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Abstract. In order to calibrate a penalization procedure for model selection, the statistician has to choose a shape for the penalty
and a leading constant. In this paper, we study, for the marginal density estimation problem, the resampling penalties as general
estimators of the shape of an ideal penalty. We prove that the selected estimator satisfies sharp oracle inequalities without remainder
terms under a few assumptions on the marginal density s and the collection of models. We also study the slope heuristic, which
yields a data-driven choice of the leading constant in front of the penalty when the complexity of the models is well-chosen.

Résumé. Une procédure de pénalisation en sélection de modèle repose sur la construction d’une forme pour la pénalité ainsi que
sur le choix d’une constante de calibration. Dans cet article, nous étudions, pour le problème d’estimation de la densité, les pénalités
obtenues par rééchantillonnage de pénalités idéales. Nous montrons l’efficacité de ces procédures pour l’estimation de la forme
des pénalités en prouvant, pour les estimateurs sélectionnés, des inégalités d’oracle fines sans termes résiduelles; les résultats sont
valides sous des hypothèses faibles à la fois sur la densité inconnue s et sur les collections de modèles. Ces pénalités sont de plus
faciles à calibrer puisque la constante asymptotiquement optimale peut être calculée en fonction des poids de rééchantillonnage.
En pratique, le nombre de données est toujours fini, nous étudions donc également l’heuristique de pente et justifions l’algorithme
de pente qui permet de calibrer la constante de calibration à partir des données.
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1. Introduction

Model selection by penalization of an empirical loss is a general approach including famous procedures as AIC [1,2],
BIC [24], Mallows Cp [19], cross-validation [23] or hard thresholding [14] as shown by [6]. The objective is to select
an estimator satisfying an oracle inequality. In order to achieve this goal, the statistician should evaluate the shape of
a good penalty and the constant in front of it.

In this paper, we study theoretically in a density estimation framework the slope heuristic of Birgé and Massart
[10]. There is two main reasons for this. First, it provides a general shape of the penalty under a few restrictions on
the density s and the collection of models, for example, these models can be of infinite dimension. Then, it gives the
precise behavior of the selected model when the leading constant increases. A remarkable fact is that the complexity
of the selected model is as large as possible until the leading constant reaches some particular point Kmin. This
complexity decreases then strongly, the selected model becomes more reasonable and the estimator avoids to over fit
the data. Another remarkable fact is that the model selected by a leading constant equal to 2Kmin is a sharp oracle.
The heuristic can then be used to justify the slope algorithm, introduced in [5], which allows to evaluate in practice the
leading constant in front of a penalty (see Section 2.1 for details). The calibration of this constant is usually an issue
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for the statistician. The upper bounds given in theoretical theorems, when computable, are in general too pessimistic
and some cross-validation methods have been used to overcome this problem in simulations (see for example [16]).
The slope algorithm chooses in general a constant more reasonable than the theoretical one and ensures that the
chosen model is of reasonable size. The first main contribution of the paper is a proof of the slope heuristic for density
estimation, for general collections of models. Theorems 3.1 and 3.2 extend the results of [10] in Gaussian regression
and those of [5] in non-Gaussian heteroscedastic regression over histograms.

The penalty shape obtained in the slope heuristic is not computable in general by the statistician. This is why
we also study in this paper the resampling penalties. These penalties were defined by Arlot [4] following Efron’s
heuristic [15], as natural estimators of the “ideal penalty.” We prove that the selected estimators satisfy sharp oracle
inequalities, without extra assumptions on s or the collection of models. This extends the results of Arlot [4] in
non-Gaussian heteroscedastic regression among histograms. We also prove that they provide sharp estimators of the
penalty shape proposed in the slope theorems. Hence, they can be used together with the slope algorithm in the general
framework presented in Section 2.

Resampling penalties and the slope heuristic can be defined in a more general statistical learning framework, includ-
ing the problems of classification and regression (see [4,5]). Our results are therefore contributions to the theoretical
understanding of these generic methods. Up to our knowledge, they are the first obtained in density estimation.

The oracle approach is now classical in statistical learning in general and in density estimation in particular. Oracle
inequalities can be derived, for example, from �1 penalization methods [12], aggregation procedures [22], blockwise
Stein method [21] or using T -estimators [8]. Up to our knowledge, none of these methods yield oracle inequalities
without remainder terms and with a leading constant asymptotically equal to one at the level of generality presented
in this paper. For example, our results are valid for data taking value in any metric space and the models can be of
infinite dimension. The results of [8] hold for infinite dimensional models but the estimators are not computable in
practice.

The paper is organized as follows. Section 2 presents the notations and the main definitions. In Section 3, we state
our main results, that is the slope heuristic and the oracle inequality satisfied by the estimator selected by resampling
penalties. In Section 4, we compute the rates of convergence in the oracle inequalities using classical collections of
models. The proofs of the main results are postponed to Section 5. In the Appendix we prove technical lemmas, in
particular all the concentration inequalities required in the main proofs.

2. Notations

Let X1, . . . ,Xn, be i.i.d. random variables, defined on a probability space (Ω, A,P), valued in a measurable space
(X, X ), with common law P . Let μ be a known measure on (X, X ) and let L2(μ) be the space of square integrable
real valued functions defined on X. The space L2(μ) is endowed with the following scalar product, defined for all t, t ′
in L2(μ) by

〈
t, t ′

〉 = ∫
X

t (x)t ′(x)dμ(x)

and the associated L2-norm ‖ · ‖, defined for all t in L2(μ) by ‖t‖ = √〈t, t〉. We assume that P is absolutely con-
tinuous with respect to μ and we want to estimate the density s of P with respect to μ. We assume that s belongs to
L2(μ) and we measure the risk of an estimator ŝ of s by L2-loss, ‖s − ŝ‖2. For all functions t in L1(P ), let

P t =
∫

X

t dP =
∫

X

ts dμ = 〈t, s〉, Pnt = 1

n

n∑
i=1

t (Xi), νnt = (Pn − P)t.

We estimate s by minimization of a penalized empirical loss. Let (Sm,m ∈ Mn) be a finite collection of linear spaces
of measurable, real valued functions. For all m in Mn, let pen(m) be a positive number and let ŝm be the least-squares
estimator, defined by

ŝm = arg min
t∈Sm

{‖t‖2 − 2Pnt
}
. (1)
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The final estimator is given by s̃ = ŝm̂, where

m̂ ∈ arg min
m∈Mn

{‖ŝm‖2 − 2Pnŝm + pen(m)
}
. (2)

We say that s̃ satisfies an oracle inequality without remainder term when there exists a bounded sequence Cn such that

‖s̃ − s‖2 ≤ Cn inf
m∈Mn

{‖ŝm − s‖2}.
We say that the oracle inequality is sharp, or optimal when, moreover, Cn → 1 when n → ∞. An oracle minimizes
over Mn the quantity

‖ŝm − s‖2 − ‖s‖2 = ‖ŝm‖2 − 2P ŝm = ‖ŝm‖2 − 2Pnŝm + penid(m).

In the previous inequality, the “ideal” penalty (see [4]), penid(m) is defined by

penid(m) = 2νnŝm.

The ideal penalty is the central object in this paper. We will prove that the slope algorithm can be used with a penalty
shape proportional to its expectation and that resampling penalties provide sharp estimators of this expectation.

2.1. The slope heuristic

The “slope heuristic” has been introduced by Birgé and Massart [10] in the Gaussian regression framework and
developed in a general algorithm by Arlot and Massart [5]. Let (Δm)m∈Mn

be a collection of complexity measures of
the models. The heuristic states that there exists a constant Kmin satisfying the following properties.

SH1 When pen(m) < KminΔm, then Δm̂ is too large, typically Δm̂ ≥ C maxm∈Mn
Δm.

SH2 When pen(m) � (Kmin + δ)Δm for some δ > 0, then Δm̂ is much smaller.
SH3 When pen(m) � 2KminΔm, the selected estimator is optimal.

In this paper, we prove SH1–SH3 for Δm = E(penid(m)), Kmin = 1. Besides the theoretical implications that we
discuss later, the heuristic is of particular interest in the following situation. Imagine that there exists, for all m in Mn,
a quantity Δm computable by the statistician and an unknown constant Ku such that, for some δ 
 Ku,

(Ku − δ)Δm ≤ E
(
penid(m)

) ≤ (Ku + δ)Δm.

In that case, it comes from SH3 that a penalty of the form KΔm yields a good procedure if K is large enough. In order
to choose K in a data-driven way, we can use the following algorithm (see Arlot and Massart [5]).

Slope algorithm
SA1 For all K > 0, compute the selected model m̂(K) given by (2) with the penalty pen(m) = KΔm and the associ-

ated complexity Δm̂(K).
SA2 Find a constant K̃min such that Δm̂(K) is large when K < K̃min, and “much smaller” when K > K̃min.
SA3 Take the final m̂ = m̂(2K̃min).

The idea is that K̃min � Kmin because we observe a jump in the complexity of the selected model at this point (SH1
and SH2). Hence, the model selected by 2K̃minΔm � 2KminΔm should be optimal thanks to SH3. By construction,
the slope algorithm ensures that the selected model has a reasonable size. It prevents the statistician from choosing
a too large model which could have terrible consequences (see Theorem 3.1). The words “much smaller,” borrowed
from [5,10], are not very clear here. We refer to [5], Section 3.3 for a detailed discussion on what “much smaller”
means in this context and for precise suggestions on the implementation of the slope algorithm. We refer also to [7]
for a practical implementation of the slope algorithm.
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2.2. Resampling penalties

Data-driven penalties have already been used in density estimation in particular cross-validation methods as in Stone
[25], Rudemo [23] or Celisse [13]. We are interested here in the resampling penalties introduced by Arlot [4]. Let
(W1, . . . ,Wn) be a resampling scheme, i.e. a vector of random variables independent of X,X1, . . . ,Xn and exchange-
able, that is, for all permutations τ of (1, . . . , n),

(W1, . . . ,Wn) has the same law as (Wτ(1), . . . ,Wτ(n)).

Hereafter, we denote by W̄n = ∑n
i=1 Wi/n and by EW and LW respectively the expectation and the law conditionally

on the data X,X1, . . . ,Xn. Let P W
n = ∑n

i=1 WiδXi
/n, νW

n = P W
n − W̄nPn be the resampled empirical processes.

Arlot’s procedure is based on the resampling heurististic of Efron (see Efron [15]), which states that the law of a
functional F(P,Pn) is close to the conditional law LW(CWF(W̄nPn,P

W
n )). CW is a renormalizing constant that

depends only on the resampling scheme and on F . Following this heuristic, Arlot defines the resampling penalties as
resampling estimates of E(penid(m)), that is

pen(m) = 2CW E
W

(
νW
n

(
ŝW
m

))
, where ŝW

m = arg min
t∈Sm

{‖t‖2 − 2P W
n t

}
. (3)

We prove concentration inequalities for pen(m) and we compute the value of CW such that pen(m) provides a sharp
estimator of penid(m), we deduce that pen(m) provides an optimal model selection procedure (see Theorem 3.3).

2.3. Main assumptions

For all m, m′ in Mn, let Dm = nE(‖sm − ŝm‖2),

Rm

n
= E

(‖s − ŝm‖2) = ‖s − sm‖2 + Dm

n
,

v2
m,m′ = sup

t∈Sm+Sm′ ,‖t‖≤1
Var

(
t (X)

)
,

em,m′ = 1

n
sup

t∈Sm+Sm′ ,‖t‖≤1
‖t‖2∞.

For all k ∈ N, let Mk
n = {m ∈ Mn,Rm ∈ [k, k + 1)}. For all n in N, for all k > 0, k′ > 0 and γ ≥ 0, let [k] be the

integer part of k and let

ln,γ

(
k, k′) = ln

(
1 + Card

(
M[k]

n

)) + ln
(
1 + Card

(
M[k′]

n

)) + ln
(
(k + 1)

(
k′ + 1

)) + (lnn)γ . (4)

[V] There exist γ > 1 and a sequence (εn)n∈N, with εn → 0 such that, for all n in N,

sup
(k,k′)∈(N∗)2

sup
(m,m′)∈Mk

n×Mk′
n

{((
v2
m,m′

Rm ∨ Rm′

)2

∨ em,m′

Rm ∨ Rm′

)
l2
n,γ

(
k, k′)} ≤ ε4

n.

Comments.

• [V] ensures that the fluctuations of the ideal penalty are uniformly small compared to the risk of the estimator
ŝm. Note that for all k, k′, ln,γ (k, k′) ≥ (lnn)γ , thus, [V] holds only in non-parametric situations where Rn =
infm∈Mn

Rm → ∞ as n → ∞.

[BR] There exist two sequences (h∗
n)n∈N∗ and (ho

n)n∈N∗ with (ho
n ∨ h∗

n) → 0 as n → ∞ such that, for all n in N
∗, for

all mo ∈ arg minm∈Mn
Rm and all m∗ ∈ arg maxm∈Mn

Dm,

Rmo

Dm∗
≤ ho

n,
n‖s − sm∗‖2

Dm∗
≤ h∗

n.
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Comments.

• The slope heuristic states that the complexity Δm̂ of the selected estimator is too large when the penalty term
is too small. A minimal assumption for this heuristic to hold with Δm = Dm is that there exists a sequence
(θn)n∈N∗ with θn → 0 as n → ∞ such that, for all n in N

∗, for all mo ∈ arg minm∈Mn
E(‖s − ŝm‖2) and all

m∗ ∈ arg maxm∈Mn
E(‖sm − ŝm‖2),

Dmo ≤ θnDm∗ .

Assumption [BR] is slightly stronger but will always hold in the examples (see Section 4).

In order to have an idea of the rates Rn, εn, h∗
n,h

0
n, let us briefly consider the very simple following example:

Example HR. We assume that s is supported in [0,1] and that (Sm)m∈Mn
is the collection of the regular histograms

on [0,1], with dm = 1, . . . , n pieces. We will see in Section 4.2 that Dm ∼ dm asymptotically, hence Dm∗ � n. More-
over, if s is Hölderian and not constant, there exist positive constants cl, cu, αl, αu such that, for all m in Mn, see [4],

cld
−αl
m ≤ ‖s − sm‖2 ≤ cud

−αu
m .

In Section 4.2, we prove that this assumption implies [V] with εn ≤ C ln(n)n−1/(8αl+4).
Moreover, there exists a constant C > 0 such that Rmo ≤ infm∈Mn

(cund
−αu
m + dm) ≤ Cn1/(2αu+1), thus Rmo/D

∗
m ≤

Cn−2αu/(2αu+1). Since there exists C > 0 such that n‖s − sm∗‖2/Dm∗ ≤ Cd
−αu
m∗ = Cn−αu , [BR] holds with ho

n =
Cn−2αu/(2αu+1) and h∗

n = Cn−αu .

Other examples can be found in Birgé and Massart [9], see also Section 4.

3. Main results

3.1. The slope heuristic

The first result deals with the behavior of the selected estimator when pen(m) is too small.

Theorem 3.1 (Minimal penalty). Let Mn be a collection of models satisfying [V] and [BR] and let ε∗
n = εn ∨ h∗

n.
Assume that there exists 0 < δn < 1 such that 0 ≤ pen(m) ≤ (1 − δn)Dm/n. Let m̂, s̃ be the random variables defined
in (2) and let

cn = δn − 28ε∗
n

1 + 16εn

.

There exists a constant C > 0 such that, with probability larger than 1 − Ce−(1/2)(lnn)γ ,

Dm̂ ≥ cnDm∗ , ‖s − s̃‖2 ≥ cn

5ho
n

inf
m∈Mn

‖s − ŝm‖2. (5)

Comments.

• Assume that pen(m) ≤ (1 − δ)Dm/n, then, for n sufficiently large, Dm̂ ≥ cDm∗ is as large as possible. This proves
SH1 with Δm = Dm/n, Kmin = 1.

• The second part of (5) proves also that, in that case, we cannot obtain an oracle inequality.

Theorem 3.2. Let Mn be a collection of models satisfying [V]. Assume that there exist δ+ ≥ δ− > −1 and 0 ≤ p′ < 1
such that, with probability at least 1 − p′,

2
Dm

n
+ δ−

Rm

n
≤ pen(m) ≤ 2

Dm

n
+ δ+ Rm

n
. (6)
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Let m̂, s̃ be the random variables defined in (2) and let

Cn

(
δ−, δ+) =

(
1 + δ− − 46εn

1 + δ+ + 26εn

∨ 0

)−1

.

There exists a constant C > 0 such that, with probability larger than 1 − p′ − Ce−(1/2)(lnn)γ ,

Dm̂ ≤ Cn

(
δ−, δ+)

Rmo, ‖s − s̃‖2 ≤ Cn

(
δ−, δ+)

inf
m∈Mn

‖s − ŝm‖2. (7)

Comments.

• Assume first that pen(m) = (2 + δ)Dm/n with δ close to −1, then, for n sufficiently large, (7) ensures that Dm̂ =
O(Rmo). Hence, Dm̂ jumps from Dm∗ (Theorem 3.1) to Rmo . This proves SH2, with Δm = Dm/n and Kmin = 1.

• Assume then that δ− = δ+ = 0, so that the penalty term pen(m) = 2KminΔm. The second part of (7) ensures that s̃

satisfies a sharp oracle inequality. This proves SH3. In general, the rate of convergence of the leading constant to
1 is given by the supremum between δ−, δ+ and εn.

• The second part of (7) proves also that, if pen(m) = KΔm, with K > 2Kmin, then, we only loose a constant in the
oracle inequality. This is why it is better to choose a too large penalty which only yields a loss in the constant in the
oracle inequality, than a too small one that may lead to an explosion of the risk.

• Dm/n is unknown in general and cannot be used in the slope algorithm. We propose two alternatives to solve
this issue. In Section 3.2, we give a resampling estimator of Dm, it can be used for every collection of models
satisfying [V]. This estimator satisfies (6) with −δ− = δ+ = O(εn). In Section 4.2, we will also see that, in regular
models, we can use dm instead of Dm and the error is upper bounded by CRm/Rmo , thus Theorem 3.2 holds with
(δ− ∨δ+) ≤ C/Rmo 
 εn, p′ = 0. In both cases, we deduce from Theorem 3.2 that the estimator s̃ given by the slope
algorithm achieves an optimal oracle inequality. In Example HR, for example, we obtain εn = Cn−1/(8αl+4) lnn.

• Let us notice here that the constant Kmin = 1 is absolute when we choose Δm = Dm. This is not true in general
and Kmin can even depend on s. In order to see that, let us consider the collection of regular histograms on [0,1].
In that case, we have (see (9)) Dm = (F (1) − F(0))dm − ‖sm‖2, where F(x) = ∫ x

−∞ s(t)dμ(t). Hence, the slope
heuristic holds for Δm = dm but the associated constant Kmin = (F (1)−F(0)) is not absolute if s is not supported
on [0,1].

3.2. Resampling penalties

Theorem 3.3. Let X1, . . . ,Xn be i.i.d. random variables with common density s. Let Mn be a collection of models
satisfying [V]. Let W1, . . . ,Wn be a resampling scheme, let W̄n = ∑n

i=1 Wi/n, v2
W = Var(W1 − W̄n) and CW =

2(v2
W)−1. Let s̃ be the penalized least-squares estimator defined in (2) with pen(m) defined in (3). Then, there exists a

constant C > 0 such that

P

(
‖s − s̃‖2 ≤ (1 + 100εn) inf

m∈Mn

‖s − ŝm‖2
)

≥ 1 − Ce−(1/2)(lnn)γ . (8)

Comments. The main advantage of this result is that the penalty term is always totally computable. It does not depend
on an arbitrary choice of a constant Kmin made by the observer, that may be hard to detect in practice (see the paper of
Alot and Massart [5] for an extensive discussion on this important issue). However, CW is only optimal asymptotically.
It is sometimes useful to overpenalize a little in order to improve the non-asymptotic performances of our procedures
(see Massart [20] and the remarks after Theorem 3.2) and the slope heuristic can be used to do it in an optimal way.

4. Rates of convergence for classical examples

The aim of this section is to show that [V] can be derived from more classical hypotheses in two classical collections
of models: the histograms and Fourier spaces. We obtain the rates εn under these new hypotheses.
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4.1. Assumption on the risk of the oracle

Recall that Rn = infm∈Mn
Rm. In this section, we make the following assumption.

[BR′] (Bounds on the Risk) There exist constants Cu > 0, αu > 0, γ > 1, and a sequence (θn)n∈N with θn → ∞ as
n → ∞ such that, for all n in N

∗, for all m in Mn

θ2
n(lnn)2γ ≤ Rn ≤ Rm ≤ Cun

αu .

Comments. Let (Sm,m ∈ Mn) be the collection of regular histograms of Example HR. Assume that s is an Hölderian,
non-constant and compactly supported function, then there exist positive constants ci , cu, αi , αu such that (see for
example Arlot [3])

cid
−αi
m ≤ ‖s − sm‖ ≤ cud

−αu
m .

We have also, see (9), Dm = dm − ‖sm‖2. Hence,

Rn ≥ c� inf
dm=1,...,n

(
nd−2αi

m + dm

) ≥ c�n
1/(2αi+1).

For all m in Mn, we also have Rm ≤ (cu +1)n. Hence, [BR′] holds for all γ > 1 with θn = c�n
1/(4αi+2)(lnn)−2γ . It is

also a classical result of minimax theory that there exist functions in Sobolev spaces satisfying this kind of assumption
when Mn is the collection of Fourier spaces that we will introduce below.

We also make the following assumption on the collection (Sm,m ∈ Mn).

[PC] (Polynomial collection) There exist constants cM ≥ 0, αM ≥ 0, such that, for all n in N,

Card(Mn) ≤ cMnαM .

Under Assumptions [BR′] and [PC], for all m ∈ Mn, Rm ≤ Cun
αu , thus for all k > Cun

αu , Card(M[k]
n ) = 0. In

particular, we only have to take into account in [V] the integers k and k′ such that k ≤ Cun
αu and k′ ≤ Cun

αu and there
exists a constant κ > 0 such that ln[(1 + k)(1 + k′)] ≤ κ lnn. Moreover, under [PC], ln(1 + Card(M[k]

n )) ≤ κ lnn,
hence, there exists a constant κ > 0 such that, for all γ > 1 and n ≥ 3,

sup
(k,k′)∈(N∗)2

sup
(m,m′)∈M[k]

n ×M[k′]
n

{((
v2
m,m′

Rm ∨ Rm′

)2

∨ em,m′

Rm ∨ Rm′

)
l2
n,γ

(
k, k′)}

≤ sup
(m,m′)∈(Mn)2

{(
v2
m,m′

Rm ∨ Rm′

)2

∨ em,m′

Rm ∨ Rm′

}
κ(lnn)2γ .

4.2. The histogram case

Let (X, X ) be a measurable space. Let (Pm)m∈Mn
be a growing collection of measurable partitions Pm = (Iλ)λ∈m

of subsets of X such that, for all m ∈ Mn, for all λ ∈ m, 0 < μ(Iλ) < ∞. Let m in Mn, the set Sm of histograms
associated to Pm is the set of functions which are constant on each Iλ, λ ∈ m. Sm is a linear space. Setting, for all
λ ∈ m, ψλ = (

√
μ(Iλ))

−11Iλ , the functions (ψλ)λ∈m form an orthonormal basis of Sm.
Let us recall that, for all m in Mn,

Dm =
∑
λ∈m

Var
(
ψλ(X)

) =
∑
λ∈m

P
(
ψ2

λ

) − (Pψλ)
2 =

∑
λ∈m

P (X ∈ Iλ)

μ(Iλ)
− ‖sm‖2. (9)

Moreover, from Cauchy–Schwarz inequality, for all x in X, for all m, m′ in Mn

sup
t∈Bm,m′

t2(x) ≤
∑

λ∈m∪m′
ψ2

λ(x), thus em,m′ = 1

n
sup

λ∈m∪m′

1

μ(Iλ)
. (10)
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Finally, it is easy to check that, for all m ,m′ in Mn

v2
m,m′ = sup

λ∈m∪m′
Var

(
ψλ(X)

) = sup
λ∈m∪m′

P(X ∈ Iλ)(1 − P(X ∈ Iλ))

μ(Iλ)
. (11)

We will consider two particular types of histograms.

Example 1 ([Reg]: μ-regular histograms). For all m in Mn, Pm is a partition of X and there exist a family
(dm)m∈Mn

bounded by n and two constants crh, Crh such that, for all m in Mn, for all λ ∈ Mn,

crh

dm

≤ μ(Iλ) ≤ Crh

dm

.

The typical example here is the collection described in Example HR, where cr = Cr = 1. Remark that a collection
satisfying [Reg] can be of infinite dimension.

Example 2 ([Ada]: Adapted histograms). There exist positive constants cr , Cah such that, for all m in Mn, for all
λ ∈ m, μ(Iλ) ≥ crn

−1 and

P(X ∈ Iλ)

μ(Iλ)
≤ Cah.

[Ada] is typically satisfied when s is bounded on X. Remark that the models satisfying [Ada] have finite dimension
dm ≤ Cn since

1 ≥
∑
λ∈m

P (X ∈ Iλ) ≥ Cah

∑
λ∈m

μ(Iλ) ≥ Cahcrdmn−1.

The example [Reg]
It comes from Eqs (9)–(11) and Assumption [Reg] that

C−1
rh dm − ‖sm‖2 ≤ Dm ≤ c−1

rh dm − ‖sm‖2,

em,m′ ≤ c−1
rh

dm ∨ dm′

n
, v2

m,m′ ≤ sup
t∈Bm,m′

‖t‖∞‖t‖‖s‖ ≤ c
−1/2
rh ‖s‖√dm ∨ dm′ .

Thus

em,m′

Rm ∨ Rm′
≤ Crhc

−1
rh

(Rm ∨ Rm′) + ‖s‖2

n(Rm ∨ Rm′)
≤ Cn−1.

If Dm ∨ Dm′ ≤ θ2
n(lnn)2γ ,

v2
m,m′

Rm ∨ Rm′
≤

√
Crhc

−1
rh

√
(Dm ∨ Dm′) + ‖s‖2

Rmo

≤ C

θn(lnn)γ
.

If Dm ∨ Dm′ ≥ θ2
n(lnn)2γ ,

v2
m,m′

Rm ∨ Rm′
≤

√
Crhc

−1
rh

√
(Dm ∨ Dm′) + ‖s‖2

Dm ∨ Dm′
≤ C

θn(lnn)γ
.

There exists κ > 0 such that θ2
n(lnn)2γ ≤ κn since for all m in Mn, Rm ≤ n‖s − sm‖2 + c−1

rh dm ≤ (‖s‖2 + c−1
rh )n.

Hence Assumption [V] holds with γ given in Assumption [BR′] and εn = Cθ
−1/2
n .
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The example [Ada]
It comes from inequalities (10), (11) and Assumption [Ada] that, for all m and m′ in Mn

em,m′ ≤ c−1
r and v2

m,m′ ≤ Cah.

Thus, there exists a constant κ > 0 such that, for all m an m′ in Mn,

sup
(m,m′)∈(Mn)2

{(
v2
m,m′

Rm ∨ Rm′

)2

∨ em,m′

Rm ∨ Rm′

}
≤ κ

θ2
n(lnn)2γ

.

Therefore Assumption [V] holds also with γ given in Assumption [BR′] and εn = κθ
−1/2
n .

4.3. Fourier spaces

In this section, we assume that s is supported in [0,1]. We introduce the classical Fourier basis. Let ψ0 : [0,1] → R,
x �→ 1 and, for all k ∈ N

∗, we define the functions

ψ1,k : [0,1] → R, x �→ √
2 cos(2πkx), ψ2,k : [0,1] → R, x �→ √

2 sin(2πkx).

For all j in N
∗, let

mj = {0} ∪ {
(i, k), i = 1,2, k = 1, . . . , j

}
and Mn = {mj , j = 1, . . . , n}.

For all m in Mn, let Sm be the space spanned by the family (ψλ)λ∈m. (ψλ)λ∈m is an orthonormal basis of Sm and for
all j in 1, . . . , n, dmj

= 2j + 1.
Let j in 1, . . . , n, for all x in [0,1],

∑
λ∈mj

ψ2
λ(x) = 1 + 2

j∑
k=1

cos2(2πkx) + sin2(2πkx) = 1 + 2j = dmj
.

Hence, for all m in Mn,

Dm = P

( ∑
λ∈mj

ψ2
λ

)
− ‖sm‖2 = dm − ‖sm‖2. (12)

It is also clear that, for all m, m′ in Mn,

em,m′ = dm ∨ dm′

n
, v2

m,m′ ≤ ‖s‖√dm ∨ dm′ . (13)

The collection of Fourier spaces of dimension dm ≤ n satisfies Assumption [PC], and the quantities Dm em,m′ and
v2
m,m′ satisfy the same inequalities as in the collection [Reg], therefore, [V] comes also in this collection from [BR′].

We have obtained the following corollary of Theorem 3.3.

Corollary 4.1. Let Mn be either a collection of histograms satisfying Assumptions [PC]–[Reg] or [PC]–[Ada] or
the collection of Fourier spaces of dimension dm ≤ n. Assume that s satisfies Assumption [BR′] for some γ > 1 and
θn → ∞. Then, there exist constants κ > 0 and C > 0 such that the estimator s̃ selected by a resampling penalty
satisfies

P

(
‖s − s̃‖2 ≤ (

1 + κθ
−1/2
n

)
inf

m∈Mn

‖s − ŝm‖2
)

≥ 1 − Ce−(1/2)(lnn)γ .
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Comment. Assumption [BR′] is hard to check in practice. We described in the beginning of this section some examples
where it holds. In more general situations, following Arlot [4], we use our main theorem only for the models with
dimension dm ≥ (lnn)4+2γ , they satisfy [BR′] with θn = (lnn)2, at least when n is sufficiently large, because

‖s‖2 + Rm ≥ ‖s‖2 + Dm ≥ cdm ≥ c(lnn)4(lnn)2γ .

With our concentration inequalities, we can control easily the risk of the models with dimension dm ≤ (lnn)4+2γ by
κ(lnn)3+5γ /2 with probability larger than 1 − Ce−(1/2)(lnn)γ .

We can then deduce the following corollary.

Corollary 4.2. Let Mn be either a collection of histograms satisfying Assumptions [PC]–[Reg] or [PC]–[Ada] or the
collection of Fourier spaces of dimension dm ≤ n. There exist constants κ > 0, η > 3 + 5γ /2 and C > 0 such that the
estimator s̃ selected by a resampling penalty satisfies

P

(
‖s − s̃‖2 ≤ (

1 + κ(lnn)−1)( inf
m∈Mn

‖s − ŝm‖2 + (lnn)η

n

))
≥ 1 − Ce−(1/2)(lnn)γ .

5. Proofs of the main results

5.1. Notations

Let us recall here the main notations. For all m, m′ in Mn, let

p(m) = ‖sm − ŝm‖2, Dm = nE
(
p(m)

) = nE
(‖ŝm − sm‖2),

Rm = nE
(‖s − ŝm‖2) = n‖s − sm‖2 + Dm, δ

(
m,m′) = νn(sm − sm′).

For all n ∈ N
∗, k > 0, k′ > 0, γ > 0, let [k] be the integer part of k and let

ln,γ

(
k, k′) = ln

((
1 + Card

(
M[k]

n

))(
1 + Card

(
M[k′]

n

))) + ln
(
(1 + k)

(
1 + k′)) + (lnn)γ .

Recall that Assumption [V] implies that, for all m,m′ in Mn,

v2
m,m′ ln,γ (Rm,Rm′) ≤ ε2

n(Rm ∨ Rm′),
(14)

em,m′
(
ln,γ (Rm,Rm′)

)2 ≤ ε4
n(Rm ∨ Rm′).

Let (ψλ)λ∈m be an orthonormal basis of Sm. Easy algebra leads to

sm =
∑
λ∈m

(Pψλ)ψλ, ŝm =
∑
λ∈m

(Pnψλ)ψλ, thus ‖sm − ŝm‖2 =
∑
λ∈m

(
νn(ψλ)

)2
.

Therefore, ŝm is an unbiased estimator of sm and

penid(m) = 2νn(ŝm) = 2νn(ŝm − sm) + 2νn(sm) = 2‖sm − ŝm‖2 + 2νn(sm).

By definition, m̂ minimizes ‖s − ŝm‖2
2 + pen(m) − penid(m). Hence, for all m in Mn,

‖s − s̃‖2
2 ≤ ‖s − ŝm‖2

2 + (
pen(m) − 2p(m)

) + (
2p(m̂) − pen(m̂)

) + δ(m̂,m). (15)
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5.2. Proof of Theorem 3.1

If cn < 0, there is nothing to prove. We can then assume that cn ≥ 0, this implies in particular that

28εn ≤ δn < 1.

We use the notations of Lemma A.10. From Lemma A.10, inequalities (5) will be proved if, on ΩT , Dm̂ ≥ cnDm∗ and

‖s − s̃‖2 ≥ cn

5ho
n

inf
m∈Mn

‖s − ŝm‖2.

Let mo ∈ arg minm∈Mn
Rm, m̂ minimizes over Mn the following criterion.

Crit(m) = ‖ŝm‖2 − 2Pnŝm + pen(m) + ‖s‖2 + 2νn(smo)

= ‖s − sm‖2 − p(m) + δ(mo,m) + pen(m).

Recall that 0 ≤ pen(m) ≤ (1 − δn)Dm/n. On ΩT , for all m in Mn, since Rm ≥ Rmo ,

Crit(m) ≥ ‖s − sm‖2 − Dm

n
− 16εn

Rm

n
≥ −(1 + 16εn)

Dm

n
,

Crit(m) ≤ ‖s − sm‖2 + 26εn

Rm

n
− δn

Dm

n
= (1 + 26εn)‖s − sm‖2 − (δn − 26εn)

Dm

n
.

When Dm ≤ cnDm∗ ,

(1 + 16εn)Dm ≤ Dm∗
(

(δn − 26εn) − (1 + 26εn)
n‖s − sm∗‖2

Dm∗

)
.

Thus Crit(m) ≥ Crit(m∗). This implies that Dm̂ ≥ cnDm∗ .
Moreover, on ΩT , we also have, for all m in Mn

‖s − s̃‖2 = Rm̂

n
+

(
p(m̂) − Dm̂

n

)
≥ (1 − 20εn)

Rm̂

n
,

and

inf
m∈Mn

‖s − ŝm‖2 ≤ inf
m∈Mn

Rm

n
(1 + 10εn) ≤ Rmo

n
(1 + 10εn).

Thus

‖s − s̃‖2 ≥ (1 − 20εn)
Rm̂

n
≥ (1 − 20εn)

Dm̂

n
≥ (1 − 20εn)cn

Dm∗

n

≥ cn

1 − 20εn

ho
n

Rmo

n
≥ cn

ho
n

1 − 20εn

1 + 10εn

inf
m∈Mn

‖s − ŝm‖2.

We conclude the proof, saying that εn ≤ 1/28 implies that (1 − 20εn)(1 + 10εn)
−1 ≥ 8/38 ≥ 1/5.

5.3. Proof of Theorem 3.2

If δ− − 46εn < −1, there is nothing to prove, hence, we can assume in the following that δ− − 46εn > −1. We keep
the notation ΩT introduced in Lemma A.10. Let

Ωpen =
⋂

m∈Mn

{
2Dm

n
+ δ−

Rm

n
≤ pen(m) ≤ 2Dm

n
+ δ+ Rm

n

}
,
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Ω = ΩT ∩Ωpen and mo ∈ arg minm∈Mn
Rm. Recall that P(Ωpen) ≥ 1−p′ and that, m̂ minimizes over m the following

criterion.

Crit(m) = ‖ŝm‖2 − 2Pn(ŝm) + pen(m) + ‖s‖2 + 2νn(smo)

= ‖s − sm‖2 − p(m) + δ(mo,m) + pen(m).

Therefore, on Ω , for all m in Mn, since Rm ≥ Rmo ,

Crit(m) ≥ (1 + δ−)
Rm

n
+

(
Dm

n
− p(m)

)
− 6εn

Rm

n

≥ (1 + δ− − 16εn)‖s − sm‖2 + (1 + δ− − 16εn)
Dm

n
≥ (1 + δ− − 16εn)

Dm

n
,

Crit(m) ≤ (
1 + δ+ + 26εn

)Rm

n
.

If Dm > Cn(δ−, δ+)Rmo ,

Crit(m) ≥ (1 + δ− − 16εn)
Dm

n
> (1 + δ− − 46εn)

Dm

n

>
(
1 + δ+ + 26εn

)Rmo

n
≥ Crit(mo).

Hence Dm̂ ≤ Cn(δ−, δ+)Rmo . Moreover, from (15), for all m in Mn,

‖s − s̃‖2 ≤ ‖s − ŝm‖2 + (
pen(m) − 2p(m)

) + (
2p(m̂) − pen(m̂)

) + δ(m̂,m)

≤ ‖s − ŝm‖2 + 2

(
Dm

n
− p(m)

)
+ (

δ+ + 6εn

)Rm

n
+ 2

(
p(m̂) − Dm̂

n

)
+ (−δ− + 6εn)

Rm̂

n

≤ ‖s − ŝm‖2 + (
46εn + δ+)Rm

n
+ (26εn − δ−)

Rm̂

n
.

For all m in Mn, on ΩT ,

‖s − ŝm‖2 = Rm

n
+

(
p(m) − Dm

n

)
≥ (1 − 20εn)

Rm

n
.

Hence, for all m ∈ Mn,

‖s − s̃‖2 ≤ ‖s − ŝm‖2
(

1 + 46εn + δ+

1 − 20εn

)
+ 26εn − δ−

1 − 20εn

‖s − s̃‖2,

i.e.,

1 − 46εn − δ−
1 − 20εn

‖s − s̃‖2 ≤ 1 + 26εn + δ+

1 − 20εn

‖s − ŝm‖2.

This concludes the proof of Theorem 3.2.

5.4. Proof of Theorem 3.3

We keep the notation ΩT introduced in Lemma A.10. Recall that P(Ωc
T ) ≤ Ce−(1/2)(lnn)γ , and that, on ΩT ,

∀m ∈ Mn, (1 − 20εn)
Rm

n
≤ ‖s − ŝm‖2,

∀m,m′ ∈ M2
n, δ

(
m,m′) ≤ 6εn

Rm ∨ Rm′

n
.
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Let Ω̃p be the event defined in Lemma A.13 and let Ω = Ω̃p ∩ ΩT , from Lemma A.10, P(Ωc) ≤ Ce−(1/2)(lnn)γ .
Recall that pen(m) = 2DW

m /n (the notation DW
m is introduced in Proposition A.12). On Ω , from (15), for all n such

that 20εn < 1, for all m in Mn,

‖s − s̃‖2 ≤ ‖s − ŝm‖2 + 26εn

Rm

n
+ 16εn

Rm̂

n

≤ ‖s − ŝm‖2 + 26εn

1 − 20εn

‖s − ŝm‖2 + 16εn

1 − 20εn

‖s − s̃‖2.

Hence, for all n such that 20εn < 1, on Ω ,

(1 − 36εn)‖s − s̃‖2 ≤ (1 + 6εn) inf
m∈Mn

‖s − ŝm‖2.

For all n such that 1 − 36εn > 0 and 42/(1 − 36εn) < 100,

‖s − s̃‖2 ≤
(

1 + 42εn

1 − 36εn

)
inf

m∈Mn

‖s − ŝm‖2 ≤ (1 + 100εn) inf
m∈Mn

‖s − ŝm‖2.

Hence (8) holds for sufficiently large n, it holds in general provided that we enlarge the constant C if necessary.

Appendix

This appendix is devoted to the proof of the concentration inequalities that we used in the main proofs.

A.1. Probabilistic tools

The main tool is Lemma A.5 based on Bousquet’s version of Talagrand’s inequality. It is a concentration inequality
for the square of the supremum of the empirical process over a uniformly bounded class of functions. Recall first
Bousquet’s [11] and Klein and Rio [18] versions of Talagrand’s inequality.

Theorem A.1 (Bousquet’s bound). Let X1, . . . ,Xn be i.i.d. random variables valued in a measurable space (X, X )

and let S be a class of real valued functions bounded by b. Let v2 = supt∈S Var(t (X)) and let Z = supt∈S νnt . Then

∀x > 0, P

(
Z > E(Z) +

√
2

n

(
v2 + 2bE(Z)

)
x + bx

3n

)
≤ e−x.

Theorem A.2 (Klein and Rio’s bound). Let X1, . . . ,Xn be i.i.d. random variables valued in a measurable space
(X, X ) and let S be a class of real valued functions bounded by b. Let v2 = supt∈S Var(t (X)) and let Z = supt∈S νnt .
Then

∀x > 0, P

(
Z < E(Z) −

√
2

n

(
v2 + 2bE(Z)

)
x − 8bx

3n

)
≤ e−x.

Let us now also recall Bernstein’s inequality.

Proposition A.3 (Bernstein’s inequality). Let X1, . . . ,Xn be i.i.d. random variables valued in a measurable space
(X, X ) and let t be a measurable real valued and bounded function. Then, for all x > 0,

P

(
νn(t) >

√
2 Var(t (X1))x

n
+ ‖t‖∞x

3n

)
≤ e−x.

We derive from these bounds the following useful corollary.



Optimal model selection in density estimation 897

Corollary A.4. Let S be a symetric class of real valued functions upper bounded by b, v2 = supt∈S Var(t (X)), Z =
supt∈S νnt , nE(Z2) = D, eb = b2/n and

nEm = 225eb + (
2.1 + √

2π
)√

v2D + √
15D3/4e

1/4
b ,

then

E
(
Z21Z≥E(Z)

) ≤ (
E(Z)

)2
P
(
Z ≥ E(Z)

) + Em. (16)

In particular,(
E(Z)

)2 ≤ E
(
Z2) ≤ (

E(Z)
)2 + Em. (17)

Proof. Since S is symetric, we always have Z ≥ 0. We have

E
(
Z21Z≥E(Z)

) =
∫ ∞

0
P
(
Z21Z≥E(Z) > x

)
dx =

∫ ∞

0
P
(
Z1Z≥E(Z) >

√
x
)

dx

= (
E(Z)

)2
P
(
Z ≥ E(Z)

) +
∫ ∞

(E(Z))2
P
(
Z >

√
x
)

dx.

Take x = (E(Z)+√
2(v2 + 2bE(Z))y/n+by/(3n))2 in the previous integral, from Bousquet’s version of Talagrand’s

inequality,

∫ ∞

(E[Z])2
P
(
Z >

√
x
)

dx ≤ E(Z)

√
2

n

(
v2 + 2bE(Z)

) ∫ ∞

0

e−y

√
y

dy + 2v2 + 14bE(Z)/3

n

∫ ∞

0
e−y dy

+ b

n

√
2

n

(
v2 + 2bE(Z)

) ∫ ∞

0
e−y√y dy + 2b2

9n2

∫ ∞

0
ye−y dy.

Classical computations lead to∫ ∞

0

e−y

√
y

dy = 2
∫ ∞

0
e−y√y dy = √

π,

∫ ∞

0
e−y dy =

∫ ∞

0
ye−y dy = 1.

Therefore, using repeatedly the inequalities

aαb1−α ≤ αa + (1 − α)b (18)

and
√

a + b ≤ √
a + √

b, we obtain, for all η > 0,

√
nebE(Z) ≤ eb

3η2
+ 2η

3
e

1/4
b

(√
nE(Z)

)3/2
,

(√
nE(Z)

)1/2
e

3/4
b ≤ η

3
e

1/4
b

(√
nE(Z)

)3/2 + 2eb

3
√

η
.

Thus ∫ ∞

(E[Z])2
P
(
Z >

√
x
)

dx ≤
(

2v2 + 2

9
eb + v

√
2πeb

2

)
1

n
+ √

π

√√
nE(Z)(eb)

3/4

n

+
(

14

3

√
eb + v

√
2π

)√
nE(Z)

n
+ 2

√
π

(
√

nE(Z))3/2(eb)
1/4

n

≤
(

2 + η

√
2π

4

)
v2

n
+

√
2π

n
vE(Z) +

(
2

9
+

√
2π

4η
+ 2

√
π

3
√

η
+ 14

9η2

)
eb

n

+
(

η

(√
π

3
+ 28

9

)
+ 2

√
π

)
(
√

nE(Z))3/2(eb)
1/4

n
.
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Therefore, taking η = 0.088, we obtain∫ ∞

(E[Z])2
P
(
Z >

√
x
)

dx ≤ 2.1
v2

n
+ 152 eb

n
+ √

2πv

√
nE(Z)

n
+ √

15
(
√

nE(Z))3/2(eb)
1/4

n
.

Finally, we use Cauchy–Schwarz inequality to obtain that
√

nE(Z) ≤ (nE(Z2))1/2 = (D)1/2. Since v2 ≤ D, we
get (16). �

We deduce from this result the following concentration inequalities for Z2.

Corollary A.5. Let eb = b2/n. We have, for all x > 0,

P

(
Z2 − D

n
>

D3/4(eb(19x)2)1/4 + 3
√

Dv2x + 3v2x + eb(19x)2

n

)
≤ e−x,

P

(
Z2 − D

n
< −8D3/4(ebx

2)1/4 + 7.61
√

v2Dx + eb(40.25x)2

n

)
≤ e−x+1.

Proof. From Bousquet’s version of Talagrand’s inequality and from (E(Z))2 ≤ E(Z2), we obtain that, for all x > 0,
with probability larger than 1 − e−x , Z2 − D/n is not larger than

4D3/4(ebx
2)1/4 + √

D(14
√

ebx2/3 + 2
√

2v2x) + 4D1/4(ebx
2)3/4/3 + 3v2x + ebx

2/3

n
.

We use repeatedly the inequality aαb1−α ≤ αa + (1 − α)b to obtain that, with probability at least 1 − e−x , Z2 − D/n

is not larger than

(4 + 32η/9)D3/4(ebx
2)1/4 + 2

√
2
√

Dv2x + 3v2x + (3 + 14/η2 + 8/
√

η)ebx
2/9

n
.

For η = 0.07, this gives

Z2 − D

n
>

D3/4(eb(19x)2)1/4 + 2
√

2
√

Dv2x + 3v2x + eb(19x)2

n
.

For the second one we use Klein’s version of Talagrand’s inequality to obtain, for all x > 0 such that r(x) =√
2(v2 + 2bE(Z))x/n + 8bx/3n < E(Z),

P
(
Z2 <

(
E(Z) − r(x)

)2) ≤ e−x.

We have (E(Z) − r(x))2 = (E(Z))2 − 2E(Z)r(x) + r(x)2 ≥ (E(Z))2 − 2E(Z)r(x), thus

P
(
Z2 <

(
E(Z)

)2 − 2E(Z)r(x)
) ≤ e−x.

From the previous corollary, (E(Z))2 ≥ E(Z2) − Em, thus

P
(
Z2 < E

(
Z2) − Em − 2E(Z)r(x)

) ≤ e−x.

Remark that

2E(Z)r(x) ≤ 4D3/4(ebx
2)1/4 + 3

√
Dv2x + 16

√
Debx2/3

n

≤ (4 + 32η/9)D3/4(ebx
2)1/4 + 3

√
Dv2x + 16/(9η2)ebx

2

n
.
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For η = 0.0357, we obtain

D

n
− Z2 ≤ D3/4e

1/4
b (

√
15 + 4.127

√
x) + √

v2D(4.61 + 3
√

x) + 225eb(6.2x2 + 1)

n
. (19)

In order to conclude the proof, we remark that the inequality is trivial when x ≤ 1, thus we only have to use (19) for
x > 1 and then

√
x > 1 and x2 > 1. �

We will use this lemma to obtain a concentration inequality for totally degenerate U -statistics of order 2. The
following result generalizes a previous inequality due to Houdré and Reynaud-Bouret [17] to random variables taking
values in a measurable space.

Lemma A.6. Let X,X1, . . . ,Xn be i.i.d. random variables taking value in a measurable space (X, X ) with common
law P . Let μ be a measure on (X, X ) and let (tλ)λ∈Λ be a set of functions in L2(μ). Let

B =
{
t =

∑
λ∈Λ

aλtλ,
∑
λ∈Λ

a2
λ ≤ 1

}
, D = E

(
sup
t∈B

(
t (X) − P t

)2
)
,

v2 = sup
t∈B

Var
(
t (X)

)
, b = sup

t∈B

‖t‖∞ and eb = b2

n
.

Let

U = 1

n(n − 1)

n∑
i �=j=1

∑
λ∈Λ

(
tλ(Xi) − P tλ

)(
tλ(Xj ) − P tλ

)
.

Then the following inequality holds

∀x > 0, P

(
U >

5.31D3/4(ebx
2)1/4 + 3

√
v2Dx + 3v2x + eb(19.1x)2

n − 1

)
≤ 2e−x, (20)

∀x > 0, P

(
U < −9D3/4(ebx

2)1/4 + 7.61
√

v2Dx + eb(40.3x)2

n − 1

)
≤ 3.8e−x. (21)

Proof. Remark that, from Cauchy–Schwarz inequality,

sup
t∈B

(
νn(t)

)2 =
(

sup∑
a2
λ≤1

∑
λ∈Λ

aλνn(tλ)

)2

=
∑
λ∈Λ

(
νn(tλ)

)2
.

For all x in X, from Cauchy–Schwarz inequality,

sup
t∈B

(
t (x) − P t

)2 =
∑
λ

(
tλ(x) − P tλ

)2
,

in particular, D = ∑
λ∈Λ Var(ψλ(X)). Moreover, easy algebra leads to

∑
λ∈Λ

(
νn(tλ)

)2 = 1

n2

n∑
i=1

∑
λ∈Λ

(
tλ(Xi) − P tλ

)2 + 1

n2

n∑
i �=j=1

∑
λ∈Λ

(
tλ(Xi) − P tλ

)(
tλ(Xj ) − P tλ

)

= 1

n
Pn

(∑
λ∈Λ

(tλ − P tλ)
2
)

+ n − 1

n
U.
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Let Z2 = supt∈B(νn(t))
2, TΛ = ∑

λ∈Λ(tλ − P tλ)
2,

E
(
Z2) = E

(
1

n
PnTΛ

)
= D

n
.

Hence

U = n

n − 1

(
Z2 − E

(
Z2) − 1

n
νn(TΛ)

)
.

From Corollary A.5, for all x > 0,

P

(
Z2 − D

n
>

D3/4(eb(19x)2)1/4 + 3
√

v2Dx + 3v2x + eb(19x)2

n

)
≤ e−x,

P

(
Z2 − D

n
< −8D3/4(eb(x)2)1/4 + 7.61

√
v2Dx + eb(40.25x)2

n

)
≤ 2.8e−x.

Moreover, from Bernstein inequality, for all x > 0,

P

(
−νnTΛ >

√
2Debx + ebx

3

)
≤ e−x,

P

(
νnTΛ >

√
2Debx + ebx

3

)
≤ e−x.

We apply inequality (18) with a = D3/4(ebx
2)1/4, b = eb

√
x, α = 2/3 and we obtain

P

(
−νnTΛ >

2
√

2

3
D3/4(ebx

2)1/4 + eb

(
x + √

2x

3

))
≤ e−x,

P

(
νnTΛ >

2
√

2

3
D3/4(ebx

2)1/4 + eb

(
x + √

2x

3

))
≤ e−x.

Therefore, for all x > 0,

P

(
U >

5.31D3/4(ebx
2)1/4 + 3

√
v2Dx + 3v2x + eb((19x)2 + (x + √

2x)/3)

n − 1

)
≤ 2e−x,

P

(
U < −9D3/4(ebx

2)1/4 + 7.61
√

v2Dx + eb((40.25x)2 + (x + √
2x)/3)

n − 1

)
≤ 3.8e−x.

These inequalities are trivial when x < 1. We only use them when x > 1 and we obtain (20) and (21) since x < x2

and
√

x < x2 when x > 1. �

Let us now state the following corollary of Bernstein’s inequality.

Lemma A.7. Let X,X1, . . . ,Xn be i.i.d. random variables taking value in a measurable space (X, X ) with common
law P . Let μ be a measure on (X, X ) and let (ψλ)λ∈Λ be an orthonormal system in L2(μ). Let L be a linear
functional in L2(μ) and let B = {t = ∑

λ∈Λ aλL(ψλ),
∑

λ∈Λ a2
λ ≤ 1}, v2 = supt∈B Var(t (X)), b = supt∈B ‖t‖∞ and

eb = b2/n. Let u be a function in S, the linear space spanned by the functions (ψλ)λ∈Λ and let η > 0. Then the
following inequality holds

∀x > 0, P

(
νn

(
L(u)

)
>

η

2
‖u‖2 + 2v2x + ebx

2/9

ηn

)
≤ e−x. (22)
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Proof. From Bernstein’s inequality,

∀x > 0, P

(
νn

(
L(u)

)
>

√
2 Var(L(u)(X))x

n
+ ‖L(u)‖∞x

3n

)
≤ e−x.

Since t = L(u/‖u‖) belongs to B ,

√
2 Var(L(u)(X))x

n
+ ‖L(u)‖∞x

3n
= ‖u‖

(√
2 Var(t (X))x

n
+ ‖t‖∞x

3n

)
≤ η

2
‖u‖2 + 1

2η

(√
2v2x

n
+ bx

3n

)2

.

We conclude the proof using the inequality (a + b)2 ≤ 2a2 + 2b2. �

A.2. Concentration of the ideal penalty

Let us remark that, for all m in Mn, p(m) is the supremum of the centered empirical process over the ellipsoid
Bm = {t ∈ Sm,‖t‖ ≤ 1}. From Cauchy–Schwarz inequality, for all real numbers (bλ)λ∈m,

∑
λ∈m

b2
λ =

(
sup∑
a2
λ≤1

∑
λ∈m

aλbλ

)2

. (23)

We apply this equality with bλ = νn(ψλ). We obtain, since the system (ψλ)λ∈m is orthonormal,

∑
λ∈m

(
νn(ψλ)

)2 = sup∑
a2
λ≤1

(∑
λ∈m

aλνn(ψλ)

)2

= sup∑
a2
λ≤1

(
νn

(∑
λ∈m

aλψλ

))2

= sup
t∈Bm

(
νn(t)

)2
.

Hence, p(m) is bounded by a Talagrand’s concentration inequality (see Talagrand [26]). This inequality involves
Dm = nE(‖ŝm − sm‖2) and the constants

em = 1

n
sup
t∈Bm

‖t‖2∞ and v2
m = sup

t∈Bm

Var
(
t (X)

)
. (24)

More precisely, the following proposition is a straightforward application of Corollary A.5.

Proposition A.8. Let X,X1, . . . ,Xn be i.i.d. random variables with common density s with respect to a probability
measure μ. Assume that s belongs to L2(μ) and let Sm be a linear subspace in L2(μ). Let sm and ŝm be respectively
the orthogonal projection and the projection estimator of s onto Sm. Let p(m) = ‖sm − ŝm‖2, Dm = nE(p(m)) and
let vm, em be the constants defined in (24). Then, for all x > 0,

P

(
p(m) − Dm

n
>

D
3/4
m (emx2)1/4 + 0.7

√
Dmv2

mx + 0.15v2
mx + emx2

n

)
≤ e−x/20, (25)

P

(
Dm

n
− p(m) >

1.8D
3/4
m (emx2)1/4 + 1.71

√
Dmv2

mx + 4.06emx2

n

)
≤ 2.8e−x/20. (26)

A.3. Computation of the union bounds

Let us prove a simple result

Lemma A.9. For all K > 1,

Σ(K) =
∑
k∈N

∑
m∈Mk

n

e−K[ln(1+Card(M[k]
n ))+ln(1+k)] < ∞. (27)
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For all m in Mn, let lm = ln,γ (Rm,Rm), then, for all K > 1/
√

2,

∑
m∈Mn

e−K2lm = Σ
(
2K2)e−K2(lnn)γ . (28)

For all m, m′ in Mn, let lm,m′ = ln,γ (Rm,Rm′), then, for all K > 1,

∑
(m,m′)∈(Mn)2

e−K2lm,m′ = (
Σ

(
K2))2

e−K2(lnn)γ . (29)

Proof. Inequality (27) comes from the fact that, when K > 1,

∀k ∈ N,
∑

m∈M[k]
n

e−K[ln(1+Card(M[k]
n ))] ≤ 1 and

∑
k∈N∗

e−K lnk < ∞.

For all integers k such that M[k]
n �= ∅, for all m in M[k]

n , lm ≥ 2[ln(1 + Card(M[k]
n )) + ln(1 + k)] + (lnn)γ , thus, for

all K > 1/
√

2, it comes from (27) that

∑
m∈Mn

e−K2lm ≤ e−K2(lnn)γ
∑
k∈N

∑
m∈M[k]

n

e−2K2[ln(1+Card(M[k]
n ))+ln(1+k)] ≤ Σ

(
2K2)e−K2(lnn)γ .

Finally, for all integers (k, k′) such that M[k]
n × M[k′]

n �= ∅,

lm,m′ ≥ ln
(
1 + Card

(
M[k]

n

)) + ln(1 + k) + ln
(
1 + Card

(
M[k′]

n

)) + ln
(
1 + k′) + (lnn)γ .

Thus, from (27),

∑
(m,m′)∈(M2

n)

e−K2lm,m′ =
(∑

k∈N

∑
m∈Mk

n

e−K2[ln(1+Card(M[k]
n ))+ln(1+k)]

)2

e−K2(lnn)γ .

�

Lemma A.10. Let Mn be a collection of models satisfying Assumption [V]. We consider the following events.

Ωδ =
{
∀(

m,m′) ∈ M2
n, δ

(
m,m′) ≤ 6εn

Rm ∨ Rm′

n

}
,

Ωp =
⋂

m∈Mn

{{
p(m) − Dm

n
≤ 10εn

Rm

n

}
∩

{
p(m) − Dm

n
≥ −20εn

Rm

n

}}

and ΩT = Ωδ ∩ Ωp . Then there exists a constant C > 0 such that

P
(
Ωc

δ

) ≤ Ce−(lnn)γ , P
(
Ωc

p

) ≤ Ce−(1/2)(lnn)γ , P
(
Ωc

T

) ≤ Ce−(1/2)(lnn)γ .

Proof. Let K > 1 be a constant to be chosen later. We apply Lemma A.7 to u = sm − sm′ , S = Sm + Sm′ , L = id,
x = K2ln,γ (Rm,Rm′). For all η > 0, for all m,m′ in Mn, on an event of probability larger than 1 − e−K2ln,γ (Rm,Rm′ ),

δ
(
m,m′) ≤ η

2
‖sm − sm′ ‖2 + 2v2

m,m′K2ln,γ (Rm,Rm′) + em,m′(K2ln,γ (Rm,Rm′))2/9

ηn
. (30)

From [V], for all m, m′ in Mn,

2v2
m,m′K2ln,γ (Rm,Rm′) + em,m′(K2ln,γ (Rm,Rm′))2

9
≤

(
2(Kεn)

2 + (Kεn)
4

9

)
Rm ∨ Rm′

n
.
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Moreover, for all m,m′ in Mn,

‖sm − sm′ ‖2 ≤ 2
(‖s − sm‖2 + ‖s − sm′ ‖2) ≤ 2(Rm + Rm′) ≤ 4(Rm ∨ Rm′).

Let en(K) = √
(Kεn)2 + (Kεn)4/18. In (30) we take η = en(K) and we obtain

P

(
δ
(
m,m′) > 4en(K)

Rm ∨ Rm′

n

)
≤ e−Kln,γ (Rm,Rm′ ). (31)

From (29), for all K > 1,

P

(
∀(

m,m′) ∈ M2
n, δ

(
m,m′) > 4en(K)

Rm ∨ Rm′

n

)
≤ (

Σ(K)
)2e−K(lnn)2

.

Let K = 1.1 and take n sufficiently large so that K4ε2
n/18 ≤ 1, then 4en(K) ≤ 6εn. Hence, the first conclusion of

Lemma A.10 holds for sufficiently large n, it holds in general, provided that we increase the constant C if necessary.
We apply Assumption [V] (see (14)) with m = m′, let lm = ln,γ (Rm,Rm), for all K > 0, for all n such that

4.06(Kεn)
3 ≤ 2,

D
3/4
m (em(K2lm)2)1/4 + 0.7

√
Dmv2

mK2lm + 0.15v2
mK2lm + em(K2lm)2

n

≤ (
1.7Kεn + 0.15(Kεn)

2 + (Kεn)
4)Rm

n
≤ 3Kεn

Rm

n
,

1.8D
3/4
m (em(K2lm)2)1/4 + 1.71

√
Dmv2

m(K2lm) + 4.06em(K2lm)2

n

≤ (
3.51Kεn + 4.06(Kεn)

4)Rm

n
≤ 6Kεn

Rm

n
.

It comes then from Proposition A.8 applied with x = K2lm that, for all m in Mn

P

(
p(m) − Dm

n
> 3Kεn

Rm

n

)
≤ e−(K2/20)lm .

Thus, from (28), for all K >
√

10, and for all n sufficiently large,

P

(
∀m ∈ Mn, p(m) − Dm

n
> 3Kεn

Rm

n

)
≤ Σ

(
K2/10

)
e−(K2/20)(lnn)γ .

We use the same arguments to prove that

P

(
∀m ∈ Mn,p(m) − Dm

n
< 6Kεn

Rm

n

)
≤ Σ

(
K2/10

)
e−(K2/20)(lnn)γ .

Fixe K = √
10.5, then for all n sufficiently large, the conclusion of Lemma A.10 holds. It holds in general provided

that we increase the constant C if necessary. �

A.4. Concentration of the resampling penalty

Lemma A.11. Let (ψλ)λ∈Λ be an orthonormal system in L2(μ) and let L be a linear functional defined on L2(μ).
Let p(Λ) = ∑

λ∈Λ(νn(L(ψλ)))
2. Let (W1, . . . ,Wn) be a resampling scheme, let W̄n = ∑n

i=1 Wi/n and let v2
W =

Var(W1 − W̄n). Let

DW
Λ = n

(
v2
W

)−1 ∑
λ∈Λ

E
W

((
νW
n

(
L(ψλ)

))2)
,
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T = ∑
λ∈Λ(L(ψλ) − PL(ψλ))

2, D = PT and

U = 1

n(n − 1)

n∑
i �=j=1

∑
λ∈Λ

(
L(ψλ)(Xi) − PL(ψλ)

)(
L(ψλ)(Xj ) − PL(ψλ)

)

then

p(Λ) = 1

n
PnT + n − 1

n
U, DW

Λ = PnT − U, p(Λ) − DW
Λ

n
= U,

E
(
DW

Λ

) = D, DW
Λ − D = νnT − U.

Proof. It is easy to check that

p(Λ) =
∑
λ∈Λ

(
1

n

n∑
i=1

L(ψλ)(Xi) − PL(ψλ)

)2

= 1

n2

n∑
i=1

(
L(ψλ)(Xi) − PL(ψλ)

)2 + 1

n2

n∑
i �=j=1

∑
λ∈Λ

(
L(ψλ)(Xi) − PL(ψλ)

)(
L(ψλ)(Xj ) − PL(ψλ)

)

= 1

n
PnT + n − 1

n
U.

Recall that νW
n = P W

n − W̄nPn. For all λ in Λ, since
∑n

i=1(Wi − W̄n) = 0,

νW
n

(
L(ψλ)

) = 1

n

n∑
i=1

(Wi − W̄n)L(ψλ)(Xi) = 1

n

n∑
i=1

(Wi − W̄n)
(
L(ψλ)(Xi) − PL(ψλ)

)
.

Thus, if Ei,j = E((Wi − W̄n)(Wj − W̄n))/v
2
W ,

DW
Λ = n

(
v2
W

)−1 ∑
λ∈Λ

E
W

((
1

n

n∑
i=1

(Wi − W̄n)
(
L(ψλ)(Xi) − PL(ψλ)

))2)

= 1

n

n∑
i=1

E((Wi − W̄n)
2)

v2
W

(
L(ψλ)(Xi) − PL(ψλ)

)2

+ 1

n

n∑
i �=j=1

∑
λ∈Λ

Ei,j

(
L(ψλ)(Xi) − PL(ψλ)

)(
L(ψλ)(Xj ) − PL(ψλ)

)
.

Since the weights are exchangeable, for all i = 1, . . . , n, E((Wi − W̄n)
2) = Var(W1 − W̄n) = v2

W and for all i �= j =
1, . . . , n,

v2
WEi,j = E

(
(Wi − W̄n)(Wj − W̄n)

) = E
(
(W1 − W̄n)(W2 − W̄n)

)
.

Moreover, since
∑n

i=1(Wi − W̄n) = 0,

0 = E

[(
n∑

i=1

(Wi − W̄n)

)2]
=

n∑
i=1

E
(
(Wi − W̄n)

2) +
n∑

i �=j=1

v2
WEi,j

= nE
(
(W1 − W̄n)

2) + n(n − 1)E
(
(W1 − W̄n)(W2 − W̄n)

)
.
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Hence, for all i �= j = 1, . . . , n, Ei,j = −1/(n − 1), thus

DW
Λ = PnT − U.

The last inequalities of Lemma A.11 follow from the fact that E(U) = 0. Finally,

p(Λ) − DW
Λ

n
= 1

n
PnT + n − 1

n
U −

(
1

n
PnT − 1

n
U

)
= U. �

Proposition A.12. Let (W1, . . . ,Wn) be a resampling scheme, let Sm be a linear space, Bm = {t ∈ Sm,‖t‖ ≤ 1},
p(m) = supt∈Bm

(νn(t))
2, Dm = nE(p(m)) and let DW

m be the resampling estimator of Dm based on (W1, . . . ,Wn),
that is DW

m = nC2
W E

W(νW
n (ŝW

m )), where v2
W = Var(W1 − W̄n) and C2

W = (v2
W)−1.

Then, for all m in Mn, E(DW
m ) = Dm. Moreover, let em, vm be the quantities defined in (24). For all x > 0, on an

event of probability larger than 1 − 7.8e−x ,

DW
m − Dm ≤ √

8emDmx + em

(
4x

3
+ (40.3x)2

n − 1

)
+ 9D

3/4
m (emx2)1/4 + 7.61

√
v2
mDmx

n − 1
, (32)

DW
m − Dm ≥ −√

8emDmx − em

(
4x

3
+ (19.1x)2

n − 1

)
− 5.31D

3/4
m (emx2)1/4 + 3

√
v2
mDmx + 3v2

mx

n − 1
. (33)

For all x > 0,

P

(
p(m) − DW

m

n
>

5.31D
3/4
m (emx2)1/4 + 3

√
v2
mDmx + 3v2

mx + em(19.1x)2

n − 1

)
≤ 2e−x, (34)

P

(
DW

m

n
− p(m) ≤ 9D

3/4
m (emx2)1/4 + 7.61

√
v2
mDmx + em(40.3x)2

n − 1

)
≤ 3.8e−x. (35)

Proof. The exchangeability property ensures that E
W(W̄ 2

n ) = n−1 ∑n
i=1 E(WiW̄n) = E(W1W̄n). We deduce that

E
W

((
P W

n − W̄nPn

)
(W̄nŝm)

) = 1

n

n∑
i=1

E
W

(
(Wi − W̄n)W̄n

)
ŝm(Xi) = 0.

Let us recall that ŝW
m = arg mint∈Sm{‖t‖2 − 2P W

n t} = ∑
λ∈m(P W

n ψλ)ψλ. Hence

E
W

(
νW
n

(
ŝW
m

)) = E
W

(
νW
n

(
ŝW
m − W̄nŝm

)) =
∑
λ∈m

E
W

((
νW
n ψλ

)2)
.

We apply Lemma A.11 with L = id and Λ = m. By definition of p(m) and DW
m ,

p(m) − DW
m

n
= 1

n(n − 1)

n∑
i �=j=1

∑
λ∈m

(
ψλ(Xi) − Pψλ

)(
ψλ(Xj ) − Pψλ

)
.

Thus, from Lemma A.6, for all x > 0,

P

(
p(m) − DW

m

n
>

5.31D
3/4
m (emx2)1/4 + 3

√
v2
mDmx + 3v2

mx + em(19.1x)2

n − 1

)
≤ 2e−x,

P

(
DW

m

n
− p(m) >

9D
3/4
m (emx2)1/4 + 7.61

√
v2
mDmx + em(40.3x)2

n − 1

)
≤ 3.8e−x.

This proves (34) and (35).
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In order to obtain (32) and (33), we introduce, for all m in Mn, the function Tm = ∑
λ∈m(ψλ − Pψλ)

2 and the
random variable

Um = 1

n(n − 1)

n∑
i �=j=1

∑
λ∈m

(
ψλ(Xi) − Pψλ

)(
ψλ(Xj ) − Pψλ

)
.

We apply Lemma A.11 with L = id , we obtain

DW
m − Dm = νn(Tm) − Um.

From Bernstein’s inequality (see Proposition A.3), for all x > 0 and all ξ in {−1,1},

P

(
ξνn(Tm) >

√
2 Var(Tm(X))x

n
+ ‖Tm‖∞x

3n

)
≤ e−x.

From Cauchy–Schwarz inequality, Tm = supt∈Bm
(t −P t)2, thus ‖Tm‖∞/n = 4em and Var(Tm(X))/n ≤ ‖Tm‖∞PTm/

n = 4emDm, therefore, for all x > 0 and all ξ in {−1,1},

P

(
ξνn(Tm) >

√
8emDmx + 4emx

3

)
≤ e−x.

Moreover, from Lemma A.6, for all x > 0,

P

(
Um >

5.31D
3/4
m (emx2)1/4 + 3

√
v2
mDmx + 3v2

mx + em(19.1x)2

n − 1

)
≤ 2e−x,

P

(
Um < −9D

3/4
m (emx2)1/4 + 7.61

√
v2
mDmx + em(40.3x)2

n − 1

)
≤ 3.8e−x.

We deduce that, for all x > 0, with probability larger than 1 − 4.8e−x ,

DW
m − Dm ≤ √

8emDmx + em

(
4x

3
+ (40.3x)2

n − 1

)
+ 9D

3/4
m (emx2)1/4 + 7.61

√
v2
mDmx

n − 1
.

Moreover, for all x > 0, on an event of probability larger than 1 − 3e−x ,

DW
m − Dm ≥ −√

8emDmx − em

(
4x

3
+ (19.1x)2

n − 1

)
− 5.31D

3/4
m (emx2)1/4 + 3

√
v2
mDmx + 3v2

mx

n − 1
. �

Lemma A.13. Let

Ωu =
⋂

m∈Mn

{
DW

m

n
− p(m) ≤ 10εn

Rm

n

}
,

Ωl =
⋂

m∈Mn

{
DW

m

n
− p(m) ≥ −12εn

Rm

n

}

and Ω̃p = Ωu ∩ Ωl. There exists a constant C > 0 such that P(Ω̃c
p) ≤ Ce−(1/2)(lnn)γ .

Proof. From Assumption [V] applied with m = m′ (see (14)), if lm = ln,γ (Rm,Rm), for all K > 0,

D
3/4
m

(
em

(
K2lm

)2)1/4 ≤ KεnRm,

√
v2
mDm

(
K2lm

) ≤ KεnRm,

v2
m

(
K2lm

) ≤ (Kεn)
2Rm, em(Klm)2 ≤ (Kεn)

4Rm.
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We apply Proposition A.12 with x = K2lm and we obtain

P

(
DW

m

n
− p(m) >

(
8.31Kεn + 3(Kεn)

2 + (19.1)2(Kεn)
4) Rm

n − 1

)
≤ 2e−K2lm .

Thus, for all K > 1/(
√

2), if en(K) = n(8.31Kεn + 3(Kεn)
2 + (19.1)2(Kεn)

4)/(n − 1), from (28)

P

(
∀m ∈ Mn,

DW
m

n
− p(m) > en(K)

Rm

n

)
≤ 2Σ

(
2K2)e−K2(lnn)γ .

Take K = 8/8.31 and n ≥ 10 sufficiently large to ensure that 3K2εn + (19.1)2K4ε3
n ≤ 1, then

en(K) ≤ 10

9
(8εn + εn) ≤ 10εn.

We deduce that, for sufficiently large n,

P
(
Ωc

u

) ≤ 2Σ
(
2K2)e−K2(lnn)γ .

We also apply Proposition A.12 with x = K2lm, and we use the same arguments to prove that, for K = 16/16.61, for
all n ≥ 10 sufficiently large to ensure that (40.3)2K4ε3

n ≤ 2

P

(
∀m ∈ Mn,

DW
m

n
− p(m) < −20εn

Rm

n

)
≤ 3.8Σ

(
2K2)e−K2(lnn)γ .

Hence, the conclusion of Lemma A.13 holds for sufficiently large n. It holds in general, provided that we increase the
constant C if necessary. �
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