SNR, k

' CN⊗
2 / C

2σ , and can be 

used to estimate the SNRs of the optimal and suboptimal 

classification images up to a common scale factor. In 

principle, the choice of the approximation T' is arbitrary, 

but if we make a poor approximation, the cross-

correlation  is small compared to the noise term 

, and our calculation of the rSNR will be noisy. 

The closer our approximation T' is to the true template T, 

the better. 

'T ⊗T
' CT N⊗

To compare the optimal and suboptimal classification 

images, we calculated their rSNRs. We used the ideal 

observer’s template as the approximation T' to the human 

observers’ templates. The ideal template is the signal-right 

stimulus minus the signal-left stimulus, so it consists of a 

positive-contrast dot to the right of fixation and a 

negative-contrast dot to the left. For the numerator of (8), 

we cross-correlated the ideal observer’s template with the 

classification images, and for the denominator, we 

calculated the pixelwise variance from the variance of 

individual noise fields and the weights in the weighted 

sum that produced the classification image.  

For observer A.N.C., the rSNR of the optimal 

classification image was 247 ± 32 and the rSNR of the 

suboptimal classification image was 227 ± 30; for observer 

A.N.S., the rSNRs were 528 ± 46 and 464 ± 43; and for 

observer O.R.W., they were 766 ± 55 and 665 ± 52. The 

error values are standard errors, obtained by calculating 

the standard deviation of the cross-correlation of a unit-

amplitude ideal template with a classification image of 

pixelwise variance 2
Cσ , with 2

Cσ  calculated individually 

for each observer as described earlier. The optimal rSNRs 

were consistently higher than the suboptimal rSNRs, and 

although the differences were not statistically significant 

for individual observers, taken together they did reject the 

null hypothesis that the optimal rSNRs were the same as 

the corresponding suboptimal rSNRs: under the null 

hypothesis, differences this large for all three observers are 

improbable (p < .05). On average, the rSNRs of the 

optimal classification images were 13% higher than the 

rSNRs of the suboptimal images. We conclude that the 

optimal method (5) improves on the standard method (3), 

although the standard method is reasonably efficient 

considering the wide range of performance levels covered 

in the experiment. 

The derivation of the optimal method (5), in 

“Appendix B,” makes it clear that the weight assigned to 
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each subordinate classification image Ci is determined by 

the SNR of the classification image Ci, as predicted by 

model (1): classification images that are predicted to have 

a high SNR are weighted heavily, and classification images 

that are predicted to have a low SNR are weighted lightly. 

Consequently, expression (5) is the optimal weighted sum 

for calculating the pooled classification image C only if 

our predictions of the SNRs of the subordinate 

classification images are correct. To see whether the SNR 

actually varied across performance levels as predicted by 

(4), we calculated the rSNR of the classification images at 

each performance level. Figure 6 plots the rSNRs of the 

classification images Ci at each performance level, divided 

by the number of trials ni collected at each performance 

level, along with the predictions of expression (4) scaled 

to minimize the sum-of-squares error between the 

predictions and the data. The rSNRs roughly followed the 

predicted pattern of declining as a function of d', 

indicating that expression (5) assigns approximately 

correct weights to the subordinate classification images Ci 

when calculating the pooled classification image C. 

Two technical points may help clarify the meaning of 

Figure 6. First, we have scaled the predicted SNRs to fit 

the measured rSNRs, because (4) predicts absolute SNRs, 

whereas the rSNRs estimate the SNRs only up to a 

common scale factor. However, as we show in “Appendix 

E,” this scaling does not pose a problem because we only 

need to predict the SNRs correctly up to a common scale 

factor to compute the optimal weights. Second, in Figure 

6 and similar figures that follow, we plot the rSNR 

divided by the number of trials, i.e., the average rSNR of 

a single trial. We do this because we are mostly interested 

in how accurately the noisy cross-correlator model 

predicts the SNRs of single noise fields in each cell of the 

response matrix, and the number of trials in each cell is 

only of secondary interest. 

Although the predictions shown in Figure 6 are 

roughly correct, there are also consistent deviations: for 

all observers, the rSNR was lower than predicted above a 

performance level of approximately d'=1, and for two of 

the observers (A.N.C. and O.R.W.), the rSNR may have 

been lower than predicted below this level as well. The 

deviations are small compared to the overall accuracy of 

the predictions, and the measurement errors are too large 

for us to say with certainty where the rSNR peaks. 

Nevertheless, this discrepancy calls for further 

investigation, because if it is genuine, then it indicates a 

failure of the noisy cross-correlator model, i.e., a failure of 

linearity. For instance, the keypress errors and lapses of 

attention that may have caused the psychometric 

functions to saturate at high performance levels (Figure 4) 

might have to be included in the model as a form of 

internal noise that grows with the signal level, lowering 

the SNR at high performance levels. Furthermore, this 

discrepancy implies that expression (5) is a slightly 

suboptimal method of calculating classification images, as 

it assigns too large a weight to noise fields collected at 

performance levels far from d' = 1. Most of the deviations 

are small, but a revised model that predicted the SNRs 

correctly would be useful because it would allow us to 

derive the truly optimal method of calculating 

classification images when combining trials across 

performance levels. Another possibility that we will not 

investigate here is empirical estimation of the rSNRs of 

trials at different performance levels, as in Figure 6, and 

the use of these estimates to weight the classification  
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Figure 6. Results of Experiment 1. Mean rSNRs of individual noise fields as a function of performance level. Error bars show standard 

errors.
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images at different performance levels optimally when 

combining them into a single classification image. In any 

case, one practical consequence of this finding is that 

classification images should be collected at a performance 

level of approximately d' = 1. Above this point, the SNR 

drops even more rapidly than predicted, and the SNR 

may drop below this point as well. Furthermore, there are 

other reasons for not collecting classification images at 

very low performance levels, such as the changes in 

observers’ strategies that can occur due to spatial 

uncertainty (Ahumada & Beard, 1999; Pelli, 1985) or the 

frustration that observers experience when a task is too 

difficult. 

We should point out that because the predicted 

SNRs and observed rSNRs are scaled to minimize the 

sum-of-squares error in Figure 6, we cannot say for certain 

at what performance levels the model fails. For instance, 

we could say that given the rSNR at , the rSNR at 

 is lower than expected, or we could equally well say 

that given the rSNR at d , the rSNR at  is 

higher than expected. This ambiguity does not matter for 

our test of whether expression (

' 1d ≈
' 4d ≈

' 4≈ ' 1d ≈

5) is the optimal method 

of calculating classification images, because as we 

mentioned earlier, we need only predict the SNRs 

correctly up to a common scale factor. This ambiguity 

does matter, though, when we attempt to explain why the 

model’s predictions do not match the observed rSNRs. 

Experiment 2: Response 
Consistency 

According to the noisy cross-correlator model (1), an 

observer’s performance is limited both by the efficiency of 

the template T, and by the power of the internal noise Z. 

One way of measuring the power of the internal noise 

that limits an observer’s performance is to present each 

stimulus twice, on separate trials, and to measure the 

proportion of repeated trials on which the observer gives 

the same response twice (Burgess & Colborne, 1988; 

Gold et al., 1999; Green, 1964). We emphasize that in 

this two-pass method, the repeated stimulus, including 

the external noise, is identical pixel-by-pixel on both 

presentations. The two presentations are separated by 

many trials, so the observer does not know when the 

stimulus is repeated, and treats the two trials as showing 

independent stimuli. If the observer’s responses are based 

on a noiseless decision rule, then the observer will give 

the same response to a stimulus every time it is presented, 

whereas if the observer’s performance is largely limited by 

internal noise, then the observer’s responses to repeated 

presentations of the same stimulus will be less consistent. 

Burgess and Colborne (1988) showed how to use the 

consistency of an observer’s responses in a two-pass 

experiment to calculate the power of the internal noise. 
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Figure 7. Response matrix of a two-pass experiment. 

Figure 7 shows the response matrix of a two-pass 

experiment with two signals (A and B) and four possible 

pairs of responses on repeated presentations of a single 

stimulus (AA, AB, BA, and BB). In “Appendix C,” we 

show that noise fields from trials in different cells of this 

matrix have different SNRs, and we show that for an 

unbiased observer, the optimal weighted sum for 

calculating a classification image is 

( )
( )( )
( )( )

2 2
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'
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 =
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 (9) 

To calculate the weighting parameter w, we need to know 

the observer’s performance level (d'), which is easily 

determined, and the internal-to-external noise ratio 
2 2/Z Nσ σ , which can be calculated from the consistency of 

the observer’s responses (Burgess & Colborne, 1988). 

In “Appendix C," we also show that for an unbiased 

observer, the SNR of a classification image calculated as 

in (9) is 

( )
2 2 2 2

2 2

4 ( '/ 2) 4( 0.5) ( 1)
[ ] N

CC CI IIN Z

ng d w w w
SNR C

p p p

σ

σ σ

 − −
= + +  +  

2

(10) 

Here pCC is the probability of the observer giving two 

correct responses on repeated trials, pCI is the probability 

of one correct and one incorrect response, and pII is the 

probability of two incorrect responses. For instance, when 

stimulus A is presented, pCC is the probability of two A 

responses, pCI is the probability of one A response and 

one B response, in either order, and pII is the probability 

of two B responses. 
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0

A two-pass experiment gives information about an 

observer that a one-pass experiment does not, so it is 

natural to ask whether we can generate classification 

images more efficiently with two-pass experiments than 

with one-pass experiments. Expressions (4) and (10) for 

the SNRs obtained in one- and two-pass experiments, 

respectively, show that this is not possible. Figure 8 plots 

the ratio of the SNR (10) obtained in a two-pass 

experiment to the SNR (4) obtained in a one-pass 

experiment with the same number of trials. When 

, it follows that p2 2/Z Nσ σ = CC=pC, pCI=0, pII=pI, and w = 

0.5. With these values, the SNR (10) of the two-pass 

classification image is half the SNR (4) of the one-pass 

classification image. When , it follows that 

p

2 2/Z Nσ σ →∞

CC=pC
2, pCI=pCpI, pII=pI

2, and w = pC. With these values, the 

two-pass SNR (10) equals the one-pass SNR (4). That is, 

the quality of a classification image obtained in a two-pass 

experiment can approach but never exceed the quality of 

a classification image obtained in the corresponding one-

pass experiment. 
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Figure 8. Ratio of the SNR of a two-pass classification image 

to the SNR of a one-pass classification image. 

Does the optimal weighted sum (9) improve 

appreciably on the results we would obtain by using the 

standard method (3) in a two-pass experiment, incorrectly 

treating repeated trials as if they showed independent 

noise fields? With the standard method, each trial in the 

AAA cell of the two-pass response matrix would be 

counted twice in the AA cell of the one-pass matrix, each 

trial in the AAB cell of the two-pass matrix would be 

counted once in the AA cell and once in the AB cell of 

the one-pass matrix, and so on. Using this regrouping of 

trials and expressions (C1) through (C4) in “Appendix C” 

for the SNR of the noise fields in each cell of the two-pass 

response matrix, it is possible to show that over a wide 

range of values of pC and 2 2/Z Nσ σ
2

 (e.g., as pC ranges from 

0.50 to 0.95 and 2 /Z Nσ σ  ranges from 0 to 3), the SNR 

obtained using the standard method (3) is only a few 

percent lower than the SNR obtained using the optimal 

method (9), so the optimal method does not improve 

appreciably on the standard method. In the following 

experiment, we show that the standard method (3) does 

work almost as well as the optimal method (9) in a 

contrast increment detection task. 

Methods 
One author (R.F.M.) and two observers from 

Experiment 1 (A.N.C. and O.R.W.) participated. The 

stimuli and procedure were the same as in Experiment 1, 

except in two respects. First, the magnitude of the 

contrast increment was fixed at the observer’s 70% 

threshold as calculated by fitting a normal cumulative 

distribution function to the psychometric function 

obtained in a pilot session (observer R.F.M.) or in 

Experiment 1 (observers A.N.C. and O.R.W.). For 

observer A.N.C., this threshold was 7%, for O.R.W., it 

was 5%, and for R.F.M., it was 3.5%. Second, each 

session was divided into ten 200-trial blocks, and the 

second 100 trials of each block were exact repetitions of 

the first 100 trials of the block. 

Results and Discussion 

Observer A.N.C. gave 74% ± 1% correct responses 

and gave the same response on 68% ± 1% of repeated 

trials, corresponding to an internal-to-external noise ratio 

of 2.47 ± 0.20. Observer O.R.W. gave 79% ± 1% correct 

responses, and gave the same response on 76% ± 1% of 

repeated trials, corresponding to an internal-to-external 

noise ratio of 1.13 ± 0.05. Observer R.F.M. gave 69% ± 

1% correct responses and gave the same response on 69% 

± 1% of repeated trials, corresponding to an internal-to-

external noise ratio of 1.28 ± 0.05. We calculated these 

internal-to-external noise ratios using the methods 

developed by Burgess and Colborne (1988). 

We calculated a classification image for each observer 

using both the optimal weighted sum (9) that takes 

account of the consistency of an observer’s responses 

across repeated trials and the standard method (3), 

treating repeated trials as if they showed statistically 

independent noise fields. Calculating rSNRs as in 

Experiment 1, we found that for observer A.N.C., the 

rSNR of the optimal classification image was 749 ± 55, 

and the rSNR of the suboptimal image was 759 ± 55; for  
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Figure 9. Results of Experiment 2. rSNR of individual noise fields in each cell of the two-pass response matrix. The red data points 

show the rSNR of noise fields on trials where the contrast increment was on the left, and the green data points show the rSNR on trials 

where the contrast increment was on the right. Response LL denotes two left responses, and the corresponding data points show the 

SNR in response matrix cells LLL and RLL. Response LR denotes one left and one right response, and these data points show the 

SNR in response matrix cells LLR, LRL, RLR, and RRL. Response RR denotes two right responses, and indicates the SNR in response 

matrix cells LRR and LRR. The error bars show standard errors, and are often smaller than the data points.

observer O.R.W., the rSNRs were 1132 ± 67 and 1146 ± 
68; and for observer R.F.M., they were 1164 ± 68 and 
1162 ± 68. The rSNRs of the optimal and suboptimal 
classification images were practically identical, and we 
cannot reject the null hypothesis that the optimal and 
suboptimal rSNRs were the same. As predicted, the 
suboptimal method of calculating classification images 
was as good as the optimal method, to within 
experimental error. 

As explained in Experiment 1, the optimal methods 

that we have derived rely on theoretical predictions of the 

SNRs of the noise fields in each cell of a response matrix. 

To see whether the SNR varied from cell to cell of the 

two-pass response matrix in the manner expected, we 

calculated the rSNR per trial of the noise fields in each 

cell, and compared them to the predicted SNRs (see 

Equations (C1) through (C4) in “Appendix C”), scaled to 

fit the rSNRs as in Experiment 1. The predictions were 

excellent (Figure 9), supporting the explanation that 

model (1) gives of an observer’s response consistency in 

terms of internal and external noise, and demonstrating 

that (9) is the optimal weighted sum for calculating 

classification images in a two-pass experiment. 

Finally, returning briefly to an earlier section of this 

work (Identification at a Single Contrast Level), we can 

use this experiment’s data to test whether expression (3) is 

actually the optimal weighted sum for calculating 

classification images in a two-alternative identification 

experiment. If we discard the repeated trials from this 

experiment (i.e., the second 100 trials of each 200-trial 

block), we are left with a simple two-alternative 

identification experiment. Figure 10 shows the rSNR of 

the noise fields in each of the four cells of the two-

alternative response matrix, along with the predicted SNR 

[see expression (A6) in Appendix A]. The predictions are 

excellent, indicating that method (3) is the optimal 

weighted sum. 
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Figure 10. Results of Experiment 2. rSNR of individual noise fields in each cell of the one-pass response matrix. 
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Experiment 3: Rating Scales 

When observers make perceptual judgements, they 

can rate the confidence of their responses. In a typical 

rating scale experiment, the observer uses an r point 

rating scale to indicate his confidence that stimulus A or 

B was presented. We will take response 1 to mean that 

the observer is confident that the stimulus was B, and 

response r to mean that he is confident that it was A. 

Figure 11 shows the response matrix for an experiment 

with a six-point rating scale. 
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Figure 11. Response matrix of a six-point rating scale 

experiment. 

In signal detection theory, one typically assumes that 

the observer makes responses by setting r+1 criteria ai, and 

giving response i if the decision variable s falls between ai 

and ai+1 (Egan, Schulman, & Greenberg, 1959). (This 

formulation requires that  and .) In 

“

1a → −∞ 1ra + → +∞
Appendix D” we show that noise fields from different 

cells of the response matrix of a rating scale experiment 

have different SNRs, and we show that the optimal 

weighted sum for calculating a classification image is 

( ) ( )1

1 1

( ) ( ) ( ') ( ')

( ) ( ) '
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Here pAi- is the probability that the observer gives a rating 

less than i when stimulus A is presented, and pBi- is the 

probability that the observer gives a rating less than i 

when stimulus B is presented. The function G-1 is the 

inverse of the normal cumulative distribution function 

(i.e., it is the z-transform function used in signal detection 

theory). Expression (11) states that the optimal weighted 

sum adds the average noise fields in each cell of the 

response matrix, with the average of each cell weighted by 

a quantity that is a function of the normal deviates zi and 

zi+1 of the criteria ai and ai+1 that bound the decision 

variable in that cell. 

In “Appendix D,” we also show that the SNR of the 

classification image calculated as in (11) is 
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How much do we gain by recording rating responses 

instead of binary identification responses? If the observer 

uses a six-point rating scale and places his criteria at -∞, -

0.39d', 0.10d', 0.50d', 0.90d', 1.39d', and +∞ so that he 

gives each response equally often, expression (12) predicts 

that the SNR will be 1.67 times the SNR obtained in the 

corresponding binary-response identification experiment. 

Evidently, the advantage of using a rating scale can be 

substantial. In the following experiment, we show that 

recording rating scale responses can improve the quality 

of classification images obtained in a contrast increment 

detection task. 

Methods 
The same three observers participated as in 

Experiment 1. The stimuli and procedure were also the 

same as in Experiment 1, except in two respects. First, the 

contrast increment was fixed at the observer’s 70% 

threshold as determined in Experiment 1 (observer 

A.N.C., 7%; observers A.N.S. and O.R.W., 5%). Second, 

observers gave keypress responses on a six-point rating 

scale, giving response 1 to indicate confidently that the 

contrast increment occurred in the left disk, and response 

6 to indicate confidently that it occurred in the right disk. 

We instructed observers to adjust their criteria so that 

they gave each response equally often, and after every 200 

trials, they were given feedback on the computer monitor, 

indicating how many times they had given each response. 

Results and Discussion 
Figure 12 shows each observer’s receiver operating 

characteristic (ROC) curve on z-scaled axes. Clearly, the 

observers succeeded in maintaining several widely spaced 

criteria, and we found that the observers gave each 

response approximately equally often, as instructed. The 

ROC curves were approximately linear, indicating that 

the decision variable had a roughly Gaussian distribution, 

and the slope of the best-fitting line was approximately 1, 

indicating that the decision variable had the same 

variance on signal-left and signal-right trials (Green & 

Swets, 1974). However, the curves were slightly but 

consistently bowed, indicating that either the noise 

limiting the observers’ performance was non-Gaussian or 

the observers were less consistent in their use of the more 

extreme responses. 
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Figure 12. Results of Experiment 3. Receiver operating characteristic (ROC) curves. These plots show each observer’s z-transformed 

hit rates z(Hi) plotted against the corresponding z-transformed false alarm rates z(Fi) for each rating response. Each hit rate Hi is the 

probability of the observer giving a rating of i or lower (i.e., responding left with at least a certain amount of confidence) on a trial where 

the left disk had a contrast increment, and each false alarm rate Fi is the probability of the observer responding i or lower on a trial 

where the right disk had a contrast increment. We have omitted the uninformative point (z(H6),z(F6)) from the graphs: observers used 

six rating responses, so all ratings are six or less, and H6=F6=1 in every case. The best-fitting lines of the form z(H)=d’+mz(F) are 

shown in solid black, and the chance-performance lines are shown in dashed grey. The error bars are smaller than the data points. 

We calculated classification images using the optimal 

weighted sum (11) that takes account of the observers’ 

confidence ratings, and using the standard binary-

response method (3), with responses 1, 2, and 3 grouped 

together as a left response, and responses 4, 5, and 6 

grouped together as a right response. We calculated the 

rSNRs of the optimal and suboptimal classification 

images using the same method as in Experiments 1 and 2. 

For observer A.N.C., the rSNR of the optimal 

classification image was 682 ± 52, and the rSNR of the 

suboptimal classification image was 870 ± 59; for observer 

A.N.S., the rSNRs were 1026 ± 64 and 1122 ± 67; and 

for observer O.R.W., they were 1460 ± 76 and 1580 ± 80. 

Surprisingly, the rSNRs of the suboptimal classification 

images were significantly higher than the rSNRs of the 

optimal classification images (p < .01), and on average 

were 15% higher. Equation (11) gives the optimal method 

of calculating classification images for an observer who 

performs the rating scale task by comparing a Gaussian-

distributed decision variable of form (1) to a number of 

fixed criteria, as in the standard signal detection account 

that we outlined above. Clearly, our observers did not 

follow this strategy. 

Method (11) of calculating classification images 

depends on the noisy cross-correlator model’s predictions 

of the SNRs of noise fields in each cell of the response 

matrix. The failure of our allegedly optimal method in 

this rating scale experiment indicates that the model’s 

predictions were incorrect. To see how observers departed 

from the model, we calculated the rSNR of noise fields in 

each cell of the response matrix and compared these to 

the predicted SNRs [see Equations (D9) and (D10) in 

“Appendix D”] (Figure 13). As in Experiments 1 and 2, 

we scaled the predicted SNRs to minimize the sum-of-

squares error in their fit to the rSNRs. A consistent 

pattern in these graphs is that the rSNR plots are not as 

sharply concave upwards as the predicted plots, i.e., the 

rSNRs corresponding to conservative responses (2, 3, 4, 

and 5) are consistently higher than the predictions, and 

the rSNRs corresponding to extreme responses (1 and 6) 

tend to be lower than the predictions. That is, the model 

predicts that extreme responses should be much more 

informative than conservative responses, but Figure 13 

shows that they were only slightly more informative. 

Method (11) weights noise fields in each cell according to 

their predicted SNR and hence assigns a large weight to 

noise fields that produced extreme responses, which turn 

out to be much less informative than expected. 

We instructed observers to use each rating response 

equally often because expression (12) for the SNR 

indicated that this strategy would produce a classification 

image with an SNR 67% higher than a classification 

image from a binary identification experiment, whereas at 

the other extreme, if an observer concentrated his 

responses in the most conservative response categories, 

the rating scale experiment would reduce to a binary 

identification experiment. However, our results 
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Figure 13. Results of Experiment 3. rSNRs of noise fields in each cell of the rating scale response matrix. The error bars show standard 

errors. 

suggest that observers had difficulty following our 

instructions. In particular, the bowed ROC curves in 

Figure 12 suggest that observers were unable to use the 

extreme criteria consistently: if an observer varies his 

criterion from trial to trial, this variability appears as a 

form of internal noise that reduces sensitivity 

(Wickelgren, 1968), and the bowed ROC curves show 

that observers did perform more poorly when they gave 

extreme responses. Furthermore, expression (12) indicates 

that the quality of a classification image declines as the 

internal-to-external noise ratio grows, and Figure 13 

shows that the rSNRs of noise fields on extreme-response 

trials were lower than expected. 

To see whether the instructions to use each rating 

response equally often caused this marked departure from 

the model, we re-ran the experiment with three new 

observers. This time we gave no instructions about how 

often each rating response should be used, and we did 

not give feedback about how often each rating had been 

used in each block of 200 trials. All three observers were 

naïve, and none had participated in any of the preceding 

experiments. The contrast increment for each observer 

was set to the observer’s 70% threshold, based on a pilot 

session (observers D.I.H. and T.F.S., 6% Weber contrast; 

observer L.C.S., 5% Weber contrast). 

Figure 14 shows the new observers’ ROC curves. The 

curves are much less bowed than the previous ones, 

indicating that observers used the extreme criteria more 

consistently when they were free to set the criteria where 

they wished. We found large individual differences in 

how often the observers used each response, and no 

observer used each response equally often. All observers 

used the conservative responses 3 and 4 most often. 

Observer D.I.H. used the extreme responses 1 and 6 

second most often, and the middle responses 2 and 5 

least often. Observer L.C.S. used the middle responses 2 

and 5 second most often, and rarely used the extreme 

responses 1 and 6, which is reflected in the wide 

placement of the endpoints of this observer’s ROC curve. 

(Note that this observer’s plot axes are scaled differently 

from the other two observers’.) Observer T.F.S. used 
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Figure 14. Results of Experiment 3. Receiver operating characteristic (ROC) curves for a second set of observers. See caption of 

Figure 12 for details. 
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Figure 15. Results of Experiment 3. rSNRs of individual noise fields in each cell of the rating scale response matrix, for a second set of 

observers. Data points are not shown for observer L.C.S.’s responses 1 and 6 or for observer T.F.S.’s responses 2 and 4, because 

these observers used these responses so rarely that we cannot estimate the rSNR with precision. 

the extreme responses second most often, and almost 

never used the middle responses 2 and 5, so each 

endpoint of this observer’s ROC curve is actually two 

points superimposed. 

For observer D.I.H., the rSNR of the optimal 

classification image was 458 ± 43, and the rSNR of the 

suboptimal classification image was 337 ± 37; for observer 

L.C.S., the rSNRs were 1242 ± 71 and 1013 ± 64; and for 

observer T.F.S., they were 774 ± 56 and 739 ± 54. The 

rSNRs of the optimal classification images were 

significantly higher than the rSNRs of the suboptimal 

classification images (p < .001), and on average were 21% 

higher. Figure 15 shows the average rSNRs of noise fields 

in each cell of the rating scale response matrix. The 

agreement between the predicted SNRs and actual rSNRs 

is much better for these observers than for the first three, 

which explains why the optimal method (11) gave better 

results for this set of observers. 

We conclude that using a rating scale in a response 

classification experiment can improve the quality of 

classification images. However, we found that observers 

were unable to reliably maintain the criteria specified in 

our instructions, which we chose to give an especially 

large improvement in SNR. When observers chose their 

own criteria, the average improvement in rSNR was 21%. 

A final caveat is that observers’ reaction times are 

typically longer when giving rating responses than when 

giving binary responses, and this must be traded off 

against the increase in SNR (Burgess, 1995). In 

Experiments 1 and 2, which recorded binary responses, 

the mean reaction time across all observers was 270 ms, 

and in Experiment 3, which recorded six-point rating 

responses, it was 460 ms. Taking into account the 500-ms 

fixation interval and the 200-ms stimulus interval, this 

means that rating scale trials took about 20% longer than 

binary response trials. The SNR of a classification image 

is proportional to the number of trials, so given a fixed 

amount of time for an experiment, the 21% increase in 

SNR gained by recording rating scale responses is almost 

exactly undone by the reduction in the number of trials. 

Perhaps by using a four-point rating scale instead of a six-

point scale, hence simplifying the observer’s task, and by 

imposing a response deadline, we could combine the 

advantages of the rating scale and binary response 

methods. 

General Discussion 

The Noisy Cross-Correlator Model 
The noisy cross-correlator model (1) describes 

performance in many visual tasks reasonably well. It 

accounts for the linear relationship between 

discrimination threshold energy and external noise power 

(Pelli, 1990), and the fact that performance measured in 

d' is often a linear function of signal contrast (e.g., Legge 

et al., 1987). It leads to the concepts of sampling 

efficiency and internal-to-external noise ratio, which are 

useful ways of describing many factors that limit 

observers’ performances (Burgess & Colborne, 1988; 

Burgess, Wagner, Jennings, & Barlow, 1981). 

Nevertheless, it does not account for all aspects of 

observers’ performances, and the model has been 

elaborated in various ways by many authors. Most of these 

elaborations are unimportant for our purposes, because 

we require only that the model described by (1) is locally 

valid, in the sense that it describes observers’ performance 

in a single discrimination task. In the following 

paragraphs, we consider a few examples of how models 

that differ from the noisy cross-correlator described by  
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Equation (1) may be locally equivalent to it. 

Linear models differ in where they place internal 

noise sources in the calculation that leads to the decision 

variable. Some variants of the noisy cross-correlator model 

place a noise before the cross-correlation (e.g., Pelli, 

1990), and some place one after (e.g., Lu & Dosher, 

1998). In a single discrimination task, these differences 

are mostly irrelevant, and we can model the effects of all 

internal noise sources as a single noise Z added to the 

stimulus at the input (Ahumada, 1987; Ahumada & 

Watson, 1985). The internal noise Z affects the observer’s 

decisions only via the Z T⊗  term that is added to the 

decision variable, so any late noise ZL added after the 

cross-correlation is equivalent to an early noise Z added 

before the cross-correlation that satisfies 

var[ ] var[ ]LZ T Z⊗ = . Hence the difference between early- 

and late-noise models is not important for our purposes. 

Similar comments apply to nonwhite internal noise 

(e.g., Burgess et al., 1981). Any nonwhite noise term ZN 

that affects the observer’s decisions only after it has 

passed through the template is equivalent to a white noise 

Z that produces a term of the same variance after the 

template, i.e., ZN and Z are equivalent so long as 

var[ ] var[ ]NZ T Z⊗ = ⊗T . 

Many models include a proportional noise 

(sometimes called multiplicative noise) whose power 

grows with the stimulus energy (Burgess & Colborne, 

1988; Lillywhite, 1981; Lu & Dosher, 1998). If a signal is 

shown in strong external noise, much of the observer’s 

proportional noise will be induced by the external noise, 

and small differences in signal power between signal-A 

and signal-B trials in a threshold discrimination task will 

produce little difference in the observer’s proportional 

noise. For this reason, we can consider proportional noise 

as just another form of internal noise that can be 

incorporated in the early noise (Z). This said, we should 

also point out that it is easy to modify the methods we 

have presented to handle tasks where the internal noise 

power is very different on signal-A and signal-B trials. The 

derivation in “Appendix A” considers signal-A and signal-

B trials separately, and if we need to obtain a more 

general expression for calculating classification images, we 

can simply drop the assumption that the internal noise 

power is the same on the two types of trials. 

Models with transduction nonlinearities and 

stimulus-dependent noise are often equivalent to linear 

models with stimulus-independent noise, if the range of 

relevant stimuli is small compared to the range over 

which the transduction nonlinearities and stimulus-

dependent noise amplitudes change appreciably 

(Ahumada, 1987). To take just one example, in Foley and 

Legge’s (1981) model of grating detection and 

discrimination, observers use a decision variable with 

mean 0( / ) fc c  and fixed variance, where c is the signal 

grating contrast and c0 is an arbitrary reference contrast. 

This is clearly a nonlinear model, but in a task where the 

observer discriminates between two gratings of fixed 

contrast cA and cB, the nonlinearity can be accommodated 

within the noisy cross-correlator model. Let I be a unit-

contrast grating, so that cI is a grating of contrast c. We 

can incorporate Foley and Legge’s (1981) power-law 

transduction nonlinearity by writing the decision variable 

in response to a stimulus cI+N as 

0

( )
.

f

L

cI N T
s Z

c I T

 + ⊗
=  

⊗ 
+  (13) 

With no external noise, this decision variable has mean 

0( / ) fc c

(cI N

 and fixed variance, as in Foley and Legge’s 

(1981) model. If the external noise N causes the term 

) T+ ⊗  to vary over only a small range, as in an 

experiment where observers discriminate between gratings 

of similar contrasts cA and cB, we can use a Taylor series 

approximation that is linear in the external noise term N: 

1

0 0 0

f f

L

cI T cI T N T
s f Z

c I T c I T c I T

−
     ⊗ ⊗ ⊗

≈ +     
⊗ ⊗ ⊗     

+  (14) 

  ( )
1

0

0

/
f

f
.Lf

fc
c c N T Z

c I T

−
= + ⊗ +

⊗
 (15) 

If we rescale the decision variable, multiplying by 

0
f
c I T⊗ , we can rewrite it as 

1
0( )
ff f .Ls c I T fc N T c I T Z−= ⊗ + ⊗ + ⊗  (16) 

As we pointed out when we discussed early and late noise, 

we can choose Z so that var[ ] var[ ]LZ T Z⊗ = , and rewrite 

the decision variable as 

( )1
0( )
ff f .s c I fc N c I T Z T−= + + ⊗ ⊗  (17) 

Hence over a small contrast range, the observer behaves 

like a noisy cross-correlator, except that the internal-to-

external noise ratio depends on the signal contrast c. 

When an observer discriminates between gratings of two 

similar contrasts cA and cB, the internal noise power will 

be approximately the same on signal-A and signal-B trials, 

and the methods we have derived will be approximately 

optimal. When the grating contrast ratio cA/cB is very 

different from 1, as when cA or cB is zero in a detection 

experiment, the internal-to-external noise ratio may be 
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very different on the two types of trials. As we pointed out 

in our discussion of proportional noise, the methods we 

have derived can be easily modified to handle this case as 

well. 

One type of nonlinearity that does pose a problem for 

the noisy cross-correlator model is stimulus uncertainty. 

Even when observers are told the exact shape and 

location of the signals that they are to discriminate 

between, they sometimes behave as if they are uncertain 

as to exactly where the stimulus will appear or what shape 

it will take (e.g., Manjeshwar & Wilson, 2001; Pelli, 

1985). We can model spatial uncertainty by assuming that 

the observer has many identical templates that he applies 

over a range of spatial locations in the stimulus, but the 

effects of this operation are complex, and it is not obvious 

precisely how a classification image is related to the 

template of such an observer, or how the SNR of the 

classification image is related to quantities such as the 

observer’s performance level or internal-to-external noise 

ratio. If an observer is very uncertain about some stimulus 

properties, such as the phase of a grating signal, a 

response classification experiment may produce no 

classification image at all (Ahumada & Beard, 1999). 

Early pointwise nonlinearities also pose a problem. 

These nonlinearities transform the contrast of each pixel 

of the stimulus by a static function, converting contrast c 

to f(c). Chubb and Nam (2000) reported an extreme 

example of such a nonlinearity: they found that observers 

used a half- or full-wave rectifying nonlinearity to judge 

the contrast variance of a texture patch. Clearly, an 

observer who used full-wave rectification would not 

produce a classification image because the contrast of 

each pixel of the stimulus would be uncorrelated with the 

observer’s response. The precise effect of less extreme 

nonlinearities, such as a logarithmic transform, is unclear. 

On the other hand, Nam and Chubb (2000) found that 

early pointwise nonlinearities were negligible when 

observers judged the luminance of a texture patch, and 

we have found similar results in complex shape 

discrimination tasks (Murray, Bennett, & Sekuler, 2001), 

suggesting that such nonlinearities might be unimportant 

in first-order tasks. 

A final point is that the methods we have derived rely 
only on the noisy cross-correlator model to predict the 
SNRs of individual noise fields so that we may know how 
to combine the noise fields optimally in a weighted sum. 
As long as the model succeeds in this respect, any other 
failures are irrelevant for the purpose of calculating 
classification images efficiently. As we have shown by 
comparing measured rSNRs to predicted SNRs, the 
model’s predictions are approximately correct in several 
experimental paradigms. We have shown this only for the 

contrast increment detection task, but using the method 
of measuring rSNRs that we have outlined, it is 
straightforward to validate the model in any other task. 

Summary 

For several experimental designs, we have derived the 

optimal weighted sum of noise fields for calculating 

classification images. In a series of contrast increment 

detection experiments, we confirmed our theoretical 

predictions that the standard formula (3) is the optimal 

weighted sum in a two-alternative identification 

experiment, that expression (5) improves on the standard 

formula in an experiment where the signal is presented at 

several different contrast levels, and that expression (11) 

improves on the standard formula in a rating scale 

experiment. Our experiments also confirmed that the 

optimal weighted sum (9) does not improve appreciably 

on the standard formula in a two-pass experiment. 

For the same set of experimental designs, we derived 

expressions for the SNRs of the classification images 

calculated using the optimal weighted sum of noise fields. 

These expressions show how to choose experimental 

parameters to maximize the SNR of a classification image. 

First, of course, one should collect as many trials as 

possible. Second, the external noise should have much 

more power than the observer’s fixed equivalent input 

noise, and we suggested that this condition is usually met 

if the external noise power is 10-5 deg2, which at a typical 

pixel width of 0.02 degrees corresponds to an RMS noise 

contrast of 16%. Third, we found that the SNR of our 

classification images peaked at a performance level of 

approximately d' = 1. Finally, we found that classification 

images had a higher SNR when we recorded responses on 

a six-point rating scale than when we recorded binary 

identification responses. 

Appendix A: Single-Contrast 
level 

In this appendix, we derive the optimal weighted sum 

of noise fields for calculating classification images in a 

two-alternative identification experiment having only one 

signal contrast level, and we derive the SNR of the 

resulting classification image. 

A vector space description of the 
noisy cross-correlator 

We assume that the observer identifies a noisy 

stimulus I+N as one of two alternatives, A or B, by 

corrupting it with an additive internal noise Z, cross-
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correlating the corrupted stimulus with a template T to 

obtain a decision variable s, and responding A if and only 

if s exceeds a criterion a: 

( )s I N Z T= + + ⊗  (A1) 

1 if 
sgn( ) .

1 if 

s a
R s a

s a

+ ≥= − = 
− <

 (A2) 

We will call *I I N Z= + +  the corrupted stimulus. 

We can consider the signal I, the noises N and Z, and 

the template T as vectors in an m-dimensional vector 

space, where m is the number of pixels in the stimulus. 

The cross-correlation ( )I N Z T+ + ⊗

)

 then becomes the 

vector dot product (I N Z T+ + • . An observer who 

follows strategy (A2) divides the m-space in two with a 

hyperplane ΠT perpendicular to T, and responds ‘A’ if 

and only if the corrupted stimulus I* falls on one side of 

ΠT. Without loss of generality, we can assume that 

1T = . 

The SNR of each cell of the response 
matrix 

Consider the trials on which the signal is A. We will 

adopt an orthonormal coordinate frame F' with the origin 

at A, with the first coordinate vector 1x  parallel to T and 

with the remaining coordinate vectors 2 ,..., mx x

*

 parallel to 

ΠT. We can represent the transformation from our 

original coordinate frame F to the new frame F' by 

, where R is a rotation matrix 

. In F', a signal-A stimulus 

' (F Fv R v A= −

1[    ] 'mR x x=

)

I A N Z= + +  

is represented as *' ( )I R A N Z= + +

RN '

A− RN R= + Z . We 

will define  and 'N = Z RZ= , and write 

'* ' 'I N Z= + . The coordinates of N are independent, 

equal-variance Gaussian random variables, so the 

coordinates of N' are also independent, equal-variance 

Gaussian random variables. Similarly, the coordinates of 

Z and Z' are independent, equal-variance Gaussian 

random variables. 

We have defined the decision variable as 

( )s I N Z T= + + •

(

, which on signal-A trials amounts to 

)s A N Z T= + + •

' ( )

, and we have assumed that the 

observer’s responses depend on whether s ≥ a. 

Equivalently, we can define the decision variable as 

s N Z T= + •

'a a= −

, and assume that the observer uses a 

criterion . The vector dot product is 

invariant under rotation, so we can rewrite this new 

decision variable as 

A T•

' ( ) ( ' ')s R N Z RT N Z RT= + • = + • . 

We have defined the rotation R such that 

' (1,0,0,...,0)T RT= = , so the decision variable s' takes the 

particularly simple form 1 1' ' ' * 1's N Z I= + = . That is, the 

observer’s responses depend only on whether the first 

coordinate 1*'I  of the 0 stimulus exceeds a criterion a', 

and the observer's responses are statistically independent 

of coordinates 2 through m of the noises N' and Z'. 

[ ' | ]E N AA

1 1 1[ ' | ' ' ']E N N Z a+ ≥

1

2 2

( ( ))
.AA

AA
N Z

g G p

pσ σ

−
= ⋅1[ ' | ]E N AA

2
Zσ

[ ' |E N AA

[ ' | ]E N AA

[ ' | ]E N AB

1 1 1[ ' | ' ' ']E N N Z a+ <

To find the SNR of a single noise field in each cell of 

the response matrix, we need to know the expected value 

and variance of each class of noise field, which we will 

now derive. 

What is the expected value of the external noise field 

N' on trials where the signal is A and the observer 

responds ‘A’? We will denote this expected value by 

. The observer’s response is independent of 

components N'2 through N'm, so the mean of these 

components, conditional on the observer having 

responded A, is equal to their unconditional mean, which 

is zero. The conditional mean of the first component is 

. In “Appendix F,” we derive an 

expression (F1) for conditional means of this form, and 

this expression shows that the expected value of N'1 is 

2
Nσ

+
 (A3) 

Here pAA is the probability that the observer gives 

response A on a trial where stimulus A is presented, 2
Nσ  

is the variance of each pixel of the external noise field N', 

and  is the variance of each pixel of the internal noise 

field Z'. The function g is the standard normal probability 

density function, and G-1 is the inverse of the standard 

normal cumulative distribution function. N'1 is the only 

nonzero component of the expected value of the entire 

noise field , so expression (] A3) also gives the 

magnitude of this expected value. Furthermore, because 

N'1 is the only nonzero component, the expected value 

 is proportional to the coordinate vector 1x , 

and hence proportional the observer’s template T; this is 

why the response classification method gives an estimate 

of the observer's template. 

What is the mean value of the external noise field N' 

on trials where the signal is A and the observer responds 

B, i.e., ? Again, the conditional mean of 

components N'2 through N'm is zero, and now the 

conditional mean of the first component is 

. This mean can be rewritten as 
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1 1 1[ ' | ' 'E N N Z a− − − − > − '] , and we can use (F1) again to 

evaluate this expression: 

2

1[ ' | ] NE N AB
σ

σ σ
= −

+

2
Nσ

σ

2
Nσ

2 2
'| '| .2

N AA N AB Nσ σ σ≈ ≈

2
Nσ

2(( 1) 0.77) Nm σ− + 2
Nmσ

1

2 2

( ( ))
.AB

AB
N Z

g G p

p

−
⋅  (A4) 

What is the variance of each pixel of the external 

noise field N on trials of type AA and AB? The observer’s 

response is independent of components N'2 through N'm 

of the transformed noise field N', so the conditional 

variance of these components is equal to their 

unconditional variance . In “Appendix F,” we give 

expressions (F1, F2) from which the conditional variance 

of N'1 can be computed, and these expressions show that 

under typical experimental conditions (e.g., 75% correct 

and an internal-to-external noise ratio of 1.0) the variance 

of N'1 is slightly less than 2
N . N is a rotation of N', so 

each pixel of N can be expressed as a weighted sum of the 

components of N', i.e., . When the stimulus 

contains many pixels (e.g., 10,000 pixels in a 100 × 100 

stimulus) the variance of the single component N'

1 'N−N R=

1 makes 

a negligible contribution to the variance of the pixels of 

N. Furthermore, the expression for the conditional 

variance of N'1 is cumbersome, and requires us to know 

the observer's internal-to-external noise ratio 2 2/Z Nσ σ . 

Consequently, we will use the approximation that the 

variance of N'1 is  on trials of type AA and AB, and 

that the variance of each pixel in N is 

 (A5) 

How accurate is this approximation? At a 

performance level of 75% correct and an internal-to-

external noise ratio of 1.0, (F1) and (F2) show that on AA 

trials the true variance of N'1 is 0. 277 Nσ , whereas we 

approximate it as . Hence in an m-pixel noise field, we 

approximate a total noise field variance of 

 as . Even in a small 16 × 16 pixel 

noise field, this is an error of less than 0.1%, which is 

negligible compared to other sources of error, such as our 

estimate of the observer's response bias that as we show 

below must also be known to calculate the optimal 

weighted sum. In any case, in situations where (A5) is an 

inadequate approximation, we can use the correct 

expression for the conditional variance of N' which is 

immediately derivable from (F1) and (F2). 

The same analysis applies to trials on which signal B 

is presented, with analogous results. We need only 

introduce a coordinate frame F" with its origin at B and 

its first coordinate vector parallel to T, and a decision 

variable " ( )s N Z T= + •  with criterion "a a B T= − • . We 

then obtain expressions like (A3), (A4), and (A5), with 

stimulus A replaced by stimulus B. Hence the SNR of an 

external noise field N on a single trial of type SR (where 

we use SR to stand for trial types AA, AB, BA, and BB) is 

the ratio of an expression of the form (A3) or (A4) 

squared, and an expression of the form (A5): 

( )
2 1 2

22 2

( ( ))
[ ' | ]

N SR

SRN Z

g G p
SNR N SR

p

σ

σ σ

−
= ⋅

+
.  (A6) 

In general, the four trial types have different probabilities 

pSR, so noise fields from the four cells of the response 

matrix have different SNRs. 

Combining noise fields 
In the preceding section, we showed that the 

expected value of a noise field in each class of trials is 

proportional to the template T, but also that, in general, 

noise fields from different classes of trials have different 

SNRs, given by (A6). In “Appendix E,” we show that the 

SNR of a weighted sum  of several noisy 

images C

i iC w=∑ C

i with proportional means is maximized when 

[ ] / [ ]i iw E C VAR C= i . According to the expressions for 

the expected value (A3, A4), and variance (A5) of the 

noise fields, this means that we should calculate the 

classification image by taking a weighted sum of noise 

fields across trials, with the weight wSR assigned to the 

noise fields in each cell SR of the response matrix equal to 

1

2 2

( ( ))1
.SR

SR
SR

N Z

g G p
w

pσ σ

−
= ± ⋅

+
 (A7) 

The sign is positive for trials in classes AA and BA, and 

negative for trials in classes AB and BB, as the expected 

values of noise fields on response-A and response-B trials 

are anti-parallel. 

Any factors that appear in the weights wSR 

corresponding to all noise fields can be dropped, as these 

factors simply scale the classification image without 

affecting its SNR. The external noise variance 2
Nσ  is the 

same on all trials, and if the contrast energy of stimuli A 

and B is approximately the same then the internal noise 

variance 2
Zσ  will also be approximately the same on all 

trials (see our discussion of fixed and proportional 



Murray, Bennett, & Sekuler  97 

 

 

internal noise in the general discussion), and we can drop 

the factor 2 21/ N Zσ σ+ . Hence the weights reduce to 

1( ( ))
.SR

SR
SR

g G p
w

p

−
= ±  (A8) 

We will denote the number of trials in response cell SR 

in a particular experiment as  and estimate the 

response probabilities by . If we 

substitute  for  (we discuss this substitution later), 

and scale each weight by dividing it by the number of 

trials n/2 on which stimulus A or stimulus B was 

presented, the weights evaluate to 

ˆSRn

ˆ ˆp n= /( / 2)SR SR n

ˆSRp SRp

1 ˆ( ( ))
.

ˆ
SR

SR
SR

g G p
w

n

−
= ±  (A9) 

Hence, the optimal weighted sum for calculating the 

classification image of a possibly biased observer is 

( )
(

1 1

1 1

ˆ ˆ( ( )) ( ( ))

ˆ ˆ( ( )) ( ( ))

AA AA BA BA

AB AB BB BB

C g G p N g G p N

g G p N g G p N

− −

− −

= +

− + ) .

 (A10) 

We use the notation SRN  to denote the average of the 

external noise fields in a stimulus-response class of trials, 

e.g., ABN  is the average of the external noise fields 

presented on trials where the stimulus was A and the 

observer responded B. 

If the observer is unbiased, a further simplification is 

possible. In any response matrix, the probabilities in each 

row sum to one:  and . 

Furthermore, it is a property of the normal distribution 

that 

ˆ ˆ 1AA ABp p+ =

1( (1 ))

ˆ ˆ 1BA BBp p+ =

1( ( ))g G p− g G p−= − . If the observer is 

unbiased, then AA BBp p= , and from these equalities it 

follows (again using the substitution ) that the 

numerator of (

ˆSR SRp p=
A9) is the same for all four classes of trials, 

and this factor can be dropped, leaving 

1
.

ˆ
SR

SR

w
n

= ±  (A11) ( )2
+ ⋅

That is, the optimal weighted sum for calculating a 

classification image for an unbiased observer is derived by 

averaging the noise fields in each cell of the response 

matrix, adding the averages from response-A cells, and 

subtracting the averages from response-B cells: 

( ) ( ) .AA BA AB BBC N N N N= + − +  (A12) 

To calculate the optimal weights as in (A8), we need 

to know the true response probabilities pSR. In practice, 

we can only count the number of trials  in each cell 

and make estimates of the probabilities, 

ˆSRn

SRˆ ˆ /( / 2)SRp n n= , 

from a limited total number of trials. This may introduce 

biases into our formulas for classification images. For 

example, although  is an unbiased estimator of , 

 is not an unbiased estimator of 1/ , so the 

weights calculated according to (

ˆSRn SRn

ˆSRn

ˆ1/ SRn

ˆSRp

SRn

A11) will be biased. 

However, the biases are very small: when we evaluate the 

expected value of (A11) numerically, we find that at a 

response probability of , even with only 100 

trials, the bias is less than 1%. The number of trials in a 

response classification experiment is typically very large 

(e.g., 10,000 trials per condition in 

0.75SRp =

Gold, Murray, 

Bennett, & Sekuler [2000]), so our estimates of  and 

 are very accurate, and the biases in (A10) and (A15) 

are negligible. 

SNR of the optimal classification 
image 

Because (A12) is the optimally weighted sum of 

individual noise fields, the SNR of the classification 

image C is the sum of the SNRs of the individual noise 

fields (see “Appendix E”). The SNR of a single noise field 

on trial type SR is given by (A6). We can find the SNR 

obtained from all trials of type SR by multiplying (A6) by 

the expected number of trials of type SR, ( / , and 

we can find the SNR of the classification image C by 

summing these SNRs across all four types of trials. For a 

unbiased observer with proportion correct p

2) SRn p

C=pAA=pBB, 

( )

( )

( )

2 1 2

22 2

2 1 2

22 2

2 1 2

22 2

2 1 2

22 2

( ( ))
[ ]

2

( ( ))

( ( ))

2

( ( ))

2
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AAN Z

NBA BA

BAN Z

NAB AB

ABN Z
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BBN Z

np g G p
SNR C

p

np g G p

p

np g G p

p

np g G p

p

σ

σ σ

σ

σ σ

σ

σ σ

σ

σ σ

−

−

−

−
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⋅
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 (A13) 
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2
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σ
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−
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The optimal weights wi are the ratio of (B1) and (B2): 

           

( )
2 2

2 2

( '/ 2)
.

( '/ 2) ( '/ 2)

N

N Z

n g d

G d G d

σ

σ σ
= ⋅

−+
 (A15) 

2 2

( / 2) ( ' / 2)
.i i

i

N Z

n g d
w

σ σ
=

+
 (B3) 

Eliminating scale factors common to the weights at all 

stimulus levels, we are left with 
Expression (A15) assumes that we use the true 

optimal weights wSR, whereas we can only estimate the 

optimal weights from a limited amount of data. Hence 

(A15) overestimates the quality of the classification image 

calculated according to (A12). However, as we have 

pointed out, the number of trials in a response 

classification experiment is typically very large, and in this 

case, our estimates of the weights will be quite accurate, 

and the error in (A15) will be small. 

( ' / 2) .i i iw n g d=  (B4) 

Hence the optimal weighted sum for calculating a 

classification image when several signal contrast levels are 

interleaved and the observer is unbiased is to calculate 

classification images Ci at each stimulus level using (A12), 

and to take the weighted sum C n . ( ' / 2)i i

i

g d=∑ iC

In replacing (B3) with (B4), we have assumed that the 

internal noise level 2
Zσ  is the same at all signal contrasts. 

As we mentioned in the “General Discussion” section, 

internal noise power actually grows with the signal 

contrast as well as with the external noise power, so this 

assumption is false. However, if a large part of the 

stimulus energy comes from external noise, as is often the 

case in a response classification experiments because of 

the high power of the noise added to the signal, then the 

proportional noise will vary little with the signal contrast. 

(See our discussion of fixed and proportional noise in the 

general discussion.) In any case, internal proportional 

noise is not yet understood well enough for us to 

anticipate how it will vary with the signal contrast in 

general (e.g., how the constant of proportionality depends 

on the shape of the signal), so we will use the rough 

approximation that the internal noise power does not 

vary with signal contrast when a signal is shown in strong 

external noise. In an experiment where one is in a 

position to measure the internal noise power at each 

signal contrast, the weights in (B3) can be used instead of 

those in (B4). 

Appendix B: Several Contrast 
Levels 

In this appendix, we derive the optimal weighted sum 

for calculating a classification image in a two-alternative 

identification experiment in which the signal is presented 

at several different contrast levels. 

Expression (A6) shows that the SNR of a noise field 

depends on the observer’s performance at the signal 

contrast level of the trial on which the noise field was 

presented, so when calculating a classification image, it is 

inefficient to simply average together noise fields from 

trials with different signal contrast levels. In an 

experiment with several signal contrast levels and an 

unbiased observer, we can use (A12) to find the optimal 

weighted sum of noise fields at each contrast level, to 

obtain a number of classification images Ci. In “Appendix 

E,” we show that the weighted sum C  has the 

highest SNR when 

i i

i

w=∑ C

2[ ] /
ii iw E C Cσ= . From expressions 

(A3), (A4), and (A5) for the mean and variance of 

individual noise fields, and the method (A12) of 

combining noise fields to calculate a classification image, 

it follows that the magnitude and variance of the 

classification images Ci obtained at each stimulus level are 

2

2 2

2 ( ' / 2
[ ]

( ' / 2) ( ' / 2)

N i
i

i i
N Z

g d
E C

G d G d

σ

σ σ
= ⋅

−+

)
 (B1) 

Finally, because (B4) is the optimal weighted sum of 

the images Ci, the SNR of the combined image C is the 

sum of the SNRs of the individual images. The SNR of 

the individual images Ci is given by (A15), and it follows 

directly that the SNR of the pooled image C is 

( )
2 2

2 2

( ' / 2)
[ ] .

( ' / 2) ( ' / 2)

N i
i

i iiN Z

g d
SNR C n

G d G d

σ

σ σ
=

−+
∑  (B5) 
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Appendix C: Response 
Consistency 

In this appendix, we derive the optimal weighted sum 

for calculating a classification image in a two-pass 

experiment. We assume that the reader is familiar with 

the derivation in “Appendix A”; we follow “Appendix A” 

closely, and we simply allude to arguments that are 

developed there more fully. 

Consider the trials on which signal A is presented. 

We will adopt the coordinate frame F' introduced in 

“Appendix A.” On a repeated pair of trials, the external 

noise N' is the same on both trials, but the internal noise 

samples Z1' (first trial) and Z2' (second trial) are 

independent. As shown in “Appendix A,” the observer's 

response is independent of noise components N'2 through 

N'm, so the conditional mean of these components is zero. 

The conditional mean of N'1 is 

. In “1 2
1 1 1 1 1[ ' | ' ' ' ' ' ']E N N Z a N Z a+ > + ∧ + > Appendix F,” 

we give an expression (F3) for conditional means of this 

form, and this expression shows that 

2

1 2 22 2

2 2

2 1
[ ' | ] ( )

1 2 /

                      where    '/ .

N

AAA N ZN Z

N Z

E N AAA g z G z
p

z a

σ
σ σσ σ

σ σ


 =
 ++  

= +



(C1) 

Here pAAA is the probability that the observer responds A 

on both trials of a trial pair on which the signal is A. 

A similar argument shows that on trial pairs where 

the observer responds A on the first trial and B on the 

second trial, the mean of components N'2 through N'm is 

zero, and the mean of N'1 is 

, which expression 

(

1 2
1 1 1 1 1[ ' | ' ' ' ' ' ']E N N Z a N Z a+ > ∧ + <

F4) shows to be equal to 

2

1
2 2

2 2

2
[ ' | ] ( )

1
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1 2 /

N

AAB
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E N AAB g z
p

G z
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σ σ

σ σ

= ×
+

  
  −

  +  

 (C2) 

The same expression gives the mean on trial pairs where 

the observer responds B on the first trial and A on the 

second trial. 

Finally, on trial pairs where the observer incorrectly 

responds B twice, the mean of components N'2 through 

N'm is zero, and the mean of component N'1 is 

. This can be 

rewritten as 

1 2
1 1 1 1 1[ ' | ' ' ' ' ' ']E N N Z a N Z a+ < ∧ + <

1 2
1 1 1 1 1[ ' | ' ' ' ' 'E N N Z a N Z a ']− − − − > − ∧ − − > − , 

and we can use (F3) again to evaluate this expression: 
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 (C3) 

For the variance of single noise fields, we will use the 

same approximation as in “Appendix A”: 

N AAAσ  (C4) 

The same analysis can be carried out for trials on 

which the signal is B, and we obtain expressions of the 

form (C1) through (C4), with signal A replaced by B. 

Taking the ratios of (C1), (C2), and (C3) with (C4), 

dropping scale factors common to all weights, and 

replacing the probability pAAA with nAAA, pAAB with nAAB, 

etc., and using the fact that for an unbiased observer 

z=d'/2, we find that for an unbiased observer, the optimal 

weighted sum for calculating a classification image is 

(

1

where  

C w

+ −  (C5) 

The SNR of C is the sum of the SNRs of the 

individual noise fields. The SNRs of the individual noise 

fields are the ratios of (C1), (C2), and (C3) squared with 

(C4), and summing these ratios times the expected 

number of trials in each category, we obtain 

[ ]SNR C

 (C6) 

In this expression, pCC is the probability of two correct 

responses (pCC=pAAA=pBBB), pCI is the probability of one 

correct response and one incorrect response (this 

probability covers two cells of the response matrix, AAB 

and ABA, as the order of the correct and incorrect 
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responses are normally of no interest; hence 

pCI=2pAAB=2pABA=2pBAB=2pBBA), and pII is the probability of 

two incorrect responses (pII=pABB=pBAA). 

Appendix D: Rating Scales 

In this appendix, we derive the optimal weighted sum 

for calculating a classification image in a rating 

experiment. Again, we assume that the reader is familiar 

with “Appendix A.” 

First, consider the trials on which signal A is 

presented. We will adopt the coordinate frame F' 

introduced in “Appendix A.” On trials where the 

observer’s response is rating i, the decision variable s' falls 

between criteria ai' and ai+1'. The observer’s response is 

independent of noise components N'2 through N'm, so the 

mean of these components on trials where the observer 

responds i is zero. The mean of the first component, 

, can be evaluated 

using (
1 1 1 1 1 1[ ' | ' ' ' ' ' ']iE N N Z a N Z a ++ ≥ ∧ + < i

F5) from “Appendix F,” and we find 

2
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 (D1) 

The quantities zAi' are the normal deviates of the criteria 

ai' with respect to the distribution of the decision variable 

s' on trials on which the stimulus is A. These normal 

deviates can be estimated from the observer’s response 

probabilities, , where p1' (iz G P−
−= Ai- is the probability 

that the observer gives a rating less than i on a trial where 

stimulus A is presented. 

The same analysis applies to trials where signal B is 

presented. We adopt the coordinate frame F" introduced 

in “Appendix A.” Again, the observer's response is 

independent of external noise components N"2 through 

N"m, so the mean of these components on trials where the 

observer responds i is zero. Expression (F5) shows that the 

mean of the first component 

 is 1 1 1 1 1 1[ " | " " " " " "]i iE N N Z a N Z a ++ ≥ ∧ + <

2
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Note that the quantities zAi' are the normal deviates of 

the criteria ai' with respect to the distribution of the 

decision variable on trials where the signal is A, and the 

quantities zBi" are the normal deviates of the criteria ai" 

with respect to the distribution of the decision variable on 

trials where the signal is B. The signal detection analysis 

of this task holds that the criteria are the same on signal-A 

and signal-B trials. The normal deviate of the mean on 

signal-A trials with respect to the distribution on signal-B 

trials is d', and it follows that zAi'=zBi"-d'. We can form more 

accurate estimates of the observer's criteria by averaging 

the estimates from signal-A and signal-B trials: 

' "

2

Ai Bi
i

z z d
z

'+ −
=  (D3) 

  
1 1( ) ( )

.
2

Ai BiG p G p d− −
− −+

=
'−

2

 (D4) 

These values zi are estimates of the normal deviates of the 

observer's criteria with respect to the distribution of the 

decision variable s on signal-A trials; the normal deviates 

with respect to the distribution on signal-B trials are zi+d'. 

We could form better estimates zi by combining the 

estimates zAi' and zBi"-d' in a weighted average that takes 

account of the standard errors associated with these 

quantities (Taylor, 1982), but we will not develop these 

details. 

For the variance of single noise fields, we will use the 

same approximation as in “Appendix A”: 

2 2
| | .N Ai N Bi Nσ σ σ≈ ≈  (D5) 

Taking the ratio of (D1, D2) and (D5), we find that 

the optimal weights for noise fields from each response 

cell Ai and Bi are 

1
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Each denominator term of the form 1( ) ( )i iG z G z +−  is the 

probability that the decision variable s falls between 

criteria ai and ai+1, i.e., the probability that a trial receives 

rating i, which is proportional to the number of trials that 

receive rating i. Using this fact, and dropping scale factors 

common to all weights, we find that the optimal weighted 

sum is 

( ) ( )1 1

1

( ) ( ) ( ') ( ')
r

i i Ai i i Bi

i

C g z g z N g z d g z d N+ +
=

= − + + − +∑ (D8) 

where the normal deviates zi are calculated from both 

signal-A trials and signal-B trials as in (D4). 
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1 1 2 2 1 1 1 1' ' ' ... ' (1 ... )n n n nC u C u C u C u u C− − − ' .= + + + + − − −  (E1) Note that the optimal weighted sum for calculating a 

classification image for a biased or unbiased observer in a 

two-alternative identification task (A10, A12) can be 

derived from this expression, by considering the case of a 

rating scale with only two responses. 

The SNR of this sum is 

[ ] 2

2
'

|| ' ||
[ ']

C

E C
SNR C

σ
=  (E2) Finally, because (D8) is the optimal weighted sum of 

the individual noise fields, the SNR of C is the sum of the 

SNRs of the individual images. The SNR of the 

individual noise fields is given by the ratio of (D1, D2) 

squared and (D5): 
2 2 2 2 2 2
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 (D10) 

This SNR is maximized when the denominator is 

minimized. Taking the derivative of the denominator 

with respect to each weight ui, and requiring that each 

derivative equal zero, we obtain a system of linear 

equations for the weights ui whose solution is 

2

2

1/ '

1/ '

i
i

j

j

u
σ
σ

=
∑

.  (E4) 
The SNR of C is the sum of the SNRs of the noise fields 

in each cell of the response matrix, given by (D9) and 

(D10), times the expected number of noise fields in each 

cell: 
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It follows that the nth weight 1 1(1 ... )nu u −− − −  is 

2

2

1/ '

1/ '

n
n

j

j

u
σ
σ

=
∑

21/ 'i iu

. The SNR of the sum C' is unaffected if 

we multiply each weight by ∑ , so the SNR of the 

weighted sum of images C

21/ 'j
j

σ

i' is maximized with weights 

σ= , and the SNR of the weighted sum of images 

Ci is maximized with weights 2/ /i i i iw u iµ µ σ= = : Appendix E: Combining Images 
of Different SNRs 

2
.i
i

i i

C
µ
σ

=∑ C  (E5) 

Suppose we have n stochastic images Ci, all of whose 

means are proportional to an image T, but that have 

different SNRs. If we take a weighted sum C  to 

estimate T more precisely, what weights w

i i

i

w=∑ C

i

i should we use 

to maximize the SNR of the weighted sum C? (We are 

interested only in obtaining an image C that is 

proportional to T, and we do not care about estimating 

the magnitude of T.) 

The SNR of the optimal weighted sum C is 
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Let us define || [ ] ||i E Cµ =  and 2
iσ  as the variance of 

each pixel of Ci. Rescaling an image does not change its 

SNR, so we can rescale the images Ci to have unit 

magnitude, ' /i iC Ci µ=

2/i i

, and consider weighted sums of 

Ci'. The unit-magnitude images Ci' have variance 
2 2'iσ σ= µ . Similarly, we can require that the weights 

be chosen so that the magnitude of the sum C' is one. 

The sum then takes the form 

The images Ci have proportional means, [ ]
|| ||

i i

T
E C

T
µ= , 

and it follows that 

2
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Hence the sum of the optimally weighted sum C is the 

sum of the SNRs of the individual images Ci. 

Finally, we will justify the claim we made in the 

results section of Experiment 1, that we can calculate the 

optimal weights for calculating classification images so 

long as we know the SNRs of noise fields in each cell of 

the response matrix up to a common scale factor. 

Expression (E5) shows that, in general, we must know 

both the expected values iµ  and the variances 2
iσ  of a set 

of stochastic images, to find the optimal weights for a 

weighted sum of the images. In “Appendices A through 

D,” in which we derive optimal expression for calculating 

classification images, only the expected values iµ  of the 

noise fields depend on the noisy cross-correlator model 

(1). The variances 2
iσ  of the noise fields follow directly 

from the statistics of sampling error. Hence when we 

compare the predicted SNRs of each class of noise fields 

to the measured rSNRs, we are testing the model’s 

prediction of the expected value of each class of noise 

fields. If our predictions about the expected value of each 

class of noise fields are mistaken by a common scale 

factor b, the weights we use to calculate a classification 

image will nevertheless be correct: rather than weighting 

each noise field by 2
i/iµ σ , as in (E5), we will weight each 

noise field by b 2/i iµ σ , and multiplying each weight by a 

common scale factor does not change the SNR of the 

weighted sum. Hence the resulting classification image 

will still have the maximum possible SNR. 

Appendix F: Conditional 
Statistics of Normal Random 
Variables 

In signal detection theory, an observer’s responses are 

often modeled as being based on a decision variable that 

is the sum of a random variable X determined by the 

stimulus and a random variable Y determined by noise 

internal to the observer. It is sometimes useful to know 

the statistics of X conditional on the sum X+Y falling in a 

particular range. In this appendix, we state some results of 

this type, and we give a full proof of one such result. The 

proofs are simply evaluations of integrals, and we hope it 

is clear from the example given how the other integrals 

can be completed. 

Theorem. Let 2~ ( , )X XX N µ σ  and Y Y 2
1 2, ~ ( ,Y YN )µ σ  

be independent Gaussian random variables, and let a1 

and a2 be real numbers. Define 

2 2)) /1 1( ( X Y X Yz a µ µ σ σ+= − +  and 
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1

. That is, z1 and z2 are the 

normal deviates of a1 and a2, respectively, with respect to 

the distribution of X Y+  or 2X Y+ . Then, 
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The function ( ,g x  is the normal probability density 

function, and ( ,G x  is the normal cumulative 

distribution function. When we omit the arguments µ 

and σ, they default to 0 and 1, respectively. 

Note that G z 1(X− = +

2X Y

 and 

2( ) (G z P− = + . Sometimes we make this 

substitution when we use these results in other parts of 

the article. 

1)

Proof of (F1). First, consider the case where µX=0. 
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This conditional mean can be evaluated using (F6), and 

we find 
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Integrating by parts, this becomes 

2 2
1

2
1

2
1

1

( , , )

( ( ,0, ) ( , , )) |

( ,0, ) ( , , )

Y X Y

X X Y Y

X X Y Y

G a

g x G x a

g x g x a d

µ σ σ

σ σ µ σ

σ σ µ σ

∞
−∞

∞

−∞

=
− − +

 − −

×
− − −

∫ x








 

2
1

2 2
1

( )

( )

X
X

X Y

g z

G z

σ
µ

σ σ
= + ⋅

−+
. 

Acknowledgments 

We would like to thank Craig Abbey and Brent 

Beutter for helpful discussions. We would also like to 

thank two anonymous reviewers for their insightful 

comments. This research was supported by National 

Science and Engineering Research Council grants 

OGP0105494 and OGP0042133. Commercial 

relationships: None. 

2

2 2
1

2 2
1

( , , )

( ,0, ) ( , *, *)

X

Y X Y

Y X Y

G a

.g a g x

σ

µ σ σ

µ σ σ µ σ
∞

−∞

=
− − +

× − +∫ dx

 

References 
Here we have used the fact that the pointwise product 

of two normal density functions is a scaled normal density 

function, and we have set 2 2
1* ( ) /Y X X Ya 2µ µ σ σ σ= − +

2 )

 

and 2 2 2 2* /(X Y X Yσ σ σ σ= σ+ . The density function with 

these parameters integrates to 1, and we are left with 

Abbey, C. K., Eckstein, M. P., & Bochud, F. O. (1999). 

Estimation of human-observer templates in two-

alternative forced-choice experiments. Proceedings of 

SPIE, 3663, 284-295. 

2
2 2

1
2 2

1

( ,0,

( , , )

X
Y X

Y X Y

g a

G a

σ
)Yµ σ σ

µ σ σ
= −

− − +
+  

Ahumada, A., Jr., & Lovell, J. (1971). Stimulus features in 

signal detection. Journal of the Acoustical Society of 

America, 49, 1751-1756. 

2 22
1

2 2 2 2
1

(( ) / )

(( ) / )

Y XX

X Y Y X Y

g a

G a

µ σ σσ

σ σ µ σ σ

− +
= ⋅

+ − +
.  (F6) 

Ahumada, A. J., & Beard, B. L. (1999). Classification 

images for detection [Abstract]. Investigative 

Ophthalmology and Visual Science, 40, S572. Y

Ahumada, A. J., Jr. (1987). Putting the visual system noise 

back in the picture. Journal of the Optical Society of 

America A, 4, 2372-2378. [PubMed] 
This is the expression for the conditional mean when 

µX=0. 
Ahumada, A. J., Jr., & Watson, A. B. (1985). Equivalent-

noise model for contrast detection and 

discrimination. Journal of the Optical Society of America 

A, 2, 1133-1139. [PubMed] 

When µX≠0, we can reduce the problem to the zero-

mean case by defining ' XX X µ= −  and 1 1' Xa a µ= − . 

Then, 

Beard, B. L., & Ahumada, A., Jr. (1998). A technique to 

extract relevant image features for visual tasks. 

Proceedings of SPIE, 3299, 79-85. 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3430224&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=4020510&dopt=Abstract


Murray, Bennett, & Sekuler  104 

 

 

Burgess, A. E. (1995). Comparison of receiver operating 

characteristic and forced choice observer 

performance measurement methods. Medical Physics, 

22, 643-655. [PubMed] 

Burgess, A. E., & Colborne, B. (1988). Visual signal 

detection. IV. Observer inconsistency. Journal of the 

Optical Society of America A, 5, 617-627. [PubMed] 

Burgess, A. E., Wagner, R. F., Jennings, R. J., & Barlow, 

H. B. (1981). Efficiency of human visual signal 

discrimination. Science, 214, 93-94. [PubMed] 

Chubb, C., & Nam, J. H. (2000). Variance of high 

contrast textures is sensed using negative half-wave 

rectification. Vision Research, 40, 1677-1694. 

[PubMed] 

Egan, J. P., Schulman, A. I., & Greenberg, G. Z. (1959). 

Operating characteristics determined by binary 

decisions and by ratings. Journal of the Acoustical 

Society of America, 31, 768-773. 

Foley, J. M., & Legge, G. E. (1981). Contrast detection 

and near-threshold discrimination in human vision. 

Vision Research, 21, 1041-1053. [PubMed] 

Gold, J., Bennett, P. J., & Sekuler, A. B. (1999). Signal 

but not noise changes with perceptual learning. 

Nature, 402, 176-178. [PubMed] 

Gold, J. M., Murray, R. F., Bennett, P. J., & Sekuler, A. 

B. (2000). Deriving behavioural receptive fields for 

visually completed contours. Current Biology, 10, 663-

666. [PubMed] 

Green, D. M. (1964). Consistency of auditory judgments. 

Psychological Review, 71, 392-407. 

Green, D. M., & Swets, J. A. (1974). Signal detection theory 

and psychophysics. Huntington, NY: R. E. Krieger. 

Legge, G. E., Kersten, D., & Burgess, A. E. (1987). 

Contrast discrimination in noise. Journal of the 

Optical Society of America A, 4, 391-404. [PubMed] 

Lillywhite, P. G. (1981). Multiplicative intrinsic noise and 

the limits to visual performance. Vision Research, 21, 

291-296. [PubMed] 

Lu, Z. -L., & Dosher, B. A. (1998). External noise 

distinguishes attention mechanisms. Vision Research, 

38, 1183-1198. [PubMed] 

Manjeshwar, R. M., & Wilson, D. L. (2001). 

Hyperefficient detection of targets in noisy images. 

Journal of the Optical Society of America A, 18, 507-513. 

[PubMed] 

Murray, R.F., Bennett, P.J., & Sekuler, A.B. (2001). No 

pointwise nonlinearity in shape discrimination 

[Abstract]. Journal of Vision, 1(3), 52a, 

http://journalofvision.org/1/3/52/, DOI 

10.1167/1.3.52. [Link] 

Nam, J. H., & Chubb, C. (2000). Texture luminance 

judgments are approximately veridical. Vision 

Research, 40, 1695-1709. [PubMed] 

Pelli, D. G. (1985). Uncertainty explains many aspects of 

visual contrast detection and discrimination. Journal 

of the Optical Society of America A, 2, 1508-1532. 

[PubMed] 

Pelli, D. G. (1990). The quantum efficiency of vision. In 

C. Blakemore (Ed.), Vision: Coding and efficiency (pp. 

3-24). Cambridge, MA: Cambridge University Press. 

Pelli, D. G., & Farell, B. (1999). Why use noise? Journal of 

the Optical Society of America A, 16, 647-653. 

[PubMed] 

Peterson, W. W., Birdsall, T. G., & Fox, W. C. (1954). 

The theory of signal detectability. Transactions of the 

Institute of Radio Engineers, Professional Group on 

Information Theory, 4, 171-212. 

Richards, V. M., & Zhu, S. (1994). Relative estimates of 

combination weights, decision criteria, and internal 

noise based on correlation coefficients. Journal of the 

Acoustical Society of America, 95, 423-434. [PubMed] 

Taylor, J. R. (1982). An introduction to error analysis: The 

study of uncertainties in physical measurements. Mill 

Valley, CA: University Science Books. 

Wickelgren, W. A. (1968). Unidimensional strength 

theory and component analysis of noise in absolute 

and comparative judgements. Journal of Mathematical 

Psychology, 5, 102-122. 

 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7643805&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3404312&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7280685&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10814756&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7314485&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10647007&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10837252&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3559785&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7269306&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9666987&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11265681&dopt=Abstract
http://journalofvision.org/1/3/52/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10814757&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=4045584&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10069051&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8120253&dopt=Abstract

	Introduction
	Identification at a Single Contrast Level
	Experiment 1: Identification at Several Contrast Levels
	Experiment 2: Response Consistency
	Experiment 3: Rating Scales
	General Discussion
	Summary
	Appendix A: Single-Contrast level
	Appendix B: Several Contrast Levels
	Appendix C: Response Consistency
	Appendix D: Rating Scales
	Appendix E: Combining Images of Different SNRs
	Appendix F: Conditional Statistics of Normal Random Variables
	Acknowledgments
	References

