
Optimal Multi-Step k-Nearest Neighbor Search

Thomas Seidl Hans-Peter Kriegel
University of Munich, Germany University of Munich, Germany
Institute for Computer Science Institute for Computer Science

http://www.dbs.informatik.uni-muenchen.de http://www.dbs.informatik.uni-muenchen.de
seidl@dbs.informatik.uni-muenchen.de kriegel@dbs.informatik.uni-muenchen.de

Abstract

For an increasing number of modern database applica-
tions, efficient support of similarity search becomes an
important task. Along with the complexity of the objects
such as images, molecules and mechanical parts, also the
complexity of the similarity models increases more and
more. Whereas algorithms that are directly based on in-
dexes work well for simple medium-dimensional similar-
ity distance functions, they do not meet the efficiency re-
quirements of complex high-dimensional and adaptable
distance functions. The use of a multi-step query process-
ing strategy is recommended in these cases, and our in-
vestigations substantiate that the number of candidates
which are produced in the filter step and exactly evalu-
ated in the refinement step is a fundamental efficiency
parameter. After revealing the strong performance
shortcomings of the state-of-the-art algorithm for
k-nearest neighbor search [Korn et al. 1996], we present
a novel multi-step algorithm which is guaranteed to pro-
duce the minimum number of candidates. Experimental
evaluations demonstrate the significant performance
gain over the previous solution, and we observed average
improvement factors of up to 120 for the number of can-
didates and up to 48 for the total runtime.

1 INTRODUCTION

More and more applications of database systems require
the efficient support of similarity search. Examples include
molecular biology [BMH 92], medical imaging [Kor+ 96],

CAD/CAM systems [BK 97], and multimedia databases
[Fal+ 94] [Haf+ 95] [SK 97] among many others [Jag 91]
[AFS 93] [GM 93] [FRM 94] [ALSS 95]. In all of these ap-
proaches, similarity is defined in terms of a more or less com-
plex similarity distance function. The smaller the similarity
distance value, the more similar are two objects. Typical que-
ry types are the similarity range query which is specified by
a query object and a similarity distance range [0, ε], and the
k-nearest neighbor query which is specified by a query object
and a number k for the k most similar objects to be retrieved.

Whereas single-step algorithms for similarity search al-
ready meet the requirements of very large databases, these so-
lutions suffer from the increasing complexity of the objects
and of the similarity distance functions. For classic spatial
queries such as point queries and region queries, multi-step
algorithms have been developed to efficiently support com-
plex objects [OM 88] [BHKS 93]. The paradigm of multi-
step query processing has already been extended to complex
similarity search, and available algorithms aim at similarity
range queries [AFS 93] [FRM 94] and k-nearest neighbor
queries [Kor+ 96]. However, we observed a bad performance
of the latter solution in our experiments on large image and
biomolecular databases. Starting from a theoretical analysis
of the situation, we develop a novel, optimal multi-step algo-
rithm for k-nearest neighbor search that implies a minimum
number of exact object distance evaluations.

The paper is organized as follows: In the remainder of this
introduction, we specify our problem of complex similarity
search. Section 2 is dedicated to algorithms for similarity
search and incremental similarity ranking that directly work
on index structures in a way they are employed by our new
method. In section 3, we present the available multi-step al-
gorithm for k-nearest neighbor search of [Kor+ 96] including
the significant efficiency shortcomings of the solution. Ex-
periments substantiate that the number of candidates is a fun-
damental efficiency parameter. We present our novel algo-
rithm in section 4 along with a proof that it exactly generates
the minimum number of candidates. The experimental eval-
uation in section 5 demonstrates the substantial performance
improvement before the paper is concluded in section 6.

Proc. ACM SIGMOD Int. Conf. on Management of Data, Seattle, Washington, June 1998.

1.1 Simple and Complex Similarity Distance
Functions

Suppose the simple case that the objects of interest are rep-
resented by low- or medium-dimensional feature vectors.
Then, the similarity distance of two objects is typically de-
fined by an appropriate distance function of the points in the
feature space such as the Euclidean distance, for instance. Ex-
amples include the section coding approach [BK 97], angular
profiles [BMH 92], and 2-D contour features [GM 93]. For
such pure feature-based similarity models, single-step system
architectures are appropriate: While managing the feature
points by a multidimensional access method, query process-
ing is performed by one of the k-nearest neighbor search al-
gorithms that are available from the literature (cf. section 2).

Some of the algorithms for similarity search are restricted
to similarity models which are completely defined by a dis-
tance function of low- or medium-dimensional feature vec-
tors. In practice, however, complex similarity distance func-
tions occur that may not be represented by a simple feature
vector distance or that are too high in their dimensionality as
they could be efficiently managed by multidimensional index
structures. Examples include the Max-Morphological Dis-
tance [Kor+ 96], the approximation-based similarity of 3-D
surface segments [KSS 97] [KS 98], the error volume of 2-D
shapes and of 3-D solids, high-dimensional color histogram
similarity [Haf+ 95] [SK 97], etc. If there is no technique
available to simplify the complex similarity distance func-
tion, query processing has to be performed by a linear scan of
the entire database, and the performance obviously suffers a
lot. In particular, quadratic form distance functions as they are
successfully used for color histograms [Haf+ 95] [SK 97] or
shape histograms [Sei 97] [AKS 98] require an evaluation
time that is quadratic in the number of dimensions. Figure 1
demonstrates this effect for various dimensions that occur in
our example databases. Furthermore, the max-morphological
distance of two images of pixels is reported to re-
quire 12.69 seconds on the average [Kor+ 96].

A competing approach to avoid multi-step query process-
ing is to use indexing methods for metric spaces that require
nothing else than the object distance function. Examples in-

clude the M-tree [CPZ 97], SS-tree [WJ 96], FastMap
[FL 95] etc. However, these solutions are fixed to distance
functions that are available to the system in advance. In par-
ticular, they do not support adaptable similarity distance
functions which may be interactively adapted to individual
user preferences at query time [SK 97] [Sei 97].

1.2 Lower-Bounding Filter Distance Functions

For similarity search in presence of complex high-dimen-
sional or even user-adaptable similarity distance functions,
multi-step algorithms are available [FRM 94] [Kor+ 96]. The
basic principle of these methods is to employ feature distance
functions (also called filter distance functions) that serve as
approximations of the complex object distance functions.

An abstraction from the applications leads to the following
formalism which represents the essential principle of feature
or filter distance functions: By O, let us denote the universe
of objects for which the object similarity distance function

 is defined. A feature transformation
 maps every object onto an n-dimensional

feature vector . The distances in the feature space
 are measured by a feature distance function

. For notational simplicity, we join the
functions and F in order to provide ,

 as an abbreviated notation.
For similarity search, the feature vectors are typically man-
aged by multidimensional access methods that support effi-
cient k-nearest neighbor query processing with respect to the
feature distance df.

In a multi-step query processing environment, one or more
filter steps produce sets of candidates that are exactly evalu-
ated in one or more subsequent refinement steps. The crucial
correctness requirement is to prevent the system from pro-
ducing false drops. This means that no actual result may be
dismissed from the set of candidates. For classic spatial query
types such as point queries and region queries, the use of con-
servative approximations in the filter step ensures the correct-
ness of the algorithms [OM 88] [BHKS 93]. For multi-step
similarity search, an analogous criterion is available, the low-
er-bounding property of filter and object distance functions:

Definition 1 (Lower-bounding property). A feature dis-
tance function and an object distance function fulfill
the lower-bounding property if underestimates in any
case, i.e. for all objects :

Algorithms that obey this principle have been developed
for similarity range queries [FRM 94] as well as for k-nearest
neighbor queries [Kor+ 96].

The following examples provide an illustration of the wide
variety and potential of lower-bounding feature distance
functions:

128 128×

0.23 0.4 1.1
6.2

102

1,656

0.1
1

10
100

1000
10000

21 64 11
2

25
6

10
24

40
69

dimension

ev
al

u
at

io
n

 t
im

e
(i

n
 m

ill
is

ec
o

n
d

s)

Figure 1. Evaluation time of quadratic form distance func-
tions for various dimensions

do: O O× ℜ0
+→

F: O ℜn→ o O∈
F o() ℜn∈

ℜn

df: ℜ
n ℜn× ℜ0

+→
df df: O O× ℜ0

+→
df o1 o2,() df F o1() F o2(),()=

df do

df do

o1 o2 O∈,

df o1 o2,() do o1 o2,()≤

Subsequence Matching. A lower-bounding feature dis-
tance function for truncated feature vectors is employed.
The feature vectors are obtained from the Discrete Fourier
Transform of the original sequence objects [FRM 94].
Max-Morphological Distance. The max-morphological
distance of 2-D shapes is lower-bounded by the max-
granulometric distance of the corresponding pattern spec-
tra of the 2-D shapes. The low-dimensional feature vec-
tors are obtained by operations from the mathematical
morphology [Kor+ 96].
Approximation-based 3-D Similarity. Derive a distance
function on key-vectors that underestimates the original
complex similarity function for 3-D surface segments
[KSS 97].
Reduction of Dimensionality. Project high-dimensional
feature vectors to low-dimensional feature vectors, and
derive a low-dimensional distance function that lower
bounds the high-dimensional distance function. This ap-
proach is trivial for the Euclidean distance but also works
for adaptable quadratic form distance functions [SK 97].
The principle of lower-bounding feature distance func-

tions is quite general and may be applied to several other com-
plex similarity distance functions.

1.3 k-Nearest Neighbor Search

Along with similarity range queries, k-nearest neighbor
queries are an important query type of similarity search. Sim-
ilarity range queries are specified by a query object q and a
range parameter ε. The result set is defined to be

. For k-nearest neighbor
queries, the query object q and a query parameter k have to be
provided that specify the retrieval of the k objects from the da-
tabase that are most similar to q. Conceptual problems occur
if several database objects share the same k-th distance value.
In this case, most of the available implementations nondeter-
ministically report any k out of the first (more than k) relevant
objects. For conceptual reasons, we prefer the definition that
any object that is as close or closer to q than any k-th object
belongs to the set of the k nearest neighbors of q. The
formal definition is as follows:

Definition 2 (k-nearest neighbor query). For a query ob-
ject and a query parameter k, the k-nearest neighbor
query returns the smallest set that contains (at
least) k objects from the database, and for which the following
condition holds:

Then, the k-nearest neighbor query is equivalent to a cor-
responding similarity range query, i.e. for the k-th distance
value , both queries return
the same result set:

Whereas for now, this connection illustrates our notion of
k-nearest neighbor sets, we will later exploit an analogous
equivalence on the level of candidate sets and filter distance
functions for the correctness and efficiency proof of our new
algorithm.

2 SINGLE-STEP K-NEAREST
NEIGHBOR SEARCH

The multi-step k-nearest neighbor algorithms which we
investigate in this paper are based on single-step methods that
directly work on multidimensional index structures. We
sketch some competing methods and focus on incremental
similarity ranking which is required for our optimal multi-
step algorithm.

2.1 Directly Index-Based Algorithms

In order to efficiently process k-nearest neighbor queries
by directly using multidimensional index structures, several
approaches are available from the literature. The proposals
include cell-based approaches for nearest neighbor search
which are conceptually based on Voronoi cells [PS 93]
[AMN 95] [Ber+ 98], branch and bound algorithms for
k-nearest neighbor search [FBF 77] [RP 92] [RKV 95], and
incremental algorithms for similarity ranking [Hen 94]
[HS 95]. Recently, a fast parallel method has been suggested
[Ber+ 97]. Also theoretical results have been published con-
cerning the efficiency of nearest neighbor search in high-di-
mensional spaces. The performance of methods that use
mindist and minmaxdist functions on R-trees was investigat-
ed [PM 97], and general cost models have been developed
[Spr 91] [BBKK 97]. An important observation is that the use
of the mindist function guarantees the optimality of the algo-
rithms. The minmaxdist function may help to improve the
performance of k-nearest neighbor queries for a given k but
is of no use for the more general case of incremental ranking.

Most of the available algorithms are tuned to efficiently
support k-nearest neighbor queries for a fixed retrieval pa-
rameter k. The obvious disadvantage of these methods is that
the number k of desired answers has to be specified in ad-
vance. If the k results are exhausted but the user is not satisfied
with the retrieved objects, there is no chance to obtain a single
or several next nearest neighbors without restarting the query
from the beginning for a higher k. This problem does not only
occur in interactive environments but also in the context of
our optimal multi-step algorithm as we will see later: The re-
quired number of candidates which will be retrieved from the
index cannot be estimated in advance. An approach to over-
come this problem is to employ methods for incremental sim-
ilarity ranking.

simq ε() o DB∈ | d o q,() ε≤{ }=

NNq k()

q O∈
NNq k() DB⊆

o NNq k()∈ o’∀ DB NNq k()–∈,∀ : d o q,() d o' q,()<

εk max d o q,()| o NNq k()∈{ }=

NNq k() simq εk()=

2.2 Incremental Similarity Ranking
Incremental similarity ranking is a similarity query type

that corresponds to a give-me-more facility. After an initial-
ization, the ranked objects may be retrieved by a sequence of
getnext calls. Formally, performing an incremental similarity
ranking means the partial materialization of a q-ranking
which may be defined as follows [Sei 97]:

Definition 3 (q-ranking). Given a query object and
a database containing objects, a q-rank-
ing of the database DB is a bijection that
maps the index set dq-monotonously onto the
database DB, i.e. ascendingly ordered by the distance of the
objects to the query object q.

We simplify our notation by writing for
the object oi that is ranked to position i and denote the image
of the index set by . Using
this abbreviation, the dq-monotony appears as follows:

When processing incremental similarity ranking queries,
the object is reported as response to the k-th
getnext call. Note that the q-ranking is not totally determined
if some objects share the same distance to the query object q.

Let us present an algorithm for incremental similarity
ranking which is proven to be optimal with respect to the
number of accessed index pages [BBKK 97]. The algorithm
was introduced in the context of 2-D geographic information
systems and works on PMR quadtrees [HS 95]. In figure 2,
we present an adapted version that aims at hierarchical mul-
tidimensional access methods [GG 97] and does no longer re-
gard the clipping behavior of PMR quadtrees. For our exper-
iments, we use the X-tree which has been shown to efficiently
support dimensions up to 20 [BKK 96].

Note that the actual distance of the query object to the box
of the root node of the multidimensional index is not required.
Thus, we save the distance evaluation for the root node and
insert the root with the distance 0 without affecting the cor-
rectness of the procedure.

3 MULTI-STEP K-NEAREST
NEIGHBOR SEARCH

As already mentioned, a multi-step algorithm for k-nearest
neighbor search has already been developed and successfully
been applied to similarity search in 3-D medical image data-
bases [Kor+ 96]. After presenting the available solution, we
demonstrate its inherent efficiency shortcomings.

3.1 State-of-the-Art Algorithm
In figure 3, we present an adapted version of the multi-step

algorithm for k-nearest neighbor search of [Kor+ 96]. The
query object is denoted by q, and the parameter k specifies the

requested number of neighbors. The basic structure of the al-
gorithm is that it proceeds in two stages: In the first stage, a
k-nearest neighbor search on the index is performed return-
ing the k closest objects with respect to the filter distance
function. For these k objects, the maximum of the exact
object distances is determined. In the second stage, a range
query on the index is performed returning all objects that
have a filter distance of at most . For all of these candi-
dates, the exact object distance is evaluated, and the k closest
objects are reported. Figure 4 schematically illustrates the ar-
chitecture of the algorithm including the communication of
the two stages with the index and the object server.

q O∈
DB O⊆ N DB=

rankedq: ℑN DB→
ℑN 1…N[]=

rankedq i() oi=

ℑk rankedq ℑk() o1 … ok, ,{ }=

i j,∀ ℑN∈ : i j< d oi q,() d oj q,()≤⇒

ok rankedq k()=

method RTree :: ranking (Object query)

1 PriorityQueue queue;
2 queue.insert (0, root);
3 wait (getnext_is_called);
4 while not queue.isempty() do
5 Element first = queue.pop();
6 case first isa
7 DirNode:
8 foreach child in first do
9 queue.insert (mindist (query, child.box), child);
10 DataNode:
11 foreach object in first do
12 queue.insert (distance (query, object), object);
13 Object:
14 report (first);
15 wait (getnext_is_called);
16 end
17 enddo

Figure 2. Incremental ranking query processing on R-trees
(adapted from [HS 95])

k-NearestNeighborSearch (q, k) // previous algorithm

F
ir

st
 S

ta
ge

1 Primary Candidates: Perform a k-nearest neigh-
bor search on the index around respecting the

filter distance function

2 Range Determination: For the primary candidates o,

determine

Se
co

nd
 S

ta
ge 3 Final Candidates: Perform a range query on the

index to obtain

4 Final Result: Sort the final candidates o according to

, and report the top k objects

Figure 3. Previous multi-step algorithm for k-nearest neigh-
bor search adapted from [Kor+ 96].

dmax

dmax

F q()

df

dmax max do o q,(){ }=

o DB∈ : df F o() F q(),() dmax≤{ }

do o q,()

Although steps 3 and 4 are combined to a single step in the
original version, we prefer the four-step version for concep-
tual clearness. Following the common terminology of multi-
step query processing, the steps 1 and 3 are filter steps since
they generate candidate sets from the underlying index struc-
ture, whereas 2 and 4 are refinement steps because they per-
form actual evaluations of the object similarity distance func-
tion using the exact representation of the objects.

The following lemma states the correctness of the algo-
rithm. Subsequently, we investigate the performance aspects
and analyze the efficiency of the procedure.

Lemma 1. Suppose that the lower-bounding property
 holds for all objects . Then

the multi-step k-nearest neighbor algorithm of figure 3 guar-
antees no false drops.

Proof. See [Kor+ 96].

3.2 Performance Shortcomings

We implemented the k-nearest neighbor algorithm from
figure 3 and performed some experiments on an image data-
base that contains 64-dimensional color histograms of 12,000
color images [SK 97]. For the present experiments, we em-

ployed the Karhunen-Loève Transform (KLT) to reduce the
64-D histograms to 16-D feature vectors which are managed
by an X-tree [BKK 96]. Several other techniques for reducing
the dimensionality of high-dimensional feature vectors lead
to lower-bounding distance functions in lower-dimensional
vector spaces [SK 97] [Sei 97].

We performed a sample of 12-nearest neighbor queries
which corresponds to a request of 0.1% of the database in
each case. For a typical example, we retrieved 307 candidates
from the filter step 3 which represent 2.5% of the database,
resulting in 307 exact similarity distance evaluations in the re-
finement step 4. In general, a single refinement evaluation is
very expensive, and causes a disk access in most cases since
the exact representation of an object may be located anywhere
on the disk within the area that contains the database. More-
over, for more complex objects than 64-D color histograms,
the CPU time for a single evaluation may substantially exceed
the I/O time of a single disk access.

In figure 5, we demonstrate a typical distribution of object
similarity distances and the corresponding feature distances
for the mentioned 12-nearest neighbor query, ranked by the
feature distance values. In the example, step 2 evaluates
to approximately 0.164, and in the diagram, this value is de-
picted as the primary . While using this primary as
the similarity query range, the filter step 3 obtains 307 candi-
dates. The result of the k-nearest neighbor query is
also retrieved by a corresponding similarity range query us-
ing the range . If we would
know the value of already in advance, we would better use

 as similarity range in step 3 without producing any false
drops. Therefore, we call the optimal and depict it in
the diagram. In the example, its value is 0.141.

Figure 4. Illustration of the previous k-nearest neighbor que-
ry processor that proceeds in two stages

Exact evaluation and
ranking of final candi-

dates to obtain NNq k()

k-nn query on the index to
obtain primary candidates

 wrt. feature dist.NNq k()

Exact evaluation of pri-
mary candidates and de-

termination of dmax

Range query on index to
determine final candidates

o| df F o() F q(),() dmax≤{ }

final result

Index
(e.g. X-tree)

Object
Server

query object q
query parameter k

S
ec

on
d

S
ta

ge
F

irs
t S

ta
ge

df o1 o2,() do o1 o2,()≤ o1 o2 O∈,

Figure 5. Object and feature similarity distances for typical
k-nearest neighbor queries, ordered by the feature distance.
The primary and the optimal dmax are marked by horizontal
lines. For the example (k = 12) on the image database, the
previous algorithm produces 307 candidates whereas 125
would be optimal.

0

0.05

0.1

0.15

0.2

0.25

0.3

1 27 53 79 10
5

13
1

15
7

18
3

20
9

23
5

26
1

28
7

ranking according to feature distance

o
b

je
ct

 a
n

d
 f

ea
tu

re

d
is

ta
n

ce

primary dmax optimal dmax

object distance feature distance

dmax

dmax dmax

NNq k()

εk max d o q,()| o NNq k()∈{ }=
εk

εk
εk dmax

Note that by a range query that uses the optimal range
, only 125 candidates are retrieved which is approximately

40% of 307, the number of candidates that were actually re-
trieved from the filter step 3. To illustrate the situation in
more detail, we consider an additional example of a reduced
synthetic data set in figure 6 on which a 10-nearest neighbor
query has been performed. In step 1, a primary candidate set
is obtained from the index which contains the 10 nearest
neighbors of the query object according to the feature dis-
tance. From these candidates, the primary value of is de-
termined in step 2 which approximately is 0.54 in our exam-
ple. The range query in step 3 yields a final candidate set of
32 candidates, from which the top 10 neighbors according to
the object distance are determined. The final similarity dis-
tance has an approximate value of 0.34. A similarity range
query that is bound by retrieves a candidate set
that contains only 18 candidates which is little more than half
of the 32 actual candidates from step 3.

Obviously, this behavior of the algorithm is quite unsatis-
factory, and we are seriously interested in a better solution
that produces a smaller number of candidates for which the
exact object distance has to be evaluated. The more time con-
suming a single exact evaluation is, the more important is the
reduction of the number of candidates. As already mentioned
in the introduction, we observed evaluation times of up to
1.6 seconds for quadratic forms, and for the max-morpholog-
ical distance of images, 12.69 seconds are required for a sin-
gle evaluation on the average [Kor+ 96]. From these mea-
sured values, it becomes obvious that the exact distance
evaluations represent the most important cost factor for com-
plex similarity search. Therefore, as many exact distance

evaluations should be avoided as possible which means that
the number of candidates whose exact similarity distances
have to be evaluated should be minimized.

4 OPTIMAL MULTI-STEP ALGORITHM

We just identified the number of candidates produced by
the filter step as the major cost factor of multi-step similarity
search, particularly for complex similarity distance functions.
In the following, we provide a formalization of this optimality
criterion. Whereas the previous k-nearest neighbor algorithm
suffers from generating too many candidates resulting in a
bad performance, we present a novel algorithm that actually
produces the minimum number of candidates thus minimiz-
ing the number of time-consuming exact similarity distance
evaluations.

4.1 Fundamental Optimality Criterion
By the notion of r-optimality, we formalize the fundamen-

tal efficiency aspect of multi-step k-nearest neighbor algo-
rithms that the number of candidates should be minimal:

Definition 4 (r-optimality). A multi-step k-nearest neigh-
bor algorithm is called r-optimal if it does not produce more
candidates in the filter step than necessary.

The question emerges how the r-optimality of an algo-
rithm can be ensured. Prior to this problem, however, we have
to clear how the r-optimality of an algorithm is recognized.
How much candidates are actually necessary? By the follow-
ing lemma, we provide a criterion that answers this question:

Lemma 2. Assume a multi-step k-nearest neighbor algo-
rithm for the object similarity distance function such that
the filter distance function fulfills the lower-bounding
property, i.e. for all objects .
Such an algorithm is correct and r-optimal if and only if it
exactly retrieves the candidate set from
the filter step where .

Proof. For an arbitrary query range ε, consider the candi-
date set which is obtained in the filter step
by performing an ε-range query on the underlying access
method. We show that for correctness and r-optimality of the
overall algorithm, has to be fulfilled.

(i) Assume that . Then, there may exist an object
 for which the estimation chain holds:

. The second inequality indicates
that this situation is compatible with the lower-bounding
property of and for the particular object o, and the last
inequality implies that . However, due to the first
inequality of the chain, the object o will not be retrieved by
the ε-range query, and therefore, it is a false drop which con-
tradicts the correctness of the algorithm.

(ii) Assume that . Then, there may exist an object
 for which , i.e. o is retrieved by the

dmax
εk

dmax

εk
εk 0.34=

Figure 6. Object and feature similarity distances for k-near-
est neighbor queries on a synthetic example. Again, the pri-
mary and the optimal dmax are marked by horizontal lines.
For k = 10, the previous algorithm produces 32 candidates
whereas 18 would suffice.

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51

ranking according to feature distance

o
b

je
ct

 a
n

d
 f

ea
tu

re

d
is

ta
n

ce

primary dmax optimal dmax

feature distance object distance

primary dmax
optimal dmax

do

df

df o q,() do o q,()≤ o q, O∈

o | df o q,() εk≤{ }
εk max do o q,() o NNq k()∈,{ }=

o | df o q,() ε≤{ }

ε εk=
ε εk<

o DB∈
ε df o q,() do o q,() εk≤ ≤<

do df
o NNq k()∈

ε εk>
o DB∈ εk df o q,() ε≤<

ε-range query as a candidate that will be exactly evaluated in
the refinement step. However, due to the lower-bounding
property of and , , i.e. the simi-
larity distance of o to the query object q exceeds , the max-
imum distance of . Thus, the object o does not rank
among the k nearest neighbors of q which contradicts the
r-optimality of the algorithm.

At all, only remains without contradiction as ap-
propriate query range for the filter step, and the proposition
holds. ◊

As we have seen in the preceding examples, the previous
k-nearest neighbor algorithm fails to be r-optimal since it uses
the primary of step 2 instead of the optimal .
In general, the primary of step 2 overestimates the op-
timal query range , i.e. , and effects a lot of un-
necessary candidates in step 3 as we already observed in the
experiments. The essential problem is that the value of is
not known in advance of step 3. Only at the end of step 4, the
actual value of is available.

4.2 Optimal Multi-Step Algorithm

The preceding observation leads us to the basic idea of our
new algorithm: The value of is decreased keeping step
with the ongoing exact evaluation of the object similarity dis-
tance for the candidates. At the end of the step by step refine-
ment, reaches the optimal query range and prevents
the method from producing more candidates than necessary
thus fulfilling the r-optimality criterion. Figure 7 provides a
pseudocode description of the procedure whereas in figure 8,
the algorithm is illustrated schematically.

The algorithm has two basic components: By the incre-
mental ranking query on the underlying access method, can-
didates are iteratively generated in ascending order according
to their feature distance to the query object. We will show

that this property ensures the r-optimality of our algorithm.
The second major component is the result list that manages
the k nearest neighbors of the query object q within the current
candidate set, keeping step with the candidate generation.
The current k-th distance is held in which is set to infin-
ity until the first k candidates are retrieved from the index and
evaluated. As we will show in the subsequent, will be
decreased exactly down to . This fact plays an important
role in the subsequent analysis since by , the retrieval of
candidates and the termination of the algorithm is controlled.

4.3 Analysis of the New Algorithm

In this subsection, we show the correctness and r-optimal-
ity of our algorithm. We argue about k-th distances and
k-nearest neighbors of arbitrary object sets . For this
purpose, we slightly generalize our notation which up to now
was fixed to a particular object set, the database . Ta-
ble 1 lists the symbols and their meanings as they are used in
the subsequent.

Definition 5 (q-ranking of C). A q-ranking of an object set
 is a bijection that is monotonous with

respect to the distance of the objects from C to the query ob-
ject q, i.e.

k-NearestNeighborSearch (q, k) // optimal algorithm

1 initialize ranking = index.increm_ranking (,)

2 initialize result = new sorted_list 〈key, object〉
3 initialize

4 while o = ranking.getnext and do
5 if then result.insert (, o)

6 if result.length ≥ k then = result[k].key

7 remove all entries from result where key >

8 endwhile
9 report all entries from result where key ≤

Figure 7. Optimal multi-step k-nearest neighbor algorithm.
The second condition in step 4 as well as the condition in
step 5 are optional optimizations.

do df εk df o q,() do o q,()≤<
εk

NNq k()

ε εk=

dmax dmax εk=
dmax

εk εk dmax≤

εk

εk

dmax

dmax εk

F q() df

dmax ∞=

df o q,() dmax≤
do o q,() dmax≤ do o q,()

dmax

dmax

dmax

df

Figure 8. Illustration of the new optimal multi-step query
processor for k-nearest neighbor search

start incremental ranking on
index around accord-

ing to , let
F q()

df dmax ∞=

while for
next candidate o, evaluate

 and put o into resultdo o q,()

op
tim

al
 k

-n
n

Q
ue

ry
 P

ro
ce

ss
or

result

report entries o where
do o q,() dmax≤

adjust dmaxinsert o

Index
(e.g. X-tree)

Object
Server

final result

query object q
query parameter k

dmax

dmax
εk

dmax

C O⊆

DB O⊆

C O⊆ r
q C, : ℑ C C→

i j,∀ ℑN∈ : i j< d rq C, i() q,() d rq C, j() q,()≤⇒

Definition 6 (k-th distance of C). For any subset
of objects, i.e. where denotes the power
set of O, the function returns the k-th dis-
tance of the objects from C to the query object q if C contains
at least k elements, and ∞ otherwise:

Definition 7 (k-nearest neighbor set of C). For any object
set , let denote the set of the k-nearest neigh-
bors of the query object q within C. We define in
terms of a similarity range:

In order to show the correctness and r-optimality of our
new algorithm, we start by proving the observation that
is decreasing with an increasing number of candidates.

Lemma 3. Let a query object and a query parame-
ter k be given. For any object set and any additional
object , the following estimation is true:

Proof. If , then , and the proposition

is obvious. For , consider the following cases:

(i) if , then o does not rank among the

k-nearest neighbors of q within , i.e.

 and .

(ii) if , then o also is a k-nearest neigh-

bor of q within , ,

and .

(iii) if , then o ranks among the k nearest

neighbors of q within , i.e. . If

there is a single object that has the k-th distance

to q, , then o displaces from ,

and all remaining distances are lower than which im-

plies . If some objects within C with

a rank below k share the same distance ,

then all of them remain included in , and

.

At all, we obtain as proposed. ◊

4.4 Proof of the r-Optimality

We are now prepared to show the correctness and r-opti-
mality of our new algorithm under the supposition of the low-
er-bounding property of filter and refinement distance func-
tions. In order to avoid a notational confusion of filter and
object distances, we append the subscript index o to and
write in the following.

Theorem. When providing the filter step with a filter dis-
tance function that lower-bounds the object similarity dis-
tance function , i.e. for all objects

, the new multi-step k-nearest neighbor algorithm
(figure 7) guarantees no false drops and is r-optimal.

Proof. First, let us observe that the algorithm obtains its
candidates from the incremental ranking query on the under-
lying access method. The candidate set is growing step by
step and may be regarded as a sequence of iteratively extend-
ed subsets of the database, . By using
the result list, the algorithm determines the k-nearest neigh-
bor set for each Ci according to the object simi-
larity distance do, and the i-th value of is equal to

. By induction over the increasing sets, lemma 3
justifies the estimation chain
which is lower-bounded by . Thus, never be-
comes smaller than . According to lemma 2, this
fact ensures that our algorithm produces no false drops, since

 is used as the upper bound for the feature distance of the
candidates that are retrieved from the filter step.

It remains to prove that the filter step does not produce un-
necessary candidates. Such a behavior would contradict the
r-optimality of the algorithm. From lemma 2, we know that
candidates are unnecessary if they have a feature distance
which is greater than . Although is iteratively
decreased while retrieving new candidates, the boundedness
by the final value applies at least for the last can-
didate that is retrieved from the filter step, i.e.

Symbol Description

O universe of objects

similarity distance function

index set

query object

query parameter

distance to the query object,

q-ranking of
dq-monotonous bijection

 for
k-th distance of objects
from C to q

 for
k-nearest neighbors of q
within C

Table 1. Symbols in the context of k-nearest neighbor search

d: O O ℜ0
+→×

ℑn 1 … n, ,{ }=

q O∈
k ℑ∞∈

d
q: O ℜ0

+→
d

q
o() d o q,()=

r
q C,

C O⊆
r

q C, : ℑ C C→

dq k, C() C O⊆

NNq k()C
C O⊆

C O⊆
C ℘ O()∈ ℘ O()

dq k, : ℘ O() ℜ0
+→

d
q k,

C()
∞ if C k<

d rq C, k() q,() else



=

C O⊆ NNq k()C

NNq k()C

NNq k()C
o C| ∈ d o q,() d

q k,
C()≤{ }=

dmax

q O∈
C O⊆

o C∉

d
q k,

C o{ }∪() d
q k,

C()≤

C k< d
q k,

C() ∞=

C k≥

d o q,() d
q k,

C()>
C o{ }∪

NNq k()C o{ }∪
NNq k()C= d

q k,
C o{ }∪() d

q k,
C()=

d o q,() d
q k,

C()=

C o{ }∪ NNq k()C o{ }∪ NNq k()C o{ }∪=

d
q k,

C o{ }∪() d
q k,

C()=

d o q,() dq k, C()<
C o{ }∪ o NNq k()C o{ }∪∈

ô NNq k()C∈
d ô q,() dq k, C()= ô NNq k()C

d
q k,

C()

d
q k,

C o{ }∪() d
q k,

C()<
dq k 1–, C() dq k, C()=

NNq k()C o{ }∪

d
q k,

C o{ }∪() d
q k,

C()=

d
q k,

C o{ }∪() d
q k,

C()≤

d
q k,

do
q k,

df
do df o q,() do o q,()≤

o q, O∈

C1 C2 … DB⊆ ⊆ ⊆

NNo
q k, Ci()

dmax
do

q k, Ci()
do

q k, C1() do
q k, C2() …≥ ≥

do
q k, DB() dmax

do
q k, DB()

dmax

do
q k, DB() dmax

do
q k, DB()

olast

. Now, we exploit the fact that our fil-
ter step performs an incremental similarity ranking which ef-
fects that the candidates are retrieved in ascending order with
respect to their filter distance df to the query object, i.e.

. Thus, no candidates
o’ are obtained from the filter step or even evaluated in the
refinement step for which is true, and
the improved multi-step k-nearest neighbor algorithm is r-op-
timal as proposed. ◊

Let us observe that may incidentally reach its final
value quite early among the first few candidates. However,
this fact may not be recognized earlier than all candidates are
evaluated. On the other hand, it may happen that the actual
value of is only reached for the last candidate. This
case occurs e.g. if , and it
cannot be excluded until all candidates are evaluated that
have a feature distance below .

5 PERFORMANCE EVALUATION

From the analysis in the preceding subsections, we know
the theoretical optimality of our new algorithm. In this sec-
tion, we demonstrate the actual and significant improvement
of our method in comparison with the previous algorithm.

The algorithms were implemented in C++, and the experi-
ments were run on an HP C160 under HP-UX 10. For the low-
and medium-dimensional feature spaces, we used the X-tree
[BKK 96] as an appropriate index structure. Clearly, the num-
ber of candidates as the main cost factor does not depend on
the index architecture, and a comparable improvement behav-
ior is to be expected for multi-disk index structures such as the
parallel X-tree [Ber+ 97]. Presently, we avoid to mix the con-
cepts and defer the parallel case to future work.

5.1 Color Image Database (64-D)

Our first example is a database of 12,100 color images rep-
resented by 64-D color histograms [SK 97]. A 12-D X-tree
manages the histogram vectors which are reduced to 12 di-
mensions by the Karhunen-Loève Transform, resulting in an
index that contains 240 pages.

We performed a sample of 200 k-nearest neighbor queries
for thus retrieving up to 1% of the images
from the database. Figure 9 depicts the average number of
candidates that are produced by the filter step (top diagram)
as well as the overall runtime (bottom diagram). Note that e.g.
for k = 8, the previous algorithm already retrieves 10% of the
database (1,257 candidates) whereas in the optimal algo-
rithm, only 1.4% of all database objects (172 candidates) are
read from disk and evaluated exactly. The selectivity im-
provement factor in our example is approximately 7.2 and
does not vary much. The overall runtime is improved by a fac-
tor of 5.5 in the average.

5.2 Leaps in the Filter Selectivity

In figure 10, we demonstrate an effect which cannot be
recognized from averaged evaluations of query samples since
it becomes only evident for single queries. Recall that the pre-
vious algorithm performs a range query on the index using

 as query range. The value of is determined as the
maximum object similarity distance of the k nearest neigh-
bors of the query object with respect to the feature distance.
These k nearest neighbors correspond to the first k of all can-
didates that were retrieved by the similarity ranking query in
the optimal algorithm. Observe that in most cases, the prima-
ry has the same value for a wide range of k, and the cor-
responding number of candidates increases with k in a stair-
case fashion. In figure 10, query a produces such steps where
the number of candidates is 3 for k = 1; 306 for ;
699 for ; 1,408 for , and 6,255
from k = 10 up to k > 20. For , query b produces only
two steps of 811 for and 3,584 candidates for .

5.3 Color Image Database (112-D)

For our final example, we use a database of 112,700 color
images which are represented as 112-D color histograms and
indexed by a 12-D X-tree containing 2,387 pages. Again, we
performed samples of k-nearest neighbor queries for

 thus retrieving up to 0.01% of the objects
from the database. The top diagram in figure 11 depicts the
number of candidates generated by the previous and the opti-

df olast q,() do
q k, DB()≤

df o1 q,() df o2 q,() … df olast q,()≤ ≤ ≤

df o' q,() do
q k, DB()>

dmax

do
q k, DB()

do o q,() df o q,() do
q k, DB()= =

do
q k, DB()

k 2 4 … 12, , ,{ }∈

Figure 9. Improvement of filter selectivity (top) and overall
runtime (bottom) for a database of 12,100 color images that
are represented by 64-D color histograms.

0

5

10

15

20

2 4 6 8 10 12

query parameter k
o

ve
ra

ll
ru

n
ti

m
e

[s
ec

]

previous
algorithm

optimal
algorithm

0

500

1000

1500

2000

2 4 6 8 10 12

n
u

m
b

er
 o

f
ca

n
d

id
at

es

dmax dmax

dmax

k 2 3,{ }∈
k 4 … 7, ,{ }∈ k 8 9,{ }∈

k 20≤
1 k 3≤ ≤ k 3>

k 2 4 … 12, , ,{ }∈

mal algorithm. The bottom diagram demonstrates the affect
of the selectivity improvement onto the overall runtime.
Whereas the improvement factor of the filter selectivity is ap-
proximately 17, the overall runtime is improved by a factor
of 8.5 in the average. The experiments substantiate the gen-
eral observation that the more complex a object distance func-
tion, the stronger is the impact of the filter selectivity onto the
overall runtime.

Our optimal algorithm does not only reduce the number of
candidates whose exact representation are read from disk and
whose object similarity distance to the query object is evalu-
ated exactly, but also reduces the number of page accesses in
the index. This behavior results from the fact that the previous
algorithm performs a range query over the primary val-
ue that overlaps a larger portion of the data space than the op-
timal query range to which the optimal multi-step
algorithm restricts its search in the index. At k = 8 for exam-
ple, the previous algorithm accesses 50% of the index pages
(1,200 of 2,387) whereas the optimal algorithm reads only
22% of the index pages (533 of 2,387). The improvement fac-
tor is greater than 2.0 and does not vary significantly with the
increasing query parameter k in our experiments.

5.4 Pixel-Based Shape Similarity (1,024-D)

The next experiments are performed on a 1,024-D data-
base of 10,000 grayscale images as an example for the adapt-
able pixel-based shape similarity [AKS 98] [Sei 97]. In the
example, we used neighborhood influence weights for the
neighborhood area (9,1) around each pixel. The resulting dis-
tance function is a quadratic form according to the model, and
we measured an average evaluation time of approximately
100 milliseconds for a single image distance. By applying the
Karhunen-Loève Transform (KLT) in order to reduce the di-
mensionality [SK 97], various indexes were created for the
reduced dimensions 16, 32, 48, and 64. Figure 12 depicts the
performance results for a sample of 50 k-nearest neighbor
queries (k = 5). Whereas the number of candidates monoto-

0
1000

2000
3000

4000
5000

6000
7000

0 10 20
query parameter k

previous algorithm optimal algorithm

0
1000

2000
3000

4000
5000

6000
7000

0 10 20
query parameter k

query a query b

n
u

m
b

er
 o

f
ca

n
d

id
at

es

Figure 10. Leaps in the filter selectivity: For two query ob-
jects a and b, the number of candidates out of 12,100 objects
depending on the query parameter k is depicted for the pre-
vious and the optimal algorithm. For the previous algorithm,
leaps can be observed.

Figure 11. Improvement of filter selectivity (top) and overall
runtime (bottom) for a 112-D image database of 112,700 col-
or images.

0

20

40

60

80

100

120

2 4 6 8 10 12

query parameter k

o
ve

ra
ll

ru
n

ti
m

e
[s

ec
]

previous
algorithm

optimal
algorithm

0

2000

4000

6000

8000

10000

2 4 6 8 10 12n
u

m
b

er
 o

f
ca

n
d

id
at

es

dmax

do
q k, DB()

Figure 12. Filter selectivity and overall runtime for a
1,024-D image database of 10,000 grayscale images.

0
50

100
150
200
250
300

16-D 32-D 48-D 64-D

dimension of index

o
ve

ra
ll

ru
n

ti
m

e
[s

ec
]

previous
algorithm

optimal
algorithm

0

500

1000

1500

2000

2500

16-D 32-D 48-D 64-Dn
u

m
b

er
 o

f
ca

n
d

id
at

es

nously decreases with increasing dimension of the index, the
overall runtime is minimum for the 48-D index in our exam-
ple. The reason is the quadratic nature of the filter distance
function in the index and the well-known curse of dimension-
ality for high-dimensional index structures. Nevertheless, the
new optimal algorithm outperforms the previous two-stage
algorithm by a factor of 2.3 for the number of candidates and
a factor of 1.6 to 2.3 for the overall runtime.

5.5 Uniformly Distributed Data (20-D)

For the next experiments, we synthetically created a data-
base of 100,000 objects uniformly distributed in the 20-D
space. An index of dimension 15 was used, and we performed
a sample of 200 k-nearest neighbor queries for k = 10. As sim-
ilarity distance function, we employed artificially generated
quadratic forms that represent the Euclidean distance
(sim-id), a weighted Euclidean distance (sim-1-0) and a more
general quadratic form (sim-2-2). Figure 13 demonstrates
that we obtained average improvement factors of 72, 120, and
64 for the number of candidates. These reductions lead to an
acceleration of the total runtime by factors of 26, 48, and 23
on the average for the sample queries.

6 CONCLUSIONS

We developed a new multi-step algorithm for k-nearest
neighbor search which clearly outperforms the state-of-the-
art algorithm. In addition to the significant performance gain,
we have theoretically shown that our algorithm is optimal
with respect to the number of candidates that are retrieved

from the underlying index. The number of candidates is iden-
tified to be an important parameter for the overall runtime ef-
ficiency since the exact evaluation of complex, high-dimen-
sional and adaptable similarity distance functions is the
dominating cost factor of multi-step similarity query process-
ing. Along with the CPU time, nearly every candidate causes
a random disc access in the refinement step since the exact
representations of the objects are in general spread over the
database. For the filter step, the impact of a smaller number
of candidates is that a smaller number of index pages has to
be accessed.

Our new algorithm optimally supports multi-step k-near-
est neighbor search. The performance is no longer affected by
hot spots of among the first k of the -candidates, but
only depends on the quality of the filter step: The higher the
values of a feature distance function, the better is the exact
value of the object distance function estimated, and the less is
the expected number of candidates that are obtained from the
filter step. The best filter selectivity is achieved by using the
greatest of all possible lower-bounding feature distance func-
tions. On top of the theoretical analysis that proves the r-op-
timality of our new algorithm, experimental evaluations dem-
onstrate the significant performance gain of the novel
technique over the previous solution.

REFERENCES

[AFS 93] Agrawal R., Faloutsos C., Swami A.: ‘Efficient Similar-
ity Search in Sequence Databases’, Proc. 4th. Int. Conf.
on Foundations of Data Organization and Algorithms
(FODO’93), Evanston, IL, in: Lecture Notes in Com-
puter Science, Vol. 730, Springer, 1993, pp. 69-84.

[AKS 98] Ankerst M., Kriegel H.-P., Seidl T.: ‘Pixel-based Shape
Similarity Search in Large Image Databases’, submit-
ted for publication.

[ALSS 95] Agrawal R., Lin K.-I., Sawhney H. S., Shim K.: ‘Fast
Similarity Search in the Presence of Noise, Scaling, and
Translation in Time-Series Databases’, Proc. 21th Int.
Conf. on Very Large Databases (VLDB’95), Morgan
Kaufmann, 1995, pp. 490-501.

[AMN 95] Arya S., Mount D. M., Narayan O.: ‘Accounting for
Boundary Effects in Nearest Neighbor Searching’, Proc.
11th Annual Symposium on Computational Geometry,
Vancouver, Canada, 1995, pp. 336-344.

[BBKK 97] Berchtold S., Böhm C., Keim D. A., Kriegel H.-P.: ‘A
Cost Model for Nearest Neighbor Search in High-
Dimensional Data Spaces’, Proc. 16th ACM SIGACT-
SIGMOD-SIGART Symp. on Principles of Database
Systems (PODS), Tucson, AZ, 1997, pp. 78-86.

[Ber+ 97] Berchtold S., Böhm C., Braunmüller B., Keim D. A.,
Kriegel H.-P.: ‘Fast Parallel Similarity Search in Multi-
media Databases’, Proc. ACM SIGMOD Int. Conf. on
Management of Data, Tucson, AZ, 1997, pp. 1-12, Best
Paper Award.

Figure 13. Improvement of filter selectivity (top) and over-
all runtime (bottom) for k-nearest queries (k = 10) on a 20-D
dataset of 100,000 uniformly distributed objects.

419

664

1,117

481416
0

200

400

600

800

1000

1200

sim-id sim-1-0 sim-2-2

similarity matrix

o
ve

ra
ll

ru
n

ti
m

e
[s

ec
]

previous
algorithm

optimal
algorithm

n
u

m
b

er
 o

f
ca

n
d

id
at

es

71,610

26,546

42,891

370 358 1,118
0

20000

40000

60000

80000

sim-id sim-1-0 sim-2-2

do df

[Ber+ 98] Berchtold S., Ertl B., Keim D. A., Kriegel H.-P., Seidl
T.: ‘Fast Nearest Neighbor Search in High-dimensional
Spaces’, Proc. 14th Int. Conf. on Data Engineering
(ICDE’98), Orlando, Florida, 1998.

[BHKS 93] Brinkhoff T., Horn H., Kriegel H.-P., Schneider R.: ‘A
Storage and Access Architecture for Efficient Query
Processing in Spatial Database Systems’, Proc. 3rd Int.
Symp. on Large Spatial Databases (SSD‘93), Sin-
gapore, 1993, in: Lecture Notes in Computer Science,
Vol. 692, Springer, pp. 357-376.

[BKK 96] Berchtold S., Keim D. A., Kriegel H.-P.: ‘The X-tree: An
Index Structure for High-Dimensional Data’, Proc.
22nd Int. Conf. on Very Large Data Bases (VLDB’96),
Mumbai, India, 1996, pp. 28-39.

[BK 97] Berchtold S., Kriegel H.-P.: ‘S3: Similarity Search in
CAD Database Systems’, Proc. ACM SIGMOD Int.
Conf. on Management of Data, Tucson, AZ, 1997,
pp. 564-567.

[BMH 92] Badel A., Mornon J. P., Hazout S.: ‘Searching for Geo-
metric Molecular Shape Complementarity Using Bidi-
mensional Surface Profiles’, Journal of Molecular
Graphics, Vol. 10, 1992, pp. 205-211.

[CPZ 97] Ciacca P., Patella M., Zezula P.: ‘M-tree: An Efficient
Access Method for Similarity Search in Metric Spaces’,
Proc. 23rd Int. Conf. on Very Large Databases
(VLDB’97), Athens, Greece, 1997, pp. 426-435.

[Fal+ 94] Faloutsos C., Barber R., Flickner M., Hafner J., Niblack
W., Petkovic D., Equitz W.: ‘Efficient and Effective
Querying by Image Content’, Journal of Intelligent
Information Systems, Vol. 3, 1994, pp. 231-262.

[FBF 77] Friedman J. H., Bentley J. L., Finkel R. A.: ‘An Algo-
rithm for Finding the Best Matches in Logarithmic
Expected Time’, ACM Transactions on Math. Software,
Vol. 3, 1977, pp. 209-226.

[FL 95] Faloutsos C., Lin K.-I.: ‘FastMap: A Fast Algorithm for
Indexing, Data-Mining and Visualization of Traditional
and Multimedia Data’, Proc. ACM SIGMOD Int. Conf.
on Management of Data, San Jose, CA, 1995,
pp. 163-174.

[FRM 94] Faloutsos C., Ranganathan M., Manolopoulos Y.: ‘Fast
Subsequence Matching in Time-Series Databases’,
Proc. ACM SIGMOD Int. Conf. on Management of
Data, Minneapolis, MN, 1994, pp. 419-429.

[GG 97] Gaede V., Günther O.: ‘Multidimensional Access Meth-
ods’, ACM Computing Surveys.

[GM 93] Gary J. E., Mehrotra R.: ‘Similar Shape Retrieval using
a Structural Feature Index’, Information Systems,
Vol. 18, No. 7, 1993, pp. 525-537.

[Haf+ 95] Hafner J., Sawhney H. S., Equitz W., Flickner M.,
Niblack W.: ‘Efficient Color Histogram Indexing for
Quadratic Form Distance Functions’, IEEE Trans. on
Pattern Analysis and Machine Intelligence, Vol. 17,
No. 7, 1995, pp. 729-736.

[Hen 94] Henrich, A.: ‘A Distance-Scan Algorithm for Spatial
Access Structures’, Proc. 2nd ACM Workshop on
Advances in Geographic Information Systems, Gaith-
ersburg, Maryland, 1994, pp. 136-143.

[HS 95] Hjaltason G. R., Samet H.: ‘Ranking in Spatial Data-
bases’, Proc. 4th Int. Symposium on Large Spatial Data-
bases (SSD’95), in: Lecture Notes in Computer Science,
Vol. 951, Springer, 1995, pp. 83-95.

[Jag 91] Jagadish H. V.: ‘A Retrieval Technique for Similar
Shapes’, Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, 1991, pp. 208-217.

[Kor+ 96] Korn F., Sidiropoulos N., Faloutsos C., Siegel E., Proto-
papas Z.: ‘Fast Nearest Neighbor Search in Medical
Image Databases’, Proc. 22nd VLDB Conference,
Mumbai, India, 1996, pp. 215-226.

[KS 98] Kriegel H.-P., Seidl T.: ‘Approximation-Based Similar-
ity Search for 3-D Surface Segments’, GeoInformatica,
Kluwer Academic Publishers, 1998, to appear.

[KSS 97] Kriegel H.-P., Schmidt T., Seidl T.: ‘3D Similarity
Search by Shape Approximation’, Proc. Fifth Int. Sym-
posium on Large Spatial Databases (SSD’97), Berlin,
Germany, Lecture Notes in Computer Science,
Vol. 1262, 1997, pp.11-28.

[OM 88] Orenstein J. A., Manola F. A.: ‘PROBE Spatial Data
Modeling and Query Processing in an Image Database
Application’, IEEE Trans. on Software Engineering,
Vol. 14, No. 5, 1988, pp. 611-629.

[PM 97] Papadopoulos A., Manolopoulos Y.: ‘Performance of
Nearest Neighbor Queries in R-Trees’, Proc. of the 6th
International Conference on Database Theory, Delphi,
Greece, 1997, LNCS 1186, pp. 394-408.

[PS 93] Preparata F. P., Shamos M. I.: ‘Computational Geome-
try. An Introduction’, Texts and Monographs in Com-
puter Science. 5th, corr. ed., Springer, 1993.

[RKV 95] Roussopoulos N., Kelley S., Vincent F.: ‘Nearest Neigh-
bor Queries’, Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, San Jose, CA, 1995, pp. 71-79.

[RP 92] Ramasubramanian V., Paliwal K. K.: ‘Fast k-Dimen-
sional Tree Algorithms for Nearest Neighbor Search
with Application to Vector Quantization Encoding’,
IEEE Transactions on Signal Processing, Vol. 40, No. 3,
March 1992, pp. 518-531.

[Sei 97] Seidl T.: ‘Adaptable Similarity Search in 3-D Spatial
Database Systems’, PhD thesis, Institute for Computer
Science, University of Munich, 1997.

[SK 97] Seidl T., Kriegel H.-P.: ‘Efficient User-Adaptable Simi-
larity Search in Large Multimedia Databases’, Proc.
23rd Int. Conf. on Very Large Databases (VLDB’97),
Athens, Greece, 1997, pp. 506-515.

[Spr 91] Sproull R.F.: ‘Refinements to Nearest Neighbor Search-
ing in k-Dimensional Trees’, Algorithmica 1991,
pp. 579-589.

[WJ 96] White D. A., Jain R.: ‘Similarity Indexing with the
SS-tree’, Proc. 12th Int. Conf. on Data Engineering
(ICDE), 1996, pp. 516-523.

