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In general, only one diffusion model would be applied to whole field-of-view voxels in the

intravoxel incoherent motion-magnetic resonance imaging (IVIM-MRI) study. However,

the choice of the applied diffusion model can significantly influence the estimated

diffusion parameters. The quality of the diffusion analysis can influence the reliability

of the perfusion analysis. This study proposed an optimal model mapping method to

improve the reliability of the perfusion parameter estimation in the IVIM study. Six healthy

volunteers (five males and one female; average age of 38.3± 7.5 years). Volunteers were

examined using a 3.0 Tesla scanner. IVIM-MRI of the brain was applied at 17 b-values

ranging from 0 to 2,500 s/mm2. The Gaussian model, the Kurtosis model, and the

Gamma model were found to be optimal for the CSF, white matter (WM), and gray matter

(GM), respectively. In the mean perfusion fraction (fp) analysis, the GM/WM ratios were

1.16 (Gaussian model), 1.80 (Kurtosis model), 1.94 (Gamma model), and 1.54 (Optimal

model mapping); in the mean pseudo diffusion coefficient (D∗) analysis, the GM/WM

ratios were 1.18 (Gaussian model), 1.19 (Kurtosis model), 1.56 (Gamma model), and

1.24 (Optimal model mapping). With the optimal model mapping method, the estimated

fp and D∗ were reliable compared with the conventional methods. In addition, the optimal

model maps, the associated products of this method, may provide additional information

for clinical diagnosis.

Keywords: IVIM-MRI, perfusion, diffusion, modeling, gaussian, kurtosis, gamma, AIC

INTRODUCTION

The theory of intravoxel incoherent motion (IVIM) was first introduced to extend the
understanding and usefulness of diffusion-weighted imaging (DWI) with the motion probing
gradients (MPG) in the mid-1980s (Le Bihan et al., 1986, 1988). The potential of IVIM-MRI
to simultaneously determine perfusion and diffusion information has led to high expectations
regarding clinical applications (Le Bihan and Turner, 1992; Paschoal et al., 2018). However, the
feasibility of perfusion measurement with IVIM-MRI has been controversial for a long time. One
of the reasons is the instrumental limitations in the past. It has been challenging to estimate
small blood volumes with a low signal-to-noise ratio (SNR) in IVIM-MRI. In addition, numerous
perfusion MRI techniques have been well-developed in the last three decades; e.g., dynamic
susceptibility contrast MRI, dynamic contrast-enhanced MRI, and arterial spin labeling (Alsop
et al., 2015; Welker et al., 2015; Zhang et al., 2017). IVIM-MRI, especially in the brain, has not
been thought to be practically feasible for performing perfusion measurements.
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In the last decade, the improvements in MRI instrumentation,
such as high SNR echo-planar imaging, have increased interest
in IVIM-MRI, which is anticipated to be an alternative
technique for non-invasive perfusionmeasurement. Based on the
theoretical relationship, the perfusion fraction (fp) and pseudo-
diffusion coefficient (D∗) obtained by IVIM-MRI can represent
the cerebral blood volume (CBV) and inverse mean transit
time (MTT−1) of classic perfusion, respectively (Le Bihan and
Turner, 1992). Numerous clinical studies have demonstrated the
applications of IVIM-MRI to cancer, stroke, and Moyamoya
disease in the brain (Puig et al., 2016; Yao et al., 2016; Li et al.,
2018; Federau et al., 2019).

Although some previous studies have demonstrated a
correlation between fp and CBV by conventional perfusion MRI
(Wirestam et al., 2001; Federau et al., 2014a,b), others have shown
controdictory results (Wu et al., 2015; Puig et al., 2016; Hara
et al., 2019). Additionally, arguments for a relationship between
D∗ and MTT−1 have been made (Wirestam et al., 2001; Federau
et al., 2014b; Wu et al., 2015; Hara et al., 2019). Furthermore,
in conventional perfusion studies, the CBV ratios of gray matter
(GM) and white matter (WM) have been found to range from 1.4
to 1.8, and the MTT−1 ratio of GM and WM has ranged from
1.2 to 1.5 (Greenberg et al., 1978; Leenders et al., 1990; Wirestam
et al., 2001; Shin et al., 2007; Carroll et al., 2008). However,
relatively higher fp ratios (∼2) of GM and WM and lower D∗

ratios (∼≤1) of GM and WM have been commonly estimated
in IVIM studies (Wirestam et al., 2001; Federau et al., 2014b; Wu
et al., 2015; Bertleff et al., 2017).

Notably, the quality of the diffusion analysis can influence the
reliability of the perfusion analysis. In general, only one diffusion
model would be applied to the voxels in the whole field-of-view in
an IVIM-MRI study. However, the choice of the applied diffusion
model can significantly influence the perfusion estimation (Lu
et al., 2012; Pavilla et al., 2017). Because of the heterogeneity
of tissue structures, assigning a single diffusion model to the
whole brain might induce systematic errors in the perfusion
estimation. The study aim was to determine the optimal diffusion
models in brain IVIM-MRI. In addition, we propose an optimal
model mapping method to improve the reliability of perfusion
parameter estimation in IVIM studies.

MATERIALS AND METHODS

Theory
The signal intensity of IVIM-MRI is regarded as a two-
compartment model by Le Bihan et al. (1988):

S
(

b
)

= Se0 · E
(

b; D, K
)

+ Sv0 · exp
(

−bD∗
)

(1)

where S(b) denotes the signal intensity depending on b-values,
Sv0 and Se0 are the non-MPG-induced signal intensities of
the intravascular and extravascular components, respectively;
E(b; D, K) is the attenuation function of the extravascular
component, i.e., the diffusion model, with two parameters D and
K that denote the diffusion coefficient and diffusional Kurtosis,
respectively; and D∗ is the pseudo-diffusion coefficient, which

indicates the blood random microcirculation and is considered
to relate MTT as mentioned.

The perfusion fraction, i.e., the volume fraction of flowing
blood, has been defined by Jerome et al. (2016):

fp =
Sv0

Sv0+Se0
(2)

Note that fp and D∗, crucial parameters in IVIM, are challenging
to evaluate with sufficiently high reliability because of the
negligible contribution of the perfusion component to the
total MPG-induced signal [the second term in Equation
(1)]. Therefore, a precise estimation of the diffusion-weighted
component, the first term in Equation (1), is essential.

The concept of “optimal model mapping” is to apply an
appropriate diffusion model, E(b; D, K), to the examined voxel
based on the goodness-of-fit and not a priori tissue information.
In this study, three types of diffusion models, namely Gaussian,
Kurtosis, and Gamma models, were chosen to be the candidates
of E(b), as described in the later sections. Figure 1 which
shows an example of IVIM-MRI data for high b-values that
are fitted with three different diffusion models, demonstrates
that the estimated Se0 values are varied by the applied models.
To determine the optimal model for an individual voxel, the
corrected Akaike Information Criterion (cAIC) (Akaike, 1987;
Hurvich and Tsai, 1989) was applied to illustrate the goodness-
of-fit of each candidate model. The cAIC is calculated according
to the following equation:

cAIC = 2P + n ln

(

RSS

n

)

+
2P (P+1)

n−P−1
(3)

where n is the number of data points, P is the number of
parameters, and RSS is the residual sum of squares. A diffusion
model with the minimal cAIC within the candidates was
considered to be optimal for the examined voxel.

FIGURE 1 | Demonstration of the high b-valued IVIM-MRI data fitted with

three different diffusion models. The estimated Se0 are varied to influence the

fp estimation.

Frontiers in Human Neuroscience | www.frontiersin.org 2 February 2021 | Volume 15 | Article 617152

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Liao et al. Optimal Model Mapping for IVIM-MRI

Numerous physical and mathematical models were presented
in the diffusion MRI history (Jensen and Helpern, 2010). To
represent the tissue structure as well as to minimize the number
of the parameters of the model to estimate, three typical diffusion
models were selected in this study.

Gaussian Model

For individual molecules of free water, the Gaussian distribution
probability displacement along one direction is considered. Then,
the attenuation function can be derived, as shown by Le Bihan
et al. (1986):

E
(

b
)

= exp
(

−bD
)

(4)

where D is the diffusion coefficient. In the brain, the ventricles
are filled with cerebrospinal fluid (CSF). Because CSF is uniform
and the ventricles are large cavities, the Gaussian model was
appropriate for the diffusion analysis.

In brain tissues, e.g., GM and WM, water molecules can
interact with cell membranes and microstructures, so the
displacement probability of water diffusion might not show a
Gaussian distribution. That is, a non-Gaussian model is needed
to evaluate restricted water diffusion.

Kurtosis Model

To describe the deviation from a Gaussian distribution, a
mathematical model was proposed by Jensen et al. (2005):

E
(

b
)

= exp

(

−bD +
b2D2K

6
+ O

(

b3
)

)

(5)

where K is the diffusional Kurtosis, a dimensionless statistical
metric to quantify the non-Gaussian characteristic of an arbitrary
probability distribution (DeCarlo, 1997), and O(b3) is the power
series of the higher-order terms. When O(b3) is considered to be
negligible, this model can be rewritten as follows:

E
(

b
)

= exp

(

−bD +
b2D2K

6

)

(6)

where when K = 0, Equation (6) reduces to Equation (4) as a
Gaussian model. In the Kurtosis model, the maximum b-value
should be within an adequate range, which is determined by
the given D and K; it should be sufficiently high to express the
non-Gaussian effect and sufficiently small to neglect the higher-
ordered exponential terms (Jensen and Helpern, 2010). However,
there is no way to determine the boundary of the maximum b-
value without the information of D and K. In practice, assuming
a monotonically decreasing S(b), the upper bound b ≤ 3/DK for
applied b-values should be considered (Jensen et al., 2005).

Gamma Model

To illustrate a tissue structure with a high number of
compartments, we can consider a statistical model based on
a Gamma distribution of diffusion coefficients (Jensen and
Helpern, 2010; Oshio et al., 2014). The fraction density function
ρ (D’) for a compartment is given by:

ρ
(

D′
)

=
βα

Ŵ (α)

(

D′
)α−1

exp
(

−bD′
)

(7)

where D′ is the diffusion coefficient in the compartment, and the
mean and variance of the Gamma distribution are given by α/β
and α/β2, respectively. Then, the decay curve E(b) is given by:

E
(

b
)

=

∫ ∞

0
ρ

(

D′
)

exp
(

−bD′
)

=
βα

(

β+b
)α (8)

According to Jensen’s work, α and β can be given by comparison
of the Taylor expansion of Equation (6) with Equation (5), as α =

3/K and β = 3/KD. Then, Equation (7) can be rewritten using D
and K as:

E
(

b
)

=

(

1 +
bDK

3

)− 3
K

(9)

Here, we should note that D coincides with the expected value
of D

′
of the Gamma distribution and that K satisfies the

assumption of a multiple-compartment model without water
exchange (Jensen et al., 2005):

K =
3σ 2

D2
(10)

Like the Kurtosis model, this model also converges to the
Gaussian model when K = 0. Likewise, if the applied b-value is
sufficiently smaller than 27/(6DK), the third-order or higher
terms of the Taylor expansion of Equation (9) are negligible,
resulting in the coincidence of the two models (Jensen and
Helpern, 2010). Conversely, considering that typically DK is
around 0.001 mm2/s, b-values smaller than 600 s/mm2, which
provides <1% signal difference, can be insufficient to distinguish
the two models.

MRI Acquisition
This study was approved by the Ethics Committee Graduate
School and Faculty of Medicine Kyoto University. All
participants provided written informed consent. Six healthy
volunteers (five males and one female; average age: 38.3 ± 7.5
years) were scanned by using a 3.0T scanner (MAGNETOM
Trio Tim; Siemens Healthineers, Erlangen, Germany) with a
32-channel phase-array head coil. The multiband DWI sequence
provided by the University of Minnesota was used for imaging
(Feinberg et al., 2010; Moeller et al., 2010; Xu et al., 2013), but no
multiband or parallel imaging function was adopted to avoid a
non-uniform SNR distribution. IVIM-MRI was performed with
spin-echo echo-planar imaging and MPGs. Seventeen b-values
of 0, 100, 200, 300, 400, 500, 600, 700, 800, 1,000, 1,200, 1,400,
1,600, 1,800, 2,000, 2,250, and 2,500 s/mm2 in sixMPG directions
([1,1,0], [0,1,1], [1,0,1], [1,−1,0], [0,1,−1], [−1,0,1]) were used.
The other imaging parameters were TR/TE = 2,600/80ms; flip
angle= 90◦; voxel size= 3× 3× 3 mm3; acquisition matrix size
= 64 × 48 (3/4 partial Fourier); image matrix size = 64 × 64;
22 slices and slice gap = 3mm. To assess the influence of SNR
difference on the selection of the optimal model, the IVIM-MRI
acquisition was repeated six times. A three-dimensional T1-
weighted gradient-echo sequence (magnetization-prepared rapid
gradient-echo; MP-RAGE) was acquired to obtain anatomical
information. The acquisition parameters for the MP-RAGE scan
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were TR/TE/TI = 2,500/3.4/990ms; flip angle = 8◦; voxel size =
0.9375 × 0.9375 × 0.9333 mm3; image matrix size = 256 × 256
× 192. The acquisition time for a single IVIM-MRI set was 6min
48 s in our study.

Data Analysis
All data analysis was performed by using Matlab (R2013a;
The MathWorks Inc., Natick, MA). The head movement was
confirmed by using Statistical Parametric Mapping (SPM 12;
Wellcome Centre for Human Neuroimaging, University College
London, London, England). All data showed lower than 3mm
(one voxel size) movement. To assess the influence of SNR on
the data analysis, six datasets with different SNR were generated
by changing the number of averages from one to six. They
were named as NA1–NA6, where “NA” denotes the number
of averages.

To account for the effect of Rician noise in the fitting, the
measured signal (Ŝ) was modeled as:

Ŝ2
(

b
)

= S2
(

b
)

+ NCF (11)

where S denotes the noise-free signal intensity defined in
Equation (1) and NCF is the noise correction factor to
characterizes the “intrinsic” noise contribution (Iima et al., 2015).
In this study, NCF was estimated from the square of the mode
value of the signal histogram of the S(0) image.

Two-step asymptotic curve fitting (Pekar et al., 1992) was
performed voxel-by-voxel with the IVIM-MRI series for each
subject. The optimal model maps were obtained within the
diffusion analysis.

At the first step of the asymptotic fitting, only high b-value
IVIM-MRI data (b = 600–2,500 s/mm2) were used to minimize
the signal contamination from the intravascular component

FIGURE 2 | Demonstration of the two-step asymptotic fitting of a gray matter voxel. The blue, green, and yellow curves indicated the fittings by Gaussian model,

Kurtosis model, and Gamma model, respectively. (A–F) showed the diffusion fitting along six MPG directions. (G–I) showed the residual signals by removing diffusion

components with Gaussian model fitting, Kurtosis model fitting, and Gamma model fitting. The mark styles of solid circle, solid triangle, solid square, hollow circle,

hollow triangle, and hollow square indicated the data from the MPG directions of [1,1,0], [0,1,1], [1,0,1], [1,-1,0], [0,1,-1], and [−1,0,1], respectively.
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and to simplify the IVIM model assigned by Equation (1) by
neglecting its perfusion term.

S
(

b
)

≈ Se0 · E
(

b
)

(12)

Figure 2 presents an example of the IVIM analysis. Six series
with varied MPG directions were independently analyzed. Data
fits were performed by using Equation (12) associated with the
candidate model (Equations 4, 5, and 8) (Figures 2A–F). Then,
six sets of the diffusion-related parameters (Se0, D, and K) were
estimated. For the fp estimation later, six estimated Se0 values
were averaged. The mean diffusibility (MD) was calculated by
averaging the results of sixMPGdirections (Pierpaoli et al., 1996).
Because of insufficient Kurtosis tensors in this study, we could
not estimate the mean Kurtosis. Alternatively, the apparent mean
Kurtosis (Kapp) was calculated by averaging the results of six
MPG directions for comparison of the diffusion models.

In the perfusion analysis in the second step of the asymptotic
fitting, six series of the intravascular component were extracted
by removing the extravascular component from the S(b) series
(Equation 1). Assuming an isotropic capillary perfusion, the six
series were simultaneously fitted by:

Ŝv,i
(

b
)

= Sv0 · exp
(

−bD∗
)

(13)

where Ŝv,i was the extracted perfusion series and suffix i denotes
the MPG direction. Then, fp was estimated with Sv0 and the

averaged Se0with Equation (2). With these processed, one set
of the perfusion-related parameters (fp and D∗) were finally
estimated (Figures 2G–I).

The optimal model was defined as the model that yielded
the minimal mean cAIC of the diffusion estimation. To evaluate
the optimal model for the individual voxels, six cAICs by MPG
directions of each candidate model were calculated by Equation
(3). An optimal model map was generated to display the optimal
model for each voxel. Then, the hybrid modeling maps of fp, D∗,
MD, and Kapp were generated by assigning the optimal results to
the whole brain matrix.

Validation With Regional Analysis
To determine the relationship between the optimal model and
corresponding tissue, representative values of the parameters
estimated with our method were calculated for each of the

TABLE 1 | Proportional territory of the optimal models in each region (%).

GM WM CSF

Gaussian 18.7 ± 3.0 9.9 ± 1.8 100 ± 0.0

Kurtosis 36.1 ± 1.9 80.9 ± 1.9 N/A

Gamma 45.3 ± 3.8 9.3 ± 3.1 N/A

FIGURE 3 | Demonstration of the anatomical maps and the optimal model maps: (A) T1-weighted (MP-RAGE) image (B) b0 image of the IVIM-MRI series (C) optimal

model map (D) optimal model map of 95% GM (E) optimal model map of 95% WM (F) optimal model map of 95% CSF.

Frontiers in Human Neuroscience | www.frontiersin.org 5 February 2021 | Volume 15 | Article 617152

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Liao et al. Optimal Model Mapping for IVIM-MRI

GM/WM/CSF regions. Each region was decided by segmenting
the MP-RAGE images by using SPM 12 and the segmented
volumes were co-registered to the b0 images. To avoid the
errors, such as from the partial volume effect, mis-segmentation,
mis-registration, and image distortion on IVIM images, the
segmented voxels of an identical proportion >95% were
collected. In addition, in the tissue regions (GM and WM), the
voxels of MD > D∗ were excluded, whereas in the CSF region,
the voxels of Kapp > 0.1 were excluded. After the determination
of regions, the mean value of each parameter obtained with the
hybrid modeling method was calculated for each subject as a
representative value.

RESULTS

Figure 3 shows the T1-weighted image by MP-RAGE (A), the b0
image (B), the full optimal model map (C), and the segmented
map by GM (D) WM (E), and CSF (F) of one subject with the
NA6 data. The optimal model maps of six subjects by varied
NA was shown in the Supplementary Material. Note that the
segmented optimal model map for CSF (Figure 3F) contained
the voxels of K ≥ 0.1. Table 1 presents the mean proportional

size of each optimal model in each region of the six subjects.
In general, GM was Gamma model dominant (45.3%), WM
was Kurtosis model dominant (80.9%), and CSF (K < 0.1) was
Gaussian model dominant (100%).

Figure 4 shows the IVIM parameter maps obtained by the
conventional method with only the three candidate diffusion
models and the proposed method. Note that in the fp and D∗

maps, the CSF region was masked to enhance the GM/WM
contrast. In the fp maps, results of the Gaussian model
(Figure 4A) showed several times higher values than those of
the other two models (Figures 4B,C). In the D∗ maps, the GM
values were generally higher than the WM values. The results
estimated by the Gaussian model (Figure 4E) were lower than
those of the other two models (Figures 4F,G). In the MD maps,
the CSF regions showed similar results in all methods. The MD
map of Gaussian model (Figure 4I) showed similar GM/WM
contrast and lower absolute values when compared with the
other three methods (Figures 4J–L). In the Kapp maps, both the
Kurtosis model (Figure 5M) and Gamma model (Figure 5N)
showed higher Kapp values in WM than in GM. However,
with the optimal model mapping method (Figure 5O), the
Kapp differences between GM and WM were small. Table 2

FIGURE 4 | IVIM parameter maps respectively analyzed by Gaussian model (A,E,I), Kurtosis model (B,F,J,M), Gamma model (C,G,K,N), and the optimal model

mapping (D,H,L,O) for one subject. The units for fp is % and for D* and MD are ×10−3 mm2/s.
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FIGURE 5 | The influence of SNR (denoted by the number of averages, NA) on the percentage optimal model territory (A,B), fp, (C,D) and D* (E,F).

summarizes the IVIM parameters of each tissue region according
to the models. In the mean fp analysis, the GM/WM ratios were
1.16 (Gaussian model), 1.80 (Kurtosis model), 1.94 (Gamma
model), and 1.54 (Optimal model mapping); in the mean D∗

analysis, the GM/WM ratios were 1.18 (Gaussian model), 1.19
(Kurtosis model), 1.56 (Gamma model), and 1.24 (Optimal
model mapping).

Table 3 presents the regional results of the Kurtosis model
and Gamma model. In the mean fp analysis, the Kurtosis
model yielded higher fp estimation in the voxels for which
the optimal model was the Gamma model; the Gamma model
yielded lower fp estimation in the voxels for which the optimal
model was the Kurtosis model. Figures 1, 2 also showed the
intrinsic mathematical property of these two models. In the
WM, the fp estimations were similar to the optimal results.
Similarly, in the mean D∗ analysis, the Kurtosis model yielded
higher D∗estimation in the voxels for which the optimal model
was the Gamma model; the Gamma model yielded lower
D∗estimation in the voxels for which the optimal model was the
Kurtosis model.

Effect of SNR
Figures 5A,B demonstrate the optimal model territories by
different NA in GM and WM, respectively. On increasing NA,
the Gamma and Kurtosis models became more dominant in
GM and WM, respectively. In contrast, the Gaussian model
showed a decline. In addition, there were changes in estimated fp
(Figures 5C,D) and D∗ (Figures 5E,F) on increasing NA in the
parenchymal regions. All curves achieved plateaus when NA was
larger than five.

Figure 6 illustrates the optimal model territory changes when
compared with the NA6 data. In the whole brain, the optimal
model switch happened in 64.2% (NA1), 34.3% (NA2), 23.2%
(NA3), 16.0% (NA4), and 10.8% (NA5) voxels.

DISCUSSION

In this study, we described an optimal model mapping method to
improve the quantification uncertainty due to the heterogeneity
of tissue structures. We applied this method to six normal
subjects and found that the inter-subject variability was very

Frontiers in Human Neuroscience | www.frontiersin.org 7 February 2021 | Volume 15 | Article 617152

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Liao et al. Optimal Model Mapping for IVIM-MRI

TABLE 2 | IVIM parameter means of six subjects (Mean ± standard deviation).

fp (%) D* (×10−3 mm2/s) MD (× 10−3 mm2/s) MKapp

GM WM GM WM GM WM CSF GM WM

Gaussian 17.2 ± 0.8 14.8 ± 0.2 4.7 ± 0.1 4.0 ± 0.0 0.72 ± 0.02 0.58 ± 0.01 2.91 ± 0.12 N/A N/A

Kurtosis 9.7 ± 0.7 5.4 ± 0.4 6.2 ± 0.2 5.2 ± 0.1 0.90 ± 0.03 0.79 ± 0.02 2.94 ± 0.12 0.55 ± 0.01 0.82 ± 0.03

Gamma 6.6 ± 0.6 3.4 ± 0.3 6.4 ± 0.3 4.1 ± 0.2 1.05 ± 0.05 0.89 ± 0.02 3.01 ± 0.13 1.02 ± 0.02 1.55 ± 0.05

Optimal 8.3 ± 0.6 5.4 ± 0.3 6.7 ± 0.2 5.4 ± 0.1 0.97 ± 0.04 0.79 ± 0.02 2.91 ± 0.12 0.77 ± 0.02 0.85 ± 0.02

TABLE 3 | Regional analysis with a single model. Pool-K or Pool-G indicated that the optimal model for the voxel clusters were Kurtosis model or Gamma model,

respectively. For example, in the Pool-K of GM, the mean fp was 6.1% by Kurtosis model and 3.8% by Gamma model.

fp (%) D* (× 10−3 mm2/s)

GM WM GM WM

Pool-K Pool-G Pool-K Pool-G Pool-K Pool-G Pool-K Pool-G

Kurtosis 6.1 ± 0.6 13.3 ± 0.7 4.5 ± 0.4 10.0 ± 0.5 6.5 ± 0.2 6.5 ± 0.1 5.3 ± 0.2 6.0 ± 0.1

Gamma 3.8 ± 0.5 8.7 ± 0.6 2.6 ± 0.4 5.9 ± 0.6 5.4 ± 0.3 7.9 ± 0.3 3.8 ± 0.2 7.5 ± 0.4

FIGURE 6 | The optimal model territory change by SNR (denoted by number

of averages, NA) compared with the NA6 dataset.

small. In addition, the optimal model map showed tissue-
specific patterns without a priori tissue information. The method
results indicate that reliable and reproducible perfusion-related
parameters, i.e., fp and D∗, could be estimated successfully by
using IVIM-MRI. This method might have potential to identify
additional physiological biomarkers for clinical diagnosis.

About the availability to apply the Kurtosis model and the
Gamma model to the diffusion analysis, two criteria were
mentioned in the theory part. On the first criterion, b ≤ 3/DK
for the Kurtosis model, Table 2 showed the products of MD and
Kapp are about 0.50 (GM) and 0.65 µm2/ms (WM), respectively,
so that maximum b-value (2,500 s/mm2) is satisfied at the
upper limit of 6,000 s/mm2 (GM) and 4,620 s/mm2 (WM).
In the same way, on the second criterion, b ≪ 27/(6DK) for

the Gamma model, the products are about 1.07 (GM) and
1.38 (WM), respectively, so that, when the applied b-values is
sufficiently smaller than 4,200 s/mm2 (GM) or 3,260 s/mm2, the
curves by Kurtosis model and Gamma model become similar.
This suggested that our maximum b-value of 2,500 s/mm2 was
sufficiently high to see the difference between the two models.

To express the non-Gaussian diffusion, the Kurtosis and
Gamma models were selected as the candidates. However, we
did not adopt the biexponential model which is commonly
used because of the difference in the number of associated
parameters (three for the former two models and four for the
latter) (Kiselev and Il’yasov, 2007). The concept of AIC is that
a model with a larger number of parameters will fit well so
that the resultant RSS is smaller, as shown in Equation (3). For
example, consider a comparison of three models with different
numbers of parameters (p = 2, 3, and 4) but with the same
number of points to fit (n = 11). In this case, to obtain the same
cAICs, the RSSs of the three- and four-parameter models must
be 70.0 and 43.5%, respectively, of that of the two-parameter
model. Considering that RSSs are sufficiently small in case of
Kurtosis and Gamma models, an additional parameter in the
biexponential model can be critical. Indeed, when we added the
biexponential model to the candidates, it became the optimal
model at very few numbers of voxels in the tissue boundary
region (not shown here). In addition, this tendency is depicted in
Figure 5, where the Gaussian model (two-parameter model) was
dominant in GM when the SNR was low, but the optimal model
switched gradually to Gamma with SNR increase.

The optimal model maps (Figure 3C) showed strong
correlation between the applied diffusion model and tissue
type. The Gaussian model, which presents free water in a
single compartment, dominated the ventricle regions (CSF),
a water pool. The Kurtosis model, which presents restricted
water with a non-Gaussian probability distribution movement
whose decay curve can be approximated with the Equation (6),
dominated WM regions containing axon fibers. The Gamma
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model, which presents a multiple-compartment tissue with
statistical distribution on diffusion coefficients, dominated GM
regions containing neuronal cell bodies. Having said that, not
all of the GM voxels showed Gamma model optimum and some
WM voxels showed non-Kurtosis model optimum (Table 1). For
example, Figure 3 showed that in the thalamus and basal ganglia,
the optimal model indices were varied and dominated by the
Kurtosis model. Owing to the optimal model territory achieving
steady state (Figure 5) with NA6 dataset, the influence of the
noise was expected to be relatively small. Some reasons might
cause the complex optimal model contents. First, he model of
water movement can be varied in a type of tissue. Although most
of the voxels followed a specific model, others did not. Table 3
demonstrates that an inadequate diffusion model fitting can
propagate systematic errors to the perfusion estimation. Second,
in this study, the voxel size was 3 × 3 × 3 mm3, which is close
to the GM thickness. Although we segmented the regions of
interest with the MPRAGE volume by SPM, the mis-registration
caused by the DWI distortion can be happened. The voxels
located around the tissue boundaries might be replaced by other
tissues. Third, based on the tendency of Figure 5, the Gaussian
voxels might shift to the Gamma voxels or the Kurtosis voxels by
increasing SNR. On the other hand, despite it is possible to apply
the optimal model mapping method based on the segmental
regions of interest for the normal subjects (Table 2), in clinical
use, we would not expect the tissue type a priori, especially for
the abnormal legions. These issues need further investigations.

The cAIC values in Figure 2 may give the impression that
their small differences among models indicate the selection
of the optimal model just by chance, being affected by
noise. Nevertheless, we should be careful about the evaluation
regardless of however small the differences might be. We should
not refer to their absolute values for comparison since scaling the
original data can shift them even though the final results remain
unchanged. As shown in the definition of cAIC (Equation 3),
when the original data are scaled up or down by the factor of
alpha, the cAIC values shift by 2N × ln (alpha). Therefore, if
we scale by a factor of 1/1,000, for example, the cAIC values will
shift by −138.2. Thus, in the case of Figure 2F, the cAIC values
(150.7, 138.8, and 134.6) for the Gaussian, Kurtosis, and Gamma
models will shift to 12.5, 0.6, and−3.6, respectively, which would
give a different impression. Here, we should emphasize that this
scaling does not change the entire results, including fp,D,D∗, and
optimal models.

The most convincing way to evaluate the significance of the
cAIC differences is to compare the differences statistically with
the variation of each cAIC value in iterative trials. For example,
by acquiring 6N datasets (i.e., N sets of six-average data), we can
get a set of N cAIC values for each model at a voxel. Thereafter,
we can evaluate whether the difference between the cAICs of two
models is significant by applying the paired t-test to the two sets
of N cAIC values.

Considering that the total scan time extends by N times, this
approach is not practical. However, there are three tendencies
strongly suggesting that our method does not select the optimal
model by chance. First, the model maps show the voxel clusters
of each model. If the model selection is affected by noise, the
model map would be noisier and exhibit a random pattern.

Second, the monotonic changes of the model map with SNR
increase (Figure 6) denote that if the SNR is sufficiently high,
the optimal model is decided by the signal and not by the noise.
If noise governs the optimal model selection in the NA6 data,
the curves will not be smooth and monotonic. An additional
point is the tendency of the curves reaching a steady state with
SNR increase. Considering that not only the SNR but also the
similarity of the averaged data to the NA6 data increases upon
increasing the number of averages, both factors can be the causes
of the tendency. However, either of them indicates that the signal
is dominant, rather than noise, at optimum model selection.
Third, minimal inter-subject variability demonstrates the high
reproducibility of the proposed method. Table 2 shows that the
SD of each parameter obtained with the optimal model is almost
the same as that of the other models although the mean values
vary among models. If the optimal model is selected by chance,
the SD should be much larger since the ratio of the mixture of
the three models varies among the subjects so that the resultant
parameter for each subject differs among the subjects.

In the IVIM theory, fp is a CBV-correlated parameter that
could be a surrogate marker for evaluating the pathology of
capillaries. However, some previous studies have shown higher
GM/WM ratios of fp than that of CBV by referring to the
knowledge of brain perfusion (Wirestam et al., 2001; Fujima
et al., 2014; Wu et al., 2015; Shen et al., 2016). Additionally,
compared with the Kurtosis model, applying the Gaussian model
to brain tissues can yield fp values approximately twice as high
as those of GM (Pavilla et al., 2017). Previously, the correlation
of D∗ to MTT−1 has been argued (Wirestam et al., 2001; Fujima
et al., 2014; Wu et al., 2015; Shen et al., 2016). With the optimal
modeling method (Table 2), the estimated fp values of GM and
WM were 8.3 and 5.4%, respectively, and the GM/WM ratio of
fp was 1.53; the estimated D∗ values of GM and WM were 6.7
and 5.4 µm2/ms, respectively, and the GM/WM ratio of D∗ was
1.24. These values were reasonable relative to those of previous
perfusion studies (Leenders et al., 1990; Shin et al., 2007; Carroll
et al., 2008).

In previous studies, the estimated K was expected to be lower
in GM than in WM. (Jensen et al., 2005; Jensen and Helpern,
2010) With the proposed method, i.e., the optimal model map,
the estimated K values of GM and WM were closer to each other
compared with the single model fittings (Figure 5 and Table 2).
The results indicated that inadequate diffusion fitting might
cause overestimation or underestimation of K. Before applying
K to assess correlations with the pathological information, the
meaning of K should be carefully investigated.

Some limitations should be noted in this study. First, the
spatial resolution was 3 × 3 × 3 mm3, which is close to the
cortical thickness in this study. Therefore, only bulk GM voxels
could be estimated. Second, to obtain a reliable estimation, high
SNR of the IVIM-MRI series with 17 b-values was required.
The optimal protocols about the b-value distribution and the
SNR need to be investigated. The time-consuming issue of data
acquisition should be seriously considered in the future. Some
novel denoising techniques can gain around 1.4 times SNR for
the IVIM data (Huang and Lin, 2019), i.e., half the scan time
could be saved by a well-developed denoising process. Some
pre- or post-processing techniques, such as Bayesian shrinkage
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prior and machine learning, may also improve the quantitative
uncertainties (Neil and Bretthorst, 1993; Oshio et al., 2014;
Clayden et al., 2016; Zhang et al., 2019). Third, to avoid the
asymmetric diffusion effect, the data from six MPG directions
were analyzed direction-by-direction. However, the perfusion
was expected to be symmetric. Validation using the data from a
single MPG direction should be further investigated. In addition,
due to the lack of the pathological study, the relationship of the
parameters estimated by the optimal model mapping and the
traditional perfusion techniques were not clear. The results need
to be verified with other modalities in the future.

In conclusion, an optimal model mapping method for IVIM-
MRI to improve quantification of brain perfusion was proposed.
When compared with the conventional methods, the proposed
method provided estimated fp and D∗ values that were reliable
and reproducible. Besides, the optimal model maps might give
additional information for clinical diagnosis. In future research,
we plan to apply this method to patients and compare the results
with those of other methods.
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