
ERRATUM

Optimal Mixing Evolutionary Algorithms

In describing the marginal product structure in Section 4.3, the complexity
term in the MDL measure is defined as only the number of parameters. This
is actually the AIC measure instead of the MDL measure. For the latter, the
number of parameters should be multiplied by a factor of log2(n + 1), i.e. the

formula should read (n
∑|F|−1

i=0 H(XF i))+log2(n+1)(
∑|F|−1

i=0 2|F
i|−1). Similarly,

in the decomposition of the MDL measure the parameter terms should also be
multiplied by a factor of log2(n+ 1), i.e. the formula should read n(H(XF i) +

H(XF j )−H(XF i∪F j )) + log2(n+1)((2|F
i| − 1)+ (2|F

j | − 1)− (2|F
i∪F j | − 1)).

In describing the linkage tree structure in Section 4.4, it is argued how the
normalized variation-of-information (VI) metric may be used to build a hierar-
chical clustering. It is furthermore pointed out how, for efficiency, it can be used
in combination with the unweighted pair group method with arithmetic mean
(UPGMA). It is then stated that normalization is no longer necessary in that
case. This is however false and will be shown in a forthcoming journal article.

Further, the non-normalized VI in combination with UPGMA is used in build-
ing the linkage tree in our experiments and that this is the same measure as used
by Duque et al.1. This is also false. Duque et al. use the mutual information
similarity measure (which should be maximized, contrary to the (normalized)
VI, which should be minimized). Moreover, it is actually this measure that
was used in our experiments, i.e. mutual information combined with UPGMA,
rather than VI. The mutual information similarity measure is actually men-
tioned earlier in this paper, just before introducing VI.
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ABSTRACT
A key search mechanism in Evolutionary Algorithms is the
mixing or juxtaposing of partial solutions present in the
parent solutions. In this paper we look at the efficiency
of mixing in genetic algorithms (GAs) and estimation-of-
distribution algorithms (EDAs). We compute the mixing
probabilities of two partial solutions and discuss the effect
of the covariance build-up in GAs and EDas. Moreover,
we propose two new Evolutionary Algorithms that maxi-
mize the juxtaposing of the partial solutions present in the
parents: the Recombinative Optimal Mixing Evolutionary
Algorithm (ROMEA) and the Gene-pool Optimal Mixing
Evolutionary Algorithm (GOMEA).

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Search.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Genetic Algorithms, Estimation-of-Distribution Algorithms,
Optimal Mixing, Linkage Tree Genetic Algorithm.

1. INTRODUCTION
A key property of GAs and EDAs is their ability to jux-

tapose partial solutions or substructures from different solu-
tions to form new good solutions. This mixing is only effi-
cient when the substructures are not disrupted too often by
recombination or by the population sampling. When enough
knowledge of the problem is available, mixing can be made
efficient by designing the solution representation and/or the
crossover operator or sampling distribution in an appropri-
ate way. However, if there is not enough domain knowledge
at hand, we have to induce this knowledge from a population
of solutions. In this paper we first identify the differences
between the mixing behavior of GAs and of EDAs. Next,
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we propose two algorithms - ROMEA and GOMEA - that
have an optimal mixing efficiency.

2. GA AND EDA MIXING
To study the mixing behavior of GAs and EDAs we fo-

cus on 4 substructures: *1*1*, *1*0*, *0*1*, and *0*0*.
The mixing behavior is now characterized by computing the
change in frequencies of these 4 substructures after applying
a mixing operator: resp. uniform crossover and population
sampling. Let us call p the frequency of substructure *1***,
q the frequency of substructure ***1*, and r the frequency
of substructure *1*1*. Note that 0 ≤ r ≤ min(p, q) The
frequencies of the above 4 substructures are now given by:

P[*1*1*] = r P[*1*0*] = p-r
P[*0*0*] = 1-p-q+r P[*0*1*] = q-r

In the GA two solutions are paired and the substructures
are either exchanged or not with equal probability. To com-
pute the change in substructure frequencies we first need to
compute the probability that specific substructures occur in
a parent pair. The specific maiting pairs are shown in the
first two columns (Par1 and Par2) in Table 1. The proba-
bility a specific maiting pair will occur is given in the next
column (Prob). Then, for a given pair we compute the prob-
ability with which each of the 4 substructures will be created.
The results for each of the 4 substructures are shown in the
columns *1*1*, *0*0*, *1*0*, and *0*1*. Finally, by sum-
ming all these weighted probabilities we obtain the expected
frequencies of the 4 substructures after applying recombina-
tion. This end result is shown in Table 2. For instance, the
first line in Table 2 shows that the frequency of the substruc-
ture *1*1* equals r before mixing. After uniform crossover
(GA) is applied the frequency becomes (pq + r)/2, while
after population sampling (EDA) is applied, the frequency
becomes pq. In case of EDA sampling we can easily compute
the expected frequencies directly, therefore there is no EDA
column in Table 1.

Ideally, if the mixing is optimal then each mixing event
would result with probability one in the creation of the *1*1*
substructure (assuming that is the optimal substructure). In
Section 5.4, we will introduce two algorithms, ROMEA and
GOMEA, that achieve just that. Similar to GA, ROMEA
pairs solutions before mixing them. The probability of a
specific mating pair is thus the same as in the GA. So the
second column in Table 1 (Prob under GA) also shows the
mating probability for the pairs Par1 and Par2 for ROMEA.
However, if the optimal values are present in the parent pair,
the optimal substructure will always be created. Therefore,
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the probability with which each of the 4 substructures will
be created, is always 1 or 0. The results for each of the 4
substructures are shown again in the columns *1*1*, *0*0*,
*1*0*, and *0*1*. GOMEA on the other hand is more sim-
ilar to EDA as it uses gene-pool sampling. The last columns
of Table 1 show the probability (Prob) of mating two specific
substructures (Par1 and Par2) when applying GOMEA.

The last 2 columns in Table 2 show the frequencies of the
substructures after applying ROMEA, resp. GOMEA.

To compare GA versus EDA, and ROMEA versus GOMEA
Figure 1 plots ratios between the frequencies of the *1*1*
substructures for EDA vs. GA, and GOMEA vs. ROMEA
in different scenarios. These frequencies are also shown
on the top line of Table 2 but for ease of presentation,
we assume here that the proportions of optimal values in
both substructures are equal - this is, p = q. The plots
are parameterized as EDA(p), GA(p, r), ROMEA(p,r), and
GOMEA(p,r). The top left figure plots the ratio with r = 0,
meaning that the substructure *1*1* is not yet present in
the population. The ratio EDA(p)/GA(p,0) is always equal
to 2, so the probability of a successful mixing event in this
case is twice as high with EDA than with GA. In the top
right figure, r = p, which represents the case that only the
juxtaposed substructure *1*1* and *0*0* are present in the
population. It is clear that the gene-pool sampling algo-
rithms (EDA and GOMEA) now have a much higher prob-
ability of disrupting the juxtaposed substructures than the
mating pairing algorithms (GA and ROMEA). Finally, the
left and right bottom figures plot the *1*1* frequency as a
function of r when p = 0.1. A pivotal point here is when
r = p2 = 0.01. This is the case of linkage equilibrium, where
there is no covariance between the substructures. When
r < p2 the covariance becomes negative and the EDA (resp.
GOMEA) have a higher probability to juxtapose the sub-
structures than the GA (resp. ROMEA). However, when
r > p2 the covariance is positive - meaning that the fre-
quency of the juxtaposed substructure has increased above
the linkage equilibrium value - the GA (resp. ROMEA) have
a higher probability of preserving the mixed substructures
than the EDA (resp. GOMEA).

3. COVARIANCE BUILD-UP
Selection picks out the more fit individuals and thus re-

duces the variance of the population fitness. This reduction
is not only caused by the change in allele frequency but also
by the creation of negative covariances between the genes.
In [6] we discussed how to model this for trunction selection
when the fitness is binomially distributed as in the OneMax
function. The population fitness variance can be computed
by summing all elements from the genic covariance matrix:
σ2(t) = Σl

i=1Σ
l
j=1Θij(t)pij(t)−pi(t)pi(t), with pi(t) the pro-

portion of optimal values at position i. Separating the genic
variance and covariance components σ2

var(t) = Σl
i=1Θii(t)

and σcov(t) = Σl−1
i=1Σ

l
j=i+1Θij(t) the population fitness vari-

ance becomes: σ2(t) = σ2
var(t) + 2σcov(t).

Using truncation selection the selected parents represent one
tail of the normal distribution. Truncating a normal distri-
bution with variance σ2 reduces this variance with a factor k
such that σ2(ts) = (1−k)σ2(t), with k = I(I−x), where I is
the selection intensity and x is the corresponding deviation
of the truncation point from the population mean.

The change in variance after selection is due to two phe-
nomena: first the increase in optimal allele frequency p(t),
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Figure 1: Ratios between frequencies of the juxta-
posed substructure *1*1* (for details see Section 2).

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40

p(
t)

Generations

’EDA_model’
’GA_model’

’EDA’
’GA’

Figure 2: Convergence models and experimental re-
sults for EDA and GA on OneMax (l=100, Trunca-
tion threshold 50%, p(0)=0.1)

and second the creation of genic covariance. The allele-1
frequency increase in one generation however is rather small
so the change in variance is primarily caused by the creation
of the genic covariance. To make the analysis tractable we
assume that we can neglect the effect of the allele frequency
increase. Under this simplifying assumption the genic vari-
ance after selection σ2

var(t
s) can be approximated with the

population fitness variance σ2(t) which allows us to calcu-
late the genic covariance after selection σcov(ts) as: σ2(ts) ≈
σ2

( t) + 2σcov(t
s) ≈ (1− k)σ2(t) or σcov(t

s) ≈ − k
2
σ2(t).

While selection introduces covariance between the gene
values, crossover reduces this again with a decorrelation fac-
tor δ: σcov(t+1) = δσcov(t). Crossover halves the covariance
while EDA sampling reduces it to zero. To see this, recall
that σij = E[xixj ] − E[xi]E[xj ]. Before crossover or EDA
sampling we have σij = r− pq, after crossover this becomes
σij = (pq+r)/2−pq = (r−pq)/2, while after EDA sampling
we get σij = pq − pq = 0. This difference in reduction of
the covariance causes the GA to mix less efficient than the
EDA and therefore to require more generations until full
convergence.
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GA ROMEA GOMEA
Par1 Par2 Prob. *1*1* *0*0* *1*0* *0*1* *1*1* *0*0* *1*0* *0*1* Prob. *1*1* *0*0* *1*0* *0*1*

*0*0* *0*0* (1-p-q+r)2 0 1 0 0 0 1 0 0 (1+r-p-q)(1-p)(1-q) 0 1 0 0
*0*0* *0*1* (1-p-q+r)(q-r) 0 0.5 0 0.5 0 0 0 1 (1+r-p-q)(1-p)q 0 0 0 1
*0*0* *1*0* (1-p-q+r)(p-r) 0 0.5 0.5 0 0 0 1 0 (1+r-p-q)p(1-q) 0 0 1 0
*0*0* *1*1* (1-p-q+r) r 0.25 0.25 0.25 0.25 1 0 0 0 (1+r-p-q)pq 1 0 0 0
*0*1* *0*0* (q-r)(1-p-q+r) 0 0.5 0 0.5 0 0 0 1 (q-r)(1-p)(1-q) 0 0 0 1
*0*1* *0*1* (q-r)2 0 0 0 1 0 0 0 1 (q-r)(1-p)q 0 0 0 1
*0*1* *1*0* (q-r)(p-r) 0.25 0.25 0.25 0.25 1 0 0 0 (q-r)p(1-q) 1 0 0 0
*0*1* *1*1* (q-r)r 0.5 0 0 0.5 1 0 0 0 (q-r)pq 1 0 0 0
*1*0* *0*0* (p-r)(1-p-q+r) 0 0.5 0.5 0 0 0 1 0 (p-r)(1-p)(1-q) 0 0 1 0
*1*0* *0*1* (p-r)(q-r) 0.25 0.25 0.25 0.25 1 0 0 0 (p-r)(1-p)q 1 0 0 0
*1*0* *1*0* (p-r)2 0 0 1 0 0 0 1 0 (p-r)p(1-q) 0 0 1 0
*1*0* *1*1* (p-r)r 0.5 0 0.5 0 1 0 0 0 (p-r)pq 1 0 0 0
*1*1* *0*0* r(1-p-q+r) 0.25 0.25 0.25 0.25 1 0 0 0 r(1-p)(1-q) 1 0 0 0
*1*1* *0*1* r(q-r) 0.5 0 0 0.5 1 0 0 0 r(1-p)q 1 0 0 0
*1*1* *1*0* r(p-r) 0.5 0 0.5 0 1 0 0 0 rp(1-q) 1 0 0 0
*1*1* *1*1* r2 1 0 0 0 1 0 0 0 rpq 1 0 0 0

Table 1: Frequencies of specific mating pairs and there mixing probabilities (for details see Section 2).

Prob. GA EDA ROMEA GOMEA

*1*1* r (pq+r)/2 pq 1+(1+r-p-q)2-(1-p)2-(1-q)2 pq(1-r)+r +p(q-r)(1-q)+q(p-r)(1-p)
*1*0* p-r p-(pq+r)/2 p(1-q) (1-q)2-(1+r-p-q)2 (1-q)(p(1+r-p-q)-(r-p))
*0*1* q-r q-(pq+r)/2 (1-p)q (1-p)2-(1+r-p-q)2 (1-p)(q(1+r-p-q)-(r-q))
*0*0* 1-p-q+r 1-p-q+(pq+r)/2 (1-p)(1-q) (1+r-p-q)2 (1+r-p-q)(1-p)(1-q)

Table 2: Frequencies of the substructures after different mixing algorithms (for details see Section 2).

Adding the covariance build-up to the convergence model
of [6] we get: p(t + 1) − p(t) = I

l
σ(t)
√

1− kδ . Solving this
difference equation gives us the model:

p(t) =
1

2
(1 + sin (

r

1− kδ

l
It + arcsin(2p(0)− 1))).

The number of generations gconv to convergence can be com-
puted by setting p(gconv) = 1. The ratio of gconv for GA

(δ = 0.5) versus EDA (δ = 0) is equal to
p

1− k/2. For in-
stance, for truncation selection with threshold 50% we have
I = 0.8, k = 0.64, and

p

1− 0.64/2 = 0.825. The EDA
thus converges about 20% faster than the GA as shown also
experimentally in Figure 2.

4. STRUCTURES AND LEARNING
The idea of having a tunable model in an optimization

algorithm to match the structure of the optimization prob-
lem most often comes down to identifying groups of variables
that together make an important contribution to a solution’s
quality. Here we consider a general formulation for this type
of dependency structure and describe three specific instances
that we will use in our experiments.

4.1 Family of Subsets
The structures that we will use in this paper will all be

a family of subsets (FOS), denoted F . Mathematically, a
FOS is a set of subsets of a certain main set S. A FOS
is thus a subset of P(S), i.e. the powerset of S. In our
case, the main set S is the set of all problem variable in-
dices, i.e. {0, 1, . . . , l − 1}. A FOS F can be written as

F = {F 0, F 1, . . . , F |F|−1} where F i ⊆ {0, 1, . . . , l − 1}, i ∈
{0, 1, . . . , |F| − 1}. Furthermore, the structures we use will
have families that are complete in the sense that every prob-
lem variable index is contained in at least one subset in F ,

i.e. ∀i ∈ {0, 1, . . . , l− 1} :
`

∃j ∈ {0, 1, . . . , |F| − 1} : i ∈ F j
´

.
In this manner, when performing variation following subsets
in F , no variable is left out of the process.

In EDAs [3] a probability distribution is estimated and
new samples are drawn from this distribution. Typically
these distributions have an underlying dependency structure
similar to that of a FOS. If the subsets in the FOS are mutu-
ally exclusive (which is the case for the univariate structure
and the marginal product structure below), a probability
distribution can automatically be associated with the FOS,

namely: P (X) =
Q|F|−1

i=0 P (XF i) where a stochastic ran-
dom variable Xi exists for each problem variable xi.

4.2 Univariate Structure
The simplest structure is the univariate one, defined by

F i = {i}, i ∈ {0, 1, . . . , l − 1}. There is only one configura-
tion possible for this structure. Hence, no structure learning
is required, causing variation operators based on this struc-
ture to have an extremely low computational complexity.

4.3 Marginal Product Structure
The marginal product (MP) structure is a FOS in which

all subsets are mutually exclusive, i.e. each problem variable
index is contained in exactly one subset. All variables in
a single subset are then dependent on each other, whereas
any two variables in different subsets are independent. Note
that the univariate structure is a specific instance. The MP
structure is defined by any FOS such that F i ∩ F j = ∅.

The MP structure is best known for its use in the ECGA [1].
The method employed in ECGA to learn the structure is
quite common in EDA literature. A greedy algorithm is
used to optimize a statistical scoring metric. The scoring
metric used in ECGA is the Minimum Description Length
(MDL) metric and it should be minimized. The MDL met-
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ric defines a trade-off between the quality of the fit of the
estimated probability distribution and the number of param-
eters that is required for the fit. The quality of the fit is the
negative log-likelihood, which, given a data set of size n, is

identical to n times the entropy, i.e. n
P|F|−1

i=0 H(XF i) with
entropy being defined as H(XF i) = −P

x∈Ω(X
F i ) P (XF i =

x)log2P (XF i = x) where Ω(XF i) denotes the sample space

for random variables XF i , i.e. all 2|F i| binary strings of
length |F i|. Typically, to estimate probabilities, maximum-
likelihood (ML) estimates are used. For Cartesian sample
spaces such as the binary one considered here, this amounts
to counting frequencies and dividing by n. The number of

parameters required using frequency tables is
P|F|−1

i=0 2|F i|−
1. Together, the MDL metric amounts to (n

P|F|−1
i=0 H(XF i))+

(
P|F|−1

i=0 2|F i| − 1).
The greedy learning algorithm starts from the univariate

structure and computes the decrease in MDL metric for all
possible merges of two subsets F i and F j . This decrease can
be computed efficiently using only the variables that are in-
volved and amounts to n(H(XF i)+H(XF j )−H(XF i∪F j ))+

(2|F i| − 1) + (2|F j | − 1) − (2|F i∪F
j | − 1). The merge that

results in the biggest decrease in the MDL metric is chosen
and the two subsets are replaced by their merged subset.
If no merge operation exists that reduces the MDL metric
further, the greedy search procedure stops.

4.4 Linkage Tree Structure
Whereas the MP structure expresses only a single level

of dependence between problem variables, the linkage tree
(LT) structure expresses a richer form of dependence [5]. In
the MP model any two variables are either fully dependent
or fully independent. In the LT model a variable can be
part of multiple subsets. Therefore, any two variables may
be dependent according to some subsets, but independent
according to others. Specifically, the subsets in the LT model
are ordered in a hierarchical fashion: for any subset F i in the
FOS that consists of more than one variable, there are two
mutually exclusive subsets F j and F k in the FOS, both of
which have less elements than F i and their union is exactly
F i, i.e. F j∩F k = ∅, |F j | < |F i|, |F k| < |F i| and F j∪F k =
|F i|. Furthermore, the hierarchical structure is complete
in the sense that there exist two subsets in the FOS that
together contain all problem variable indices.

The LT structure can be seen as the result of a hierarchi-
cal clustering procedure. Each problem variable is taken to
be independent at first, i.e. clustering starts from the uni-
variate structure. Then, similar to the greedy procedure for
learning an MP, two subsets are combined. However, unlike
for the MP model, both the combined subset as well as its
constituent subsets are in the LT structure. Different from
the learning procedure for the MP structure, the combin-
ing of subsets continues until only two subsets remain that
together contain all problem variable indices.

The goal of the greedy algorithm here is slightly differ-
ent from that in case of the MP structure. It is not the
best trade-off between efficiency and quality of a single de-
pendency structure but rather a complete hierarchical de-
pendency clustering that is sought. For this reason, the
complexity term in the MDL isn’t needed, giving a metric
change of n(H(XF i) + H(XF j ) − H(XF i∪F j )) in which n
can now be dropped because it is a constant (i.e. it is the
population size), which gives the definition of mutual infor-

mation: I(XF i , XF j ) = H(XF i) + H(XF j ) −H(XF i∪F j ).
Following the greedy merge algorithm for the MP structure,
this expression should still be maximized (maximum differ-
ence). However, because the notion behind building the
LT structure is clustering, we want to look upon the dif-
ference as a distance measure and thus minimize it. Now,
because H(XF i∪F j ) ≥ max{H(XF i), H(XF j )} and thus
I(XF i , XF j ) ≤ H(XF i∪F j ), one could use H(XF i∪F j ) −
I(XF i , XF j ). However, this distance measure is biased by
the number of variables in a subset. This can be overcome
by dividing by H(XF i∪F j ), giving a distance measure of
1 − I(XF i∪F j )/H(XF i∪F j ). A measure often associated
with clustering in information theory is Variation of In-
formation VI (XF i∪F j ) = H(XF i∪F j ) − I(XF i∪F j ). Also
VI is however biased toward subsets containing more vari-
ables. For this reason, often the scaled VI measure is used:
VI (XF i∪F j )/H(XF i∪F j ). This measure was also used in
the first GA that used the linkage tree structure to perform
variation, LTGA [5]. From the above however it can be seen
that these concepts are not any different. In other words,
the use of scaled VI to compute a linkage tree is no different
than the use of the scaled mutual information and therefore
very closely related to the partitioning that is computed in
case of the MP structure.

In the original LTGA [5], the distance measure was com-
puted using the definition of entropy for each subset. For
large subsets of variables, i.e. high up in the linkage tree,
this however requires counting the frequencies of instances
for many variables. So, although use of the LT structure lifts
the restriction of modelling only mutually exclusive subsets
of variables as imposed by the MP structure, the compu-
tational complexity of configuring the LT structure is even
larger. A faster clustering technique is the average linkage
clustering or unweighted pair group method with arithmetic
mean (UPGMA) and it involves only looking at distances
between pairs of variables. In the case of the LT and the
distance between two subsets of variables this comes down
to 1

|X
F i ||XF j |

P

X∈X
F i

P

Y ∈X
F j

H(X,Y ) − I(X,Y ). Note

that no normalization (dividing by H(X, Y )) is needed now
because all atomic information-theoretic distance computa-
tions pertain to exactly two variables only. This distance
measure can be computed very efficiently because all re-
quired information-theoretic measures between pairs of vari-
ables can be computed beforehand. Also, no more frequency
counting for large sets of variables is required, making this
model-building procedure even faster. Note that this re-
mains true even in an EDA context under the assumption of
ML estimates because sampling an instance for a set of vari-
ables is then identical to randomly picking a solution from
the population and copying the values of variables that the
instance needs to be sampled for. This measure has been
studied before in the context of EDAs to speed up the con-
figuration of the MP structure in ECGA [1]. However, in
order to test whether the MDL score is still decreasing, a
frequency count still needs to be performed for the variables
contained in the merge that was deemed the most promis-
ing according to the UPGMA distance variant. All things
combined, configuring the LT structure in this manner is
even more efficient than configuring the MP structure in the
typical ECGA manner.

To build the LT structure, the FOS is treated as a stack
upon which first the complete univariate structure is pushed
in a random order. Each time two sets are combined, the
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EA
for i ∈ {0, 1, . . . , n− 1} do
Pi ← CreateRandomSolution()
EvaluateFitness(Pi)
P ← TournamentSelection(P , n, 2)
while ¬ TerminationCriterionSatisfied() do

LearnModelFromPopulation()
VariationAndSelection()

Figure 3: Common EA outline.

joined set is also pushed on the stack. When traversing the
LT structure, subsets are popped from the stack, meaning
that the subsets are considered in reverse order of merging.

5. EVOLUTIONARY ALGORITHMS

5.1 Common EA Outline
In the remainder we denote the population by P and the

set of offspring by O. We further denote the population size
by n = |P| and will assume |O| = |P| = n.

All algorithms in this paper belong to the class of evo-
lutionary algorithms (EAs). Therefore, and to ensure a
similar selection pressure in all algorithms, we first define
a common core. The most important ingredients in any
EA are selection and variation. Particular to the type of
EAs that we are interested in, is the use of a configurable
model on the basis of which the variation operators work.
The model is learned from the population, after which vari-
ation is used to generate new solutions and finally survivor
selection selects which solutions actually make it into the
next generation. Although we acknowledge that the inte-
gration of local search techniques can be highly valuable, we
are mostly concerned here with the workings of the varia-
tion operators in a black-box setting. As such, we initialize
the population completely randomly. We define the method
TournamentSelection(A, n, s) to select n solutions from
set A through tournament selection with tournament size s.
Using this definition, the common EA outline as used in this
paper is presented in Figure 3.

5.2 Genetic Algorithm
Typical to the GA is the use of recombination on 2 par-

ents to create 1 or 2 offspring. Once offspring solutions are
fully constructed, their fitness values are evaluated. In the
GA used in this paper, we generate n new solutions in this
manner by randomly pairing 2 parents and generating 2 off-
spring solutions via recombination. In order not to lose track
of good solutions created so far we combine the current pop-
ulation and the offspring and perform selection on these 2n
solutions to select n survivors. To ensure convergence by
logistic growth of the optimal solutions over multiple gener-
ations, we use tournament selection with a tournament size
of 4. This way, each solution appears in a tournament twice
and therefore the frequency of the best solution will always
increase. Pseudo-code is given in Figure 4.

Recombination in GAs is classically of the crossover type
where parts of the parent solutions are inherited by the off-
spring solutions. For the FOS structure this means that
for each of the subsets, values for the variables in a sub-
set are copied from the same, but randomly chosen parent.
Note that when combined with the LT structure, this oper-
ation is identical to the use of the univariate structure. We

GA::VariationAndSelection()
π ← RandomPermutation({0, 1, . . . , n− 1})
for i ∈ {0, 1, . . . , n− 1} do

(Oi,Oi+1)← Recombine(Pπi
,Pπi+1

)
EvaluateFitness(Oi)
EvaluateFitness(Oi+1)
P ← TournamentSelection(P +O, n, 4)

Figure 4: GA variation and selection (n even).

GA::Recombine(p0, p1)
for i ∈ {0, 1, . . . , |F| − 1} do

if Random01() < 0.5 then
o0

F i ← p0
F i ; o1

F i ← p1
F i

else
o0

F i ← p1
F i ; o1

F i ← p0
F i

Return(o0, o1)

Figure 5: GA variation for FOS model.

therefore only use the univariate and MP structures in com-
bination with the GA. Furthermore, note that the use of the
univariate structure gives the classically well-known uniform
crossover operator. Pseudo-code is given in Figure 5.

5.3 Estimation-of-Distribution Algorithm
The EDA generates n new solutions by sampling a proba-

bility distribution. Similar to the GA, we then add these so-
lutions to the population and perform tournament selection,
see Figure 6. Sampling the probability distribution is fully
dependent on the type of probability distribution. In this pa-
per, we only consider distributions that directly follow from
estimating joint distributions over the marginals imposed
by the FOS. We perform estimations using the maximum-
likelihood principle, i.e. marginal distributions are estimated
by counting frequencies in the population for all possible in-
stances of the variables. Probability distributions are auto-
matically defined this way for the univariate structure and
the MP structure, but not the LT structure. The univariate
structure is found in various discrete EDAs such as UMDA,
cGA and PBIL. The MP structure is typically found in the
EDA known as ECGA [1]. In our experiments, the EDA
with MP structure can therefore actually be considered to
be exactly ECGA just as the EDA with univariate structure
can be considered to be exactly UMDA or cGA. Pseudo-code
for variation in EDAs is given in Figure 7.

5.4 Optimal Mixing Evolutionary Algorithm
Typical to the Optimal Mixing Evolutionary Algorithms

(OMEAs) as introduced in this paper is the use of inter-
mediate function evaluations to see if a certain operation
during the construction of a solution was beneficial. This
then can be seen as starting from an existing solution and
trying iteratively to improve upon it. We therefore define
the OMEA as trying to improve existing solutions. Here, be-

EDA::VariationAndSelection()
for i ∈ {0, 1, . . . , n− 1} do
Oi ← SampleDistribution()
EvaluateFitness(Oi)
P ← TournamentSelection(P +O, n, 4)

Figure 6: EDA variation and selection.
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EDA::SampleDistribution()
for i ∈ {0, 1, . . . , |F| − 1} do

oF i ← SampleSubsetDistribution(PF i)
/* Note: for ML estimates this is identical to */
/* p ← Random({P0,P1, . . . ,Pn−1}) */
/* oF i ← pF i */

Return(o)

Figure 7: EDA variation for FOS model.

OMEA::VariationAndSelection()
for i ∈ {0, 1, . . . , n− 1} do
Oi ← OM(Pi)
P ← TournamentSelection(O, n, 2)

Figure 8: OMEA variation and selection.

cause the population size is equal to the number of offspring,
this means that each solution undergoes OM (optimal mix-
ing) variation. Because each offspring is at least as good as
the parent that the OM variation started from, for survivor
selection we can forget about the current population and fo-
cus only on the n offspring. To have the same convergence
properties as the GA and the EDA, we lower the tournament
selection size to 2. Note that the actual selection pressure
is much higher as it is partly contained in the OM variation
operators. Pseudo-code for OMEA is given in Figure 8.

Actual variation in OMEA follows the FOS structure and
attempts to improve the current solution by changing a part
of it as demarcated by the subsets in the FOS. We consider
two types of OM variation: Recombinative Optimal Mixing
(ROM) and Gene-pool Optimal Mixing (GOM). ROM and
GOM can be seen as incremental variants of the variation op-
erators in GA and EDA respectively. In ROM a single other
parent is selected and copied to serve as a donor. Crossover
is performed following the different subsets in the FOS. Al-
though only one solution is checked for improvement (the
one OM variation was started on), all information of the two
parents is preserved as the donor copy undergoes crossover
as well, receiving material from the solution undergoing OM
variation. Care is taken not to re-evaluate a solution if noth-
ing has changed. Because re-evaluations are potentially done
frequently during OM variation, this check is vital compared
to variation operators as in GA and EDA that only perform
evaluation once a solution is fully constructed. Pseudo-code
for ROM is given in Figure 9.

In the original LTGA [5] an operator similar to ROM was
defined. However, there the donor was not a copy but truly

OMEA::ROM(x)

o0 ← p0 ← x; fitness [o0]← fitness [p0]← fitness [x]
o1 ← p1 ← Random({P0,P1, . . . ,Pn−1})
for i ∈ {0, 1, . . . , |F| − 1} do

o0
F i ← p1

F i ; o1
F i ← p0

F i

if o0
F i 6= o1

F i then
EvaluateFitness(o0)
if fitness [o0] > fitness [p0] then

p0
F i ← o0

F i ; fitness [p0]← fitness [o0]; p1
F i ← o1

F i

else
o0

F i ← p0
F i ; fitness [o0]← fitness [p0]; o1

F i ← p1
F i

Return(o0)

Figure 9: ROM variation for FOS model.

OMEA::GOM(x)
b← o← x; fitness [b]← fitness [o]← fitness [x]
for i ∈ {0, 1, . . . , |F| − 1} do

p ← Random({P0,P1, . . . ,Pn−1})
oF i ← pF i

if oF i 6= bF i then
EvaluateFitness(o)
if fitness [o] > fitness [b] then

bF i ← oF i ; fitness [b]← fitness [o]
else

oF i ← bF i ; fitness [o]← fitness [b]
Return(o)

Figure 10: GOM variation for FOS model.

another parent and both offspring were evaluated after each
crossover operation. At the end, only the best offspring so-
lution then is the result of the mixing operation. However,
under the assumption that the learned structure is a good
match with the problem structure this is only a source of in-
efficiency. One solution is always undesirable because it re-
ceives the material you are not interested in. In the original
LTGA however, these “bad” solutions are evaluated anyway.

The EDA-equivalent OM variation operator is GOM. GOM
is similar to ROM but instead of choosing a single donor par-
ent for the entire variation procedure, it selects a new parent
for each subset in the FOS. An alternative way of looking
at GOM is to view it as the multi-parent recombination ver-
sion of ROM. Pseudo-code is given in Figure 10. Note the
similarity to the variation operation in EDA (Figure 7) in
the case ML estimates are used (which is almost always the
case in discrete EDAs). GOMEA can therefore also be seen
as an Incremental-Subset-Sampling EDA (ISS-EDA).

6. EXPERIMENTS

6.1 Optimization problems
We consider three functions, all of which need to be maxi-

mized. The first is commonly known as onemax or bitcount-
ing where fitness is simply the number of ones.

The second function is the mutually exclusive, additively
decomposable composition of the well-known order-k decep-
tive trap functions. We consider subfunctions with k = 5:

fTrap5(x) =

(l/k)−1
X

i=0

f sub

Trap-k

0

@

ki+k−1
X

j=ki

xj

1

A

where

f sub

Trap-k(u) =



1 if u = k
k−1−u

k
otherwise

It is commonly known that the EA needs to detect and pro-
cess the linkage groups pertaining to the deceptive subfunc-
tions in order for optimization to proceed efficiently. Specif-
ically, using univariate structures the minimally required
population size and number of function evaluations scales
up exponentially. It is clear that for this problem the MP
structure is a perfect fit.

The third function is the nearest-neighbour overlapping,
additively decomposable composition of predetermined, but
completely random subfunctions of length k, which is es-
sentially a NK-landscape [4]. This type of NK-landscape
problem where the overlap between subfunctions is exactly
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defined rather than randomly defined as in traditional NK-
landscapes has the advantage that the optimum can be com-
puted using dynamic programming [4], which is important
when we want to use this type of function to determine the
minimally required resources for an EA to find the opti-
mum. We consider subfunctions of length 5 and the maxi-
mum overlap of 4 (corresponding to a shift of 1 where the
next subfunction starts), but without wraparound:

fNK-S1(x) =

l−k
X

i=0

f sub

NK

`

x(i,i+1,...,i+k−1)

´

where f sub
NK

`

x(i,i+1,...,i+k−1)

´

is a pre-determined, but ran-
domly chosen value in [0; 1].

6.2 Setup
For each of the three optimization problems and prob-

lem lengths up to l = 200 we have determined the mini-
mally required population size for GA, EDA, ROMEA and
GOMEA in combination with each of the three FOS struc-
tures to solve the problem in 99 out of 100 independent
runs. As indicated in Section 4 however, it doesn’t make
sense to combine GA and EDA with the LT structure as
variation for these algorithms then becomes equivalent to
using the univariate structure. We furthermore included
the LTGA [5] in our experiments, combining it only with
the LT structure, following its name and definition. How-
ever, we did change the learning procedure in LTGA to use
the UPGMA mutual-information distance measure rather
than the full-marginal scaled mutual-information distance
measure used in the original LTGA. Note that this is also
the LTGA version used in [2] where the UPGMA is called
the pairwise distance measure. Furthermore, to ensure the
same selection pressure as ROMEA and GOMEA, we added
tournament selection with a tournament size of 2 to LTGA,
similar as is done in ROMEA and GOMEA. In this way,
the inefficiency in number of required function evaluations
in the always-evaluate-both offspring in the LTGA variation
procedure can be studied in isolation.

6.3 Results
The results for the minimally required population size,

number of function evaluations and actual computing time
in seconds are shown in Figures 11,12 and 13 respectively.
Figure 11 nicely demonstrates existing knowledge about GAs
and EDAs as well as the knowledge presented in this pa-
per. As already known, the use of the univariate structure,
like the uniform crossover operator in GAs, results in ex-
ponential scale-up behavior on problems with higher-order
multivariate interactions such as the composition of decep-
tive trap functions and the overlapping NK landscapes. The
results with the univariate structure also demonstrate how,
due to faster mixing, EDAs are superior to GAs if the depen-
dency structure used in the variation operator is configured
to perfectly match the dependency structure in the problem.
This phenomenon can be observed on the Onemax problem
using the univariate structure. The reverse, hower, as a re-
sult of implicit multivariate dependency processing through
2-parent recombination, GAs are superior to EDAs if the
dependency structure used in the variation operator is not
correctly configured, can also be seen, for instance using the
univariate structure on the trap functions.

Interestingly, and to the best of our knowledge, not demon-
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Figure 11: Minimally required population size (nmin)
to reach the optimum in at least 99 out of 100 runs.
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Figure 12: Required number of function evaluations
averaged over 100 runs for population size nmin.
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Figure 13: Required runtime in seconds averaged
over 100 runs for population size nmin.

strated before, the odds fall in favor of GAs rather than
EDAs using the configurable MP structure that was origi-
nally introduced in an EDA (ECGA) rather than in a GA.
This is because it takes time before the model is correctly
configured. The more wrong the model still is, the more in
favor the GA is. Once the model is configured correctly, in
case of the MP structure and the current practice to learning
it, the efficiency of the EDA cannot compensate anymore for
the losses already sustained compared to the GA.

It is furthermore interesting to see that this phenomenon
does not hold up under the incremental manner of variation
as performed in the OMEAs. The reason for this is that
the far more intense variation and re-evaluation results in
an extreme type of selection pressure within a single gen-
eration and in an operator that acts close to something of
a local search operator. As a result, very quickly the lo-
cal structures such as the most promising instances for sets
of dependent variables (i.e. the deceptive and global attrac-
tor in the deceptive trap functions) are found and identify-
ing this structure requires only very few of such solutions.
Therefore, not only is a far smaller population size required,
regardless of the type of structure to be configured, also the
model can be configured favorably much faster and the dif-
ference between recombinative and gene-pool variation be-
comes much smaller. Although with the MP structure the
odds are still slightly in favor of recombinative mixing, using
the LT structure, which can be configured favorably much
faster and which is ultimately the structure we want to gen-
erally use, gene-pool variation is superior. Also, in terms
of required actual running time the LT structure is vastly
superior. Combined with the UPGMA mutual-information
distance measure making the computing and storing of fre-
quency counts for large marginals that involve many vari-
ables no longer needed, the LT structure can be configured
very efficiently and effectively and is also exploited well by

the OM manner of variation. For 200 variables, the use of
an MP structure such as used in ECGA, even using OM
variation ultimately results in an algorithm that requires a
similar number of evaluations but approximately a factor 4
more in actual running time. Compared to the EAs that
do not use the OM manner of variation, even with a similar
number of evaluations the difference in required number of
function evaluations becomes a factor of approximately 140
due to the far larger required population size.
Although subfunctions exist in the overlapping NK-landscape
problem, clearly the MP structure is not a perfect fit. Al-
though the LT structure doesn’t appear to be a perfect fit ei-
ther, having dependency sets of multiple sizes allows depen-
dencies between blocks of variables to be expressed, which,
when combined with incremental evaluation can allow for
efficient construction of high-quality solutions. Indeed, all
OMEAs with the LT structure can solve the overlapping NK-
landscape problem. However, when the OMEAs are com-
bined with the MP structure they are also capable of solv-
ing this problem. The incremental evaluation in OMEAs,
or alternatively seen, the hillclimbing nature of OM varia-
tion on entire blocks in the MP structure rather than single
variables in the univariate structure is clearly already highly
beneficial. This supports the notion that it is not just find-
ing a good configuration of a sufficiently complex structure,
it is also the way in which this structural information is
exploited upon creating new solutions that is of vital impor-
tance. OMEAs exploit this information more efficiently and
effectively than GAs and EDAs.

Finally we note that the original LTGA, as a result of
its always-evaluate-both offspring variation scheme, can in-
deed be seen to be less efficient than both ROMEA (by a
factor ≥ 1.7) and GOMEA (by a factor ≥ 2.3) in terms
of required number of function evaluations. This leads us
to conclude that the most promising algorithm for future
use, regarding all three criteria of required population size,
number of required evaluations as well as computing time,
is LT-GOMEA, from now on our new version of the linkage
tree genetic algorithm (LTGA).
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