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Abstract—An important goal of bandwidth allocation is to
maximize the utilization of network resources while sharing the
resources in a fair manner among network flows. To strike a bal-
ance between fairness and throughput, a widely studied criterion
in the network community is the notion of max-min fairness.
However, the majority of work on max-min fairness has been
limited to the case where the routing of flows has already been
defined and this routing is usually based on a single fixed routing
path for each flow. In this paper, we consider the more general
problem in which the routing of flows, possibly over multiple
paths per flow, is an optimization parameter in the bandwidth
allocation problem. Our goal is to determine a routing assignment
for each flow so that the bandwidth allocation achieves optimal
utility max-min fairness with respect to all feasible routings of
flows. We present evaluations of our proposed multi-path utility
max-min fair allocation algorithms on a statistical traffic engi-
neering application to show that significantly higher minimum
utility can be achieved when multi-path routing is considered
simultaneously with bandwidth allocation under utility max-
min fairness, and this higher minimum utility corresponds to
significant application performance improvements.

I. I NTRODUCTION

Bandwidth allocation is a fundamental problem in various
areas of networking. In this paper, we consider a general
allocation problem in which a network consisting of links
with fixed capacity is given along with a set of flows between
source and destination pairs. The problem is to allocate a rate
or bandwidth to each flow without exceeding link capacity.
On one hand, we would like to improve the overall network
utilization by maximizing the total throughput from all flows.
On the other hand, fairness among flows must be maintained
to guarantee the performance of individual flows. Therefore,
an important goal of bandwidth allocation is to maximize the
utilization of network resources while sharing the resources in
a fair manner among network flows.

To strike a balance between fairness and throughput, a
widely studied criterion in the network community is the
notion ofmax-min fairness[6]. An allocation of bandwidths or
rates is said to be max-min fair if it is not possible to increase
the bandwidth of a flow without decreasing another already
smaller flow. While max-min fair allocation treats all flows
evenly and tends to allocate them with similar bandwidths,
many variants [19], [8], [25] of max-min fair allocation have
been proposed to differentiate the bandwidth requirements
among flows. One such max-min fair variant isweighted max-
min fair allocation [6], which assigns a weight to each flow.
According to the weights, a flow would receive a bandwidth
allocation proportional to its weight to gain the same fairness

as others. Therefore, by giving varied weights to flows, the
bandwidth requirement of flows can be differentiated. How-
ever, as shown in [8], those traditional max-min bandwidth
allocations will often result in significant disparity in the actual
throughput or performance of a flow, despite a ”fair” allocation
of bandwidth. Therefore, to further capture the general and
possibly non-linear relationship between bandwidth allocation
and the throughput of a flow, utility functions [27] were
introduced as a general performance measure, andutility max-
min fair allocation [8] was formulated to optimize for the
max-min fairness of flows in terms of their utilities.

Nevertheless, the majority of work on max-min fairness
has been limited to the case where the routing of flows has
already been defined and this routing is usually based on a
single fixed routing path for each flow. Although this setup
simplifies the problem by decoupling the complicated flow
routing problem from bandwidth allocation, the utilities that
can be achieved by flows are unnecessarily hamstrung by
routing decisions that have been fixed, ignoring potentially
better allocations that could be achieved if optimal routing and
bandwidth allocation were solved together simultaneously, and
if the path diversity can be exploited by splitting traffic over
multiple paths (e.g. by using MPLS tunnels). Therefore, in
this paper, we consider the more general problem in which the
routing of flows, possibly over multiple paths per flow, is an
optimization parameter in the bandwidth allocation problem.
Our goal is to determine a routing assignment for each flow
so that the bandwidth allocation achieves optimal utility max-
min fairness with respect to all feasible routings of flows. We
call the resulting bandwidth allocation and optimal routing as
a multi-path utility max-min fair allocation.

As we know, most max-min fair allocation formulations are
based on some iterative water-filling algorithm [6]. In each
iteration, the algorithm aims to maximize the allocation of all
flows. The flows whose bandwidth cannot be further increased
are then identified as saturated and are fixed for the remaining
iterations. However, we face several new challenges when
we consider the multi-path routing of flows as a part of the
optimization problem. In particular, max-min fair allocation
algorithms for the fixed single-path case generally rely on
some notion of bottleneck link that determines the maxi-
mum common utility. However, under simultaneous multi-
path routing optimization, the bandwidth allocation of a flow
is not necessarily throttled by a certain link because it may
be possible to re-route flows over different combinations of
multiple paths to achieve higher utilities. To achieve global
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optimality, flows may need to be re-routed along different
paths at each iteration. Such additional degrees of freedom
make our more general problem significantly harder.

To the best of our knowledge, our combined optimal multi-
path routing and bandwidth allocation problem under utility
max-min fairness has not been solved previously. Specifically,
the main contributions of this paper are as follows: First, we
present a global optimization algorithm that is guaranteed to
find an optimal routing and bandwidth allocation that can
achieve optimal utility max-min fairness with respect to all fea-
sible routings of flows, including multi-path routings. Second,
we propose a fast fully polynomial iterativeε-approximation
algorithm that can be efficiently implemented using a linear
program solver. Finally, we apply these algorithms to a statis-
tical traffic engineering application [10] in which historical
traffic distributions are used as utility functions to model
expected future traffic demands. We evaluated this statistical
traffic engineering application on the actual network topology
and traffic trace data of a public Internet backbone network,
namely the Abilene network. Our evaluations show that signifi-
cantly higher minimum utility and lower excess demand can be
achieved when multi-path routing is considered simultaneously
with bandwidth allocation.

The remainder of this paper is organized as follows. First,
Section II reviews related work. We next briefly provide in
Section III background material on max-min allocation, utility
functions, and multi-path routing. After we give the formal
definition of our multi-path utility max-min fair allocation
problem in Section IV, we present new algorithms for solving
this problem in Section V. Then Section VI evaluates our
multi-path utility max-min allocation algorithms on a statisti-
cal traffic engineering application, with results demonstrating
significant improvements in utilities that can be achieved.
Finally, Section VII concludes the paper.

II. RELATED WORK

Max-min fairness has been a widely-studied measure of
fairness in the network community. However, the vast majority
of work on max-min fairness has focused on the problem
where routing decisions have already been fixed, often based
on a single fixed routing path per flow. Several centralized
solutions based on global knowledge of the network have been
developed [1], [6], [16]. Distributed algorithms [2], [4], [5],
[14] have also been proposed to achieve max-min fairness by
adjusting flow rates based on limited link states and local
flow information. In addition, several max-min fair variants
have been studied, such as proportional max-min fairness [19]
and utility max-min fairness [8]. In particular, utility max-
min has been applied to several application-oriented allocation
problems, such as flow control [21], link resource [24], etc.

As discussed in Section I, the simultaneous optimal multi-
path routing and bandwidth allocation problem under the
general setting of utility max-min fairness has not been solved
before. Even the routing problem in the context of traditional
(weighted) max-min fair bandwidth allocation is rarely dis-
cussed in the previous literature. The fair bandwidth allocation

for single source flows was first studied by [23]. [20] and
[11] proposed approximation algorithms to find unsplittable
flow routings. The fair bandwidth allocation problem has also
been studied in the online setting where a route is assigned
to each flow when it arrives. [9] proposed a heuristic routing
algorithm which selects the best single route for a new flow
based on link congestions, such that the max-min bandwidth
allocation is maximized after the flow is added. [12] developed
an approximation algorithm that could achieve a max-min fair
allocation with O(log2 n log1+ε U/ε)-competitive ratio. This
bound was further improved in [7]. Finally, multi-path routing
under fair bandwidth allocation has been studied [3], [13],
[17], [22] as well. But majority of works [17], [22] consider
routing as input rather than an optimization parameter. While
we consider [3] and [13] have the closest problem formulation
to us, both works only considered the weighted max-min case
instead of the more general utility max-min problem with
arbitrary utility functions. As shown in [8] and Figure 1, utility
functions simply cannot be capture as a linear line, and it is
non-trivial to extend the solution from weights to nonlinear
functions.

III. B ACKGROUND

In this paper, we consider a network consists ofN nodes
connected byM links ` = (`0, `1, . . . , `M−1) with link
capacity c(`i) for any link `i. Given n commoditiesΓ =
(C0, C1, . . . , Cn−1) whereCi represents the flow from node
si to ti, our objective is to decide an allocation vectorr whose
componentri is the rate for commodityCi. Notice, the terms
of flow and commodity are used interchangeably in the paper.

A. Max-Min Fair Bandwidth Allocation

Max-min fair is one of the most widely-used fairness criteria
in bandwidth allocation. Its general definition is as follows:

Definition 1 (Max-min fair bandwidth allocation):An al-
location vectorr = (r0, r1, . . . , rn−1) is max-min fair when
any componentri of r cannot be increased without decreasing
some already smaller or equal componentrk (rk ≤ ri).

In previous works, commodities were restricted to use
a given routing path. Thus, the set of feasible bandwidth
allocations is defined as follows:

Definition 2 (Feasible bandwidth allocation):A feasible
bandwidth allocationr = (r0, r1, . . . , rn−1) assigns rateri to
commodityCi such that no link in the network is congested:

∑

∀Ci uses`j

ri ≤ c(`j), ∀`j ∈ ` (1)

Section III-C provides the definition of feasible allocation
under the more general setting where the routing of flows is
not known and a flow can be routed over multiple paths.

B. Utility Functions

Utility functions were first introduced into the bandwidth
allocation problem by [27] to capture the performance of
application flows. For example, elastic applications, including
traditional data applications like emails and file transfers, are
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Fig. 1. Utility functions for different application classes.

best described by a convex utility function. In contrast, a real-
time application could be modeled by a nearly single-step
function because of its sensitivity to bandwidth requirement.
As shown in Figure 1, from those application flows, their
performance simply cannot be capture by a weight or linear
function.

Therefore, utility max-min fairness based on a set of utility
functionsφ = {φ0, φ1, . . . , φn−1} was introduced as an alter-
native performance measure. Each functionφi ∈ φ computes
the utility for commodity Ci delivered under its allocated
bandwidthri as

µi = φi(ri), ∀i ∈ n (2)

In this paper, we assume utility functions are strictly
increasing function over the domain range[0, 1]; that is,
φi(k) < φi(k′), ∀k′ > k and0 < µi < 1, ∀i. Thus, the inverse
of a utility function is also well-defined as

ri = φ−1
i (µi), ∀i ∈ n (3)

Accordingly, a utility max-min allocation corresponding to
a given set of utility functions is defined as follows:

Definition 3 (Utility max-min bandwidth allocation):A
utility max-min allocation is a feasible bandwidth allocation
vector r = (r0, r1, . . . , rn−1) where any componentri of r
cannot be increased without decreasing some componentrk

with equal or smaller utility (φk(rk) ≤ φi(ri)).

C. Multi-Path Routing

In this paper, we consider the bandwidth allocation problem
under multi-path routing where a commodity can use arbitrary
routing, and its traffic can be split over multiple paths. A
general formulation for an arbitrary routing assignment isR
whereRij is the fraction of traffic from commodityCi routed
on link `j , and we say a routing assignmentRij is feasible if
and only if it satisfies the following constraint.

Definition 4 (Feasible multi-path allocation):A feasible
multi-path bandwidth allocation vectorr = (r0, r1, . . . , rn−1)
assigns rateri to commodityCi wherer can be realized by
a feasible routing assignmentR without violating the flow
conservation and/or overloading the network, such that

∑

`j∈E+(k)

riRij −
∑

`j∈E−(k)

riRij =





ri if k = si

−ri if k = ti
0 otherwise

∀i ∈ n andk ∈ N (4)∑

∀Ci

Rij · ri ≤ c(`j) ∀j ∈ M (5)

Rij ≥ 0 ∀i ∈ n and j ∈ M (6)

whereE+(k) and E−(k) represent the set of incoming and
outgoing links at nodek.

IV. M ULTI -PATH UTILITY MAX -MIN ALLOCATION

A. Motivation

We start with an example to illustrate the difference in
bandwidth allocation when considering utility functions and
multi-path routing. Figure 2 shows a network with four nodes
interconnected by 10-units bandwidth links. The network has
three commodities,(A,D), (B, D) and (C,D), and their
utility functions corresponding to a given bandwidth alloca-
tion r are φ1(r) = r2/100, φ2(r) = (r2 + 12r)/100 and
φ3(r) = (3r + 40)/100, respectively. Notice that some of the
utility functions given are non-linear. In this example, both
commodities(B, D) and(C, D) have only one possible rout-
ing path each. However, commodity(A, D) has two possible
routing paths,A → B → D andA → C → D.

First, we consider the traditional max-min allocation prob-
lem where commodities are routed over a single path, and
we assume the path specified for commodity(A,D) is A →
B → D. Under the single-path max-min allocation defined
by Definition 1 and Definition 2, the max-min fair allocation
vector is(5, 5, 10). This arises by assigning a common 5-units
of bandwidth to all three commodities in the first iteration,
which would saturate both commodities,(A,D) and (B,D),
respectively. The third commodity(C,D) is increased to a
full 10-units of bandwidth in the second iteration. Corre-
sponding to this max-min allocation, the resulting utilities for
commodities(A, D), (B, D), and (C, D) are φ1(5) = 0.25,
φ2(5) = 0.84, andφ3(10) = 0.70, respectively.

On the other hand, under the single-pathutility max-
min allocation defined by Definition 3, the utility max-min
fair allocation vector is(6.8, 3.2, 10), and the corresponding
utilities achieved areφ1(6.8) = 0.47, φ2(3.2) = 0.47,
and φ3(10) = 0.70, respectively. This arises by allocating
bandwidth to achieve the maximum common utility for all
three commodities in the first iteration, which in this example
is 0.47. However, to achieve this maximum common utility,
more bandwidth for example needs to be allocated to the first
commodity (A, D) than to the second commodity(B,D).
Again, the bandwidth allocation can be further increased
for the third commodity(C, D) to achieve a higher utility.
Comparing with the traditional max-min allocation, clearly the
utility max-min allocation achieves better fairness with respect
to the given utility functions since utility max-min allocation
specifically aims to do so. In particular, the minimum utility
is increased fromφ1(5) = 0.25 to φ1(6.8) = 0.47.
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Fig. 2. Multi-path utility max-min example.

When we further consider utility max-min allocation under
multi-path routing, there could be three possible allocation
results, depending on the choice of routing paths available to
commodity (A,D). If we choose the pathA → B → D
to route commodity(A,D), then the allocation would be the
same as the previous utility max-min allocation. However, if
we choose the pathA → C → D to route commodity(A,D),
then the utility max-min fair allocation would be(7, 5.7, 3),
and the corresponding utilities would be(0.49, 1.00, 0.48).
Finally, if we choose to use both paths to route commodity
(A,D), then the utility max-min allocation would be(8, 4, 8),
where commodity(A,D) would be allocated 6 units of band-
width along the pathA → B → D and 2 units of bandwidth
along the pathA → C → D. As a result, the corresponding
utilities to the allocation would be(0.64, 0.64, 0.64).

Comparing the three utility allocation results, not only does
the last allocation fully utilize available capacities along all
links, it also achieves better fairness than the allocation results
using a single routing path because no one commodity can
increase its utility by decreasing another one. In fact, by
considering multi-path routing, it guarantees to achieve equal
or better fairness than the traditional single-path bandwidth
allocation because the solution space with single-path routing
is only a subset of the solution space with multi-path routing.
Therefore, utility max-min allocation under multi-path routing
provides a more powerful and general fair allocation frame-
work, but it is also a much more complicated problem because
it couples flow routing and bandwidth allocation together.

B. Definitions

As shown by the example in Figure 2, a utility max-
min allocation exists for each given routing assignment. We
define a local multi-path utility max-min allocation as the
utility max-min allocation with respect to a given routing
assignmentR in Definition 5. Then according to the utility
order defined in Definition 7, we define the optimal multi-
path utility max-min allocation as the largest one among all
local allocations in Definition 8. Finally, we say an allocation
is anε-approximation to the optimal solution if it satisfies the
requirement defined in Definition 9.

Definition 5 (Local multi-path utility max-min allocation):
A local multi-path utility max-min allocation is a feasible
multi-path allocation vectorr = (r0, r1, . . . , rn−1) where
any component ri of r cannot be increased without
decreasing some componentrk with equal or smaller utility
(φk(rk) ≤ φi(ri)) under some routing assignmentR.

Definition 6 (Utility-ordered allocation vector):Given a
allocation r = (r0, r1, . . . rn−1), we define a corresponding
utility-ordered allocation vectorr = (ri0 , ri1 , . . . , rin−1),
such thatφik

(rik
) ≤ φik+1(rik+1) for k = 0 . . . n − 2, where

fi is the utility function of commodityCi.
Definition 7 (Utility order (>u)): Given allocation vec-

tors a, b and their utility-ordered allocationa =
(ai0 , ai1 , . . . , ain−1) and b = (bj0 , bj1 , . . . , bjn−1), we say
a >u b if only if there is somem such thatφik

(aik
) =

φjk
(bjk

) for 0 ≤ k < m andφim(aim) > φjm(bjm).
Definition 8 (Optimal multi-path utility max-min allocation):

The optimal multi-path utility max-min fair allocation is a
feasible multi-path allocation vector that is the largest among
all local multi-path utility max-min allocations under the
ordering defined by>u. In other words,r = (r0, r1, . . . , rn−1)
is an optimal multi-path utility max-min vector if any
commodity Ci cannot be increased without decreasing the
rate of anotherCj , such thatµj ≤ µi whereµj = φj(rj) and
µi = φi(ri) under any routing assignment.

Definition 9 (ε-approximation to the optimal allocation):
Let r = (r0, r1, . . . , rn−1) be the optimal multi-path utility
max-min vector, andr = (ri0 , ri1 , . . . , rin−1) is its utility-
ordered vector. We say another utility max-min allocation
vector r′ = (r′0, r

′
1, . . . , r

′
n−1) with its utility-ordered vector

r′ = (r′j0 , r
′
j1

, . . . , r′jn−1
) is ε-approximation to the optimal

multi-path utility max-min allocationr if there is somem
such thatφjk

(r′jk
)(1 + ε) ≥ φik

(rik
) for 0 ≤ k < m and

φjm(r′jm
) > φim(rim).

V. OPTIMAL MULTI -PATH UTILITY MAX -M IN

In this section, we first provide a general problem formula-
tion to achieve the optimal multi-path utility max-min alloca-
tion. We then provide a linear programming (LP) formulation
solution to achieve an approximate optimal solution. Table V
summarizes all the variables used in these algorithms.

TABLE I
VARIABLES USED IN MULTI-PATH UTILITY MAX -MIN ALGORITHMS .

` a set of links`0, `1, . . . , `M−1 with capacityc(`)
Γ set of commoditiesC0, C1, . . . , Cn−1

whereCi is a flow from nodesi to ti
φi utility function for commodityCi

ri bandwidth allocated to commodityCi

R a feasible routing assignment whereRij is the fraction of
traffic from commodityCi routes on link`j

µi utility achieved by commodityCi

di a temporary rate assignment forCi

π a iteration counter starts from 1
Γπ

SAT set of commodities identified as saturated at iterationπ

Γπ
UNSAT Γπ

UNSAT = Γ\⋃π−1
k=0 Γk

SAT
µπ

max the maximum common utility achieved at iterationπ
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A. OPT MP UMMF

The basic idea to solving a utility max-min allocation
problem is to iteratively increase the utility of all commodities
and determine the maximum common utility that can be
achieved in each iteration. Commodities that reached their
maximum utilities are tagged as saturated and removed from
the water-filling process by fixing their corresponding utility.

To formulate our problem into an iterative form, we have
an iterative optimization algorithm, OPTMP UMMF, which
consists of the following steps. The algorithm starts with
initializing π = 1, Γ0

SAT = ∅, and stops when all commodities
are identified as saturated (i.e.,Γπ

UNSAT = ∅).
Step 1: Find the maximum common utilityµπ

max that can
be achieved by all unsaturated commodities.

maximizeµπ
max (7)

subject to (8)

di = φ−1
i (µi), ∀Ci ∈

π−1⋃

k=0

Γk
SAT (9)

di = φ−1
i (µπ

max), ∀Ci ∈ Γk
UNSAT (10)∑

∀Ci

Rij · di ≤ c(`j), ∀`j ∈ ` (11)

In the formulation, the first two constraints give the band-
width requirement of each commodity. In particular, Equa-
tion 9 sets the bandwidth for the saturated commodities as
their previously assigned utility, while Equation 10 sets the
bandwidth of the unsaturated commodities to the current max-
imum common utility. Finally, there must be a feasible routing
assignmentR that can carry the bandwidth requirementd by
satisfying the constraint in Equation 11.

Step 2: Identify newly saturated commodities,Γπ
SAT , by

testing each unsaturated commodityCi ∈ Γπ
UNSAT with the

following optimization problem such that commodityCi is
saturated if its utility cannot be increased by any routing.

maximizeτ (12)

subject to (13)

dj = φ−1
j (µj),∀Cj ∈

π−1⋃

k=0

Γk
SAT (14)

dj = φ−1
j (µπ

max), ∀Cj ∈ Γπ
UNSAT \Ci (15)

di = φ−1
i (µπ

max + τ) (16)∑

∀Ci

Rij · di ≤ c(`j), ∀`j ∈ ` (17)

The above optimization problem fixes the rates of all
commodities in Equations 14 and 15, except the commodity
Ci being tested. It then finds the maximum utility that can
be increased for commodityCi in Equation 16 while there
still exists some feasible routingR to carry all commodities.
Therefore, if τ < 0, we cannot increase the utility of
commodityCi by any routing andΓπ

SAT = Γπ
SAT

⋃
Ci.

Step 3: Assign the utility and bandwidth for each newly
saturated commodityCi ∈ Γπ

SAT .

µi = µπ
max, ri = φ−1

i (µπ
max)

The last step is to assign the bandwidth allocation for the
newly saturated commodities and move them into the saturated
set Γπ

SAT . Once commodities are in the saturated set, their
bandwidth allocations and utilities will not be changed, but
their routing paths still could be altered to better utilize resid-
ual capacities and achieve higher utilities for the remaining
unsaturated commodities in later iterations.

Next, we prove the correctness of the above optimal algo-
rithm.

Theorem1: The allocation vector r returned by
OPT MP UMMF is optimal multi-path utility max-min.

Proof: According to Definition 8, we have to prove that
the rate of any commodityCi cannot be increased without
decreasing the rate of anotherCj , such thatµj ≤ µi where
µj = φj(rj) andµi = φi(ri) under any routingR.

To prove by contradiction, we assume commodityCi ∈
Γπ

SAT is identified as saturated at iterationπ and its bandwidth
can be increased without decreasing the bandwidth of any
commodityCj which has less or equal utility thanCi.

First of all, according to the OPTMP UMMF algorithm,
if the utility of some commodityCj ∈ Γπ′

SAT is less than or
equal to the utility of commodityCi, thenCj ∈

⋃π
k=0 Γk

SAT .
This is because their utilities are assigned to be the maximum
common utility of the iteration when they are identified as a
saturated commodity, andµmax is a non-decreasing vector.
Thus, if µj ≤ µi, thenπ′ ≤ π andCj ∈

⋃π
k=0 Γk

SAT .
Then in Step 2 of the OPTMP UMMF algorithm, at

iterationπ, when we test for commodityCi, we set the rate of
any commodityCj ∈

⋃π
k=0 Γk

SAT to be their final allocation
rj and the rate of any commodityCj /∈ ⋃π

k=0 Γk
SAT to be

the maximum common utility at iterationπ, µπ
max, which

is also the same asri becauseri = µπ
max. However, we

still cannot increase the bandwidth of commodityCi by any
feasible routing. Therefore, we cannot increase the utility of
commodityCi by decreasing the bandwidth of any commodity
Cj with greater utilityCi. In other words, we have to increase
the utility of commodityCi by decreasing the bandwidth of
some commodityCj with less or equal utility thanCi, and
that is in contradiction to our assumption.

B. ε-OPT MP UMMF

The OPT MP UMMF algorithm is a non-linear optimiza-
tion problem because the utility functions used in Step 1 can
be non-linear. Therefore, we propose a fast fully polynomial
approximation algorithm,ε-OPT MP UMMF, which uses a
binary search formulated as linear programming to find the
maximum common utility. In addition, we re-formulate the
optimization problems inε-OPT MP UMMF such that they
can all be solved as a well-defined Maximum Concurrent Flow
(MCF) [18] routing problem. Given set of commodityC with
its demand function,d(C), and a set of links̀ with capacities,
c(`), a MCF solver finds a routingR to maximizeλ, which
is the common fraction of demand for each commodity that
can be routed with the given link capacities.

The modified Step 1 of theε-OPT MP UMMF algorithm
is as follows.
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Step 1: Binary search the utility domain to achieve the
maximum common utilityµπ

max for unsaturated commodities.
The initial values of variables areµhigh = 1, µlow = 0, λ = 0.

while µhigh − µlow ≥ δ andλ < 1
µπ

max = (µhigh + µlow)/2
di = φ−1

i (µi), ∀Ci ∈
⋃π−1

k=0 Γk
SAT

di = φ−1
i (µπ

max),∀Ci ∈ Γπ
UNSAT

(λ,R) = MCF (C, d, `, c)
if λ < 1

µhigh = µπ
max

else
µlow = µπ

max

endif
endwhile

The binary search procedure starts with guessing the maxi-
mum common utility as a value in the utility domain range 0
to 1. Then with a given common utilityµ, we verify if µ can
be achieved by finding a feasible routing to carry the corre-
sponding bandwidth allocation; that is, the required bandwidth
to reach common utilityµ for unsaturated commodities and to
satisfy previously assigned utilities for saturated commodities.
According to the Maximum Concurrent Flow (MCF) problem,
by assigning the demand of commodities as the required
bandwidth for the common utilityµ, there exists a feasible
routing to achieve the common utilityµ if the λ returned
by the MCF solver is≥ 1.0. Because utility functions are
strictly increasing, we findµ as the maximum common utility
when there is no feasible routing to achieve an even greater
common utilityµ+δ, whereδ can be an arbitrarily small value
depending on theε selected by the approximation algorithm.

Since the maximum common utility in found Step 1 is
approximated, the utility of a saturated commodity could be
further increased. Thus, we must change Step 2 accordingly
to guarantee the utility of a saturated commodity can only be
increased by at most a fraction ofε to its current utility.

Step 2: Identify newly saturated commoditiesΓπ
SAT by ver-

ifying if each unsaturated commodityCi meets the following
saturation test in whichCi ∈ Γπ

SAT if and only if the utility
of Ci cannot be further increased byε% of its current utility.

dj = φ−1
j (µj), ∀Cj ∈

⋃π−1
k=0 Γk

SAT

dj = φ−1
j (µπ

max), ∀Cj ∈ Γπ
SAT \Ci

di = φ−1
i (µπ

max · (1 + ε))
(λ,R) = MCF (C, d, `, c)
if λ < 1

Γπ
SAT = Γπ

SAT

⋃
Ci

endif

In the above Step 2, we determine a commodity as saturated
if its utility cannot be increased by a fraction ofε to the current
utility under any feasible routing assignment. Again, we use
a MCF solver to verify if there exists a feasible routing to
increase the utility of a commodity by assigning its demand
to the required bandwidth for achieving an additionalε fraction
of its current utility. If theλ returned from a MCF solver is
less than 1, then we know that the utility of the commodity

cannot be increased by more thanε with any feasible routing,
and therefore the commodity should be identified as saturated.

Notice, the difference betweenδ and ε is that δ means
increasing limit for common utility of unsaturated commodi-
ties, while ε represents the increasing limit of the utility of
individual unsaturated commodities. Thus, if we can increase
the common utility byδ, it does not mean the utility of each
unsaturated commodity cannot be increased byδ. Therefore,
δ has to be chosen carefully with respect toε to guarantee
that there is at least one commodity whose utility cannot be
increased byε when the common utility cannot be increased
by δ. We construct suchδ based onε in Lemma 1.

Lemma1: For a givenε, there exists someδ such that
there is at least one commodity identified as saturated at every
iteration in theε-OPT MP UMMF algorithm.

Proof: The basic idea is to constructδ based onε. The
detailed proof is given in the appendix.

Finally, we show that theε-OPT MP UMMF algorithm
achieves anε-approximation allocation to the optimal solution,
and the algorithm eventually terminates as following.

Theorem2: ε-OPT MP UMMF achievesε-approximation
to the optimal multi-path utility max-min allocation.

Proof: Let µ∗πmax and µπ
max be the maximum common

utility achieved by the optimal andε-OPT MP UMMF al-
gorithm,respectively. We sayε-OPT MP UMMF algorithm
achievesε approximation to the optimal if there exist somem
such thatµπ

max · (1 + ε) ≥ µ∗πmax, ∀π < m andµm
max > µ∗mmax.

We prove by induction. After first iteration, clearlyµ1
max ·

(1 + ε) ≥ µ∗1max, because otherwise it would contradict the
condition of saturation test. After second iteration, letµ′2max be
the optimal maximum common utility can be achieved when
the utility of commodityCi ∈ Γ1

SAT is assigned to beµ1
max.

Thenµ′2max > µ∗2max becauseµ1
max < µ∗1max. Sinceµ2

max ·(1+
ε) > µ′2max andµ′2max > µ∗2max, µ2

max · (1 + ε) > µ∗2max.
After π iterations, if µπ−1

max > µ∗π−1
max , we find m = π.

Otherwise, we knowµk
max < µ∗kmax,∀k < π. Let µ′πmax

be the optimal maximum common utility can be achieved
when the utility of commodityCi ∈ Γk

SAT is assigned to
be µk

max,∀k < π. Then µ′πmax > µ∗πmax, because the utility
assignment for any saturated commodityCi ∈

⋃π
k=1 Γk

SAT is
less than its optimal utilityµ∗kmax. Again, since the saturation
test guaranteesµπ

max · (1 + ε) > µ′πmax and we already know
µ′πmax > µ∗πmax, µπ

max ·(1+ε) > µ∗πmax holds for at any iteration
π as long asµk

max < µ∗kmax, ∀k < π.
Theorem3: ε-OPT MP UMMF algorithm terminates after

at mostn iterations, wheren is the number of commodities.
Proof: According to Lemma 1, at least one commodity is

identified as saturated after each iteration. Since the algorithm
terminates after all commodities are saturated, it has at most
n iterations, wheren is the number of commodities.

Conclude all, the overallε-OPT MP UMMF algorithm is
also polynomial time solvable with respect to the size of
network because (1) there can be at mostn iterations, (2) the
number of binary searchers at each iteration is a constant with
respect toε, and (3) each binary search step involves a MCF
problem that can be solved in polynomial time.
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VI. EVALUATION

To demonstrate the improvements possible when path selec-
tion is considered as part of the optimization problem, we use a
specific statistical traffic engineering problem, COPLAR [10],
as an example application. We note that the focus of this work
is on the multi-path utility max-min fair allocation algorithms
and on their optimality that can be analytically proven, not on
this example traffic engineering problem per se. We emphasize
that the proposed optimization framework can be applied to a
number of other network applications as well.

In the following, we first briefly introduce the example
statistical traffic engineering application, COPLAR [10], and
our evaluation setup. We then compare our multi-path utility
max-min allocation results with existing max-min allocation
solutions to demonstrate the improvements of our approach.

A. COPLAR - A Statistical Traffic Engineering Application

COPLAR [10], which stands for [c]oarse [op]tica[l] cir-
cuit switching with [a]daptive [r]e-routing, is a new network
paradigm for optical networks. As Internet traffic continues to
grow unabated at an exponential rate, it is unclear whether or
not the existing packet routing network architecture based on
electronic routers will continue to scale at the necessary pace.
To reduce work load at electronic routers and take advantage
of the abundance of optical fiber capacity, the central idea of
COPLAR is to route traffic on coarse optical circuit switch-
ing by default and only adaptively re-route exceeding over
spare circuit capacity when necessary. Since circuit switching
doesn’t require the participation of any intermediate electronic
routers, COPLAR relies on a bandwidth allocation algorithm
to find a set of static or coarse grind provisioned circuits that
can cover majority of the network traffic.

To provision a circuit configuration that can maximize the
likelihood of having enough bandwidth, COPLAR uses histor-
ical traffic distributions as utility functions to model expected
future traffic demands. As observed in [26], historical traffic
demands during a particular time of day (e.g. 11am-Noon on
a weekday) are a good indicator of expected future traffic
demands over the same time of day. The flows considered
are at the level of OD (Origin-Destination) pairs where traffic
between each pair of ingress and egress nodes of the network
is considered as a commodity.

In particular, historical traffic demands can be explicitly
captured by means of demand distribution functions

F = (fi(x)),

with eachfi(x) corresponding to the probability distribution of
traffic demands for commodityCi. For eachfi(x), we have
a corresponding cumulative distribution function (CDF) that
describes the probability distribution of a random variable
X that represents that actual traffic demand. Letx be the
bandwidth allocation. Then the CDF ofX is given by

φi(x) = Pr[X ≤ x],
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Fig. 3. Abilene network topology.

which corresponds to the probability the bandwidth allocation
x is sufficient to satisfy the actual traffic demandX. To maxi-
mize the acceptance probability that the bandwidth allocations
can satisfy the actual traffic demands for all commodities in a
max-min fair manner, the problem become exactly the same as
finding a a multi-path utility max-min fair bandwidth alloca-
tion. Therefore, we could apply our algorithms to find a set of
routing paths or circuit configurations for the COPLAR static
traffic engineering application to minimize excess demand.

B. Setup

We evaluated our bandwidth allocation solutions on the
Abilene network using actual network topology and traffic
trace data. As shown in Figure 3, the Abilene network has 11
nodes interconnected by 10 Gb/s links. The traffic trace data
can be found in [28] as a set of traffic matrices. Each traffic
matrix contains the demand rate between an OD pair at a 5-
minute time interval, and it is computed based on the actual
packet sampling information collected from network routers.

In the evaluations, we compare our multi-path utility max-
min allocation results with the traditional weighted max-min
and utility max-min allocations under single-path problem
formulation. For simplicity, we use MPUMMF to denote the
results of multi-path utility max-min allocation, while UMMF
and WMMF represent the single-path allocation of utility max-
min and weighted max-min, respectively. Specifically, for the
two single-path max-min allocation scenarios, we fixed the
routing path of each commodity to its shortest path between
the source and destination node. We determine the weight and
utility function of each commodity based on the historical
traffic measurements over 2 months period from 3/1/04 to
4/21/04. In the weighted max-min allocation scenario, the
weight of a commodity is the average demand over its his-
torical traffic measurements. On the other hand, as mentioned
in Section VI-A, we determine the utility of a commodity as
the empirical cumulative distribution function of its historical
demands, so that the utility value is directly corresponding
to the acceptance probability(i.e., the probability of having
sufficient bandwidth allocation for a commodity). The allo-
cation of both single-path max-min allocations can be solver
by the traditional water-filling algorithm [6], while our multi-
path utility max-min allocation is computed by solving the
ε-OPT MP UMMF algorithm with the linear programming
optimization tool CPLEX [15].
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tions when link capacity (10 Gb/s) is scaled down
by a factor of 10 to 20 with every 100 Mb/s apart.

C. Max-Min Fair Allocations Comparison

Here, we compare the allocation results of MPUMMF,
UMMF and WMMF. As we know, current backbone net-
works are over-built to accommodate fluctuations in traffic.
To emphasize the importance of bandwidth allocation when
link capacity is relatively scarce, we adjusted the degree of
resource contention in our evaluations by scaling down the link
capacity (10 Gb/s) by a factor of 10 to 20. In the following,
we first show the utilities of individual commodities achieved
by each of the allocations when link capacity is 1 Gb/s. Then
we compare the minimum utility and excess demand under
varied degrees of resource contention.

1) Utility of Individual Commodities:We take the alloca-
tion results when link capacity is 1 Gb/s as an example to show
the utility achieved for each commodity. The results under
other degrees of resource contention are discussed later. Since
the Abilene network has 11 nodes, there are 110 OD pairs in
total. We plot the utility of each commodity in Figure 4 from
the commodity with the lowest utility to the highest utility,
and we have the following observations.

First, the results of utility max-min allocations appear as
step functions because all commodities identified as saturated
in the same iteration have the same utility/acceptance proba-
bility. But, in weighted max-min allocation, the commodities
saturated at the same iteration could have different utilities
because its linear utility function is only an approximation to
the actual non-linear utility function of acceptance probability.

Second, we found MPUMMF achieves much greater utility
than UMMF and WMMF for most of the commodities, espe-
cially for the ones with smaller utility. For example, the mini-
mum utility of MP UMMF, UMMF and WMMF are 87.63%,
75.99% and 69.89%, respectively. In other words, MPUMMF
increases the minimum utility of UMMF and WMMF by a
factor of 1.15x (87.63/75.99) and 1.25x (87.63/69.89), respec-
tively. In addition, the result of UMMF is also higher than
WMMF by a factor of 1.10x (87.63/69.89).

As defined by the utility order in Definition 7, the allocation
results with higher minimum utility are fairer. Therefore, our
multi-path utility multi-path allocation appears to improve
both the fairness and total utility of bandwidth allocation.
Accordingly, we further investigate the minimum utility and
actual excess demand under varied resource contention in
Section VI-C2 and VI-C3, respectively.

2) Minimum Utility: Figure 5 plots the minimum utility
under varied degrees of resource contention when we scale
down the link capacity by a factor of 10 to 20 with every
100 Mb/s apart. For all allocations, the minimum utility
decreases as the degree of resource contention increased.
However, MPUMMF consistently achieves the highest utility
among all allocations, especially when the degree of resource
contention is higher. This is because the allocation becomes
crucial as the link capacity is limited. For example, when link
capacity is 500 Mb/s, the minimum utilities of MPUMMF,
UMMF and WMMF are 56.84%, 37.87% and 19.12%, respec-
tively. In other words, the MPUMMF is able to further in-
crease the minimum utility of UMMF and WMMF allocations
by a factor of 1.50x (56.84/37.87) and 2.97x (56.84/19.12),
respectively. As shown from the figure, although UMMF
optimizes for the same utility functions as MPUMMF, it is
not able to efficiently utilize bandwidth by adjusting routing.
As a result, it clearly achieves much less utility than the multi-
path allocation. Furthermore, the minimum utility of WMMF
is ever smaller than UMMF because it is difficult to use
a single weight value to capture or approximate the actual
non-linear utility function. Therefore, only MPUMMF can
consistently achieve the best results by considering both multi-
path routing and nonlinear utility functions.

3) Application Performance:Finally, we compare the per-
formance of our statistic engineering application by showing
the excess demand under varied link capacity. Under a given
link capacity, we determine the excess demand of the traffic
offering during 5-days period from 4/22/04 to 4/26/04 which is
different from the traffic datasets for computing our bandwidth
allocations. Figure 6 plots the average excess demand over
the results at all time intervals within the 5-days period. As
shown in the figure, we have lower excess demand with greater
link capacity because each commodity can be allocated more
bandwidth and less traffic demand would excess the bandwidth
allocation. But, again MPUMMF is still able to achieve the
lowest excess demand among the three. For example, when
link capacity is 1,000 Mb/s, the excess demand of MPUMMF,
UMMF and WMMF is 15.56%, 24.69% and 32.48%, re-
spectively. In other words, MPUMMF substantially reduces
the excess demand of UMMF and WMMF by 36.98% and
52.09%, respectively. Therefore, our improvement on the
utilities shown previously also transfers to better performance
for our statistic traffic engineering application.
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VII. C ONCLUSION

In this paper, we considered routing as an optimization
parameter in the bandwidth allocation problem. Our goal is
to determine a routing assignment for each flow and allocate
bandwidth to them such that the allocation of flows achieves
optimal utility max-min fairness with respect to all feasible
routings of flows. We presented, for the first time, an algorithm
that finds the global optimal utility max-min fair allocation
where the multi-path routing of flows is simultaneously de-
cided. We also presented a fast approximation algorithm that
can be efficiently implemented using a linear program solver.
Finally, we apply these algorithms to a statistical traffic engi-
neering application to show that significantly higher minimum
utility can achieved when multi-path routing is considered
simultaneously with utility max-min fair allocation, and this
higher minimum utility translates to significant performance
improvements of our statistical traffic engineering application.

APPENDIX

Proof of Lemma 1: For a givenε, there exists someδ such
that there is at least one commodity identified as saturated at
every iteration in theε-OPT MP UMMF algorithm.

Proof: The basic idea is to constructδ based onε. If
we can find a routing to increase the utility for each previous
unsaturated commodity byε, there must exist a routing which
can increase the utility of all previous unsaturated commodities
by δ. Thus, we prove the lemma by contradiction because if
all previous unsaturated commodities in Step 2 can increase
its utility by more thanε and remain as unsaturated, then there
must exist a routing to increase the utility of all previous unsat-
urated commodities by more thenδ, which clearly contradicts
to the termination condition of the binary search in Step 1.

Now we construct such aδ as the following. At any iteration
π, we know the current maximum common utility isµπ

max.
For each commodityCk ∈ Γπ

UNSAT , if it is identified as
unsaturated, there must exist a routingRk to carry the addition
bandwidth4di for commodityCi where

4dk = φ−1
k (µπ

max(1 + ε))− φ−1
i (µπ

max)

Therefore, if all Ck ∈ Γπ
UNSAT are identified as unsat-

urated commodities, we can construct a feasible routingR′

to carry an additional bandwidth4d′k for each commodity
Ck ∈ Γπ

UNSAT by combining all routingsRk where

4d′k =
4dk

| Γπ
UNSAT |

andR′ij =
∑

∀k∈Γπ
UNSAT

Rk
ij

| Γπ
UNSAT |

Accordingly, let4δk be the utility can be increased corre-
sponding to the additional bandwidth4d′k ∀Ck ∈ Γπ

UNSAT .

4δk = φk(φ−1
k (µπ

max) +4d′k)− µπ
max.

Then we chooseδ as the minimum value of all4δk, so

δ = min(4δk,∀Ck ∈ Γπ
UNSAT ).

As a result, if we can increase the utility of eachCi ∈
Γπ

UNSAT by ε, there must exist a feasible routing to increase

the utility of all Ci ∈ Γπ
UNSAT by δ. Therefore, at least one

commodity is identified as saturated by theδ we found.
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