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Abstract
The worst case integration error in reproducing kernel Hilbert spaces of standard Monte Carlo methods with n random points
decays as n−1/2. However, the re-weighting of random points, as exemplified in the Bayesian Monte Carlo method, can
sometimes be used to improve the convergence order. This paper contributes general theoretical results for Sobolev spaces on
closed Riemannian manifolds, where we verify that such re-weighting yields optimal approximation rates up to a logarithmic
factor. We also provide numerical experiments matching the theoretical results for some Sobolev spaces on the sphere S2 and
on the Grassmannian manifold G2,4. Our theoretical findings also cover function spaces on more general sets such as the unit
ball, the cube, and the simplex.

Keywords Bayesian cubature · Covering radius · Reproducing kernel

1 Introduction

Many problems in statistics and the applied sciences require
the numerical integration of one or more functions belonging
to a particular class. Given M ⊂ R

D , endowed with some
probability measureμ, and an integrable function f : M →
R, standard Monte Carlo methods approximate the integral∫
M f (x)dμ(x) by the finite sum

1

n

n∑

j=1

f (x j ), (1)

where {x j }nj=1 ⊂ M are independent samples fromμ.On the
one hand, Monte Carlo integration is widely used in many
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numerical and statistical applications (Robert and Casella
2013). It is well-known, however, that the expected worst
case integration error for n random points using (1) in repro-
ducingkernelHilbert spaces does not decay faster thann−1/2,
cf. Brauchart et al. (2014), Breger et al. (2018), Hinrichs
(2010), Novak and Wozniakowski (2010), Plaskota et al.
(2009) and Gräf (2013), proof of Corollary 2.8. To improve
the approximation, it has been proposed to re-weight the ran-
dompoints (Briol et al. 2018;Oettershagen 2017;Rasmussen
and Ghahramani 2003; Sommariva and Vianello 2006; Ull-
rich 2017), which is of particular importance when μ can
only be sampled (Oates et al. 2017) and evaluating f is rather
expensive.

That re-weighting of deterministic points can lead to opti-
mal convergence order has been known since the pioneering
work of Bakhvalov (1959). For Sobolev spaces on the sphere
andmore generally on compact Riemannianmanifolds, there
are numerically feasible strategies to select deterministic
points and weights matching optimal worst case error rates,
cf. Brandolini et al. (2014), Brauchart et al. (2014), Breger
et al. (2017), see also Hellekalek et al. (2016), Hinrichs et al.
(2016) and Niederreiter (2003).

The use of random points avoids the need to manually
specify a point set and can potentially lead to simpler algo-
rithms if the geometry of the manifold M is complicated.
For random points, it was derived in Briol et al. (2018) that
the optimal rate for [0, 1]d , the sphere, and quite general
domains in R

d can be matched up to a logarithmic factor
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if the weights are optimized with respect to the underlying
reproducing kernel. Decay rates of the worst case integration
error for Sobolev spaces of dominating mixed smoothness
on the torus and the unit cube were studied in Oettershagen
(2017). Gaussian kernel quadrature is studied in Karvonen
and Särkkä (2019). Numerical experiments on theGrassman-
nian manifold were provided in Ehler and Gräf (2017). We
refer to Trefethen (2017a, b), for further related results.

The present paper is dedicated to verify that, for Sobolev
spaces on closed Riemannian manifolds, random points with
optimizedweights yield optimal decay rates of theworst case
error up to a logarithmic factor. We should point out that we
additionally allow for the restriction to nonnegative weights,
a desirable property not considered in Briol et al. (2018). Our
findings also transfer to functions defined on more general
sets such as the d-dimensional unit ball and the simplex.

The paper is structured as follows: First, we bound the
worst case error by the covering radius of the underlying
points. Second, we use estimates on the covering radius
of random points from Reznikov and Saff (2015), see also
Brauchart et al. (2018) for the sphere, to establish the optimal
approximation rate up to a logarithmic factor. Some con-
sequences for the Bayesian Monte Carlo method are then
presented. Numerical experiments for the sphere and the
Grassmannian manifold are provided that support our the-
oretical findings. We also discuss the extension to the unit
ball, the cube, and the simplex.

2 Preliminaries

Let M ⊂ R
D be a smooth, connected, closed Riemannian

manifold of dimension d, endowed with the normalized Rie-
mannian measure μ throughout the manuscript. Prototypical
examples for M are the sphere and the Grassmannian

S
d = {x ∈ R

d+1 : ‖x‖ = 1},
Gk,m = {x ∈ R

m×m : x� = x, x2 = x, rank(x) = k},

respectively, where d = k(m − k) with D = m2 in case of
the Grassmannian.

Let H be any normed space of continuous functions f :
M → R. For points {x j }nj=1 ⊂ M and weights {w j }nj=1 ⊂
R, the worst case error of integration is defined by

wce({(x j , w j )}nj=1,H)

:= sup
f ∈H

‖ f ‖H≤1

∣
∣
∣
∣
∣
∣

∫

M
f (x)dμ(x) −

n∑

j=1

w j f (x j )

∣
∣
∣
∣
∣
∣
. (2)

Suppose now that H is a reproducing kernel Hilbert space,
denoted by HK . Then the squared worst case error can be
expressed in terms of the reproducing kernel K as

wce({(x j , w j )}nj=1,HK )2

=
n∑

i, j=1

wiw j K (xi , x j ) − 2
n∑

j=1

w j

∫

M
K (x j , y)dμ(y)

+
∫

M

∫

M
K (x, y)dμ(x)dμ(y). (3)

If x1, . . . , xn ∈ M are random points, independently dis-
tributed according to μ, then it holds

√

E

[
wce({(x j , 1

n )}nj=1,HK )2
]

� n− 1
2 , (4)

cf. Brauchart et al. (2014), Breger et al. (2018), Novak
and Wozniakowski (2010) and Gräf (2013), Proof of Corol-
lary 2.8. Hence, even if HK consists of arbitrarily smooth
functions, the left hand side of (4) decays only like n−1/2.

The present paper is dedicated to the question if and, as
the case may be, how much one can actually improve the
error rate in (4) when replacing the equal weights 1

n with
weights {w j }nj=1 that are customized to the random points
{x j }nj=1. From a practical perspective, the methods studied
in this paper require that the integrals appearing in (3) can be
analytically evaluated.

Remark 1 The restriction to integrals with respect to the nor-
malized Riemannian measure μ is without too much loss of
generality, for if ν is any σ -finite measure that is absolutely
continuous with respect to μ, then

∫

M
f (x)dν(x) =

∫

M
g(x)dμ(x),

where g = f dν
dμ and dν

dμ is the Radon–Nikodym derivative of

ν with respect toμ. Often,H is an algebra, so that f , dν
dμ ∈ H

also yield g ∈ H and our considerations for μ do apply.

3 Bounding the worst case error by the
covering radius

To define appropriate smoothness spaces, let Δ denote the
Laplace–Beltrami operator onM and let {ϕ�}∞�=0 be the col-
lection of its orthonormal eigenfunctions with eigenvalues
{−λ�}∞�=0 arranged by 0 = λ0 ≤ λ1 ≤ . . .. We choose each
ϕ�, � = 0, 1, 2, . . ., to be real-valued with ϕ0 ≡ 1. Given
f ∈ L p(M) with 1 ≤ p ≤ ∞, the Fourier transform is
defined by

f̂ (�) :=
∫

M
f (x)ϕ�(x)dμ(x), � = 0, 1, 2, . . . ,

with the usual extension to distributions onM. For 1 ≤ p ≤
∞ and s > 0, the Sobolev space Hs

p(M) is the collection
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of all distributions on M with (I − Δ)s/2 f ∈ L p(M), i.e.,
with

‖ f ‖Hs
p

:= ‖(I − Δ)s/2 f ‖L p

=
∥
∥
∥
∥
∥

∞∑

�=0

(1 + λ�)
s/2 f̂ (�)ϕ�

∥
∥
∥
∥
∥
L p

< ∞.

For s > d/p, each function in Hs
p(M) is continuous,

cf. Brandolini et al. (2014) and Triebel (1992), Theo-
rem 7.4.5, Section 7.4.2, so that point evaluation is well-
defined.

For s > d/p and any set of points {x j }nj=1 ⊂ M with
arbitrary weights {w j }nj=1 ⊂ R, we have

n−s/d � wce({(x j , w j )}nj=1, H
s
p(M)), (5)

see Brauchart et al. (2014) for the sphere and Brandolini et al.
(2014) for the general case. Note that the constant in (5) may
depend on s,M, and p.

Another lower bound involves the covering radius,

ρn := max
x∈M

min
j=1,...,n

distM(x, x j ),

where distM denotes the geodesic distance. According to
Breger et al. (2018), it also holds

ρ
s+d/q
n � wce({(x j , w j )}nj=1, H

s
p(M)), (6)

where 1/p + 1/q = 1.
Attempting to match this lower bound, we shall optimize

the weights. Given points {x j }nj=1 ⊂ M, we define optimal
weights with nonnegativity constraints by

{ŵ≥0; p
j }nj=1 := argmin

w1,...,wn≥0
wce({(x j , w j )}nj=1, H

s
p(M)).

(7)

It should be mentioned that similar weight optimization is
suggested in Liu and Lee (2016), where the additional con-
straint

∑n
j=1 w j = 1 is used for stabilization purposes.

The worst case error for the optimized weights is upper
bounded by the covering radius:

Theorem 1 Let 1 ≤ p ≤ ∞, suppose s > d/p, and let
{x j }nj=1 ⊂ M be any set of points with covering radius ρn.

Then the optimized weights {ŵ≥0; p
j }nj=1 in (7) satisfy

wce({(x j , ŵ≥0; p
j )}nj=1, H

s
p(M)) � ρs

n . (8)

Note that the constant in (8) may depend on M, s, and p.

Remark 2 If we fix a constant c > 0, independent of n and
{x j }nj=1, then any weights {w̃ p

j }nj=1 ⊂ R with

wce({(x j , w̃ p
j )}nj=1, H

s
p(M))

≤ c · wce({(x j , ŵ≥0; p
j )}nj=1, H

s
p(M))

satisfy the estimate

wce({(x j , w̃ p
j )}nj=1, H

s
p(M)) � ρs

n .

This fact is beneficialwhenwe computeweights numerically.

Proof of Theorem 1 Let X := {x j }nj=1 and ρ(X) := ρn .
There is a subset Y = {y j }mj=1 ⊂ X with covering radius
ρ(Y ) ≤ 2ρ(X) and minimal separation

δ(Y ) := min
a,b∈Y
a �=b

distM(a, b)

such that ρ(Y ) ≤ 2δ(Y ), cf. Filbir and Mhaskar (2010),
Section 3. We observe that our present setting satisfies the
technical requirements of Filbir andMhaskar (2010), cf. Hsu
(1999) and Chavel (1984), p. 159. We deduce from Bran-
dolini et al. (2014), Lemma 2.14 and Filbir and Mhaskar
(2010), Theorem 3.1, see also Mhaskar et al. (2001) for
M = S

d , with Brandolini et al. (2014), Corollary 2.15 that
there exist w1, . . . , wm � ρd

n , such that

wce({(y j , w j )}mj=1, H
s
p(M)) � m−s/d .

Since the bound

wce({(x j , ŵ≥0; p
j )}nj=1, H

s
p(M))

≤ wce({(y j , w j )}mj=1, H
s
p(M)),

holds, we also obtain

wce({(x j , ŵ≥0; p
j )}nj=1, H

s
p(M)) � m−s/d .

The general lower bound on the covering radius m−1/d �
ρ(Y ), cf. Breger et al. (2018), implies

m−s/d � ρ(Y )s � ρ(X)s,

which concludes the proof. �
Combining (6) with Theorem 1 for p = 1 yields

wce({(x j , ŵ≥0; 1
j )}nj=1, H

s
1 (M)) � ρs

n,

so that theworst case error’s asymptotic behavior is governed
by the covering radius.
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Remark 3 The above proof reveals that in the setting of The-
orem 1 there exist {w j }nj=1 with either w j � ρd

n or w j = 0,
for j = 1, . . . , n, such that

wce({(x j , w j )}nj=1, H
s
p(M)) � ρs

n .

The covering radiusρn of any n points inM is lower bounded
by� n−1/d , which follows from standard volume arguments.
If {x j }nj=1 ⊂ M are points with asymptotically optimal cov-

ering radius, i.e., ρn � n−1/d , then Theorem 1 yields the
optimal rate for the worst case integration error

wce({(x j , ŵ≥0; p
j )}nj=1, H

s
p(M)) � n−s/d ,

cf. (5).
Several point sets on S

2 with asymptotically optimal
covering radius are discussed in Hardin et al. (2016), see
quasi-uniform point sequences therein, and see Breger et al.
(2018) for generalM. The covering radius of random points
is studied in Brauchart et al. (2018), Oates et al. (2018) and
Reznikov and Saff (2015), which leads to almost optimal
bounds on the worst case error in the subsequent section.
Although we shall consider independent random points, it
is noteworthy that it is verified in Oates et al. (2018) that
the required estimates on the covering radius still hold for
random points arising from a Markov chain instead of being
independent. Note also that results related to Theorem 1 are
derived in Mhaskar (2018) for more general spaces M.

4 Consequences for random points

For random points {x j }nj=1 ⊂ M and any type of weights
{w j }nj=1 ⊂ R, no matter if random or not, (5) implies, for all
r > 0,

n−s/d �
(
E
[
wce({(x j , w j )}nj=1, H

s
p(M))r

])1/r
, (9)

where the constant may depend on s, p, and M. Note
that if {x j }nj=1 ⊂ M are random points, then the weights

{ŵ≥0; p
j }nj=1 are random as well. We shall deduce that Theo-

rem1 implies that the optimalworst case error rate is (almost)
matched in these cases:

Corollary 1 Let {x j }nj=1 ⊂ M be random points, indepen-
dently distributed according to μ. Suppose 1 ≤ p ≤ ∞ and
s > d/p, then, for each r ≥ 1/s, it holds

(
E
[
wce({(x j , ŵ≥0; p

j )}nj=1, H
s
p(M))r

])1/r

� n−s/d log(n)s/d . (10)

Note that Corollary 1 yields the optimal rate up to the loga-
rithmic factor log(n)s/d , cf. (9), and that the constant in (10)
may depend on s, M, p, and r .

Proof From Reznikov and Saff (2015), Theorem 3.2, Corol-
lary 3.3, we deduce that, for each r ≥ 1,

(
Eρr

n

)1/r � n−1/d log(n)1/d ,

where the constantmaydependonM and r . Thus,Theorem1
implies

E
[
wce({(x j , ŵ≥0; p

j )}nj=1, H
s
p(M))r

]
�
( log(n)

n

)sr/d
,

for each r ≥ 1/s. �
Remark 4 Let ν be a probability measure onM that is abso-
lutely continuous with respect toμ and its density is bounded
away from zero, i.e., ν = f μ with f (x) ≥ c > 0, for all
x ∈ M. Corollary 1 still holds for independent samples from
ν, where the constant in (10) then also depends on c. This
is due to ≈ 2

c n independent samples from ν covering M at
least as well as n independent samples from μ.

Corollary 1 yields bounds on the moments of the worst
case integration error. The results in Reznikov and Saff
(2015) also enable us to derive probability estimates:

Corollary 2 Under the assumptions of Corollary 1, there are
positive constants c1, . . . , c4 depending onM and where c2
may additionally depend on s and p, such that,

P

(
wce({(x j , ŵ≥0; p

j )}nj=1, H
s
p(M)) ≥ c2

( r log(n)
n

)s/d)

≤ c3

(
1

n

)c4r−1

,

for all r ≥ c1.

Proof By applying Theorem 1, we deduce that there is a
constant c > 0, which may depend on M, s, and p, such
that

wce({(x j , ŵ≥0; p
j )}nj=1, H

s
p(M)) ≤ cρs

n .

According to Reznikov and Saff (2015), Theorem 2.1, there
are constants c1, c̃2, c3, c4 > 0, which may depend on M,
such that, for all r ≥ c1,

P

(
ρn ≥ c̃2

( r log(n)
n

)1/d) ≤ c3
( 1
n

)c4r−1
.

Raising the left inequality to the power s and multiplying by
c yields the desired result with c2 := cc̃s2. �
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Our bounds address functions in Hs
p(M) exclusively. For

bounds beyond Sobolev functions in misspecified settings,
we refer to Kanagawa et al. (2019) and references therein.

Remark 5 Corollaries 1 and 2 also hold for weights {w̃ p
j }nj=1

that minimize (7) up to a constant factor as discussed in
Remark 2, and, in particular, for the unconstrainedminimizer

{ŵ p
j }nj=1 := argmin

{w j }nj=1⊂R

wce({(x j , w j )}nj=1, H
s
p(M)). (11)

Nonnegative weights are often more desirable for numerical
applications of cubatures points, but solving the constrained
minimization problem (7) is usuallymore involved than deal-
ing with the unconstrained problem (11).

5 Implications for BayesianMonte Carlo

Our results have consequences for Bayesian cubature, cf.
Larkin (1972), an integration method whose output is not a
scalar but a distribution. Bayesian cubature enables a statisti-
cal quantification of integration error, useful in the context of
a wider computational work-flow to measure the impact of
integration error on subsequent output, cf. Briol et al. (2018)
and Cockayne et al. (2017).

Consider a linear topological space L of continuous func-
tions on M such as a reproducing kernel Hilbert space on
M. The integrand f in Bayesian cubature is treated as a
Gaussian random process; that is, f : M × Ω → R,
where f (·, ω) ∈ L for each ω ∈ Ω , and the random vari-
ables ω �→ L f (·, ω) ∈ L are (univariate) Gaussian for all
continuous linear functionals L on L, such as integration
(I f = ∫M f (x)dμ(x)) and point evaluation (δx f = f (x))
operators, cf. Bogachev (1998). The Bayesian approach is
then taken, wherein the process f is constrained to interpo-
late the values {(x j , f (x j ))}nj=1. Formally, this is achieved
by conditioning the process on the data provided through the
point evaluation operators δx j ( f ) = f (x j ), for {x j }nj=1 ⊂
M. The conditioned process, denoted fn , is again Gaus-
sian, cf. Bogachev (1998), and as such the linear functional
I fn is a (univariate) Gaussian; this is the output of the
Bayesian cubature method. This distribution, defined on the
real line, provides statistical uncertainty quantification for
the (unknown) true value of the integral.

Concretely, let K (x, y) = cov( f (x), f (y)) denote the
covariance function that characterizes theGaussian probabil-
ity model. The output of Bayesian cubature is the univariate
Gaussian distribution with mean

n∑

j=1

ŵ j f (x j ),

which takes the form of a weighted integration method with
weights ŵ = (ŵ1, . . . , ŵn)

� implicitly defined by Kŵ = b
where

K :=
⎡

⎢
⎣

K (x1, x1) . . . K (x1, xn)
...

...

K (xn, x1) . . . K (xn, xn)

⎤

⎥
⎦ (12)

b :=
⎡

⎢
⎣

∫
M K (x1, y)dμ(y)

...∫
M K (xn, y)dμ(y)

⎤

⎥
⎦ , (13)

cf. Briol et al. (2018). The integrals appearing in (13) have an
elegant interpretation in terms of the kernel mean embedding
of the distribution μ (Muandet et al. 2017).

Any symmetric positive definite covariance function K
can be viewed as a reproducing kernel. In particular, the
Bessel kernel

K (s)
B (x, y) =

∞∑

�=0

(1 + λ�)
−sϕ�(x)ϕ�(y), x, y ∈ M, (14)

reproduces Hs(M) := Hs
2 (M), for s > d/2. Observe that

theweights ŵ just defined solve the unconstrainedminimiza-
tion problem (11) for p = 2. The latter follows from the
quadratic minimization form in (3) as well as from the pos-
terior mean being an L2-optimal estimator (Kimeldorf and
Wahba 1970).

The variance of the Gaussian measure can be shown to be
formally equal to (3) when these weights are substituted, see
Briol et al. (2018). The special case where the points {x j }nj=1
are randomwas termed BayesianMonte Carlo in Rasmussen
and Ghahramani (2003). Therefore, our results in Sect. 4
have direct consequences for Bayesian Monte Carlo. Due to
Remark 5 within this Bayesian setting, Corollaries 1 and 2
generalize earlier work of Briol et al. (2018) to a general
smooth, connected, closed Riemannian manifold.

6 Numerical experiments for the sphere and
the Grassmannian

The numerical computation of the worst case error wce({(x j ,
w j )}nj=1, H

s
p(M)) is difficult in general but, for p = 2, it is

expressed in terms of the reproducing kernel in (3). There-
fore, our numerical experiments are designed for p = 2.
However, the kernel K (s)

B itself, see (14), may still be diffi-
cult to evaluate numerically, so thatwewould like to allow for
other kernels in numerical experiments. If K is any positive
definite kernel on M that reproduces Hs(M) with equiva-
lent norms, then

wce({(x j , w j )}nj=1, H
s(M)) � wce({(x j , w j )}nj=1,HK ).
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(a) Optimized weights for K1 yield decay −3/4
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(b)Fixed weights1/n for K2 are stuck with decay −1/2

Fig. 1 The worst case integration error (wce) for HK1 and HK2 aver-
aged over 20 instances of random points in logarithmic scalings. The
lines with exact slope − 1/2 and − 3/4 are included as a visual aid

( average wce with equal weights; average
wce with nonnegative weights; average wce with optimal
weights)

Therefore, the asymptotic results in Corollaries1 and 2 are
the same when replacing {ŵ≥0; 2

j }nj=1 with the minimizer

{ŵ≥0;K
j }nj=1 := argmin

w1,...,wn≥0
wce({(x j , w j )}nj=1,HK ). (15)

Dropping the nonnegativity constraints yields ŵK , which is
given by ŵ = K−1b, where K and b are as in (12) and (13).
To provide numerical experiments for Sobolev spaces on the
sphere S

2 ⊂ R
3 and on the Grassmannian G2,4, we shall

specify suitable kernels in the following. We shall consider
two kernels K1, K2 on the sphere S2 and two kernels K3, K4

on the Grassmannian G2,4.
The numerical results are produced by taking sequences

of random points {x j }nj=1 with increasing cardinality n. We
compute each of the three worst case errors
wce({(x j , 1

n )}nj=1,HKi ), wce({(x j , ŵKi
j )}nj=1,HKi ), and

wce({(x j , ŵ≥0;Ki
j )}nj=1,HKi ), for i = 1, . . . , 4, and aver-

aged these results over 20 instantiations of the randompoints.
The constrained minimization problem for the latter two
quantities is solved by using the Python CVXOPT library.
It should be mentioned that numerical experiments on the
sphere for the unconstrained optimizer ŵK1 are also con-
tained in Briol et al. (2018).

The kernel

K1(x, y) := 2 − ‖x − y‖, x, y ∈ S
2,

reproduces the Sobolev space H3/2(S2) with an equivalent
norm, cf. Gräf (2013), Section 6.4.1. To compute (3), it is
sufficient to notice
∫

S2
K1(x, y)dμ(y) = 2

3
, for all x ∈ S

2.

By plotting the worst case error versus the number of
points in a logarithmic scale, we are supposed to observe

lines whose slopes coincide with the decay rate − s/d for
the optimized weights and slope − 1/2 for the weights 1/n.
Indeed, we see in Fig. 1a that wce({(x j , 1

n )}nj=1,HK1) for
random points matches the error rate − 1/2 predicted by
(4) with d = 2. When optimizing the weights, we observe
the decay rate − 3/4 for both optimizations, ŵ≥0;K in (15)
and the unconstrained minimizer ŵK . Hence, the numerical
results match the rate predicted by the theoretical findings in
(9), (10) with p = 2 and r = 1. The logarithmic factor in
(10) is not visible.

The smooth kernel

K2(x, y) := 48 exp(−12‖x − y‖2), x, y ∈ S
2,

generates a space HK2 of smooth functions contained in
Hs(S2), for all s > 0, and satisfies

∫

S2
K2(x, y)dμ(y) = 1 − exp(− 48), for all x ∈ S

2.

Our numerical experiments in Fig. 1b suggest that the decay
rate for the optimized weights is indeed faster than − 1/2.
Note that the equal weight case is stuck at the − 1/2 rate,
although we are now dealing with arbitrarily smooth func-
tions.

The dimension of the Grassmannian G2,4 is d = 4, and
we consider the two reproducing kernels

K3(x, y) :=
√

(2 − trace(xy))3 + 2 trace(xy),

K4(x, y) := 3
2 exp(trace(xy) − 2)).

Note that K3 reproduces H7/2(G2,4)with an equivalent norm,
and HK4 is contained in Hs(G2,4), for all s > 0. The worst
case integration error (3) is computable from
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Fig. 2 Theworst case integration error forHK3 andHK4 averaged over
20 instances with random points in logarithmic scalings. The lines with
exact slope − 1/2 and − 7/8 are included as a visual aid (

average wce with equal weights; average wce with nonneg-
ative weights; average wce with optimal weights)

∫

G2,4

K3(x, y)dμ(y) = 2 + 74

75

√
2 − 2

5
log(1 + √

2),

∫

G2,4

K4(x, y)dμ(y) = 3

2
exp(−1)

∫ 1

0

sinh(t)

t
dt .

for all x ∈ G2,4.
For K3, we observe in Fig. 2a that the random points with

equal weights yield decay rate− 1/2 and optimizing weights
leads to − 7/8 matching the optimal rate in (9), (10) with
d = 4. In Fig. 2b, it seems that the worst case error forHK4

decays faster than the− 1/2 ratewhenoptimizing theweights
for random points on the Grassmannian G2,4 outperforming
the case where weights are equal.

7 Beyond closedmanifolds

We shall make use of the push-forward to transfer our results
on the worst case integration error from closed manifolds
to more general sets. Suppose S is a topological space and
h : M → S is Borel measurable and surjective. We endow S
with the push-forward measure h∗μ defined by (h∗μ)(A) =
μ(h−1A) for any Borel measurable subset A ⊂ S. By abus-
ing notation, let distM(A, B) := infa∈A; b∈B distM(a, b)
for A, B ⊂ M, and we put

distS,h(x, y) := distM(h−1x, h−1y), x, y ∈ S. (16)

For s > d/p, we define

Hs
p(S)h := { f : S → R : h∗ f ∈ Hs

p(M)}

with ‖ f ‖Hs
p(S)h := ‖h∗ f ‖Hs

p(M), where h∗ f denotes the
pullback f ◦ h. This enables us to formulate the analogue of
Theorem 1:

Theorem 2 Given 1 ≤ p ≤ ∞ with s > d/p and {x j }nj=1 ⊂
S, suppose that the following two conditions are satisfied,

(a) #h−1x is finite, for all x ∈ S,
(b) distM({a}, h−1x) � distM(h−1h(a), h−1x), for all

a ∈ M, x ∈ S.

Then there are nonnegative weights {w j }nj=1 such that

wce({(x j , w j )}nj=1, H
s
p(S)h) � ρs

n,

where ρn denotes the covering radius of {x j }nj=1 taken with
respect to (16).

Note that (16) is a quasi-metric on S if the assumptions in
Theorem 2 are satisfied, i.e., the conditions of a metric are
satisfied except for the triangular inequality that still holds
up to a constant factor.

Conventional integration bounds on standard Euclidean
domains S, see Kanagawa et al. (2019), Proposition 4, for
instance, usually require bounded densities. Theorem 2 also
applies to standard Euclidean domains that now inherit the
measure and the distance from the closedmanifold. Themea-
sure can now have unbounded density because there is a
potential compensation by the induced distance. This shall
be observed for the unit ball, the cube, and the simplex in the
present section.

Proof of Theorem 2 Denote {z j,i }n j
i=1 = h−1x j , for j =

1 . . . , n. According to Theorem 1, there exist nonnegative
weights {w j,i }n j

i=1, for j = 1 . . . , n, such that, for all f ∈
Hs

p(S)h ,

∣
∣
∣
∣
∣
∣

∫

M
(h∗ f )(z)dμ(z) −

n∑

j=1

n j∑

i=1

w j,i (h
∗ f )(z j,i )

∣
∣
∣
∣
∣
∣
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� ρM

⎛

⎝
n⋃

j=1

h−1x j

⎞

⎠

s

‖h∗ f ‖Hs
p(M), (17)

where ρM(
⋃n

j=1 h
−1x j ) denotes the covering radius of

⋃n
j=1 h

−1x j ⊂ M. The assumptions imply that ρn �
ρM(

⋃n
j=1 h

−1x j ), so that w j := ∑n j
i=1 w j,i , j = 1, . . . , n,

and (17) lead to

∣
∣
∣
∣
∣
∣

∫

S
f (x)d(h∗μ)(x) −

n∑

j=1

w j f (x j )

∣
∣
∣
∣
∣
∣
� ρs

n‖ f ‖Hs
p(S)h ,

which concludes the proof. �
Remark 6 Since independent random points {x j }nj=1 dis-
tributed according to h∗μ on S with covering radius ρn
are generated by independent random points {z j }nj=1 with
respect to μ on M with x j = h(z j ), for j = 1, . . . , n, the
observation

ρn � ρM({z j }nj=1)

implies that also Corollaries 1, and 2 hold for Hs
p(S)h and

h∗μ.

The impact of Theorem 2 depends on whether or not the
choices of h yield reasonable function spaces Hs

p(S)h , dis-
tances distS,h , and measures h∗μ. For instance, if h is also
injective with measurable h−1, then Hs(S)h is the reproduc-
ing kernel Hilbert space with kernel

∞∑

�=0

(1 + λ�)
−sψ�(x)ψ�(y),

where ψ� := ϕ� ◦ h−1, so that {ψ�}∞�=0 is an orthonormal
basis for the square integrable functions with respect to h∗μ.
In the following, we shall discuss a few special cases, in
which h is not injective. By using the results in Xu (1998,
2001), we shall determine Hs(S)h for S being the unit ball
B
d := {x ∈ R

d : ‖x‖ ≤ 1}, the cube [−1, 1]d , and the
simplex Σd := {x ∈ R

d : x1, . . . , xd ≥ 0; ∑d
i=1 xi ≤ 1}.

Let h : Sd → B
d be the projection onto the first d coor-

dinates, i.e., h(x) = (x1, . . . , xd) ∈ B
d . The push-forward

measure h∗μSd on B
d is given by

Γ (d/2 + 1/2)

πd/2+1/2

dx
√
1 − ‖x‖2 , (18)

and the assumptions in Theorem 2 are satisfied. Let {Tk,� :
� = 0, 1, 2, . . . ; k = 1, . . . , rd� } with rd� := (

�+d−1
�

)
be

orthonormal polynomials with respect to the measure (18),
and each Tk,� has total degree �. For d = 1, this corresponds

to Chebyshev polynomials. The case d = 2 relates to gener-
alized Zernike polynomials, cf. Wünsche (2005).

Proposition 1 (The unit ball) For s > d/2 and h : Sd → B
d

as above, the space Hs(Bd)h is reproduced by the kernel

K s
Bd (x, y)

:=
∞∑

�=0

(1 + �(� + d − 1))−s
rd�∑

k=1

Tk,�(x)Tk,�(y)
(19)

for x, y ∈ B
d .

For related results on approximation onBd , we refer to Petru-
shev and Xu (2008) and references therein.

Proof For � = 0, 1, 2, . . ., the eigenfunctions of the Laplace-
Beltrami operator on the sphere associated to the eigenvalue
− λ� = − �(� + d − 1) are the spherical harmonics of
order �, given by the homogeneous harmonic polynomials
in d + 1 variables of exact total degree � restricted to S

d .
Each eigenspace E� associated to λ� splits orthogonally into
E� = E (1)

� ⊕ E (2)
� , where

E (1)
� ={ f ∈E� : f (x) = f (h(x),−xd+1),∀x ∈ S

d},
E (2)

� ={ f ∈E� : f (x) = − f (h(x),−xd+1),∀x ∈ S
d}

(20)

for � = 0, 1, 2, . . .. We deduce from Xu (1998), Theo-
rem 3.3, Example 3.4 that the functions

Z (1)
k,�(z) := ‖z‖�(h∗Tk,�)

(
z

‖z‖
)

, z ∈ R
d+1

are homogeneous polynomials of total degree �, and their
restrictions Y (1)

k,� := Z (1)
k,�|Sd , for k = 1, . . . , rd� , are an

orthonormal basis for E (1)
� . Note that f ∈ Hs(Bd)h if and

only if f ◦ h is contained in

Hs(Sd)sym := { f ∈ Hs(Sd) : f |h−1x is constant ∀x ∈ B
d }

= { f ∈ Hs(Sd) : f (x) = f (h(x), −xd+1), x ∈ S
d}.

According to (14) and due to the decomposition induced by
(20) and using Y (1)

k,� = h∗Tk,�, the reproducing kernel of

Hs(Sd)sym is

Ks
Sd ,sym(x, y) =

∞∑

�=0

(1 + λ�)
−s

rd�∑

k=1

Y (1)
k,� (x)Y (1)

k,� (y)

=
∞∑

�=0

(1 + λ�)
−s

rd�∑

k=1

(h∗Tk,�)(x)(h∗Tk,�)(y)

for x, y ∈ S
d . Thus, Hs(Bd)h is indeed reproduced by (19).

�
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(b) Fixed weights 1/n for K6 are stuck with decay −1/2

Fig. 3 Worst case integration error for HK5 and HK6 with r = 0.97, averaged over random points in logarithmic scalings ( average
wce with equal weights; average wce with nonnegative weights; average wce with optimal weights)

Example 1 (B1) For d = 1, the even and odd spherical har-
monics,

Y (1)
� (cos(α), sin(α)) = √

2 cos(�α),

Y (2)
� (cos(α), sin(α)) = √

2 sin(�α), α ∈ [0, 2π ],
(21)

with � = 1, 2, 3, . . ., and Y (1)
0 = 1, form orthonormal

bases for the respective spaces E (1)
� and E (2)

� in (20). We
observe dist[−1,1],h(x, y) := | arccos(x)−arccos(y)|, x, y ∈
[−1, 1], and recognize the Chebyshev measure in (18). The
Chebyshev polynomials T� of the first kind, scaled by the
factor

√
2 for � = 1, 2, 3, . . ., indeed satisfy the character-

istic identities T�(cos(α)) = √
2 cos(�α) for α ∈ [0, 2π ],

� = 1, 2, 3, . . ., and T0 = 1.
To simplify numerical experiments, we observe that the

kernel

K5(x, y) := 2 −√1 − xy + |x − y|

= 2 + 4

π

∞∑

�=0

1

4�2 − 1
T�(x)T�(y)

reproduces H1(B1)h with an equivalent norm, and, for fixed
0 < r < 1, the smooth kernel

K6(r; x, y) := (1 − r2)(1 − 2r xy + r2)

1 + r4 − 4xy(r + r3) + r2(4x2 + 4y2 − 2)

= 1

2
+ 1

2

∞∑

�=0

r�T�(x)T�(y)

reproduces a function space that is continuously embedded
into Hs(B1)h for all s > 1/2. As in our previous examples,
our numerical experiments in Fig. 3 are in accordance with
the theoretical results.

Example 2 (B2) For r ≥ 1, we define the family of kernels

Lr (x, y)

:= 3 − 3

2
√
2r + 2

√√
√
√r − 〈x, y〉 +

√(
r − 〈x, y〉)2
−(1 − ‖x‖2)(1 − ‖y‖2) .

These kernels are positive definite on B2 and satisfy

∫

B2
Lr (x, y)

dx

2π
√
1 − ‖x‖2 = 3 + r + 2

√
r2 − 1

1 + r + √
r2 − 1

.

Note that L1 reproduces H3/2(B2) with an equivalent norm
and Lr for r > 1 reproduces a space that is continuously
embedded into each Hs(B2) for s > 1. In our numerical
experiments, we set

K7(x, y) := L1(x, y), K8(x, y) := L51/50(x, y),

and Fig. 4 supports our theoretical results. There, however,
the worst case error for nonnegative weights does not show
faster decay for smooth functions in Fig. 4b, but we speculate
that this is due to a numerical artifact of the very last data
point.

The d-dimensional torus Td := S
1 × . . . × S

1 leads to
h : Td → [−1, 1]d defined by

h(x1, . . . , xd) = (x1,1, . . . , xd,1
)
,

where xi = (xi,1, xi,2)� ∈ S
1. The push-forward of the

Riemannian measure on Td under h is

dx1 · · · dxd
πd
√

(1 − x21 ) · · · (1 − x2d )
. (22)
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(b)Fixed weights 1/n for K8 are stuck with decay −1/2

Fig. 4 Worst case integration error for HK7 and HK8 , averaged over random points in logarithmic scalings ( average wce with equal
weights; average wce with nonnegative weights; average wce with optimal weights)

A suitable basis of orthonormal polynomials characterizes
Hs([−1, 1]d)h :
Proposition 2 (The cube) For s > d/2 and h : T

d →
[−1, 1]d as above, the space Hs([−1, 1]d)h is reproduced
by

K s
[−1,1]d (x, y) :=

∑

�∈Nd

(1 + ‖�‖2)−sT�(x)T�(y),

x, y ∈ [−1, 1]d , where T�(x) := T�1(x1) · · · T�d (xd), x ∈
[−1, 1]d , � ∈ N

d .

Proof The polynomials {T� : � ∈ N
d} are orthonormal with

respect to (22). By using the eigenspace decomposition (20)
for S1, we deduce that the space

Hs(Td)sym

:= { f ∈ Hs(Td) : f |h−1x is constant ∀x ∈ [−1, 1]d}

is reproduced by the kernel

Ks
Td ,sym(x, y) =

∑

�∈Nd

(1 + ‖�‖2)−sY (1)
� (x)Y (1)

� (y),

x, y ∈ T
d , with Y (1)

� (x) := Y (1)
�1

(x1) · · · Y (1)
�d

(xd) and Y (1)
�i

are as in (21). Observing Y (1)
� = h∗T� concludes the proof.

�
By following Xu (2001), we derive an analogous con-

struction for the simplex. Define h : Sd → Σd by h(x) :=
(x21 , . . . , x

2
d ) and observe that the assumptions in Theorem 2

are satisfied. The push-forward measure h∗μSd on Σd is
given by

Γ (d/2 + 1/2)

πd/2+1/2

du
√
u1 · · · ud(1 −∑d

i=1 ui )
. (23)

Let {Rk,� : � = 0, 1, 2, . . . ; k = 1, . . . , rd� } be a system of
orthonormal polynomials with respect to (23) on Σd , so that
each Rk,� has total degree �.

Proposition 3 (The simplex)For s > d/2 and h : Td → Σd

as above, the space Hs(Σd)h is reproduced by

K s
Σd (u, v) :=

∞∑

�=0

(1 + 2�(2� + d − 1))−s

rd�∑

k=1

Rk,�(u)Rk,�(v),

for u, v ∈ Σd .

Proof Let us define

Zk,2�(z) := ‖z‖2�Rk,�

(
z21

‖z‖2 , . . . ,
z2d

‖z‖2
)

, z ∈ R
d+1.

Note that the restrictions Yk,2� := Zk,2�|Sd satisfy Yk,2� =
h∗Rk,�.Wededuce fromXu (2001) that the collection {Yk,2� :
k = 1, . . . , rd� } is an orthonormal system of spherical har-
monics of order 2� and that the space

Hs(Sd)sym := { f ∈ Hs(Sd) : f |h−1x is constant ∀x ∈ Σd}

is reproduced by the kernel

K (x, y) :=
∞∑

�=0

(1 + 2�(2� + d − 1))−s
rd�∑

k=1

Yk,2�(x)Yk,2�(y)

=
∞∑

�=0

(1 + 2�(2� + d − 1))−s

rd�∑

k=1

(h∗Rk,�)(x)(h
∗Rk,�)(y),

which concludes the proof. �
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Remark 7 Our Theorem 2 is an elementary way to transfer
results from closed manifolds to more general settings. Our
treatment of the unit ball, the cube, and the simplex were
based on this transfer. The proof of the underlying Theo-
rem1 is based on results in Filbir andMhaskar (2010), andwe
restricted attention to closedmanifolds although the setting in
Filbir andMhaskar (2010) is more general. Alternatively, we
could have stated our Theorem 1 in more generality and then
attempted to check that the technical requirements in Filbir
and Mhaskar (2010) hold. For instance, technical require-
ments for [−1, 1] were checked in Coulhon et al. (2012),
and the recent work (Kerkyacharian et al. 2019) covers tech-
nical details for the unit ball and the simplex.

8 Perspectives

Re-weighting techniques for statistical and numerical inte-
gration have attracted attention in different disciplines.
Partially complementing findings in Briol et al. (2018)
and Oettershagen (2017), we have here established that
re-weighting randompoints can yield almost optimal approx-
imation rates of the worst case integration error for isotropic
Sobolev spaces on closed Riemannianmanifolds. Our results
suggest several directions for future work, for instance,
allowing for more general spaces M, considering other
smoothness classes than Hs

p(M), considering other types of
point processes such as determinantal point processes (Bar-
denet and Hardy 2016), and replacing the expected worst
case error by alternative error functionals such as the aver-
age error, cf. Novak and Wozniakowski (2010) and Ritter
(2000).

Our results have direct consequences for the Bayesian
Monte Carlo method, as indicated in Sect. 5. Indeed, there
has been recent interest in exploiting Bayesian cubature
in applications including global illumination in computer
vision (Marques et al. 2015), signal processing (Prüher
and Šimandl 2016), uncertainty quantification (Oettersha-
gen 2017) and Bayesian computation (Briol et al. 2018).
The results in this paper justify the use of a random
point set in these applications, in situations where a deter-
ministic point set would otherwise need to be explicitly
constructed.
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