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We want fast and smart algorithms

§ Large systems and high frame rates require fast algorithms:
§ Matrix-based methods, which apply the control matrix more quickly
§ Local control, sparse matrix methods, conjugate gradient & multigrid

§ Fourier transform reconstruction (FTR), which filters the slopes

§ Our controller should use knowledge about the phase aberration and 
noise to its advantage:
§ Can use a priori model of atmosphere and noise
§ MVU, weighted least-squares

§ Can incorporate real-time information about the phase aberration and noise level 
as determined from telemetry of AO system
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What is modal control?

§ For n actuators, create an orthonormal basis of n functions
§ these basis functions are normally chosen to concentrate signal power in few 

modes

§ Instead of controlling the phase value at each actuator, we control the 
amount of each mode present
§ this is expressed as the modal coefficient

§ The AO control problem simplifies to finding the optimal control law for 
each mode, independently of all the others

§ Explicit modal control with optimization is used in Altair and ESO’s 
NAOS



4Lisa A. Poyneer’s presentation on  Optimal Fourier Control

Optimal Fourier Control is our solution

§ Our modal set is the Fourier basis. This works even on an arbitrary 
aperture.

§ Reconstruction at each time step is with FTR.

§ Closed-loop modal coefficients are used to estimate optimal gains for 
control law for each mode. Gains are implemented as a filter.

§ Computationally feasible for 64x64 ExAO right now.

§ Extra benefits include
§ Modal coefficients are available for free, unlike matrix-based modal control, 

which requires extra computation.

§ There is a natural relationship between filter structure and PSF structure.
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FTR works by filtering the slopes

WFS slopes

FFT

Phase
estimate

FFT-1Filter

Fix boundary
problem
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The Fourier basis is the modal set 

§ FTR uses the DFT on N x N real signals. This leads to a real cosine 
and sine ONB with N2 modes:
§ For [k,l] either [0,0], [0,N/2], [N/2,0] or [N/2,N/2], there is only a cosine mode

§ All other frequencies have a sine and cosine
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Use the DFT to get modal coefficients

§ FTR uses the DFT

§ Modal coefficients are obtainable directly from the DFT
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Modes correspond to PSF locations

§ Each Fourier mode lives at a specific spatial frequency pair [k,l]

§ Because the PSF is approximately the PSD of the residual phase (to 
second order), each Fourier mode appears at a specific location in the 
PSF

PSD/power at each mode PSFFrequency domain

Piston
k,l=0

Waffle
k,l=N/2

k

l
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Modes are eigenfunctions

§ Fourier modes are eigenfunctions of linear, shift-invariant (LSI) 
systems
§ The modes for the slopes (on a square aperture) are the same as the modes for 

the phase

§ A cosine of phase at frequency [k,l] produces x- and y-slopes only at the cosine 
and sine of that frequency [k,l]

§ Where Mx[k,l] describes the filter which measures the x-slopes from actuator 
commands

A = Re{Mx[k, l]}, B = −Im{Mx[k, l]}

Ck,l[m, n] ACk,l[m, n] + BSk,l[m, n]

−BCk,l[m, n] + ASk,l[m, n]Sk,l[m, n]

phase x-slope
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Filter comes from modal responses

§ We simply pseudo-invert the measurement matrix

§ And obtain the reconstruction matrix for the phase modes as:

§ This produces an extremely sparse modal control matrix
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C −D
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Filter inverts the measurement process

§ Filter derived from modal coefficients...

§ ... is exactly the same as if we knew the measurement filters

P̂ [k, l] =
M∗

x [k, l]X[k, l] + M∗

y [k, l]Y [k, l]

|Mx[k, l]|2 + |My[k, l]|2

P̂ [k, l] =
(A + jB)X[k, l] + (C + jD)Y [k, l]

|(A + jB)|2 + |(C + jD)|2
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Many filtering options now available

§ Best point-based model filter is Modified-Hudgin

§ Assuming ideal continuous models for WFS and DM, can derived the 
Ideal filter
§ Ideal filter and Mod-Hud very similar

§ Given any LSI AO system or simulation, we can measure the 
coefficients that describe the modal responses and produce a Custom 
filter
§ captures influence function response of DM

§ Each filter exactly reconstructs given the assumed model, except 
for invisible modes of piston and sometimes waffle.



13Lisa A. Poyneer’s presentation on  Optimal Fourier Control

We can do all this with an aperture

§ Fourier basis in an arbitrary aperture is a tight Frame that allows 
analysis and synthesis like an ONB.

§ If we window the data, we can use a fast DFT to get modal 
coefficients.

§ New method of slope management called edge correction ensures 
high-quality coefficient estimation by making outside region of phase 
flat.

§ Result - we get the modal coefficients for free at each time step in the 
FTR process.



14Lisa A. Poyneer’s presentation on  Optimal Fourier Control

Optimal modal control scheme

§ We follow Altair’s 
implementation and assume 
an approximate model of 
control system (exact in 
simulation case) for each of 
the independent modes.

§ We control a mode with 
feedback in the presence of 
noise.
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Block diagram of control 
loop for a modal 

coefficient
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Optimize the squared-residual error

§ Since the noise at any step is independent of past errors, if we 
minimize on the measurement s, we minimize on the residual error.

§ If we had perfect knowledge we would minimize

§ But we don’t... so we have to estimate the open-loop PSD from the 
closed-loop measurements using

J =

∫ ∣∣∣∣ 1

1 + exp(−jω)H(ω)

∣∣∣∣
2

[M(ω) + N(ω)] dω

M̂(ω) + N̂(ω) = |1 + exp(−jω)H0(ω)|2 Ŝ(ω)
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Gain estimation for FTR (1)

§ From closed-loop telemetry, we estimate the closed-loop 
measurement PSDs

§ Convert these to open-loop PSD estimates

§ Find the control law which minimizes the error for the sine and cosine 
modes together

§ Where our control law is simple:

argminH(z)

{∫ ∣∣∣∣ 1

1 + exp(−jω)H(ω)

∣∣∣∣
2

|1 + exp(−jω)H0(ω)|2
[
ŜS(ω) + ŜC(ω)

]
dω

}

H(z) =
g

1 − cz−1
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Gain estimation for FTR (2)

§ For a single variable (gain g) 
we can solve the 
optimization problem 
efficiently.

§ At each frequency [k,l] we 
have a gain - we construct 
the filter of these gains using 
Hermitian symmetry. This 
filter in then incorporated into 
the reconstruction filter.

Example filter, N=64

Wind direction

DM 
compensation
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Gains are incorporated into filter

WFS slopes

FFT

Phase
estimate

FFT-1Filter

Fix boundary
problem



18Lisa A. Poyneer’s presentation on  Optimal Fourier Control

Gains are incorporated into filter

Gain
optimizer

WFS slopes

FFT

Phase
estimate

FFT-1Filter

Fix boundary
problem
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Details of end-to-end ExAOC simulation

§ Features of ExAOC simulation include:
§ Fourier Optics for Spatially-filtered WFS onto CCD, quadcell config

§ Altair-based DM model using influence functions

§ Input phase aberration is a very long screen shifted at 10m/s

§ FTR reconstruction

§ Modal coefficients obtained in reconstruction stage

§ Gain optimization as describe above

§ Full diagnostics including long-exposure PSDs and PSFs from the residual 
wavefront and instantaneous residual error in different spatial frequency bands

§ Run either single long case to watch optimization or many short cases with a 
specific filter to analyze general case performance



20Lisa A. Poyneer’s presentation on  Optimal Fourier Control

Significant reduction in residual error

§ Use of optimal gains 
improves performance
§ significant reduction in 

residual MSE at each 
timestep

§ less variation in MSE at 
each timestep

N=48, NGS Mag 8 example for 8 iterations 
of gain optimization
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Comparison shows improvement

§ N=48 case with WFS SNR of 2.16

§ Strehl increased from 0.75 to 0.87 (+12%)

§ MSE in band reduced from 0.224 to 0.074 (3 times less)

Before After



22Lisa A. Poyneer’s presentation on  Optimal Fourier Control

Trade bandwidth and sensor errors

§ At high SNRs, optimal 
gains produce equivalent 
or more measurement 
error but less temporal 
error than before

§ At low SNRs, optimal 
gains produce less 
measurement error but 
more temporal error than 
beforeData for N=48, median over a set

of 25 random phase screens
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We can control modes independently

§ Given an optimal gain profile, we compare three filters
§ (1) constant gain of 0.6 for all modes 

§ (2) optimized gains

§ (3) constant gains with optimized for a smaller region of filter

§ PSD of case (3) is almost exactly the combination of parts of the other 
two responses in the right places

Constant Mix Optimal
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Optimal gains compensate for DM 

§ Test: run Mod-Hud and 
Custom filter on same 
aberration and determine 
steady-state optimal gains

§ Ratio of these gains is 
almost exactly the inversion 
of the DM response, as 
determined empirically from 
AO system models

Inversion of DM influence function

DM knowledgeNo DM knowledge
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Computational load is satisfiable today

§ FTR each timestep:

§ Estimating periodograms for t steps of telemetry:

§ Averaging the periodograms and finding the optimal gain (k is for 
evaluations in root-finding):

§ Assuming k = 10 (using fast method), a 64x64 system at 2.5k kHz has 
a maximum load of 1.43 GFLOPs/sec.

15N
2 lg N + 20N

2

N
2(5 + 2.5 lg t)

N
2(1 + k) + 4k
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Plans for Optimal Fourier Control

§ Short term continuation of theory:
§ Explore complex gain filters and higher-order control laws

§ Contribute to ExAOC system design with performance predictions

§ Verify system measurement procedure (custom filters) at LAO ExAO testbed

§ Long term experimental verification of performance:
§ Implement at LAO testbed in ExAOC control system

§ Paper preprint (PDF) available


