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ABSTRACT

The neural network is a powerful computing framework that has been exploited by biological
evolution and by humans for solving diverse problems. Although the computational
capabilities of neural networks are determined by their structure, the current understanding
of the relationships between a neural network’s architecture and function is still primitive.
Here we reveal that a neural network’s modular architecture plays a vital role in determining
the neural dynamics and memory performance of the network of threshold neurons. In
particular, we demonstrate that there exists an optimal modularity for memory performance,
where a balance between local cohesion and global connectivity is established, allowing
optimally modular networks to remember longer. Our results suggest that insights from
dynamical analysis of neural networks and information-spreading processes can be leveraged
to better design neural networks and may shed light on the brain’s modular organization.

AUTHOR SUMMARY

Understanding the inner workings of the human brain is one of the greatest scientific
challenges. It will not only advance the science of the human mind, but also help us build
more intelligent machines. In doing so, it is crucial to understand how the structural
organization of the brain affects functional capabilities. Here we reveal a strong connection
between the modularity of a neural network and its performance in memory tasks. Namely,
we demonstrate that there is optimal modularity for memory performance. Our results
suggest a design principle for artificial recurrent neural networks as well as a hypothesis that
may explain not only the existence but also the strength of modularity in the brain.

INTRODUCTION

Neural networks are the computing engines behind many living organisms. They are also
prominent general-purpose frameworks for machine learning and artificial intelligence appli-
cations (LeCun, Bengio, & Hinton, 2015). The behavior of a neural network is determined by
the dynamics of individual neurons, the topology and strength of individual connections, and
large-scale architecture. In both biological and artificial neural networks, neurons integrate
input signals and produce a graded or threshold-like response. While individual connections
are dynamically trained and adapted to the specific environment, the architecture primes the
network for performing specific types of tasks. The architecture of neural networks varies from
organism to organism and between brain regions and is vital for functionality. The orientation
columns of the visual cortex that support low-level visual processing (Hubel & Wiesel, 1972) or
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Optimal modularity and memory capacity of neural reservoirs

the looped structure of hippocampus that consolidates memory (Otmakhova, Duzel, Deutch,
& Lisman, 2013) are two examples. In machine learning, feed-forward convolutional architec-
tures have achieved superhuman visual recognition capabilities (Ioffe & Szegedy, 2015; LeCun
et al., 2015), while recurrent architectures exhibit impressive natural language processing and
control capabilities (Schmidhuber, 2015).

Yet, identifying systematic design principles for neural architecture is still an outstanding
question (Legenstein & Maass, 2005; Sussillo & Barak, 2013). Here, we investigate the role
of modular architectures on memory capacity of neural networks, where we define mod-
ules (communities) as groups of nodes that have stronger internal versus external connectivity
(Girvan & Newman, 2002).

We focus on modularity primarily because of the prevalence of modular architectures in
the brain. Modularity can be observed across all scales in the brain and is considered a key or-
ganizing principle for functional division of brain regions (Bullmore & Sporns, 2009) and brain
dynamics (Kaiser & Hilgetag, 2010; Moretti & Muñoz, 2013; Müller-Linow, Hilgetag, & Hütt,
2008; Villegas, Moretti, & Muñoz, 2015; Wang, Hilgetag, & Zhou, 2011), and is also consid-
ered as a plausible mechanism for working memory through ensemble-based coding schemes
(Boerlin & Denève, 2011), bistability (Constantinidis & Klingberg, 2016; Cossart, Aronov, &
Yuste, 2003; Klinshov, Teramae, Nekorkin, & Fukai, 2014), gating (Gisiger & Boukadoum,
2011), and through metastable states that retain information (Johnson, Marro, & Torres, 2013).

Here we study the role of modularity based on the theories of information diffusion, which
can inform how structural properties affect spreading processes on a network (Mišić et al.,
2015). Spreading processes can include diseases, social fads, memes, random walks, or the
spiking events transmitted by biological neurons (Boccaletti, Latora, Moreno, Chavez, & Hwang,
2006; Newman, 2003; Pastor-Satorras, Castellano, Van Mieghem, & Vespignani, 2015), and
they are studied in the context of large-scale network properties like small-worldness, scale-
freeness, core periphery structure, and community structure (modularity; Boccaletti et al.,
2006; Newman, 2003; Strogatz, 2001).

Communities’ main role in information spreading is restricting information flow (Chung,
Baek, Kim, Ha, & Jeong, 2014; Onnela et al., 2007). However, recent work showed that com-
munities may play a more nuanced role in complex contagions, which require reinforcementComplex contagions:

Contagion where spreading is
enabled by reinforcement from other
contagions, such as spiking neurons,
as opposed to diseases or random
walks.

from multiple local adoptions. It turns out that under certain conditions community structure
can facilitate spread of complex contagions, mainly by enhancing initial local spreading. As
a result, there is an optimal modularity at which both local and global spreading can occur
(Nematzadeh, Ferrara, Flammini, & Ahn, 2014).

In the context of neural dynamics, this result suggests that communities could offer a way
to balance and arbitrate local and global communication and computation. We hypothesize
that an ideal computing capacity emerges near the intersection between local cohesion and
global connectivity, analogous to the optimal modularity for information diffusion.

We test whether this can be true in reservoir computers. Reservoir computers are biolog-Reservoir:
A system that carries out (often
nonlinear) computations on some
input signal.

ically plausible models for brain computation (Enel, Procyk, Quilodran, & Dominey, 2016;
Soriano, Brunner, Escalona-Moran, Mirasso, & Fischer, 2015; Yamazaki & Tanaka, 2007) as
well as a successful machine learning paradigm (Lukoševičius & Jaeger, 2009). They have
emerged as an alternative to the traditional recurrent neural network (RNN) paradigm (Jaeger
& Hass, 2004; Maass, Natschlager, & Markram, 2002).
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Optimal modularity and memory capacity of neural reservoirs

Instead of training all the connection parameters as in RNNs, reservoir computers train only
a small number of readout parameters. Reservoir computers use the implicit computational
capacities of a neural reservoir—a network of model neurons. Compared with other frame-
works that require training numerous parameters, this paradigm allows for larger networks and
better parameter scaling. Reservoir computers have been successful in a range of tasks includ-
ing time series prediction, natural language processing, and pattern generation, and have also
been used as biologically plausible models for neural computation (Deng, Mao, & Chen, 2016;
Enel et al., 2016; Holzmann & Hauser, 2010; Jaeger, 2012; Jalalvand, De Neve, Van de Walle,
& Martens, 2016; Rössert, Dean, & Porrill, 2015; Soriano et al., 2015; Souahlia, Belatreche,
Benyettou, & Curran, 2016; Triefenbach, Jalalvand, Schrauwen, & Martens, 2010; Yamazaki &
Tanaka, 2007).

Reservoir computers operate by taking an input signal(s) into a high-dimensional reservoir
state space where signals are mixed. We use echo state networks (ESN)—a popular imple-Echo state network:

A type of reservoir computer that
relies on a system of neurons to
perform nonlinear computations on
an input signal.

mentation of reservoir computing—where the reservoir is a collection of randomly connected
neurons and the inputs are continuous or binary signals that are injected into a random subset
of those neurons through randomly weighted connections. The reservoir’s output is read via a
layer of read-out neurons that receive connections from all neurons in the reservoir. They have
no input back into the reservoir and they act as the system’s output on tasks.

The reservoir weights and input weights are generally drawn from a given probability dis-
tribution and remain unchanged, while the readout weights that connect the reservoir and
readouts are trained (see Figure 1A). Readout neurons can be considered as “tuning knobs”
into the desired set of nonlinear computations that are being performed within the reservoir.
Therefore, the ability of a reservoir computer to learn a particular behavior depends on the
richness of the dynamical repertoire of the reservoir (Lukoševičius & Jaeger, 2009; Pascanu &
Jaeger, 2011).

Many attempts have been made to calibrate reservoirs for particular tasks. In echo state
networks this usually entails the adjustment of the spectral radius (largest eigenvalue of the
reservoir weight matrix), the input and reservoir weight scales, and reservoir size (Farkas, Bosak,
& Gergel, 2016; Jaeger, 2002; Pascanu & Jaeger, 2011; Rodan & Tio, 2011). In memory tasks,

Figure 1. (A) A modular echo state network (ESN). At each time step a k-dimensional input signal uk(t) is introduced with randomly weighted
input weights W in. The reservoir’s state x(t) evolves through a randomly generated constant weight matrix W . The output weights Wout are
trained based on the tasks. (B) μ is the fraction of bridges that connect communities within the reservoir. At low μ community structure
is pronounced, while communities vanish at high μ (≈ 0.5). We hypothesize that performance increases when a balance between the local
cohesion of communities and the global connectivity of bridges is met. (C) A visual comparison of activation functions. Our activation function
(solid blue) has threshold-like behavior where small inputs invoke no response up to a threshold, after which the neuron becomes excited.
This type of activity mimics the kind expressed in many biological neural networks.

Network Neuroscience 553

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/netn_a_00082 by guest on 17 August 2022



Optimal modularity and memory capacity of neural reservoirs

performance peaks sharply around a critical point for the spectral radius, whereby the neural
network resides within a dynamical regime with long transients and “echos” of previous inputs
reverberating through the states of the neurons preserving past information (Pascanu & Jaeger,
2011; Verstraeten, Schrauwen, D’Haene, & Stroobandt, 2007). Weight distribution has also
been found to play an important role in performance (Ju, Xu, Chong, & VanDongen, 2013),
and the effects of reservoir topology have been studied using small-world (Deng & Zhang,
2007), scale-free (Deng & Zhang, 2007), columnar (Ju et al., 2013; Li, Zhong, Xue, & Zhang,
2015; Maass et al., 2002; Verstraeten et al., 2007), Kronecker graphs (Leskovec, Chakrabarti,
Kleinberg, Faloutsos, & Ghahramani, 2010; Rad, Jalili, & Hasler, 2008), and ensembles with
lateral inhibition (Xue, Yang, & Haykin, 2007), each showing improvements in performance
over simple random graphs.

Echo state networks provide a compelling substrate for investigating the relationship be-
tween community structure, information diffusion, and memory. They can be biologically re-
alistic and are simple to train; the separation between the reservoir and the trained readouts
means that the training process does not interfere in the structure of the reservoir itself (see the
Supporting Information, Table S1; Rodriguez, Izquierdo, & Ahn, 2019).

Here, we take a principled approach based on the theory of network structure and informa-
tion diffusion to test a hypothesis that the best memory performance emerges when a neural
reservoir is at the optimal modularity for information diffusion, where local and global commu-
nication can be easily balanced (see the Supporting Information, Figure S1; Rodriguez et al.,
2019). We implement neural reservoirs with different levels of community structure (see
Figure 1A) by fixing the total number of links and communities while adjusting a mixing pa-
rameter μ that controls the fraction of links between communities. Control of this parameter
lets us explore how community structure plays a role in performance on two memory tasks
(see Figure 1B). Three simulations are performed. The first tests for the presence of the optimal
modularity phenomena in the ESNs. The second uses the same ESNs to perform a memory
capacity task to determine the relationship between the optimal modularity phenomena and
task performance. Lastly, we investigate the relationship between community structure and the
capacity of the ESN to recall unique patterns in a memorization task.

For the tasks we use a threshold-like activation function (see Figure 1C), which is a more
biologically plausible alternative to the tanh or linear neurons often used in artificial neural
networks. The key distinction between the threshold-like activation function and tanh acti-
vation functions is that threshold-like functions only excite postsynaptic neurons if enough
presynaptic neurons activate in unison. On the other hand, postsynaptic tanh neurons will
always activate in proportion to presynaptic neurons, no matter how weak those activations
are.

RESULTS

Optimal Modularity in Reservoir Dynamics

We first test whether the optimal modularity phenomenon found in the linear threshold modelThreshold model:
A type of complex contagion where
spreading occurs only after a set
proportion or number of neighbors
become active.

can be generalized to neural reservoirs by running two simulations. Nodes governed by the
linear threshold model remain active once turned on, and are not good units for computing.
Instead we use a step-like activation function (see Figure 1C). First, we assume a simple two-
community configuration as in the original study (Nematzadeh et al., 2014; see Figure 2A),
where the fraction of bridges μ controls the strength of community structure in the network.
When μ = 0, the communities are maximally strong and disconnected, and when μ ≈ 0.5
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Figure 2. (A) A two-community network of threshold-like neurons receives input into the seed community (blue). (B) An optimal region with
maximum activation emerges. (C) Phase diagram for the two-community case. Communities behave similar to gating functions, which can
be turned on and transmit information once the input surpasses a threshold. (D) Reservoirs with many communities and randomly injected
input also exhibit optimal modularity. (E) The activity level of the network is shown. At low μ no single community receives enough signal
to be activated, while at high μ internal cohesion is too weak to recruit other nodes. In between, the signal can be consolidated effectively,
activating larger portions of the network. (F) The full phase-diagram showing the total fractional activity of the network. Error bars represent
the standard error of the mean.

the community structure vanishes. The average degree and the total number of edges remain
constant as μ is varied. An input signal is injected into a random fraction of the neurons (rsig)
in a seed community and the activity response of each community is measured. The results
confirm the generalizability of the optimal modularity phenomenon for neural networks.

At low μ, strong local cohesion activates the seed community, while the neighboring com-
munity remains inactive as there are too few bridges (see Figure 2B). At high μ there are enough
bridges to transmit information globally but not enough internal connections to foster local
spreading, resulting in a weak response. An optimal region emerges where local cohesion
and global connectivity are balanced, maximizing the response of the whole network, as was
demonstrated in Nematzadeh et al. (2014) for linear threshold models. The fraction of neu-
rons that receive input (rsig) modulates the behavior of the communities. The phase diagram
in Figure 2C shows how the system can switch from being inactive at low rsig, to a single ac-
tive community, to full network activation as the fraction of activated neurons increases. The
sharpness of this transition means the community behaves like a threshold-like function as
well. Though we control rsig as a static parameter in this model, it can represent the fraction of
active neural pathways between communities, which may vary over time. Communities could
switch between these inactive and active states in response to stimuli based on their activation
threshold, allowing them to behave as information gates.
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Our second study uses a more general setting, a reservoir with many communities similar to
ones that might be used in an ESN or observed in the brain (see Figure 2D). The previous study
examined input into only a single community; here we extend that to many communities. In
Figure 2E we record the response of a 50-community network that receives a signal that is
randomly distributed across the whole network. The result shows that even when there is no
designated seed community, similar optimal modularity behavior arises. At low μ the input
signal cannot be reinforced because of the lack of bridges, and is unable to excite even the
highly cohesive communities. At high μ the many global bridges help to consolidate the sig-
nal, but there is not enough local cohesion to continue to facilitate a strong response. In the
optimal region there is a balance between the amplifying effect of the communities and the
global communication of the bridges that enables the network to take a subthreshold, globally
distributed signal and spread it throughout the network. In linear and tanh reservoirs, no such
relationship is found (see the Supporting Information, Figure S2 and Figure S3; Rodriguez et al.,
2019); instead communities behave in a more intuitive fashion, restricting information flow.

Optimal Modularity in a Memory Capacity Task

We test whether optimal modularity provides a benefit to the ESN’s memory performance
by a common memory benchmark task developed by Jaeger (2002; see Figure 3A). The task
involves feeding a stream of random inputs into the reservoir and training readout neurons to
replay the stream at various time lags. The coefficient of determination between the binomially
distributed input signal and a delayed output signal for each delay parameter is used to quantify
the performance of the ESN. The memory capacity (MC) of the network is the sum of these
performances over all time lags as shown by the shaded region in Figure 3B.

Reservoirs with strong community structure (low μ) exhibit the poorest performance; the
reservoirs are ensembles of effectively disconnected reservoirs, with little to no intercommunity
communication. Performance improves substantially with μ as the fraction of global bridges
grows, facilitating intercommunity communication. A turnover point is reached beyond which
replacing connections with bridges compromises local cohesion. After a certain point, larger μ

leads to performance loss. The region of elevated performance corresponds to the same region
of optimal modularity on a reservoir with the same properties and inputs as those used in the
task (see the Supporting Information, Figure S4; Rodriguez et al., 2019).

We also examine the impact of input signal strength. In Figure 3C we show that this opti-
mal region of performance holds over a wide range of rsig, and that there is a narrow band
near rsig ≈ 0.3 where the highest performance is achieved around μ ≈ 0.2. As expected,
we also see a region of optimal rsig for reservoirs, because either under- or overstimulation
is disadvantageous. Yet, the added benefit of community structure is due to more than just
the amplification of the signal. If communities were only amplifying the input signal, then
increasing rsig in random graphs should give the same performance as that found in the opti-
mal region, but this is not the case. Figure 3C shows that random graphs are unable to meet
the performance gains provided near optimal μ regardless of rsig. Additionally, this optimal
region remains even if we control for changes in the spectral radius of the reservoir’s adja-
cency matrix, which is known to play an important role in ESN memory capacity for linear
and tanh systems (Farkas et al., 2016; Jaeger, 2002; Verstraeten et al., 2007; see the Sup-
porting Information, Figures S5–S7; Rodriguez et al., 2019). In such systems modularity re-
duces memory capacity, as communities create an information bottleneck (see the Supporting
Information, Figures S8–S9; Rodriguez et al., 2019). However, weight scale still plays a larger
role in determining the level of performance for ESNs in our simulations (see the Supporting
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Figure 3. (A) A memory capacity task for measuring the memory duration of ESNs. Readout nodes
are trained to reproduce a delayed input sequence. The delay varies from 1 to l, where l is the number
of readouts. (B) Top: The performance is defined by the coefficient of determination (r2) between
the input signal and the output of the node. If the r2 is 1.0, then the readout perfectly reproduces the
inputs. MC denotes the overall performance of the ESN on the task. It represents the area under the
curve of the r2 versus delay plot (see shaded regions). (B) Bottom: The average performance over
many reservoirs is shown as a function of μ where performance is maximal at intermediate levels
of modularity. It is taken as a slice through (C) the complete contour-diagram for the task. Error bars
represent the standard error of the mean.

Information, Figure S5; Rodriguez et al., 2019). There is also a performance difference between
the increasingly nonlinear activation functions, with linear performing best, and tanh and sig-
moid performing worse, illustrating a previously established trade-off between memory and
nonlinearity (Dambre, Verstraeten, Schrauwen, & Massar, 2012; Verstraeten, Dambre, Dutoit,
& Schrauwen, 2010; Verstraeten et al., 2007). Lastly, ESN performance has been attributed
to reservoir sparsity in the past (Jaeger & Hass, 2004; Lukoševičius, 2012), however as node
degree, average node strength, and total number of edges remain constant as μ changes such
effects are controlled for.

Optimal Modularity in a Recall Task

We employ another common memory task that estimates a different feature of memory: the
number of unique patterns that can be learned. This requires a rich attractor space that can
express and maintain many unique sequences. From here out we consider an attractor to be a
basin of state (and input) configurations that lead to the same fixed point in the reservoir state
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Figure 4. (A) A recall task for testing the amount of patterns that the ESN can learn. For this task, a
randomly generated sequence of binary inputs across several dimensions are fed into the reservoir.
After ΔT time steps, when it receives a cue, it must reproduce the original input sequence. The ESN
is trained on each sequence. Performance on the recall task is determined by the fraction of perfect
recalls from the learned sequences. A score of 1.0 means that all learned sequences were correctly
recalled. (B) Top: Performance is measured against ΔT, displaying the maximal performance at μ ≈
0.1. (B) Bottom: The number of sequences that the ESNs can remember for long periods (ΔT = 80)
shows a similar optimal region. (C) The best performing, optimally modular networks have many
more available attractors. Error bars represent the standard error of the mean.

space. In this task, a sequence of randomly generated 0s and 1s are fed to the network as shown
in Figure 4A. For the simulation, we use sets of 4 × 5 dimensional binary sequences as in-
put. The readouts should then learn to recall the original sequence after an arbitrarily long delay
ΔT and the presentation of a recall cue of 1 (for one time step) through a separate input channel.

By varying μ we can show how recall performance changes with community structure.
Figure 4B, top, shows the average performance measured by the fraction of perfectly recalled
sequences, for a set of 200 sequences. Well-performing reservoirs are able to store the se-
quences in attractors for arbitrarily long times. Similar to the memory capacity task, we see
the poorest performance for random networks and networks with low μ. There is a sharp
spike in performance near μ ≈ 0.1. The average performance over the number of sequences
(when ΔT = 80) show that optimal performance at μ starts to drop off after ≈ 230 sequences
(Figure 4B, bottom).

We investigate the discrepancy in performance between modular and nonmodular net-
works by examining the reservoir attractor space. We measure the number of unique available

Attractor:
A region in state space where all
states converge upon a single fixed
point or cycle.
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attractors that the reservoirs would be exposed to by initializing the reservoirs at initial con-
ditions associated with the sequences we use. We find a skewed response from the network
as shown in Figure 4C where the number of available attractors is maximized when μ > 0.
Many of these additional attractors between 0.0 < μ < 0.2 are limit cycles that result from the
interaction between the communities in the reservoir.

The attractor space provides insights about the optimal region. At higher μ the whole reser-
voir behaves as a single system, leaving very few attractors for the network to utilize for infor-
mation storage. The reservoir has to rely on short-lived transients for storage. With extremely
modular structure (μ ≈ 0), reservoirs have the most available attractors, but they are not read-
ily discriminated by the linear readouts. Surprisingly, these attractors are more readily teased
apart as communities become more interconnected. However, there is a clear trade-off, as too
much interconnection folds all the initial conditions into a few large attractor basins.

DISCUSSION

Biological neural networks are often modeled using neurons with threshold-like behavior, such
as integrate-and-fire neurons, the Grossberg-Cohen model, or Hopfield networks. Reservoirs
of threshold-like neurons, like those presented here, provide a simple model for investigating
the computational capabilities of biological neural networks. By adopting and systematically
varying topological characteristics akin to those found in brain networks, such as modularity,
and subjecting those networks to tasks, we can gain insight into the functional advantages
provided by these architectures.

We have demonstrated that ESNs exhibit optimal modularity in the context of both signal
spreading and memory capacity, and they are closely linked to the optimal modularity for
information spreading. Through dynamical analysis we found that balancing local and global
cohesion enabled modular reservoirs to spread information across the network and consolidate
distributed signals, although alternative mechanisms may also be in play, such as cycle proper-
ties (Garcia, Lesne, Hilgetag, & Hütt, 2014). We then showed that such optimal regions coin-
cide with the optimal community strength that exhibit the best memory performance. Both the
memory capacity and recall task benefited by adopting modular structures over random net-
works, despite performing in different dynamical regimes (equilibrium versus nonequilibrium).

A key component of our hypothesis is the adoption of a threshold-like (or step-like) acti-
vation function for our ESNs, which is a more biologically plausible alternative to the tanh or
linear neurons often used in artificial neural networks. The optimal modularity phenomenon
emerges only for neural networks of threshold-like neurons and does not exist for neural net-
works of linear or tanh neurons (i.e., simple contagions) used in traditional ESNs, and so many
developed intuitions about ESN dynamics and performance may not readily map to ESNs
driven by complex contagions like the ones here. Indeed, the relationship between network
topology and performance is known to vary with the activation function, with threshold-like or
spiking neurons (common in liquid state machines; Maass et al., 2002) being more heavily de-
pendent on topology (Bertschinger & Natschläger, 2004; Haeusler & Maass, 2007; Schrauwen,
Buesing, & Legenstein, 2009). Because the effects of modularity vary depending upon the ac-
tivation function, a suitable information diffusion analysis should be chosen to explore the
impact of network topology for a given type of spreading process. Moreover, because the ben-
efits of modularity are specific to threshold-like neurons, distinct network design principles
are needed for biological neural networks and the artificial neural networks used in machine
learning. Additionally, as we have seen that the choice of architecture can have a profound
impact on the dynamical properties that can emerge from the neural network, there may be

Network Neuroscience 559

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/netn_a_00082 by guest on 17 August 2022



Optimal modularity and memory capacity of neural reservoirs

value in applying these insights to the architectural design of recurrent neural networks in
machine learning, where all weights in the network undergo training but where architecture
is usually fixed.

While weight scale remains the most important feature of the system in determining per-
formance, our results suggest significant computational benefits of community structure, and
contributes to understanding the role it plays in biological neural networks (Bullmore & Sporns,
2009; Buxhoeveden & Casanova, 2002; Constantinidis & Klingberg, 2016; Hagmann et al.,
2008; Hilgetag, Burns, O’Neill, Scannell, & Young, 2000; Meunier, Lambiotte, & Bullmore,
2010; Shimono & Beggs, 2015; Sporns, Chialvo, Kaiser, & Hilgetag, 2004), which are also
driven by complex contagions and possess modular topologies. The dynamical principles of
information spreading mark trade-offs in the permeability of information on the network that
can promote or hinder performance. While this analysis provides us some insight, it remains
an open question as to whether our results can be generalized to the context of more realis-
tic biological neural networks where spike-timing-dependent plasticity and neuromodulation
play a key role in determining the network’s dynamical and topological characteristics.

In addition to the optimal region and the ability of communities to foster information spread-
ing and improved performance among threshold-like neurons, modularity may play other im-
portant roles. For instance, it offers a way to compartmentalize advances and make them robust
to noise (e.g., the watchmaker’s parable; Simon, 1997). Modularity also appears to confer ad-
vantages to neural networks in changing environments (Kashtan & Alon, 2005), under wiring
cost constraints (Clune, Mouret, & Lipson, 2013), when learning new skills (Ellefsen, Mouret,
& Clune, 2015), and under random failures (Kaiser & Hilgetag, 2004). These suggest additional
avenues for exploring the computational benefits of modular reservoirs and neural networks.
And it is still an open question how community structure affects performance on other tasks
like signal processing, prediction, or system modeling.

Neural reservoirs have generally been considered “black-boxes,” yet through combining
dynamical, informational, and computational studies it maybe possible to build a taxonomy
of the functional implications of topological features for both artificial and biological neural
networks. Dynamical and performative analysis of neural networks can afford valuable insights
into their computational capabilities as we have seen here.

METHODS

Our ESN architecture with community structure is shown in Figure 1A. The inputs are denoted
as uk(t), which is a k-dimensional vector. Each dimension of input is connected to a random
subset of neurons in the reservoir. x(t) is the N-dimensional state vector of the reservoir, where
N is the number of reservoir neurons. yl(t) represents the states of the l readout neurons. The
k inputs are connected by an N × k matrix W in to the N neurons. The network structure of the
reservoir is represented by an N × N weight matrix W , and the output weights are represented
by an N × l matrix Wout. The reservoirs follow the standard ESN dynamics without feedback
or time constants:

x(t + 1) = f
(

W x(t) +W inu(t + 1)
)

, (1)

y(t) = g
(
Wout [x(t) : u(t)]

)
. (2)
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Here f is the reservoir activation function, g is the readout activation function, and [a : b]
denotes the concatenation of two vectors. Often f is chosen to be a sigmoid-like function
such as tanh, while g is often taken to be linear (Lukoševičius & Jaeger, 2009). However in our
case we use a general sigmoid function:

f (z) =
a

b + e−k(z−c)
− d, (3)

with parameters a = 1, b = 1, c = 1, k = 10, and d = 0 giving a nonlinear threshold-like
activation function, making it step-like in shape and a complex contagion like other neuron
models (e.g., integrate-and-fire, Hopfield, or Wilson-Cowan models). For the readout neurons,
g is chosen to be a step function:

g(z) =

{
0 z ≤ 0.5,

1 z > 0.5.
(4)

Linear regression is used to solve for Wout. Wout = Y tarX+ where Y tar is an l × T matrix of
target outputs over a time course T, and X+ is the pseudoinverse of the history of the reservoir
state vector (where X ∈ RN×T; Lukoševičius & Jaeger, 2009). To generate the reservoirs we use
the LFR benchmark model (Lancichinetti, Fortunato, & Radicchi, 2008), which can generate
random graphs with a variety of community structures. The LFR benchmark model uses a
configuration model to generate random graphs. The configuration model works by imposing
a degree sequence to the nodes and randomly wiring the edge “stubs” (Newman, 2010). The
LFR model extends this by including community assignment and rewiring steps to constrain
the fraction of bridges in the network. Because of its relationship with the configuration model,
LFR graphs exhibit low average shortest path length and low average clustering coefficient in
contrast to the Wattz-Strogatz models that have low average shortest path length and high
clustering. For small graphs like the ones we use for building reservoirs, the average shortest
path length increases monotonically with decreasing μ. This is due to the sparseness of directed
links between communities. As μ approaches 0 the communities become disconnected. In our
case we vary the fraction of bridges (μ) in the network while holding the degree distribution
and total number of edges the same, controlling for the density of connections in the network.
Weights for the network are drawn separately from a uniform distribution and described in
following sections. Code for all the simulations and tasks is available online (Rodriguez, 2018).

Reservoir Dynamics

We used reservoirs with N = 500 nodes, with every node having a degree of 6. Reservoir
states were initialized with a zero vector, x(0) = {0, . . . , 0}. The first experiment uses a two-
community cluster of 250 nodes each, matching the scenario from Nematzadeh et al. (2014).
Input was injected into rsig fraction of neurons into the seed community. The input signal
lasted for the duration of the task until the system reached equilibrium at time te. The final
activation values of the neurons were summed within each community and used to calculate
the fractional activation of the network for each community shown in Figure 2B, where the
mean over 48 reservoir realizations is shown. All activations were summed and divided by the
size of the network to give the total fractional activation 1/N ∑N

i=1 xi(te) as shown in Figure 2C.

In the following experiment, a reservoir of the same size but with 50 communities with
10 nodes each was used. This time, however, the input signal was not limited to a single
community but applied randomly to nodes across the network. Again the signal was active
for the full duration of the task until the system reached equilibrium when the final activation
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values of the neurons were summed within each community. Figure 2E shows the activation
for each community averaged over 48 reservoir realizations, and the total fractional activity in
the network is then shown in Figure 2F.

Different measures for information spreading produce similar results. Also, optimal spread-
ing can be observed in the transitory dynamics of the system, such as in networks that receive
short input bursts and return to an inactive equilibrium state. Optimality for step-like activations
has been shown to emerge regardless of community or network size using message-passing ap-
proximations (Nematzadeh, Rodriguez, Flammini, & Ahn, 2018). For many-community cases
with distributed input, optimality existence in infinite networks depends upon community
variation (e.g., size, edge density, number of inputs).

Memory Capacity task

The memory capacity task involves the input of a random sequence of numbers that the readout
neurons are then trained on at various lags (see Figure 3). There is just one input dimension
and values of 0 and 1 are input into a fraction of the reservoir’s neurons rsig. For each time
lag there is a set of readout neurons that are trained independently to remember the input at
the given time lag. The readout neurons that maximize the coefficient of determination (or the
square of the correlation coefficient) between the input signal and lagged output are used as
the kth delayed short-term memory capacity of the network MCk. The MC of the ESN becomes
the sum over all delays:

MC =
∞

∑
k=1

MCk =
∞

∑
k=1

cov(u(t − k), yk(t))2

var(u(t))var(yk(t))
. (5)

We operationalize this sum as the memory capacity of the network. Unlike Jaeger’s task, we
input a binomial distribution of 1s and 0s rather than continuous values (see Figure 3A). We
try to keep the network small enough and sparse enough to reduce computational load, while
still being large enough to solve the task. A reservoir of N = 500 nodes and 50 communities of
size 10 were used. Every node has a degree of 6. The degree was chosen to be sparse enough
to help reduce computing time, while high enough to support a wide range of modularities,
which are partly constrained by degree. Reservoir parameters were not fitted to the task, rather
a grid search was executed to find parameter sets that performed well, as the focus of the
experiment is not to break records on memory performance, but rather to see how it changes
with modularity. Among the parameters adjusted were the upper and lower bounds of the
weight distribution and the weight scale (Ws), which adjusts the strengths of all the reservoir
weights by a scalar value. Performance over the full range of μ values was evaluated at each
point on the grid. Well-performing reservoirs were found with weights between −0.2 and 1
and with a weight scale parameter of Ws = 1.13. The same was done for the input weight
matrix, where W in also varies from −0.2 to 1 with an input gain of WI = 1.0. Many viable
parameters existed throughout the space that exhibit optimality. This is partly due to parameter
coupling, where changing multiple parameters results in the same dynamics.

Each reservoir’s readouts were trained over a 1,500-step sequence following the first 500
steps that are removed to allow initial transients to die out. Once trained, a new validation
sequence of the same length is used to evaluate the performance of the ESN. Results averaged
over 64 reservoir samples are shown in Figures 3B and 3C. We also show the contour over rsig,
which is an important parameter in determining the performance of the reservoir. Performance
peaks between rsig = 0.3 and rsig = 0.4 at a μ ≈ 0.25.
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Recall Task

The recall task is a simplified version of the memory task developed by Jaeger (Jaeger, 2012). A
pattern of 0s and 1s is input into the network, which must recall that pattern after a distractor pe-
riod. The ESN is trained on the whole set of unique sequences and the performance of the ESN
is determined from its final output during the recall period, which occurs after the distractor pe-
riod. We do this to estimate the total number of sequences that an ESN can remember. So unlike
the memory capacity task that estimates memory duration given an arbitrary input sequence,
the recall task quantifies the number of distinct signals an ESN can differentiate. This involves
training an ESN on a set of sequences and then having it recall the sequences perfectly after a
time delay ΔT. The input is a random 4× 5 binary set of 0s and 1s. At a single time step just one
of the four input dimensions are active. This is in order to maintain the same level of external
excitation per time step, as we are not testing the network’s dynamic range. The reservoir is
initialized to a zero vector and provided with a random sequence. Following the delay period,
a binary cue with value 1.0 is presented via a fifth input dimension. After this cue, the reser-
voir’s readout neurons must reproduce the input sequence. The readout weights are trained
on this sequence set. Figures 4B shows the average performance over 48 reservoir samples.
Many networks around the optimal μ value can retain the information for arbitrarily long times,
as the task involves storing the information in a unique attractor. Figures 4B shows the average
performance when ΔT = 80 as we vary the number of sequences. In Figures 4C we determine
the average number of available attractors given inputs drawn from the full set of 4 × 5 binary
sequences where only one dimension of the input is active at a given time. For each of the
4 × 5 binary sequences, the system was run until it reached the cue time, where a decision
would be made by the readout layer. At this point converged trajectories would result in a fail-
ure to differentiate patterns. Two converged trajectories are determined to fall into the same at-
tractor if the Euclidean distance between the system’s states are smaller than a value ε = 0.1.
The number of attractor states is the number of these unique groupings and was robust to
changes in ε. Parameters for the reservoir are chosen via a grid search, as before, to find reason-
able performance from which to start our analysis. Here reservoirs of size N = 1, 000 with node
degree 7 and community size 10 are used. A larger reservoir was necessary in order to attain
high performance on the task. Similarly, the weight distribution parameters are included in the
search and reasonable performing reservoirs were found with weights drawn between −0.1 and
1.0 with Ws = 1.0, rsig = 0.3, an input gain of WI = 2.0, and uniform input weights of 1.0.

ACKNOWLEDGMENTS

We would like to thank John Beggs, Alessandro Flamini, Azadeh Nematzadeh, Pau Vilimelis
Aceituno, Naoki Masuda, and Mikail Rubinov for helpful discussions and valuable feedback.
This research was supported in part by Lilly Endowment, Inc., through its support for the Indiana
University Pervasive Technology Institute, and in part by the Indiana METACyt Initiative. The
Indiana METACyt Initiative at IU was also supported in part by Lilly Endowment, Inc. The
Indiana University HPC infrastructure (Big Red II) helped make this research possible.

AUTHOR CONTRIBUTIONS

Nathaniel Rodriguez: Conceptualization; Formal analysis; Methodology; Software; Validation;
Visualization; Writing - Original Draft; Writing - Review & Editing. Eduardo Izquierdo:
Conceptualization; Methodology; Supervision; Writing - Original Draft; Writing - Review &
Editing. Yong-Yeol Ahn: Conceptualization; Methodology; Supervision; Writing - Original
Draft; Writing - Review & Editing.

Network Neuroscience 563

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/netn_a_00082 by guest on 17 August 2022



Optimal modularity and memory capacity of neural reservoirs

REFERENCES

Bertschinger, N., & Natschläger, T. (2004). Real-time computa-
tion at the edge of chaos in recurrent neural networks. Neu-
ral Computation, 16(7), 1413–1436. https://doi.org/10.1162/
089976604323057443

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.
(2006). Complex networks: Structure and dynamics. Physics
Reports, 424(4–5), 175–308. https://doi.org/10.1016/j.physrep.
2005.10.009

Boerlin, M., & Denève, S. (2011). Spike-based population cod-
ing and working memory. PLoS Computational Biology, 7(2),
e1001080. https://doi.org/10.1371/journal.pcbi.1001080

Bullmore, E. T., & Sporns, O. (2009). Complex brain networks:
Graph theoretical analysis of structural and functional systems.
Nature Reviews Neuroscience, 10(3), 186–198. https://doi.org/
10.1038/nrn2575

Buxhoeveden, D. P., & Casanova, M. F. (2002). The minicolumn
hypothesis in neuroscience. Brain, 125(5), 935–951. https://doi.
org/10.1093/brain/awf110

Chung, K., Baek, Y., Kim, D., Ha, M., & Jeong, H. (2014). General-
ized epidemic process on modular networks. Physical Review E,
89(5), 052811. https://doi.org/10.1103/PhysRevE.89.052811

Clune, J., Mouret, J.-B., & Lipson, H. (2013). The evolutionary
origins of modularity. Proceedings of the Royal Society B: Bio-
logical Sciences, 280(1755), 20122863. https://doi.org/10.1098/
rspb.2012.2863

Constantinidis, C., & Klingberg, T. (2016). The neuroscience of
working memory capacity and training. Nature Reviews Neuro-
science, 17(7), 438–449. https://doi.org/10.1038/nrn.2016.43

Cossart, R., Aronov, D., & Yuste, R. (2003). Attractor dynamics of net-
work UP states in the neocortex. Nature, 423(6937), 283–288.
https://doi.org/10.1038/nature01614

Dambre, J., Verstraeten, D., Schrauwen, B., & Massar, S. (2012).
Information processing capacity of dynamical systems. Scientific
Reports, 2, 514. https://doi.org/10.1038/srep00514

Deng, Z., Mao, C., & Chen, X. (2016). Deep self-organizing reser-
voir computing model for visual object recognition. In Inter-
national Joint Conference Neural Networks (pp. 1325–1332).
https://doi.org/10.1109/IJCNN.2016.7727351

Deng, Z., & Zhang, Y. (2007). Collective behavior of a small-world
recurrent neural system with scale-free distribution. IEEE Trans-
actions on Neural Networks, 18(5), 1364–1375.

Ellefsen, K. O., Mouret, J. B., & Clune, J. (2015). Neural modularity
helps organisms evolve to learn new skills without forgetting old
skills. PLoS Computational Biology, 11(4), 1–24. https://doi.org/
10.1371/journal.pcbi.1004128

Enel, P., Procyk, E., Quilodran, R., & Dominey, P. F. (2016). Reser-
voir computing properties of neural dnamics in prefrontal cor-
tex. PLoS Computational Biology, 12(6), e1004967. https://doi.
org/10.1371/journal.pcbi.1004967

Farkas, I., Bosak, R., & Gergel, P. (2016). Computational analysis of
memory capacity in echo state networks. Neural Networks, 83,
109–120. https://doi.org/10.1016/j.neunet.2016.07.012

Garcia, G. C., Lesne, A., Hilgetag, C. C., & Hütt, M. T. (2014). Role of
long cycles in excitable dynamics on graphs. Physical Review E,
90(5), 1–11. https://doi.org/10.1103/PhysRevE.90.052805

Girvan, M., & Newman, M. E. J. (2002). Community structure
in social and biological networks. Proceedings of the National
Academy of Sciences, 99(12), 7821–7826. https://doi.org/10.
1073/pnas.122653799

Gisiger, T., & Boukadoum, M. (2011). Mechanisms gating the flow
of information in the cortex: What they might look like and what
their uses may be. Frontiers in Computational Neuroscience,
5(January), 1–15. https://doi.org/10.3389/fncom.2011.00001

Haeusler, S., & Maass, W. (2007). A statistical analysis of
information-processing properties of lamina-specific cortical
microcircuit models. Cerebral Cortex, 17(1), 149–162. https://
doi.org/10.1093/cercor/bhj132

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J.,
Van Wedeen, J., & Sporns, O. (2008). Mapping the structural
core of human cerebral cortex. PLoS Biology, 6(7), 1479–1493.
https://doi.org/10.1371/journal.pbio.0060159

Hilgetag, C. C., Burns, G. A., O’Neill, M. A., Scannell, J. W., &
Young, M. P. (2000). Anatomical connectivity defines the organ-
ization of clusters of cortical areas in the macaque monkey and
the cat. Philosophical Transactions of the Royal Society B: Biolog-
ical Sciences, 355(1393), 91–110. https://doi.org/10.1098/rstb.
2000.0551

Holzmann, G., & Hauser, H. (2010). Echo state networks with fil-
ter neurons and a delay & sum readout. Neural Networks, 23(2),
244–256. https://doi.org/10.1016/j.neunet.2009.07.004

Hubel, D. H., & Wiesel, T. N. (1972). Laminar and columnar distri-
bution of geniculo-cortical fibers in the macaque monkey. Jour-
nal of Comparative Neurology, 146(4), 421–450. https://doi.org/
10.1002/cne.901460402

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
Proceedings of the 32nd International Conference on Machine
Learning (pp. 448–456). JMLR Workshop and Conference Pro-
ceedings. http://proceedings.mlr.press/v37/ioffe15.html

Jaeger, H. (2002). Short term memory in echo state networks. GMD
Report, 152, 60.

Jaeger, H. (2012). Long short-term memory in echo state net-
works: Details of a simulation study. Jacobs University Technical
Reports, (27), 1–29.

Jaeger, H., & Hass, H. (2004). Harnessing nonlinearity: Predict-
ing chaotic systems and saving energy in wireless commu-
nication. Science, 304(5667), 78–80. https://doi.org/10.1126/
science.1091277

Jalalvand, A., De Neve, W., Van de Walle, R., & Martens, J.-P.
(2016). Towards using Reservoir Computing Networks for noise-
robust image recognition. In 2016 International Joint Conference
on Neural Networks (pp. 1666–1672). IEEE. https://doi.org/
10.1109/IJCNN.2016.7727398

Johnson, S., Marro, J., & Torres, J. J. (2013). Robust short-term mem-
ory without synaptic learning. PLoS One, 8(1), e50276. https://
doi.org/10.1371/journal.pone.0050276

Ju, H., Xu, J. X., Chong, E., & VanDongen, A. M. J. (2013). Effects
of synaptic connectivity on liquid state machine performance.
Neural Networks, 38, 39–51. https://doi.org/10.1016/j.neunet.
2012.11.003

Network Neuroscience 564

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/netn_a_00082 by guest on 17 August 2022

https://doi.org/10.1162/089976604323057443
https://doi.org/10.1162/089976604323057443
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1371/journal.pcbi.1001080
https://doi.org/10.1038/nrn2575
https://doi.org/10.1038/nrn2575
https://doi.org/10.1093/brain/awf110
https://doi.org/10.1093/brain/awf110
https://doi.org/10.1103/PhysRevE.89.052811
https://doi.org/10.1098/rspb.2012.2863
https://doi.org/10.1098/rspb.2012.2863
https://doi.org/10.1038/nrn.2016.43
https://doi.org/10.1038/nature01614
https://doi.org/10.1038/srep00514
https://doi.org/10.1109/IJCNN.2016.7727351
https://doi.org/10.1371/journal.pcbi.1004128
https://doi.org/10.1371/journal.pcbi.1004128
https://doi.org/10.1371/journal.pcbi.1004967
https://doi.org/10.1371/journal.pcbi.1004967
https://doi.org/10.1016/j.neunet.2016.07.012
https://doi.org/10.1103/PhysRevE.90.052805
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.3389/fncom.2011.00001
https://doi.org/10.1093/cercor/bhj132
https://doi.org/10.1093/cercor/bhj132
https://doi.org/10.1371/journal.pbio.0060159
https://doi.org/10.1098/rstb.2000.0551
https://doi.org/10.1098/rstb.2000.0551
https://doi.org/10.1016/j.neunet.2009.07.004
https://doi.org/10.1002/cne.901460402
https://doi.org/10.1002/cne.901460402
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1109/IJCNN.2016.7727398
https://doi.org/10.1109/IJCNN.2016.7727398
https://doi.org/10.1371/journal.pone.0050276
https://doi.org/10.1371/journal.pone.0050276
https://doi.org/10.1016/j.neunet.2012.11.003
https://doi.org/10.1016/j.neunet.2012.11.003


Optimal modularity and memory capacity of neural reservoirs

Kaiser, M., & Hilgetag, C. C. (2004). Spatial growth of real-world
networks. Physical Review E, 69(3), 1–5. https://doi.org/10.1103/
PhysRevE.69.036103

Kaiser, M., & Hilgetag, C. C. (2010). Optimal hierarchical modular
topologies for producing limited sustained activation of neural
networks. Frontiers in Neuroinformatics, 4(May), 8. https://doi.
org/10.3389/fninf.2010.00008

Kashtan, N., & Alon, U. (2005). Spontaneous evolution of modular-
ity and network motifs. Proceedings of the National Academy of
Sciences, 102(39), 13773–13778. https://doi.org/10.1073/pnas.
0503610102

Klinshov, V. V., Teramae, J.-N., Nekorkin, V. I., & Fukai, T. (2014).
Dense neuron clustering explains connectivity statistics in corti-
calmicrocircuits. PLoS One, 9(4), e94292. https://doi.org/10.1371/
journal.pone.0094292

Lancichinetti, A., Fortunato, S., & Radicchi, F. (2008). Benchmark
graphs for testing community detection algorithms. Physical Re-
view E, 78(4), 1–6. https://doi.org/10.1103/PhysRevE.78.046110

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,
521(7553), 436–444. https://doi.org/10.1038/nature14539

Legenstein, R., & Maass, W. (2005). What makes a dynamical
system computationally powerful? In S. Haykin, J. C. Principe,
T. Sejnowski, & J. McWhirter (Eds.), New directions in statis-
tical signal processing: From systems to brains (pp. 127–154).
Cambridge, MA: MIT Press.

Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., &
Ghahramani, Z. (2010). Kronecker graphs: An approach to
modeling networks. Journal of Machine Learning Research, 11,
985–1042. https://doi.org/10.1145/1756006.1756039

Li, X., Zhong, L., Xue, F., & Zhang, A. (2015). A priori data-driven
multi-clustered reservoir generation algorithm for echo state net-
work. PLoS One, 10(4), 1–15. https://doi.org/10.1371/journal.
pone.0120750
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