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Optimal Multi-Channel Cooperative Sensing in
Cognitive Radio Networks

Rongfei Fan and Hai Jiang, Member, IEEE

Abstract—In this paper, optimal multi-channel cooperative
sensing strategies in cognitive radio networks are investigated.
A cognitive radio network with multiple potential channels is
considered. Secondary users cooperatively sense the channels and
send the sensing results to a coordinator, in which energy detec-
tion with a soft decision rule is employed to estimate whether
there are primary activities in the channels. An optimization
problem is formulated, which maximizes the throughput of sec-
ondary users while keeping detection probability for each channel
above a pre-defined threshold. In particular, two sensing modes
are investigated: slotted-time sensing mode and continuous-time
sensing mode. With a slotted-time sensing mode, the sensing
time of each secondary user consists of a number of mini-
slots, each of which can be used to sense one channel. The
initial optimization problem is shown to be a nonconvex mixed-
integer problem. A polynomial-complexity algorithm is proposed
to solve the problem optimally. With a continuous-time sensing
mode, the sensing time of each secondary user for a channel
can be any arbitrary continuous value. The initial nonconvex
problem is converted into a convex bilevel problem, which can
be successfully solved by existing methods. Numerical results
are presented to demonstrate the effectiveness of our proposed
algorithms.

Index Terms—Cognitive radio, spectrum sensing, throughput
maximization.

I. INTRODUCTION

DUE to the rapid growth of wireless communications in
recent years, so far almost all the appropriate spectrum

has been allocated for various wireless applications in different
regions. So a spectrum scarcity problem is expected for the de-
velopment of new wireless applications in the near future. On
the other hand, severe under-utilization of licensed spectrum
at a time or a location has been observed by measurements of
wireless spectrum usage [1] [2]. This has motivated the idea of
opportunistic spectrum access, which means that unlicensed
(secondary) users can utilize the spectrum when and where
the licensed (primary) users are not using it. As an emerging
technique to realize this idea, cognitive radio has received
much attention recently, in which the secondary users are
able to sense the spectrum, analyze the spectrum statistics,
and adjust their transmissions according to the time-varying
environment [3].
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Before accessing the spectrum, secondary users need to
check (by spectrum sensing) whether primary users are active.
If primary users are using the spectrum, the secondary users
should defer their transmissions. The performance of the spec-
trum sensing can be measured by two parameters: detection
probability (i.e., the probability that, if there are primary ac-
tivities, the secondary users can detect them successfully) and
false alarm probability (i.e., the probability that, if there are
no primary activities, the secondary users falsely estimate that
primary users are active) [4]. Apparently, a higher detection
probability can give primary users more protection, while a
higher false alarm probability will lead to more waste of the
spectral opportunities. To improve the accuracy of spectrum
sensing in a fading environment, cooperative spectrum sensing
[5][6][7] can be adopted. Multiple secondary users sense the
spectrum independently, and send the results to a fusion center,
which will make the final estimation on whether there are
primary activities in the channel.

For spectrum sensing, a slotted time frame structure is
widely used [8]–[11]. In each time slot, the first portion is used
for spectrum sensing, and the second portion is used for packet
transmission (if the channel is detected idle). A longer sensing
time in a time slot will lead to a higher detection probability
and a lower false alarm probability, which are desired. But
it also results in less time in actual information transmission
(assuming the duration of each time slot is fixed). Therefore, a
tradeoff exists in the sensing time setting. The optimal tradeoff
in sensing time setting is investigated in [12][13] so as to
optimally utilize the transmission opportunities in a single
channel. Different from the work for a single channel, in this
paper, we investigate the sensing time setting for a multi-user
multi-channel case with cooperative sensing. The sensing time
setting determines the length of the sensing time in a slot and
how the total sensing time (of the multiple users) in a slot
is distributed among all the channels. Optimization problems
are formulated to maximize the throughput of secondary users.
We prove that, although the initial optimization problems are
nonconvex and are with NP-hard complexity to be solved
directly, they can be successfully converted into convex mixed-
integer subproblems or a convex bilevel problem, which are
ready to be solved by existing methods.

The rest of the paper is organized as follows. The system
model is given in Section II. The problem of optimal sensing
time setting is formulated and solved in Section III when the
sensing time for each channel is a number of mini-slots, and
in Section IV when the sensing time for each channel is a
continuous variable. Numerical results are presented in Section
V. Finally concluding remarks are given in Section VI.
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II. SYSTEM MODEL

We consider a cognitive radio network with 𝑁 frequency
bands (termed channels in the sequel) and𝑀 secondary users.
In each channel, a primary user exists (which may not be
active all the time). There is a coordinator in the cognitive
radio network, which is responsible to collect sensing results
from the secondary users, and estimate the busy/idle status of
each channel. The coordinator also assigns a secondary user to
each channel for information transmission. If the coordinator
estimates a channel, say channel 𝑛, to be idle, it notifies
the secondary user assigned in the channel to transmit. The
transmission power is 𝑃 𝑠

𝑛 , and the transmission rate is given
by log(1+𝑆𝑁𝑅𝑠𝑠

𝑛 ), where 𝑆𝑁𝑅𝑠𝑠
𝑛 means the signal-to-noise

ratio (SNR) from the secondary user to its receiver at channel
𝑛.

A synchronous system is assumed, and time is divided
into fixed-length slots. In each slot, the primary user in a
channel is either active for the whole slot, or idle for the whole
slot. Each slot is further partitioned into two phases: sensing
phase and transmission phase. The duration of the sensing
phase is a design parameter. In the sensing phase, a secondary
user can sense a number of channels sequentially by energy
detection, and the sampling rate of the received signal in a
channel is 𝜇. The transmission phase is used for the secondary
users assigned to the channels to transmit, if the channels are
estimated to be idle. It is assumed that the channel gains in
each channel (from the primary user to secondary users or
between secondary users) keep fixed within the duration of a
time slot.

Let 𝑡𝑚𝑛 denote the time duration that secondary user 𝑚
spends in sampling channel 𝑛. So within duration 𝑡𝑚𝑛 , user
𝑚 has 𝜇𝑡𝑚𝑛 samples for channel 𝑛, which follow a binary
hypothesis:

ℋ0
𝑛 : 𝑦𝑚𝑛 (𝑖) = 𝑤𝑛(𝑖), 𝑖 = 1, 2, ..., 𝜇𝑡𝑚𝑛
ℋ1
𝑛 : 𝑦𝑚𝑛 (𝑖) = 𝑟𝑚𝑛 (𝑖) + 𝑤𝑛(𝑖), 𝑖 = 1, 2, ..., 𝜇𝑡𝑚𝑛

(1)

where ℋ0
𝑛 and ℋ1

𝑛 mean that the primary user in channel 𝑛
is idle and busy respectively, 𝑖 is the sample index, 𝑦𝑚𝑛 (⋅)
is the received signal of channel 𝑛 at secondary user 𝑚,
𝑤𝑛(⋅) is background noise in channel 𝑛, which is assumed to
be circular symmetric complex Gaussian (CSCG) with mean
being zero and variance being 𝜎2, and 𝑟𝑚𝑛 (⋅) is the signal
of primary user in channel 𝑛 received at secondary user 𝑚.
Similar to [12], 𝑟𝑚𝑛 (𝑖) is assumed to be a zero mean CSCG
random variable. Furthermore, we also suppose 𝑟𝑚𝑛 (𝑖)’s are
independent and identically distributed random variables with
variance (𝜎𝑟𝑛)

2 for 𝑚 = 1, 2, ...,𝑀 . This assumption is valid
for a small-sized cognitive network (i.e., distance between
the secondary users is much less than the distance from the
primary user to the secondary users).

Then, the test statistic of secondary user𝑚’s received signal
energy in channel 𝑛 is calculated as

𝑇𝑚𝑛 (𝑦) =
1

𝜇𝑡𝑚𝑛

∑𝜇𝑡𝑚𝑛

𝑖=1
∣𝑦𝑚𝑛 (𝑖)∣2. (2)

The test statistic by secondary user 𝑚 for channel 𝑛 is sent to
the coordinator, which collects all values of 𝑇𝑚𝑛 (𝑦)’s from all
the secondary users. Then the overall test statistic for channel

𝑛 is calculated at the coordinator as

𝑇 all
𝑛 (𝑦) =

∑𝑀
𝑚=1 𝜇𝑡

𝑚
𝑛 ⋅ 𝑇𝑚𝑛 (𝑦)

𝑀∑
𝑚=1

𝜇𝑡𝑚𝑛

. (3)

The overall test statistic is compared with a threshold 𝜀𝑛.
The primary user in channel 𝑛 is estimated to be idle if
𝑇 all
𝑛 (𝑦) ≤ 𝜀𝑛, or busy otherwise. This process is referred to as

soft decisional cooperative spectrum sensing, and the detection
probability and false alarm probability in the process are given
[12] as

𝑃 𝑑
𝑛

(
𝑀∑

𝑚=1

𝑡𝑚𝑛 , 𝜀𝑛

)
= Pr

(
𝑇 all
𝑛 (𝑦) > 𝜀𝑛∣ℋ1

𝑛

)

= 𝑄

⎛
⎝( 𝜀𝑛

𝜎2
− 𝛾𝑛 − 1

)√√√⎷𝜇 𝑀∑
𝑚=1

𝑡𝑚𝑛 /(𝛾𝑛 + 1)2

⎞
⎠ (4)

and

𝑃 𝑓
𝑛

(
𝑀∑

𝑚=1
𝑡𝑚𝑛 , 𝜀𝑛

)
= Pr

(
𝑇 all
𝑛 (𝑦) > 𝜀𝑛∣ℋ0

𝑛

)

= 𝑄

⎛
⎝(𝜀𝑛

𝜎2
− 1

)√√√⎷𝜇 𝑀∑
𝑚=1

𝑡𝑚𝑛

⎞
⎠ (5)

respectively, where 𝛾𝑛 is the average SNR of primary user
signal received by a secondary user in channel 𝑛, defined as
𝛾𝑛

Δ
=

(𝜎𝑟
𝑛)

2

𝜎2 , and 𝑄(⋅) is the Q function, defined as

𝑄(𝑥) =
1√
2𝜋

∞∫
𝑥

exp

(
−𝑧

2

2

)
𝑑𝑧.

In a real system, the detection probability 𝑃 𝑑
𝑛 should be no

less than 0.5 and the false alarm probability should be no
larger than 0.5. From (4) and (5), the constraints 𝑃 𝑑

𝑛 ≥ 0.5
and 𝑃 𝑓

𝑛 ≤ 0.5 are equivalent to the following inequality.

𝜎2 ≤ 𝜀𝑛 ≤ 𝜎2(1 + 𝛾𝑛), 𝑛 = 1, 2, ..., 𝑁. (6)

The following equation rewrites the false alarm probability
as a function of the detection probability 𝑃 𝑑

𝑛 .

𝑃 𝑓
𝑛

(
𝑀∑

𝑚=1

𝑡𝑚𝑛 , 𝑃
𝑑
𝑛

)
=

𝑄

⎛
⎝(𝛾𝑛 + 1)𝑄−1

(
𝑃 𝑑
𝑛

)
+ 𝛾𝑛

√√√⎷𝜇 𝑀∑
𝑚=1

𝑡𝑚𝑛

⎞
⎠ . (7)

Within this expression, the constraint 𝑃 𝑓
𝑛 ≤ 0.5 is equivalent

to

(𝛾𝑛 + 1)𝑄−1
(
𝑃 𝑑
𝑛

)
+ 𝛾𝑛

√√√⎷𝜇 𝑀∑
𝑚=1

𝑡𝑚𝑛 ≥ 0, 𝑛 = 1, 2, ..., 𝑁.

(8)
From (4) and (5) it can be seen that only the total time

used to sense channel 𝑛, i.e.,
∑𝑀

𝑚=1 𝑡
𝑚
𝑛 , affects the detection

performance for channel 𝑛, regardless of how this total time
is distributed among the secondary users.
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1 1 3

Sensing phase

Slot

Transmission phase

2 2 2 3 3User 1

2 2 12 2 3 3 3

1 1 31 2 2 3 3

User 2

User 3

Fig. 1. The slotted-time sensing mode with 3 channels and 3 secondary
users.

For the sensing in channel 𝑛, we have the following four
scenarios:

∙ If channel 𝑛 is idle and is estimated by the coordinator
to be idle, then the secondary user assigned to channel
𝑛 will transmit in the associated transmission phase of
the slot, with the average transmission rate given by
𝑅0
𝑛 = 𝔼

(
log(1 +

∣ℎ𝑠𝑠
𝑛 ∣2𝑃 𝑠

𝑛

𝜎2 )
)
, where ℎ𝑠𝑠𝑛 is the channel

coefficient from the secondary user assigned to channel
𝑛 to its receiver, and 𝔼(⋅) means expectation.

∙ If channel 𝑛 is idle and is estimated by the coordinator to
be busy (i.e., a false alarm happens), the secondary user
assigned to channel 𝑛 will not transmit in the associated
transmission phase of the slot.

∙ If channel 𝑛 is busy and is estimated by the coordinator
to be busy, the secondary user assigned to channel 𝑛 will
not transmit in the associated transmission phase of the
slot.

∙ If channel 𝑛 is busy and is estimated by the coordinator
to be idle (i.e., a missed detection happens), then the
secondary user assigned to channel 𝑛 will transmit in the
associated transmission phase of the slot. As the primary
user’s signal will serve as an interference to the secondary
transmission, the average transmission rate of the sec-
ondary user is given by 𝑅1

𝑛 = 𝔼

(
log(1 +

∣ℎ𝑠𝑠
𝑛 ∣2𝑃 𝑠

𝑛

∣ℎ𝑝𝑠
𝑛 ∣2𝑃𝑝

𝑛+𝜎2 )
)
,

where 𝑃 𝑝
𝑛 is the transmission power of the primary user

in channel 𝑛, and ℎ𝑝𝑠𝑛 is the channel coefficient from the
primary user to the secondary receiver in channel 𝑛.
It can be seen that 𝑅0

𝑛 > 𝑅
1
𝑛.

In the sensing phase, a secondary user needs to sequentially
sense a number of channels, using one of the two modes:
slotted-time sensing mode and continuous-time sensing mode.

∙ Slotted-time sensing mode: The sensing phase in each
slot is further divided into a number, 𝑘, of mini-slots,
each with duration 𝛿. Here the value of 𝑘 is a parameter to
be optimized. Each mini-slot can be used by a secondary
user to sense any channel. Fig. 1 shows an example for
𝑁 = 3 channels, 𝑀 = 3 secondary users, and 𝑘 = 8
mini-slots in a sensing phase. The number inside each
mini-slot means the channel to be sensed. Note that in the
example, user 2 first senses channel 2, then channel 3, and

Sensing phase

Slot

Transmission phase

User 1 1 3

User 2

User 3

2

2 13

3 21

Fig. 2. The continuous-time sensing mode with 3 channels and 3 secondary
users.

finally channel 1. Actually the sensing order of channels
1, 2 and 3 does not affect the detection performance.

∙ Continuous-time sensing mode: In the sensing phase,
the time to sense a channel can be any arbitrary-length
duration bounded by the total duration in the sensing
phase, while the duration of the sensing phase is also
a parameter to be optimized. Fig. 2 shows an example
for 𝑁 = 3 channels and 𝑀 = 3 secondary users.

In the following two sections, optimal sensing time settings
in the slotted-time sensing mode and continuous-time sensing
mode are investigated respectively to maximize the total
throughput of the secondary network.

III. OPTIMAL SENSING TIME SETTING IN THE

SLOTTED-TIME SENSING MODE

In the system, the sensing phase in a slot has 𝑘 mini-slots.
The value of 𝑘 is a parameter to be optimized. Each mini-slot
can be used by a secondary user to sense a channel. So there
are totally 𝑘𝑀 mini-slots among the 𝑀 secondary users to
sense the 𝑁 channels. Let 𝑘𝑛 > 0 denote the number of mini-
slots (among the 𝑘𝑀 mini-slots) that are used for sensing
channel 𝑛 ∈ {1, 2, ..., 𝑁}. Then we have

𝑁∑
𝑛=1

𝑘𝑛 = 𝑘𝑀. (9)

Let 𝑇 denote the length of a time slot. Then the average
throughput of channel 𝑛 can be expressed [12] as

𝐶𝑛(𝑘, 𝑘𝑛, 𝜀𝑛) = 𝑇−𝑘𝛿
𝑇

(
Pr(ℋ0

𝑛)
(
1− 𝑃 𝑓

𝑛 (𝑘𝑛, 𝜀𝑛)
)
𝑅0
𝑛

+Pr(ℋ1
𝑛)

(
1− 𝑃 𝑑

𝑛 (𝑘𝑛, 𝜀𝑛)
)
𝑅1
𝑛

)
(10)

where

𝑃 𝑑
𝑛(𝑘𝑛, 𝜀𝑛) = 𝑄

(( 𝜀𝑛
𝜎2
− 𝛾𝑛 − 1

)√
𝑘𝑛𝛿𝜇

(𝛾𝑛 + 1)2

)
(11)

and
𝑃 𝑓
𝑛 (𝑘𝑛, 𝜀𝑛) = 𝑄

((𝜀𝑛
𝜎2
− 1

)√
𝑘𝑛𝛿𝜇

)
(12)

are from (4) and (5), respectively, Pr(ℋ0
𝑛) ≥ 0 is the available

probability of channel 𝑛, and Pr(ℋ1
𝑛) = 1 − Pr(ℋ0

𝑛) ≥ 0 is
the busy probability of channel 𝑛.
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Our goal is to maximize the throughput of secondary users
in all the channels, denoted 𝐶(𝑘, {𝑘𝑛}, {𝜀𝑛}),1 while keeping
the detection probability of any channel, 𝑃 𝑑

𝑛 , above a pre-
specified threshold 𝑃𝑡ℎ(𝑃𝑡ℎ > 0.5) and the false alarm
probability of any channel, 𝑃 𝑓

𝑛 , no larger than 0.5. So the
problem can be defined as follows.

Problem P1 :
max

𝑘,{𝑘𝑛},{𝜀𝑛}
𝐶(𝑘, {𝑘𝑛}, {𝜀𝑛}) = 𝑇−𝑘𝛿

𝑇

⋅∑𝑁
𝑛=1

(
Pr(ℋ0

𝑛)
(
1− 𝑃 𝑓

𝑛 (𝑘𝑛, 𝜀𝑛)
)
𝑅0
𝑛

+ Pr(ℋ1
𝑛)

(
1− 𝑃 𝑑

𝑛(𝑘𝑛, 𝜀𝑛)
)
𝑅1
𝑛

)
s.t. 𝑃 𝑑

𝑛 (𝑘𝑛, 𝜀𝑛) ≥ 𝑃𝑡ℎ, 𝑛 = 1, 2, ..., 𝑁
𝜎2 ≤ 𝜀𝑛 ≤ 𝜎2(1 + 𝛾𝑛), 𝑛 = 1, 2, ..., 𝑁
𝑁∑
𝑛=1

𝑘𝑛 = 𝑘𝑀

𝑘𝑛 > 0, 𝑘𝑛 ∈ ℐ, 𝑛 = 1, 2, ..., 𝑁
0 < 𝑘 ≤ ⌊𝑇𝛿 ⌋, 𝑘 ∈ ℐ.

Here ℐ is the set of all positive integers. Note that the
constraints 𝜎2 ≤ 𝜀𝑛 ≤ 𝜎2(1 + 𝛾𝑛) are equivalent to the
constraints 𝑃 𝑑

𝑛 ≥ 0.5 and 𝑃 𝑓
𝑛 ≤ 0.5 according to equations

(11) and (12).

A. Nonconvexity of Problem P1

Lemma 1: Problem P1 is not a convex problem.
Proof: We use proof by contradiction. Assume that

problem P1 is a convex problem. Thus, the objective func-
tion 𝐶(𝑘, {𝑘𝑛}, {𝜀𝑛}) is a concave function with respect to
𝑘, {𝑘𝑛}, and {𝜀𝑛}. Based on (11) and (12), we have

∂2𝑃 𝑓
𝑛 (𝑘𝑛, 𝜀𝑛)

∂𝑘𝑛
2 =

1

4
√
2𝜋

(𝜀𝑛
𝜎2
− 1

)
𝑒−

(( 𝜀𝑛
𝜎2 −1)

√
𝑘𝑛𝛿𝜇)2

2

⋅
(√

𝛿𝜇

𝑘3𝑛
+ (𝛿𝜇)

3/2
( 𝜀𝑛
𝜎2
− 1

)2 1√
𝑘𝑛

)
(13)

and

∂2𝑃 𝑑
𝑛(𝑘𝑛, 𝜀𝑛)

∂𝑘𝑛
2 =

1

4
√
2𝜋

( 𝜀𝑛
𝜎2
− 𝛾𝑛 − 1

)
𝑒−

(
( 𝜀𝑛

𝜎2 −𝛾𝑛−1)
√

𝑘𝑛𝛿𝜇

(𝛾𝑛+1)

)2

2

⋅
(√

𝛿𝜇

(𝛾𝑛 + 1)2
1√
𝑘3𝑛

+
(𝛿𝜇)3/2

(𝛾𝑛 + 1)3

(𝜀𝑛
𝜎2
− 𝛾𝑛 − 1

)2 1√
𝑘𝑛

)
.

(14)

Among the constraints of problem P1, we have 𝜎2 ≤ 𝜀𝑛 ≤
𝜎2(1+ 𝛾𝑛). So in the feasible region of problem P1, we have

∂2𝑃 𝑓
𝑛 (𝑘𝑛, 𝜀𝑛)

∂𝑘𝑛
2 > 0 (15)

and
∂2𝑃 𝑑

𝑛(𝑘𝑛, 𝜀𝑛)

∂𝑘𝑛
2 < 0. (16)

1Note that here {𝑘𝑛} means the set of {𝑘1, 𝑘2, ..., 𝑘𝑁}, and {𝜀𝑛} means
the set of {𝜀1, 𝜀2, ..., 𝜀𝑁}.

Since Pr(ℋ1
𝑛) = 1− Pr(ℋ0

𝑛), it can be obtained that

∂2𝐶(𝑘, {𝑘𝑛}, {𝜀𝑛})
∂𝑘𝑛

2 =
𝑇 − 𝑘𝛿
𝑇

⋅
(
− ∂

2𝑃 𝑑
𝑛 (𝑘𝑛, 𝜀𝑛)

∂𝑘𝑛
2 𝑅1

𝑛

− Pr(ℋ0
𝑛)

(
∂2𝑃 𝑓

𝑛 (𝑘𝑛, 𝜀𝑛)

∂𝑘𝑛
2 𝑅0

𝑛 −
∂2𝑃 𝑑

𝑛(𝑘𝑛, 𝜀𝑛)

∂𝑘𝑛
2 𝑅1

𝑛

))
.

Therefore, if

Pr(ℋ0
𝑛) <

−∂2𝑃𝑑
𝑛(𝑘𝑛,𝜀𝑛)

∂𝑘𝑛
2 𝑅1

𝑛

∂2𝑃 𝑓
𝑛 (𝑘𝑛,𝜀𝑛)
∂𝑘𝑛

2 𝑅0
𝑛 − ∂2𝑃𝑑

𝑛(𝑘𝑛,𝜀𝑛)

∂𝑘𝑛
2 𝑅1

𝑛

(17)

then we have
∂2𝐶(𝑘, {𝑘𝑛}, {𝜀𝑛})

∂𝑘𝑛
2 > 0 (18)

which contradicts the assumption that 𝐶(𝑘, {𝑘𝑛}, {𝜀𝑛}) is
a concave function with respect to variable 𝑘𝑛. Note that,
from (15) and (16), it can be seen that the right-hand side
of (17) is within (0, 1). Therefore, there exists Pr(ℋ0

𝑛) such
that inequality (17) holds.

This completes the proof.
Besides being nonconvex, problem P1 is also a mixed-

integer problem, which is usually NP-hard to be solved
directly [14]. In order to solve problem P1, we resort to
transformation of the problem into subproblems with low
complexity, as follows.

In the expression of the objective function 𝐶(𝑘, {𝑘𝑛}, {𝜀𝑛})
in problem P1, it can be seen that variable 𝑘 appears only in
the term 𝑇−𝑘𝛿

𝑇 . So problem P1 can be transformed to

max
𝑘

𝐶(𝑘) = 𝑇−𝑘𝛿
𝑇 ⋅ 𝑈∗(𝑘)

s.t. 0 < 𝑘 ≤ ⌊𝑇𝛿 ⌋, 𝑘 ∈ ℐ
(19)

where 𝑈∗(𝑘) is the optimal objective value of the following
problem with a specific 𝑘 value:

Problem P2 (with a specific 𝑘 value)
max

{𝑘𝑛},{𝜀𝑛}
𝑈({𝑘𝑛}, {𝜀𝑛}) =

𝑁∑
𝑛=1

(
Pr(ℋ0

𝑛)
(
1− 𝑃 𝑓

𝑛 (𝑘𝑛, 𝜀𝑛)
)
𝑅0
𝑛

+ Pr(ℋ1
𝑛)
(
1− 𝑃 𝑑

𝑛 (𝑘𝑛, 𝜀𝑛)
)
𝑅1
𝑛

)
s.t. 𝑃 𝑑

𝑛(𝑘𝑛, 𝜀𝑛) ≥ 𝑃𝑡ℎ, 𝑛 = 1, 2, ..., 𝑁
𝜎2 ≤ 𝜀𝑛 ≤ 𝜎2(1 + 𝛾𝑛), 𝑛 = 1, 2, ..., 𝑁
𝑁∑
𝑛=1

𝑘𝑛 = 𝑘𝑀

𝑘𝑛 > 0, 𝑘𝑛 ∈ ℐ, 𝑛 = 1, 2, ..., 𝑁
𝑘 ∈ ℐ.

Problem P2 is actually a subproblem of problem P1. In the
following, we first discuss the properties of problem P2 and
provide an optimal solution to it in Section III-B, and then
provide an optimal algorithm to solve problem P1 in Section
III-C based on the optimal solution of problem P2.

B. Properties and Optimal Solution of Problem P2

Lemma 2: With the condition 𝑃𝑡ℎ > 0.5, the objective
function 𝑈({𝑘𝑛}, {𝜀𝑛}) in problem P2 achieves the maximal
value when 𝑃 𝑑

𝑛 (𝑘𝑛, 𝜀𝑛) = 𝑃𝑡ℎ, 𝑛 = 1, 2, ..., 𝑁 .
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Proof: Denote

𝑈𝑛(𝑘𝑛, 𝜀𝑛) = Pr(ℋ0
𝑛)
(
1− 𝑃 𝑓

𝑛 (𝑘𝑛, 𝜀𝑛)
)
𝑅0
𝑛

+Pr(ℋ1
𝑛)
(
1− 𝑃 𝑑

𝑛 (𝑘𝑛, 𝜀𝑛)
)
𝑅1
𝑛 (20)

and therefore we have 𝑈({𝑘𝑛}, {𝜀𝑛}) =
𝑁∑
𝑛=1

𝑈𝑛(𝑘𝑛, 𝜀𝑛).

From equations (11) and (12), it can be seen that both(
1 − 𝑃 𝑓

𝑛 (𝑘𝑛, 𝜀𝑛)
)

and
(
1 − 𝑃 𝑑

𝑛 (𝑘𝑛, 𝜀𝑛)
)

in 𝑈𝑛(𝑘𝑛, 𝜀𝑛) grow
with the increase of 𝜀𝑛. On the other hand, the term(
1 − 𝑃 𝑑

𝑛(𝑘𝑛, 𝜀𝑛)
)

should be bounded by 1 − 𝑃𝑡ℎ. Therefore,
𝑈𝑛(𝑘𝑛, 𝜀𝑛) achieves its maximal value when

(
1−𝑃 𝑑

𝑛 (𝑘𝑛, 𝜀𝑛)
)

reaches its upper bound (1 − 𝑃𝑡ℎ), which happens when
𝑃 𝑑
𝑛 (𝑘𝑛, 𝜀𝑛) = 𝑃𝑡ℎ.
This completes the proof.

Define

𝑆({𝑘𝑛}) =
𝑁∑
𝑛=1

Pr(ℋ0
𝑛)

(
1− 𝑃 𝑓

𝑛 (𝑘𝑛, 𝑃
𝑑
𝑛 = 𝑃𝑡ℎ)

)
𝑅0
𝑛 (21)

where 𝑃 𝑓
𝑛 (𝑘𝑛, 𝑃

𝑑
𝑛 ) is from (7), i.e.,

𝑃 𝑓
𝑛

(
𝑘𝑛, 𝑃

𝑑
𝑛

)
= 𝑄

(
(𝛾𝑛 + 1)𝑄−1(𝑃 𝑑

𝑛 ) + 𝛾𝑛
√
𝜇𝑘𝑛𝛿

)
. (22)

Based on Lemma 2, we substitute 𝑃 𝑑
𝑛 with 𝑃𝑡ℎ in the

objective function 𝑈({𝑘𝑛}, {𝜀𝑛}) in problem P2, and we have

𝑈({𝑘𝑛}, {𝜀𝑛})∣𝑃𝑑
𝑛(𝑘𝑛,𝜀𝑛)=𝑃𝑡ℎ

= 𝑆({𝑘𝑛}) +
𝑁∑
𝑛=1

Pr(ℋ1
𝑛)(1 − 𝑃𝑡ℎ)𝑅1

𝑛

in which the second term on the right-hand side of the equality
is a fixed value.

Consider the constraints in problem P2. From equation (11),
the constraint 𝜀𝑛 ≤ 𝜎2(1 + 𝛾𝑛) in problem P2 corresponds to
the constraint 𝑃 𝑑

𝑛 ≥ 0.5, which can be guaranteed by setting
𝑃 𝑑
𝑛 = 𝑃𝑡ℎ > 0.5. From equation (12), the constraint 𝜀𝑛 ≥ 𝜎2

in problem P2 corresponds to the constraint 𝑃 𝑓
𝑛 ≤ 0.5, which

can be expressed similarly to equation (8) as

(𝛾𝑛 + 1)𝑄−1 (𝑃𝑡ℎ) + 𝛾𝑛
√
𝜇𝑘𝑛𝛿 ≥ 0, 𝑛 = 1, 2, ..., 𝑁 (23)

and is equivalent to

𝑘𝑛 ≥
(−(𝛾𝑛 + 1)𝑄−1(𝑃𝑡ℎ)√

𝛿𝜇𝛾𝑛

)2

, 𝑛 = 1, 2, ..., 𝑁. (24)

Then by defining 𝑧𝑛 =

⌈(
−(𝛾𝑛+1)𝑄−1(𝑃𝑡ℎ)√

𝛿𝜇𝛾𝑛

)2
⌉

(where ⌈⋅⌉ is

the ceiling function) and 𝑞𝑛 = 𝑘𝑛 − 𝑧𝑛 (𝑛 = 1, 2, ..., 𝑁),
and rewriting 𝑆({𝑘𝑛}) in the form of 𝑆({𝑞𝑛}), problem P2 is
equivalent to the following problem.

Problem P3 (with a specific 𝑘 value)
max
{𝑞𝑛}

𝑆({𝑞𝑛}) =
𝑁∑
𝑛=1

Pr(ℋ0
𝑛)
(
1− 𝑃 𝑓

𝑛 (𝑞𝑛, 𝑃
𝑑
𝑛 = 𝑃𝑡ℎ)

)
𝑅0
𝑛

s.t.
𝑁∑
𝑛=1

𝑞𝑛 = 𝑘𝑀 −
𝑁∑
𝑛=1

𝑧𝑛

𝑞𝑛 ≥ 0, 𝑞𝑛 + 1 ∈ ℐ, 𝑛 = 1, 2, ..., 𝑁
𝑘 ∈ ℐ

(25)

in which

𝑃 𝑓
𝑛 (𝑞𝑛, 𝑃

𝑑
𝑛 = 𝑃𝑡ℎ)

= 𝑄
(
(𝛾𝑛 + 1)𝑄−1(𝑃𝑡ℎ) +

√
(𝑞𝑛 + 𝑧𝑛)𝛿𝜇𝛾𝑛

)
. (26)

Note that to make the constraints in problem P3 feasible, 𝑘

should satisfy 𝑘 ≥
⎡
⎢⎢⎢

𝑁∑
𝑛=1

𝑧𝑛

𝑀

⎤
⎥⎥⎥.

The following lemma is in order.
Lemma 3: The function 𝑆({𝑞𝑛}) in problem P3 is an in-

creasing concave function with respect to 𝑞𝑛 (𝑛 = 1, 2, ..., 𝑁)

within the region
𝑁∑
𝑛=1

𝑞𝑛 = 𝑘𝑀 −
𝑁∑
𝑛=1

𝑧𝑛, 𝑞𝑛 ≥ 0 (𝑛 =

1, 2, ..., 𝑁).
Proof: The first order derivative of 𝑆({𝑞𝑛}) over 𝑞𝑛 is

∂𝑆({𝑞𝑛})
∂𝑞𝑛

= −Pr(ℋ0
𝑛)𝑅

0
𝑛 ⋅

∂𝑄
(
(𝛾𝑛+1)𝑄−1(𝑃𝑡ℎ)+

√
𝛿(𝑞𝑛+𝑧𝑛)𝜇𝛾𝑛

)
∂𝑞𝑛

=
Pr(ℋ0

𝑛)𝑅
0
𝑛

2
√
2𝜋

𝑒−
((𝛾𝑛+1)𝑄−1(𝑃𝑡ℎ)+

√
𝛿(𝑞𝑛+𝑧𝑛)𝜇𝛾𝑛)

2

2

√
𝜇𝛿

(𝑞𝑛+𝑧𝑛)
𝛾𝑛

> 0.
(27)

So 𝑆({𝑞𝑛}) is an increasing function with respect to 𝑞𝑛.

We define 𝑠𝑛(𝑞𝑛)
△
= Pr(ℋ0

𝑛)
(
1 − 𝑃 𝑓

𝑛 (𝑞𝑛, 𝑃
𝑑
𝑛 = 𝑃𝑡ℎ)

)
𝑅0
𝑛.

Therefore, 𝑆({𝑞𝑛}) =
𝑁∑
𝑛=1

𝑠𝑛(𝑞𝑛). The second order deriva-

tive of 𝑠𝑛(𝑞𝑛) over 𝑞𝑛 is given in (28) on the next page.
Note that the inequality in the derivation in (28) is based on(
(𝛾𝑛 + 1)𝑄−1(𝑃𝑡ℎ) +

√
𝛿(𝑞𝑛 + 𝑧𝑛)𝜇𝛾𝑛

) ≥ 0, which is from
(23) based on the fact that 𝑃 𝑓

𝑛 ≤ 0.5.

Define 𝒒𝑎
△
= (𝑞𝑎1 , 𝑞

𝑎
2 , ..., 𝑞

𝑎
𝑁 ) and 𝒒𝑏

△
= (𝑞𝑏1, 𝑞

𝑏
2, ..., 𝑞

𝑏
𝑁 ) such

that
𝑞𝑎𝑛 ≥ 0, 𝑞𝑏𝑛 ≥ 0, 1 ≤ 𝑛 ≤ 𝑁 ;
𝑁∑
𝑛=1

𝑞𝑎𝑛 =
𝑁∑
𝑛=1

𝑞𝑏𝑛 = 𝑘𝑀 −
𝑁∑
𝑛=1

𝑧𝑛.
(29)

For any 𝜆 ∈ [0, 1], it is easy to see that 𝒒𝑐
△
= 𝜆𝒒𝑎+(1−𝜆)𝒒𝑏

satisfies

𝑞𝑐𝑛 ≥ 0, 1 ≤ 𝑛 ≤ 𝑁 ;

𝑁∑
𝑛=1

𝑞𝑐𝑛 = 𝑘𝑀 −
𝑁∑
𝑛=1

𝑧𝑛. (30)

So in the region
𝑁∑
𝑛=1

𝑞𝑛 = 𝑘𝑀 −
𝑁∑
𝑛=1

𝑧𝑛, 𝑞𝑛 ≥ 0 (𝑛 =

1, ..., 𝑁), we have

𝑆({𝑞𝑐𝑛}) =

𝑁∑
𝑛=1

𝑠𝑛(𝑞
𝑐
𝑛)

=

𝑁∑
𝑛=1

𝑠𝑛(𝜆𝑞
𝑎
𝑛 + (1− 𝜆)𝑞𝑏𝑛)

from (28)

≥
𝑁∑
𝑛=1

𝜆𝑠𝑛(𝑞
𝑎
𝑛) +

𝑁∑
𝑛=1

(1− 𝜆)𝑠𝑛(𝑞𝑏𝑛)

= 𝜆𝑆({𝑞𝑎𝑛}) + (1− 𝜆)𝑆({𝑞𝑏𝑛}) (31)

which means that the function 𝑆({𝑞𝑛}) is concave within the

region
𝑁∑
𝑛=1

𝑞𝑛 = 𝑘𝑀 −
𝑁∑
𝑛=1

𝑧𝑛, 𝑞𝑛 ≥ 0 (𝑛 = 1, ..., 𝑁).
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∂2𝑠𝑛(𝑞𝑛)
∂𝑞𝑛2 = −Pr(ℋ0

𝑛)𝑅
0
𝑛

4
√
2𝜋

⋅
(
𝑒−

((𝛾𝑛+1)𝑄−1(𝑃𝑡ℎ)+
√

𝛿(𝑞𝑛+𝑧𝑛)𝜇𝛾𝑛)
2

2

√
𝜇𝛿

(𝑞𝑛+𝑧𝑛)
3 𝛾𝑛

+𝑒−
((𝛾𝑛+1)𝑄−1(𝑃𝑡ℎ)+

√
𝛿(𝑞𝑛+𝑧𝑛)𝜇𝛾𝑛)

2

2 ⋅ 𝜇𝛿
(𝑞𝑛+𝑧𝑛)

𝛾2𝑛 ⋅
(
(𝛾𝑛 + 1)𝑄−1(𝑃𝑡ℎ) +

√
𝛿(𝑞𝑛 + 𝑧𝑛)𝜇𝛾𝑛

))
< 0.

(28)

This completes the proof.

From Lemma 3, problem P3 becomes a convex mixed-
integer problem. Generally a mixed-integer problem is NP-
hard [14]. However, for problem P3, thanks to the separability
and concavity of the objective function and the linear con-
straints with variable coefficients all being 1’s, an incremental
algorithm [15, page 384] can be used to solve problem P3
with polynomial complexity 𝑂

(
𝑘𝑀 log𝑁 + 𝑁

)
, which can

converge to the global optimal point as proved in reference
[16, pages 53-54].

The procedure of the incremental algorithm for problem P3,
referred to as Algorithm 1, is as follows.

Algorithm 1 Incremental Algorithm for Problem P3.

1: If 𝑘𝑀 −
𝑁∑
𝑛=1

𝑧𝑛 < 0, problem P3 is infeasible for the

given 𝑘, return. Otherwise, set 𝑞𝑛 = 0, 𝑛 = 1, 2, ..., 𝑁 .

2: If
𝑁∑
𝑛=1

𝑞𝑛 < 𝑘𝑀 −
𝑁∑
𝑛=1

𝑧𝑛, find 𝑛∗ = argmax
1≤𝑛≤𝑁

(
𝑠𝑛(𝑞𝑛 +

1)− 𝑠𝑛(𝑞𝑛)
)
, and proceed to Step 3; Otherwise, proceed

to Step 4.
3: 𝑞𝑛∗ = 𝑞𝑛∗ + 1, proceed to Step 2.
4: Output {𝑞𝑛, 𝑛 = 1, 2, ..., 𝑁}.

Since problems P2 and P3 are equivalent, the optimal
objective value of problem P2 (with a specific 𝑘 value),
i.e., 𝑈∗(𝑘), can be obtained by setting 𝑘𝑛 = 𝑞𝑛 + 𝑧𝑛 and
𝑃 𝑑
𝑛 (𝑘𝑛, 𝜀𝑛) = 𝑃𝑡ℎ, 𝑛 = 1, 2, ..., 𝑁 .
Lemma 4: 𝑈∗(𝑘) has two properties: (1) 𝑈∗(𝑘) is an in-

creasing function; (2) 𝑈∗(𝑘)−𝑈∗(𝑘−1) ≥ 𝑈∗(𝑘+1)−𝑈∗(𝑘)

for 𝑘 ≥
⎡
⎢⎢⎢

𝑁∑
𝑛=1

𝑧𝑛

𝑀

⎤
⎥⎥⎥ , 𝑘 ∈ ℐ.

The proof of Lemma 4 is given in the Appendix.

C. Optimal Solution to Problem P1

In Section III-B, we have provided an optimal solution to
problem P2, which is a subproblem of problem P1. Now, we
can proceed to solve problem P1. With the solution of problem
P2, denoted 𝑈∗(𝑘) for a specific 𝑘, problem P1 is equivalent
to

max
𝑘

𝐶(𝑘) = 𝑇−𝑘𝛿
𝑇 ⋅ 𝑈∗(𝑘)

s.t.

⎡
⎢⎢⎢

𝑁∑
𝑛=1

𝑧𝑛

𝑀

⎤
⎥⎥⎥ ≤ 𝑘 ≤ ⌊𝑇𝛿 ⌋, 𝑘 ∈ ℐ.

(32)

We have the following lemma for the objective function of
this problem.

Lemma 5: 𝐶(𝑘 + 1) − 𝐶(𝑘) < 𝐶(𝑘) − 𝐶(𝑘 − 1), for⎡
⎢⎢⎢

𝑁∑
𝑛=1

𝑧𝑛

𝑀

⎤
⎥⎥⎥ < 𝑘 < ⌊𝑇𝛿 ⌋, 𝑘 ∈ ℐ.

Proof:

[𝐶(𝑘 + 1)− 𝐶(𝑘)]− [𝐶(𝑘) − 𝐶(𝑘 − 1)]

=

[(
1− (𝑘 + 1)𝛿

𝑇

)
𝑈∗(𝑘 + 1)−

(
1− 𝑘𝛿

𝑇

)
𝑈∗(𝑘)

]

−
[(

1− 𝑘𝛿
𝑇

)
𝑈∗(𝑘)−

(
1− (𝑘 − 1)𝛿

𝑇

)
𝑈∗(𝑘 − 1)

]

=

(
1− 𝑘𝛿

𝑇

)
[
(
𝑈∗(𝑘 + 1)− 𝑈∗(𝑘)

)−
(
𝑈∗(𝑘)− 𝑈∗(𝑘 − 1)

)
] +

𝛿

𝑇

(
𝑈∗(𝑘 − 1)− 𝑈∗(𝑘 + 1)

)
.

From Lemma 4, 𝑈∗(𝑘 + 1) − 𝑈∗(𝑘) ≤ 𝑈∗(𝑘) − 𝑈∗(𝑘 − 1),
and 𝑈∗(𝑘 − 1) < 𝑈∗(𝑘 + 1). Thus we have

[𝐶(𝑘 + 1)− 𝐶(𝑘)]− [𝐶(𝑘)− 𝐶(𝑘 − 1)] < 0.

This completes the proof.
From Lemma 5, we see that as 𝑘 grows, the increase of

𝐶(𝑘), denoted 𝐷(𝑘) = 𝐶(𝑘) − 𝐶(𝑘 − 1), becomes smaller.
Then, the optimal point of 𝑘, denoted 𝑘∗, satisfies

𝐷(𝑘∗) ≥ 0 ≥ 𝐷(𝑘∗ + 1). (33)

In the search for 𝑘∗, for a round (with a specific 𝑘
value), the results in previous rounds are still useful, and
can be used to reduce the computation complexity in the
current round. And the total complexity is upper bounded by
𝑂

(⌊𝑇𝛿 ⌋𝑀 log𝑁 +𝑁
)
.

IV. OPTIMAL SENSING TIME SETTING IN THE

CONTINUOUS-TIME SENSING MODE

In this section, we consider the continuous-time sensing
mode. The duration of the sensing phase in a slot is denoted 𝜏 .
So the total sensing time among all the secondary users is𝑀𝜏 .
The total sensing time assigned to channel 𝑛 ∈ {1, 2, ..., 𝑁} is
𝜏𝑛. Note that 𝜏 and 𝜏𝑛’s are all continuous variables. Similar
to problem P1, we have the following problem formulation.

Problem P4 :
max

𝜏,{𝜏𝑛},{𝜀𝑛}
𝐶𝑐 = (1− 𝜏

𝑇 )

⋅
( 𝑁∑
𝑛=1

(
Pr(ℋ0

𝑛)
(
1− 𝑃 𝑓

𝑛 (𝜏𝑛, 𝜀𝑛)
)
𝑅0
𝑛

+ Pr(ℋ1
𝑛)
(
1− 𝑃 𝑑

𝑛 (𝜏𝑛, 𝜀𝑛)
)
𝑅1
𝑛

))
s.t. 𝑃 𝑑

𝑛(𝜏𝑛, 𝜀𝑛) ≥ 𝑃𝑡ℎ, 𝑛 = 1, 2, ..., 𝑁
𝜎2 ≤ 𝜀𝑛 ≤ 𝜎2(1 + 𝛾𝑛), 𝑛 = 1, 2, ..., 𝑁
𝑁∑
𝑛=1

𝜏𝑛 = 𝜏𝑀

0 < 𝜏 ≤ 𝑇
𝜏𝑛 > 0, 𝑛 = 1, 2, ..., 𝑁

in which 𝑃 𝑓
𝑛 (𝜏𝑛, 𝜀𝑛) and 𝑃 𝑑

𝑛(𝜏𝑛, 𝜀𝑛) are given in (5) and (4),
respectively.
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Similar to Lemma 1, it can be proved that problem P4 is not
a convex problem. In order to solve it, we transform problem
P4 to:

max
𝜏

𝐶𝑐(𝜏) = (1− 𝜏
𝑇 ) ⋅ 𝑈∗

𝑐 (𝜏)

s.t. 0 < 𝜏 ≤ 𝑇. (34)

where 𝑈∗
𝑐 (𝜏) is the optimal objective value of the following

problem with a specific 𝜏 value:

Problem P5 (with a specific 𝜏 value)
max

{𝜏𝑛},{𝜀𝑛}
𝑈𝑐({𝜏𝑛}, {𝜀𝑛}) =

𝑁∑
𝑛=1

(
Pr(ℋ0

𝑛)
(
1− 𝑃 𝑓

𝑛 (𝜏𝑛, 𝜀𝑛)
)
𝑅0
𝑛

+ Pr(ℋ1
𝑛)
(
1− 𝑃 𝑑

𝑛(𝜏𝑛, 𝜀𝑛)
)
𝑅1
𝑛

)
s.t. 𝑃 𝑑

𝑛 (𝜏𝑛, 𝜀𝑛) ≥ 𝑃𝑡ℎ, 𝑛 = 1, 2, ..., 𝑁
𝜎2 ≤ 𝜀𝑛 ≤ 𝜎2(1 + 𝛾𝑛), 𝑛 = 1, 2, ..., 𝑁
𝑁∑
𝑛=1

𝜏𝑛 = 𝜏𝑀

𝜏𝑛 > 0, 𝑛 = 1, 2, ..., 𝑁.

Similar to the proof of Lemma 2, it can be proved that
function 𝑈𝑐({𝜏𝑛}, {𝜀𝑛}) achieves the maximal value when
𝑃 𝑑
𝑛 (𝜏𝑛, 𝜀𝑛) = 𝑃𝑡ℎ.
Define

𝑆𝑐({𝜏𝑛}) =
𝑁∑
𝑛=1

Pr(ℋ0
𝑛)

(
1− 𝑃 𝑓

𝑛 (𝜏𝑛, 𝑃
𝑑
𝑛 = 𝑃𝑡ℎ)

)
𝑅0
𝑛 (35)

where 𝑃 𝑓
𝑛 (𝜏𝑛, 𝑃

𝑑
𝑛) is from (7), i.e.,

𝑃 𝑓
𝑛

(
𝜏𝑛, 𝑃

𝑑
𝑛

)
= 𝑄

(
(𝛾𝑛 + 1)𝑄−1(𝑃 𝑑

𝑛 ) + 𝛾𝑛
√
𝜇𝜏𝑛

)
. (36)

We substitute 𝑃 𝑑
𝑛(𝜏𝑛, 𝜀𝑛) with 𝑃𝑡ℎ in the objective function

𝑈𝑐({𝜏𝑛}, {𝜀𝑛}) in problem P5, and we have

𝑈𝑐({𝜏𝑛}, {𝜀𝑛})∣𝑃𝑑
𝑛(𝜏𝑛,𝜀𝑛)=𝑃𝑡ℎ

= 𝑆𝑐({𝜏𝑛}) +
𝑁∑
𝑛=1

Pr(ℋ1
𝑛)(1 − 𝑃𝑡ℎ)𝑅1

𝑛

in which the second term on the right-hand side of the equality
is a fixed value.

Similar to the discussion in Section III, the constraint 𝜀𝑛 ≤
𝜎2(1 + 𝛾𝑛) in problem P5 is satisfied when 𝑃 𝑑

𝑛 = 𝑃𝑡ℎ > 0.5,
and the constraint 𝜀𝑛 ≥ 𝜎2 is equivalent to the following
inequality

(𝛾𝑛 + 1)𝑄−1 (𝑃𝑡ℎ) + 𝛾𝑛
√
𝜇𝜏𝑛 ≥ 0, 𝑛 = 1, 2, ..., 𝑁 (37)

which means

𝜏𝑛 ≥
(−(𝛾𝑛 + 1)𝑄−1(𝑃𝑡ℎ)√

𝜇𝛾𝑛

)2

, 𝑛 = 1, 2, ..., 𝑁. (38)

Denote 𝑧𝑐𝑛 =
(

−(𝛾𝑛+1)𝑄−1(𝑃𝑡ℎ)√
𝜇𝛾𝑛

)2

. Then problem P5 is
equivalent to the following problem.
Problem P6 (with a specific 𝜏 value)

max
{𝜏𝑛}

𝑆𝑐({𝜏𝑛}) =
𝑁∑

𝑛=1

(
Pr(ℋ0

𝑛)
(
1− 𝑃 𝑓

𝑛 (𝜏𝑛, 𝑃
𝑑
𝑛 = 𝑃𝑡ℎ)

)
𝑅0

𝑛

)

s.t.
𝑁∑

𝑛=1

𝜏𝑛 = 𝜏𝑀

𝜏𝑛 ≥ 𝑧𝑐𝑛, 𝑛 = 1, 2, ..., 𝑁.

It can be easily proved that in the feasible region of problem
P6 (in which 𝑃 𝑓

𝑛 ≤ 0.5 is guaranteed), the objective function
of problem P6 is a concave function, and therefore, problem
P6 is a convex problem.

Let 𝑆∗
𝑐 (𝜏) denote the optimal objective value of problem

P6 with a specific 𝜏 value.
Lemma 6: Function 𝑆∗

𝑐 (𝜏) is an increasing concave func-

tion for 𝜏 ≥
𝑁∑

𝑛=1
𝑧𝑐𝑛

𝑀 .
Proof: We first prove it is an increasing function.

Define a function

𝑠𝑐𝑛(𝜏𝑛) = Pr(ℋ0
𝑛)
(
1− 𝑃 𝑓

𝑛 (𝜏𝑛, 𝑃
𝑑
𝑛 = 𝑃𝑡ℎ)

)
𝑅0
𝑛, 𝜏𝑛 ≥ 𝑧𝑐𝑛.

(39)
It is easy to prove that function 𝑠𝑐𝑛(𝜏𝑛) is an increasing
function.

For any two variables 𝜏† ≥
𝑁∑

𝑛=1
𝑧𝑐𝑛

𝑀 and 𝜏‡ ≥
𝑁∑

𝑛=1
𝑧𝑐𝑛

𝑀 , assume
that 𝜏† < 𝜏‡. For 𝜏 = 𝜏†, the optimal solution to problem
P6 is denoted {𝜏†𝑛}, with the optimal objective value being
𝑆∗
𝑐 (𝜏

†). For 𝜏 = 𝜏‡, the optimal solution to problem P6 is
denoted {𝜏‡𝑛}, with the optimal objective value being 𝑆∗

𝑐 (𝜏
‡).

Let 𝜏 ′𝑁 = 𝜏‡𝑀 −∑𝑁−1
𝑖=1 𝜏†𝑛. Since

∑𝑁
𝑖=1 𝜏

†
𝑛 = 𝜏†𝑀 , we have

𝜏 ′𝑁 = 𝜏‡𝑀 − (𝜏†𝑀 − 𝜏†𝑁 ) = (𝜏‡ − 𝜏†)𝑀 + 𝜏†𝑁 > 𝜏
†
𝑁 .

Since 𝑠𝑐𝑁 (𝜏𝑁 ) is an increasing function, we have 𝑠𝑐𝑁 (𝜏 ′𝑁 ) >
𝑠𝑐𝑁 (𝜏†𝑁 ), and further we have

𝑆∗
𝑐 (𝜏

†) =
𝑁−1∑
𝑖=1

𝑠𝑐𝑖 (𝜏
†
𝑖 ) + 𝑠

𝑐
𝑁 (𝜏†𝑁 ) <

𝑁−1∑
𝑖=1

𝑠𝑐𝑖 (𝜏
†
𝑖 ) + 𝑠

𝑐
𝑁 (𝜏 ′𝑁 ).

(40)
On the other hand, {𝜏†1 , ..., 𝜏†𝑁−1, 𝜏

′
𝑁} is also a feasible

solution for problem P6 with 𝜏 = 𝜏‡. Recall that 𝑆∗
𝑐 (𝜏

‡) is
the optimal objective value of problem P6 when 𝜏 = 𝜏‡. So
we have

𝑆∗
𝑐 (𝜏

‡) ≥
𝑁−1∑
𝑖=1

𝑠𝑐𝑖(𝜏
†
𝑖 ) + 𝑠

𝑐
𝑁 (𝜏 ′𝑁 ). (41)

From (40) and (41), we have 𝑆∗
𝑐 (𝜏

†) < 𝑆∗
𝑐 (𝜏

‡), which means
that 𝑆∗

𝑐 (𝜏) is an increasing function.
Next we prove that 𝑆∗

𝑐 (𝜏) is a concave function. Denote a
vector 𝝂= (𝜏1, 𝜏2, ..., 𝜏𝑁 ), and two functions

𝐻𝑡𝑐(𝝂) =

𝑁∑
𝑛=1

(
Pr(ℋ0

𝑛)
(
1− 𝑃 𝑓

𝑛 (𝜏𝑛, 𝑃
𝑑
𝑛 = 𝑃𝑡ℎ)

)
𝑅0
𝑛

)
(42)

and

𝐻𝑐(𝑥) = max
𝝂∈𝒞(𝑥)

𝐻𝑡𝑐(𝝂) (43)

where 𝒞(𝑥) = {(𝜏1, 𝜏2, ..., 𝜏𝑁 )∣
𝑁∑
𝑛=1

𝜏𝑛 = 𝑥, 𝜏𝑛 ≥ 𝑧𝑐𝑛, 𝑛 =

1, 2, ..., 𝑁}. It is obvious that 𝐻𝑡𝑐(𝝂) is a concave function
with respect to 𝝂 when 𝜏𝑛 ≥ 𝑧𝑐𝑛, 𝑛 = 1, 2, ..., 𝑁 .

For any two values 𝑥1, 𝑥2 > 0, and any 𝜖 > 0, there exist
𝝂1 ∈ 𝒞(𝑥1) and 𝝂2 ∈ 𝒞(𝑥2) such that 𝐻𝑡𝑐(𝝂1) ≥ 𝐻𝑐(𝑥1)− 𝜖
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and 𝐻𝑡𝑐(𝝂2) ≥ 𝐻𝑐(𝑥2)− 𝜖. For any 𝜃 ∈ [0, 1], we have

𝐻𝑐(𝜃𝑥1 + (1− 𝜃)𝑥2) = max
𝝂∈𝒞(𝜃𝑥1+(1−𝜃)𝑥2)

𝐻𝑡𝑐(𝝂)

≥ 𝐻𝑡𝑐(𝜃𝝂1 + (1− 𝜃)𝝂2)
> 𝜃𝐻𝑡𝑐(𝝂1) + (1− 𝜃)𝐻𝑡𝑐(𝝂2)
≥ 𝜃𝐻𝑐(𝑥1) + (1− 𝜃)𝐻𝑐(𝑥2)− 𝜖.

(44)
This inequality holds for any small 𝜖 > 0. So we have

𝐻𝑐(𝜃𝑥1 + (1− 𝜃)𝑥2) > 𝜃𝐻𝑐(𝑥1) + (1− 𝜃)𝐻𝑐(𝑥2) (45)

which means 𝐻𝑐(𝑥) is a concave function. And therefore,
𝑆∗
𝑐 (𝜏) = 𝐻𝑐(𝜏𝑀) is also a concave function [17, page 84] .
This completes the proof.
With the optimal objective value of problem P5, i.e., 𝑈∗

𝑐 (𝜏),
problem P4 is equivalent to the problem in (34) with constraint
𝑁∑

𝑛=1
𝑧𝑐𝑛

𝑀 ≤ 𝜏 ≤ 𝑇 .2 And the objective function 𝐶𝑐(𝜏) of the
problem in (34) has the following property.

Lemma 7: 𝐶𝑐(𝜏) is a concave function when 𝜏 ≥
𝑁∑

𝑛=1
𝑧𝑐𝑛

𝑀 .
Proof: The second-order derivative of 𝐶𝑐(𝜏) is given by

𝑑2𝐶𝑐(𝜏)

𝑑𝜏2
=
𝑑2𝑆∗

𝑐 (𝜏)

𝑑𝜏2

(
1− 𝜏

𝑇

)
+ 2 ⋅

(
− 1

𝑇

)
𝑑𝑆∗

𝑐 (𝜏)

𝑑𝜏
. (46)

Since function 𝑆∗
𝑐 (𝜏) is increasing and concave (from Lemma

6), we have 𝑑𝑆∗
𝑐 (𝜏)
𝑑𝜏 > 0 and 𝑑2𝑆∗

𝑐 (𝜏)
𝑑𝜏2 < 0. Therefore, 𝑑

2𝐶𝑐(𝜏)
𝑑𝜏2 <

0, which means that function 𝐶𝑐(𝜏) is a concave function.
From Lemma 7, it can be seen that, problem P4 is

transformed to a bilevel optimization problem [15], where
the upper level problem (i.e., the problem in (34), which
optimizes 𝜏 ) and lower level problem (i.e., problem P5 or P6,
which optimizes {𝜏𝑛}) are both convex problems. The bilevel
problem can be solved by existing methods.

V. PERFORMANCE EVALUATION

In this section, numerical results are presented to verify the
effectiveness of our proposed algorithms. Similar to [12], the
system setup is as follows. The sampling rate is 𝜇= 6 MHz;
the slot duration is 𝑇= 100 ms; the threshold of detection
probability is 𝑃𝑡ℎ = 0.9; and 𝑆𝑁𝑅𝑠𝑠

𝑛 between secondary users
are all assumed to have a mean 20 dB. Both 𝑆𝑁𝑅𝑝𝑠

𝑛 (the SNR
from the primary user to a secondary user on channel 𝑛) and
𝑆𝑁𝑅𝑠𝑠

𝑛 are assumed to be exponentially distributed.

A. Verification of Our Algorithms

The slotted-time sensing mode is tested first. Consider 𝑁 =
2 channels, with the available probability as Pr(ℋ0

1) = 0.8
and Pr(ℋ0

2) = 0.6, and mean SNR from primary user to both
secondary users as 𝛾1 = −15 dB in channel 1 and 𝛾2 = −20
dB in channel 2. There are𝑀 = 2 secondary users. The mini-
slot duration is 𝛿 = 0.1 ms. To get the value of 𝐶(𝑘) (given
in (19)) at each 𝑘, we use two methods: through exhaustive
search of the 𝑘𝑛’s and 𝜀𝑛’s, and through our Algorithm 1.
The results are demonstrated in Fig. 3. It is obvious that the

2Note that when 0 < 𝜏 <

𝑁∑
𝑛=1

𝑧𝑐𝑛

𝑀
, other constraints in the original

problem, P4, cannot be satisfied simultaneously.
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Fig. 4. Number of iterations versus 𝑀 (𝑁 = 10, 𝛿 = 0.01 ms).

results match well with each other. And the concave-shaped
𝐶(𝑘) is also consistent with the conclusion in Lemma 5. All
these verify the correctness of our algorithm.

For continuous-time sensing mode, similar observations are
noticed, and the results are omitted here.

B. Complexity of Algorithm 1

Next, we illustrate the complexity of Algorithm 1 for
slotted-time sensing mode, when the mini-slot duration is 0.01
ms. The number of iterations to reach the optimal solution
is taken as the measure of complexity. Fig. 4 shows the
complexity when the number of channels, 𝑁 , is fixed as
10, while Fig. 5 shows the complexity when the number of
secondary users, 𝑀 , is fixed as 10.

C. Comparison between the Slotted-time Sensing Mode and
Continuous-time Sensing Mode

To compare the performance between slotted-time sensing
mode and continuous-time sensing mode, consider 𝑁 = 5
channels. These 5 channels have available probabilities as
0.8, 0.7, 0.6, 0.5, and 0.4, with 𝛾𝑛 being -19 dB, -18 dB,
-17 dB, -16 dB, and -15 dB, respectively. By running our
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algorithms for the continuous-time sensing mode, and slotted-
time sensing mode with different mini-slot duration 𝛿 =0.01
ms, 0.05 ms, 0.1 ms, 0.5 ms, or 1 ms, the obtained optimal
network throughput is 17.4 in all cases.

In comparison of slotted-time sensing mode and continuous-
time sensing mode, it is difficult to tell which one is better.
Generally, it is easier to implement the slotted-time sensing
mode in a real system. On the other hand, the complexity
in solving the problem with continuous-time sensing mode is
lower than that with the slotted-time sensing mode.

Since both sensing modes can reach almost the same
optimal network throughput, in the following, we evaluate the
performance of slotted-time sensing mode only.

D. Impact of the Number of Channels and the Number of
Users

In the system setup, there are 𝑁 =5, 9, or 19 channels.
Channel 𝑛 (1 ≤ 𝑛 ≤ 𝑁 ) has a free probability Pr(ℋ0

𝑛) =
1−0.05∗𝑛, and the average channel gain from the primary user
to a secondary user is 𝛾𝑛 = (−20+𝑛−1) dB. Fig. 6 shows the
optimal network throughput (obtained from our algorithm) as a
function of the number, 𝑀 , of secondary users, with different
𝑁 values. It can be seen that when the number of channels or
the number of secondary users increases, the optimal network

throughput also increases. Interestingly, with a fixed 𝑁 value,
when the value of 𝑀 further increases beyond a certain value,
the optimal network throughput seems to keep almost constant.
The reason is as follows. When 𝑀 increases, the total sensing
time for the channels also increases, which means that a
smaller false alarm probability for each channel is expected.
When 𝑀 is large enough, the false alarm probability for each
channel is almost zero. Recall that the optimal objective func-
tion of problem P1 is achieved when the detection probability
is exactly the threshold 𝑃𝑡ℎ (from Lemma 2). Therefore, when
the false alarm probability of each channel is almost zero, the
optimal objective function in problem P1 can be approximated
as

∑𝑁
𝑛=1

(
Pr(ℋ0

𝑛)𝑅
0
𝑛 + Pr(ℋ1

𝑛) (1− 𝑃𝑡ℎ)𝑅1
𝑛

)
, which is a

constant. Note that in the approximation, we omit the factor
𝑇−𝑘𝛿
𝑇 , since the sensing duration is only a small portion of

the total duration 𝑇 .

VI. CONCLUSIONS

In this paper, we have explored the optimal multi-channel
cooperative spectrum sensing strategies in cognitive radio net-
works. We have studied the problem of how to determine the
total sensing time and how to distribute the total sensing time
to different channels in cooperative soft-decision spectrum
sensing. For the slotted-time sensing mode, we have trans-
formed the initial nonconvex mixed-integer problem into con-
vex mixed-integer subproblems, and provided a polynomial-
complexity algorithm to achieve the optimal solution of the
initial problem. For the continuous-time sensing mode, we
have successfully transformed the initial nonconvex optimiza-
tion problem into a convex bilevel optimization problem. This
research should provide helpful insights into the sensing time
configuration in cognitive radio networks.

In this research, it is assumed that a secondary user can
send its test statistic to the coordinator. An interesting research
topic is to investigate the case when a secondary user sends a
quantized version of its test statistic to the coordinator or sends
its detection decision on the presence or absence of primary
activities (i.e., 1-bit information is sent to the coordinator). It is
also interesting to study the problem from a game theoretical
point of view, in which each secondary user is assumed to be
selfish but rational.

In our problem formulation, the constraint 𝑃 𝑓
𝑛 ≤ 0.5 may

lead to some performance loss. For instance, for a specific
channel (say channel 𝑛), consider the case that the channel
gains from the primary user to secondary users and from the
secondary transmitter assigned in channel 𝑛 to its receiver are
significantly lower than the channel gains in other channels.
Then channel 𝑛 will dominate the sensing time, but the return
of secondary throughout in this channel is very low. A possible
solution is to sense only a subset of the 𝑁 channels. However,
the selection of the subset depends on the channel SNR values
and the channel available probabilities. How to find an optimal
subset of channels is an interesting research topic for further
investigation.

APPENDIX: PROOF OF LEMMA 4

Proof: In Algorithm 1, Step 2 and Step 3 are repeated

by

(
𝑘𝑀 −

𝑁∑
𝑛=1

𝑧𝑛

)
times, referred to as

(
𝑘𝑀 −

𝑁∑
𝑛=1

𝑧𝑛

)
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rounds. After round 𝑖 is completed, we denote the value of 𝑞𝑛
as 𝑞(𝑖)𝑛 , 𝑛 = 1, 2, ..., 𝑁 . Then Algorithm 1 can be represented
equivalently in an alternative way:

Algorithm 2 Equivalence to Algorithm 1.

1: If 𝑘𝑀−
𝑁∑
𝑛=1

𝑧𝑛 < 0, problem P3 is infeasible for the given

𝑘, return. Otherwise initialize 𝑞(0)𝑛 = 0, 𝑛 = 1, 2, ..., 𝑁
and set round index 𝑖 = 0.

2: while 𝑖 < 𝑘𝑀 −
𝑁∑
𝑛=1

𝑧𝑛 do

3: Set 𝑖← 𝑖+ 1
4: for 𝑛 = 1, 2, ..., 𝑁 do
5: If 𝑛 = argmax

1≤𝑛≤𝑁

[
𝑠𝑛

(
𝑞
(𝑖−1)
𝑛 + 1

)
− 𝑠𝑛

(
𝑞
(𝑖−1)
𝑛

)]
,

then 𝑞(𝑖)𝑛 = 𝑞
(𝑖−1)
𝑛 + 1; otherwise, 𝑞(𝑖)𝑛 = 𝑞

(𝑖−1)
𝑛 .

6: Output

⎧⎨
⎩𝑞

(𝑘𝑀−
𝑁∑

𝑛=1
𝑧𝑛)

𝑛 , 𝑛 = 1, 2, ..., 𝑁

⎫⎬
⎭.

We denote the channel selected in round 𝑖 as 𝑐(𝑖):

𝑐(𝑖) = argmax
1≤𝑛≤𝑁

[
𝑠𝑛

(
𝑞(𝑖−1)
𝑛 + 1

)
− 𝑠𝑛

(
𝑞(𝑖−1)
𝑛

)]
.

If we record the value of 𝑈({𝑘𝑛}, {𝜀𝑛})∣𝑃𝑑
𝑛(𝑘𝑛,𝜀𝑛)=𝑃𝑡ℎ

as

𝑈({𝑘𝑛}, {𝜀𝑛})∣𝑃𝑑
𝑛(𝑘𝑛,𝜀𝑛)=𝑃𝑡ℎ

𝑞𝑛=𝑘𝑛−𝑧𝑛
=

𝑁∑
𝑛=1

(
Pr(ℋ0

𝑛)
(
1− 𝑃 𝑓

𝑛 (𝑞𝑛, 𝑃𝑡ℎ)
)
𝑅0
𝑛 + Pr(ℋ1

𝑛)(1− 𝑃𝑡ℎ)𝑅1
𝑛

)
(47)

after each round, totally we have

(
𝑘𝑀 −

𝑁∑
𝑛=1

𝑧𝑛

)
values, de-

noted 𝐻(1), 𝐻(2), ..., 𝐻

(
𝑘𝑀 −

𝑁∑
𝑛=1

𝑧𝑛

)
, respectively. Here

𝑃 𝑓
𝑛 (𝑞𝑛, 𝑃𝑡ℎ) is given in (26).
Recall that Algorithm 1 leads to an optimal solution of

problem P2. So the optimal objective value of problem P2
(with a specific 𝑘), i.e., 𝑈∗(𝑘), is given by

𝑈∗(𝑘) = 𝐻

(
𝑘𝑀 −

𝑁∑
𝑛=1

𝑧𝑛

)
. (48)

In (47), the second term in the summation on the right-hand
side of the equality is a fixed value. So we have

𝐻(𝑖)−𝐻(𝑖 − 1)

= Pr
(
ℋ0
𝑐(𝑖)

)(
1− 𝑃 𝑓

𝑐(𝑖)

(
𝑞
(𝑖)
𝑐(𝑖), 𝑃𝑡ℎ

))
𝑅0
𝑐(𝑖)

−Pr
(
ℋ0
𝑐(𝑖)

)(
1− 𝑃 𝑓

𝑐(𝑖)

(
𝑞
(𝑖−1)
𝑐(𝑖) , 𝑃𝑡ℎ

))
𝑅0
𝑐(𝑖)

= 𝑠𝑐(𝑖)

(
𝑞
(𝑖)
𝑐(𝑖)

)
− 𝑠𝑐(𝑖)

(
𝑞
(𝑖)
𝑐(𝑖) − 1

)
. (49)

We first prove property (1): 𝑈∗(𝑘) is an increasing function.
Similar to (27) and (28), it can be proved that 𝑠𝑛(𝑞𝑛) is

an increasing and concave function with respect to 𝑞𝑛. So we
have

𝑠𝑐(𝑖)

(
𝑞
(𝑖)
𝑐(𝑖)

)
− 𝑠𝑐(𝑖)

(
𝑞
(𝑖)
𝑐(𝑖) − 1

)
> 0

and thus
𝐻(𝑖)−𝐻(𝑖− 1) > 0, 𝑖 > 1.

This means 𝐻(𝑖) is an increasing function. Further, based on
(48), we have

𝑈∗(𝑘)− 𝑈∗(𝑘 − 1)

= 𝐻

(
𝑘𝑀 −

𝑁∑
𝑛=1

𝑧𝑛

)
−𝐻

(
(𝑘 − 1)𝑀 −

𝑁∑
𝑛=1

𝑧𝑛

)
> 0.

This means that 𝑈∗(𝑘) is an increasing function.
Now we proceed to prove property (2) of 𝑈∗(𝑘). We first

compare [𝐻(𝑖) − 𝐻(𝑖 − 1)] with [𝐻(𝑖 + 1) − 𝐻(𝑖)]. The
difference is given by

[𝐻(𝑖)−𝐻(𝑖− 1)]− [𝐻(𝑖+ 1)−𝐻(𝑖)]

=
[
𝑠𝑐(𝑖)

(
𝑞
(𝑖)
𝑐(𝑖)

)
− 𝑠𝑐(𝑖)

(
𝑞
(𝑖)
𝑐(𝑖) − 1

)]
−

[
𝑠𝑐(𝑖+1)

(
𝑞
(𝑖+1)
𝑐(𝑖+1)

)
− 𝑠𝑐(𝑖+1)

(
𝑞
(𝑖+1)
𝑐(𝑖+1) − 1

)]
. (50)

We have two scenarios as follows.

∙ If 𝑐(𝑖) = 𝑐(𝑖+ 1) = 𝑗: We have 𝑞(𝑖+1)
𝑗 = 𝑞

(𝑖)
𝑗 + 1. From

(50), we have

[𝐻(𝑖)−𝐻(𝑖− 1)]− [𝐻(𝑖+ 1)−𝐻(𝑖)]

=
[
𝑠𝑗

(
𝑞
(𝑖)
𝑗

)
− 𝑠𝑗

(
𝑞
(𝑖)
𝑗 − 1

)]
−

[
𝑠𝑗

(
𝑞
(𝑖)
𝑗 + 1

)
− 𝑠𝑗

(
𝑞
(𝑖)
𝑗

)]
(𝑎)
> 0

where (𝑎) follows from the fact that 𝑠𝑛(𝑞𝑛) is a concave
function with respect to 𝑞𝑛.

∙ If 𝑐(𝑖) ∕= 𝑐(𝑖 + 1): In round 𝑖, 𝑐(𝑖) =

argmax
1≤𝑛≤𝑁

[
𝑠𝑛

(
𝑞
(𝑖−1)
𝑛 + 1

)
− 𝑠𝑛

(
𝑞
(𝑖−1)
𝑛

)]
. This means

that

𝑠𝑐(𝑖)

(
𝑞
(𝑖−1)
𝑐(𝑖) + 1

)
− 𝑠𝑐(𝑖)

(
𝑞
(𝑖−1)
𝑐(𝑖)

)
≥ 𝑠𝑐(𝑖+1)

(
𝑞
(𝑖−1)
𝑐(𝑖+1) + 1

)
− 𝑠𝑐(𝑖+1)

(
𝑞
(𝑖−1)
𝑐(𝑖+1)

)
. (51)

Since 𝑞(𝑖)𝑐(𝑖) = 𝑞
(𝑖−1)
𝑐(𝑖) + 1, we have

𝑠𝑐(𝑖)

(
𝑞
(𝑖−1)
𝑐(𝑖) + 1

)
− 𝑠𝑐(𝑖)

(
𝑞
(𝑖−1)
𝑐(𝑖)

)
= 𝑠𝑐(𝑖)

(
𝑞
(𝑖)
𝑐(𝑖)

)
− 𝑠𝑐(𝑖)

(
𝑞
(𝑖)
𝑐(𝑖) − 1

)
. (52)

Since 𝑞(𝑖+1)
𝑐(𝑖+1) = 𝑞

(𝑖)
𝑐(𝑖+1) + 1 = 𝑞

(𝑖−1)
𝑐(𝑖+1) + 1, we have

𝑠𝑐(𝑖+1)

(
𝑞
(𝑖−1)
𝑐(𝑖+1) + 1

)
− 𝑠𝑐(𝑖+1)

(
𝑞
(𝑖−1)
𝑐(𝑖+1)

)
= 𝑠𝑐(𝑖+1)

(
𝑞
(𝑖+1)
𝑐(𝑖+1)

)
− 𝑠𝑐(𝑖+1)

(
𝑞
(𝑖+1)
𝑐(𝑖+1) − 1

)
. (53)

From (50) - (53), it can be seen that

[𝐻(𝑖)−𝐻(𝑖− 1)]− [𝐻(𝑖+ 1)−𝐻(𝑖)] ≥ 0.

Therefore, in either of the above scenarios, we always have

[𝐻(𝑖)−𝐻(𝑖− 1)]− [𝐻(𝑖 + 1)−𝐻(𝑖)] ≥ 0, 𝑖 > 1

and it follows that

𝐻(𝑖)−𝐻(𝑖−1) ≥ 𝐻(𝑖+𝑀)−𝐻(𝑖+𝑀−1), 𝑖 > 1. (54)
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Then, we have

𝑈∗(𝑘)− 𝑈∗(𝑘 − 1)

= 𝐻

(
𝑘𝑀 −

𝑁∑
𝑛=1

𝑧𝑛

)
−𝐻

(
(𝑘 − 1)𝑀 −

𝑁∑
𝑛=1

𝑧𝑛

)

=
∑𝑘𝑀−

𝑁∑
𝑛=1

𝑧𝑛

𝑖=(𝑘−1)𝑀−
𝑁∑

𝑛=1
𝑧𝑛+1

(
𝐻(𝑖)−𝐻(𝑖− 1)

)

from (54)

≥ ∑(𝑘+1)𝑀−
𝑁∑

𝑛=1
𝑧𝑛

𝑖=𝑘𝑀−
𝑁∑

𝑛=1
𝑧𝑛+1

(
𝐻(𝑖)−𝐻(𝑖− 1)

)
= 𝑈∗(𝑘 + 1)− 𝑈∗(𝑘).

(55)
This completes the proof.
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