Proc. ACM SIGMOD Int. Conf. on Management of Data, Seattle, Washington, June 1998.

Optimal Multi-Step k-Nearest Neighbor Search

Thomas Seidl
University of Munich, Germany
Institute for Computer Science
http://www.dbs.informatik.uni-muenchen.de
seidl@dbs.informatik.uni-muenchen.de

Abstract

For an increasing number of modern database applica-
tions, efficient support of similarity search becomes an
important task. Along with the complexity of the objects
such asimages, molecules and mechanical parts, also the
complexity of the similarity models increases more and
more. Whereas algorithms that are directly based on in-
dexeswork well for simple medium-dimensional similar-
ity distance functions, they do not meet the efficiency re-
quirements of complex high-dimensional and adaptable
distancefunctions. Theuse of amulti-step query process-
ing strategy is recommended in these cases, and our in-
vestigations substantiate that the number of candidates
which are produced in thefilter step and exactly evalu-
ated in the refinement step is a fundamental efficiency
parameter. After revealing the strong performance
shortcomings of the state-of-the-art algorithm for
k-near est neighbor search [Korn et al. 1996], we present
a novel multi-step algorithm which isguaranteed to pro-
duce the minimum number of candidates. Experimental
evaluations demonstrate the significant performance
gain over the previoussolution, and we observed aver age
improvement factors of up to 120 for the number of can-
didates and up to 48 for thetotal runtime.

1 INTRODUCTION

More and more applications of database systems require
the efficient support of similarity search. Examples include
molecular biology [BMH 92], medical imaging [Kor+ 96],
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CAD/CAM systems [BK 97], and multimedia databases
[Fal+ 94] [Haf+ 95] [SK 97] among many others [Jag 91]
[AFS 93] [GM 93] [FRM 94] [ALSS 95]. In all of these ap-
proaches, similarity isdefined interms of amore or lesscom-
plex similarity distance function. The smaller the similarity
distance vaue, the more similar aretwo objects. Typical que-
ry types are the similarity range query which is specified by
aquery object and a similarity distance range [0, €], and the
k-nearest neighbor query which is specified by aquery object
and anumber k for the k most similar objects to be retrieved.

Whereas single-step algorithms for similarity search al-
ready meet the requirements of very large databases, these so-
lutions suffer from the increasing complexity of the objects
and of the similarity distance functions. For classic spatial
queries such as point queries and region queries, multi-step
agorithms have been developed to efficiently support com-
plex objects [OM 88] [BHKS 93]. The paradigm of multi-
step query processing has already been extended to complex
similarity search, and available algorithms aim at similarity
range queries [AFS 93] [FRM 94] and k-nearest neighbor
queries[Kor+ 96]. However, we observed abad performance
of the latter solution in our experiments on large image and
biomolecular databases. Starting from a theoretical analysis
of the situation, we develop anovel, optimal multi-step algo-
rithm for k-nearest neighbor search that implies a minimum
number of exact object distance evaluations.

The paper isorganized asfollows:. In the remainder of this
introduction, we specify our problem of complex similarity
search. Section 2 is dedicated to agorithms for similarity
search and incremental similarity ranking that directly work
on index structuresin a way they are employed by our new
method. In section 3, we present the available multi-step al-
gorithm for k-nearest neighbor search of [Kor+ 96] including
the significant efficiency shortcomings of the solution. Ex-
periments substantiate that the number of candidatesisafun-
damental efficiency parameter. We present our novel algo-
rithm in section 4 along with a proof that it exactly generates
the minimum number of candidates. The experimental eval-
uation in section 5 demonstrates the substantial performance
improvement before the paper is concluded in section 6.



1.1 Simpleand Complex Similarity Distance
Functions

Supposethesimplecasethat the objectsof interest arerep-
resented by low- or medium-dimensional feature vectors.
Then, the similarity distance of two objects is typically de-
fined by an appropriate distance function of the pointsin the
feature space such asthe Euclidean distance, for instance. Ex-
amplesincludethe section coding approach [BK 97], angular
profiles[BMH 92], and 2-D contour features [GM 93]. For
such purefeature-based similarity models, single-step system
architectures are appropriate: While managing the feature
points by a multidimensional access method, query process-
ing is performed by one of the k-nearest neighbor search al-
gorithmsthat are available from the literature (cf. section 2).

Some of the algorithmsfor similarity search arerestricted
to similarity models which are completely defined by a dis-
tance function of low- or medium-dimensional feature vec-
tors. In practice, however, complex similarity distance func-
tions occur that may not be represented by a simple feature
vector distance or that are too high in their dimensionality as
they could be efficiently managed by multidimensional index
structures. Examples include the Max-Morphological Dis-
tance [Kor+ 96], the approximation-based similarity of 3-D
surface segments [KSS 97] [KS 98], the error volume of 2-D
shapes and of 3-D solids, high-dimensional color histogram
similarity [Haf+ 95] [SK 97], etc. If there is no technique
available to simplify the complex similarity distance func-
tion, query processing hasto be performed by alinear scan of
the entire database, and the performance obviously suffers a
lot. In particular, quadratic form distancefunctionsasthey are
successfully used for color histograms [Haf+ 95] [SK 97] or
shape histograms [Sei 97] [AKS 98] require an evaluation
time that is quadratic in the number of dimensions. Figure 1
demonstrates this effect for various dimensions that occur in
our exampl e databases. Furthermore, the max-morphological
distance of two images of 128 x 128 pixelsisreported to re-
quire 12.69 seconds on the average [Kor+ 96].
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Figure 1. Evaluation time of quadratic form distance func-
tions for various dimensions

A competing approach to avoid multi-step query process-
ing isto use indexing methods for metric spaces that require
nothing else than the object distance function. Examplesin-

clude the M-tree [CPZ 97], SS-tree [WJ96], FastMap
[FL 95] etc. However, these solutions are fixed to distance
functions that are available to the system in advance. In par-
ticular, they do not support adaptable similarity distance
functions which may be interactively adapted to individual
user preferences at query time[SK 97] [Sei 97].

1.2 Lower-Bounding Filter Distance Functions

For similarity search in presence of complex high-dimen-
siona or even user-adaptable similarity distance functions,
multi-step algorithmsareavailable[FRM 94] [Kor+ 96]. The
basic principle of these methodsisto employ feature distance
functions (also called filter distance functions) that serve as
approximations of the complex object distance functions.

An abstraction from theapplicationsleadsto thefollowing
formalism which represents the essential principle of feature
or filter distance functions: By O, let us denote the universe
of objects for which the object similarity distance function
d,; OxO - Oy is defined. A feature transformation
F: O — 0" mapsevery object o 0 O ontoann-dimensional
feature vector F(0) O O". Thedistancesin the feature space
0" are measured by a feature distance function
d: 0"x 0" - Oy. For notational simplicity, we join the
functions d; and F in order to provide di: Ox O - O,
d(0,, 0,) = d(F(0,), F(0,)) as an abbreviated notation.
For similarity search, the feature vectors are typically man-
aged by multidimensional access methods that support effi-
cient k-nearest neighbor query processing with respect to the
feature distance d..

Inamulti-step query processing environment, oneor more
filter steps produce sets of candidates that are exactly evalu-
ated in one or more subsequent refinement steps. The crucial
correctness reguirement is to prevent the system from pro-
ducing false drops. This means that no actual result may be
dismissed from the set of candidates. For classic spatial query
types such as point queries and region queries, the use of con-
servative approximationsin thefilter step ensuresthe correct-
ness of the algorithms [OM 88] [BHK S 93]. For multi-step
similarity search, an analogous criterion isavailable, thelow-
er-bounding property of filter and object distance functions:

Definition 1 (Lower-bounding property). A feature dis-
tance function d; and an object distance function d, fulfill
the lower-bounding property if d; underestimates d, in any
case, i.e. for all objects 04, 0, 0 O:

di(04, 0)) = do(04, 0)

Algorithms that obey this principle have been devel oped
for similarity range queries[FRM 94] aswell asfor k-nearest
neighbor queries[Kor+ 96].

Thefollowing examplesprovideanillustration of thewide
variety and potential of lower-bounding feature distance
functions:



Subsequence Matching. A lower-bounding feature dis-
tance function for truncated feature vectors is employed.
Thefeature vectors are obtained from the Discrete Fourier
Transform of the original sequence objects[FRM 94].
Max-M orphological Distance. The max-morphological
distance of 2-D shapes is lower-bounded by the max-
granulometric distance of the corresponding pattern spec-
tra of the 2-D shapes. The low-dimensional feature vec-
tors are obtained by operations from the mathematical
morphology [Kor+ 96].
Approximation-based 3-D Similarity. Derive adistance
function on key-vectors that underestimates the original
complex similarity function for 3-D surface segments
[KSS97].
Reduction of Dimensionality. Project high-dimensional
feature vectors to low-dimensiona feature vectors, and
derive a low-dimensional distance function that lower
bounds the high-dimensional distance function. This ap-
proachistrivia for the Euclidean distance but also works
for adaptable quadratic form distance functions[SK 97].
The principle of lower-bounding feature distance func-
tionsisquitegeneral and may be applied to several other com-
plex similarity distance functions.

1.3 k-Nearest Neighbor Search

Along with similarity range queries, k-nearest neighbor
queriesare animportant query type of similarity search. Sim-
ilarity range queries are specified by a query object g and a
range parameter €. The result set is defined to be
simy(e) = {oJDBJ| d(o,q) <€} . For k-nearest neighbor
queries, the query object g and aquery parameter k haveto be
provided that specify theretrieval of thek objectsfromtheda-
tabase that are most similar to g. Conceptual problems occur
if several database objects share the samek-th distance value.
In this case, most of the available implementations nondeter-
ministically report any k out of thefirst (morethan k) relevant
objects. For conceptual reasons, we prefer the definition that
any object that is as close or closer to g than any k-th object
belongstotheset NN, (K) of thek nearest neighborsof g. The
formal definition isasfollows:

Definition 2 (k-nearest neighbor query). For a query ob-
ject g O O and a query parameter k, the k-nearest neighbor
query returnsthe smallest set NN(k) L DB that contains (at
|east) k objectsfromthedatabase, and for whichthefollowing
condition holds:

Uo O NNgy(K), Uo’ 1 DB —NN(k): d(o, q) <d(0', q)

Then, the k-nearest neighbor query is equivalent to a cor-
responding similarity range query, i.e. for the k-th distance
value g, = max{d(o, )| o O NNy(k)} , both queries return
the same result set:

NNg(K) = sim(g,)

Whereas for now, this connection illustrates our notion of
k-nearest neighbor sets, we will later exploit an analogous
equivalence on the level of candidate sets and filter distance
functionsfor the correctness and efficiency proof of our new
agorithm.

2 SINGLE-STEP K-NEAREST
NEIGHBOR SEARCH

The multi-step k-nearest neighbor a gorithms which we
investigateinthis paper are based on single-step methodsthat
directly work on multidimensional index structures. We
sketch some competing methods and focus on incremental
similarity ranking which is required for our optimal multi-
step agorithm.

2.1 Directly Index-Based Algorithms

In order to efficiently process k-nearest neighbor queries
by directly using multidimensional index structures, several
approaches are available from the literature. The proposals
include cell-based approaches for nearest neighbor search
which are conceptualy based on Voronoi cells [PS 93]
[AMN 95] [Ber+ 98], branch and bound algorithms for
k-nearest neighbor search [FBF 77] [RP 92] [RKV 95], and
incremental algorithms for similarity ranking [Hen 94]
[HS 95]. Recently, afast parallel method has been suggested
[Ber+ 97]. Also theoretical results have been published con-
cerning the efficiency of nearest neighbor search in high-di-
mensional spaces. The performance of methods that use
mindist and minmaxdist functions on R-trees was investigat-
ed [PM 97], and general cost models have been developed
[Spr 91] [BBKK 97]. Animportant observationisthat theuse
of the mindist function guarantees the optimality of the algo-
rithms. The minmaxdist function may help to improve the
performance of k-nearest neighbor queriesfor agiven k but
isof no usefor the more general case of incremental ranking.

Most of the available algorithms are tuned to efficiently
support k-nearest neighbor queries for a fixed retrieval pa-
rameter k. The obvious disadvantage of these methodsis that
the number k of desired answers has to be specified in ad-
vance. If thek resultsare exhausted but theuser isnot satisfied
withtheretrieved objects, thereisno chanceto obtainasingle
or several next nearest neighborswithout restarting the query
from the beginning for ahigher k. This problem doesnot only
occur in interactive environments but also in the context of
our optimal multi-step algorithm aswe will seelater: There-
quired number of candidateswhich will beretrieved from the
index cannot be estimated in advance. An approach to over-
comethisproblemisto employ methodsfor incremental ssm-
ilarity ranking.



2.2 Incremental Similarity Ranking

Incremental similarity ranking is a similarity query type
that corresponds to a give-me-more facility. After an initial-
ization, the ranked objects may be retrieved by a sequence of
getnext calls. Formally, performing an incremental similarity
ranking means the partial materiaization of a g-ranking
which may be defined asfollows [Sel 97]:

Definition 3 (g-ranking). Given aquery object g 0 O and
adatabase DB 0 O containing N = |DB| objects, ag-rank-
ing of the database DB isabijection ranked,: Uy — DB that
mapstheindex set [y = [1...N] d,-monotonously ontothe
database DB, i.e. ascendingly ordered by the distance of the
objectsto the query object g.

We simplify our notation by writing ranked(i) = o; for
the object o, that is ranked to position i and denote the image
of the index set U, by rankedy(L)y) = {0y, ..., 0} . Using
this abbreviation, the d,-monotony appears as follows:

Oi,j 00Oy i<j0 d(o;, g) <d(o;, 9)

When processing incremental similarity ranking queries,
theobject o, = ranked,(K) isreported asresponsetothek-th
getnext call. Note that the g-ranking is not totally determined
if some objects share the same distance to the query object g.

Let us present an agorithm for incremental similarity
ranking which is proven to be optimal with respect to the
number of accessed index pages [BBKK 97]. The algorithm
was introduced in the context of 2-D geographic information
systems and works on PMR quadtrees [HS 95]. In figure 2,
we present an adapted version that aims at hierarchical mul-
tidimensional accessmethods[GG 97] and doesno longer re-
gard the clipping behavior of PMR quadtrees. For our exper-
iments, we usethe X -treewhich hasbeen shownto efficiently
support dimensions up to 20 [BKK 96].

Notethat the actual distance of the query object to the box
of theroot node of themultidimensional index isnot required.
Thus, we save the distance evaluation for the root node and
insert the root with the distance 0 without affecting the cor-
rectness of the procedure.

3 MULTI-STEP K-NEAREST
NEIGHBOR SEARCH

Asalready mentioned, amulti-step algorithm for k-nearest
neighbor search has already been devel oped and successfully
been applied to similarity search in 3-D medical image data-
bases [Kor+ 96]. After presenting the available solution, we
demonstrate itsinherent efficiency shortcomings.

3.1 State-of-the-Art Algorithm

Infigure 3, wepresent an adapted version of themulti-step
algorithm for k-nearest neighbor search of [Kor+ 96]. The
guery object isdenoted by g, and the parameter k specifiesthe

method RTree :: ranking (Object query)

1 PriorityQueue queue;

2 queue.insert (O, root);

3 wait (getnext_is _called);

4 while not queue.isempty() do
5  Element first = queue.pop();

6 casefirstisa

7 DirNode:

8 foreach childin first do

9 gueue.insert (mindist (query, child.box), child);
10 DataNode:

11 foreach object in first do
12 queue.insert (distance (query, object), object);
13 Object:

14 report (first);

15 wait (getnext_is called);
16 end

17enddo

Figure 2. Incremental ranking query processing on R-trees
(edapted from [HS 95])

requested number of neighbors. The basic structure of the al-
gorithm is that it proceeds in two stages. In the first stage, a
k-nearest neighbor sear ch ontheindex isperformed return-
ing the k closest objects with respect to the filter distance
function. For thesek objects, themaximum d,,,, of the exact
object distances is determined. In the second stage, arange
query on the index is performed returning al objects that
have afilter distance of at most d,,, . For &l of these candi-
dates, the exact object distanceis evaluated, and the k closest
objectsarereported. Figure 4 schematically illustratesthear-
chitecture of the algorithm including the communication of
the two stages with theindex and the object server.

k-NearestNeighbor Search (g, k) // previous algorithm

1 Primary Candidates: Perform a k-nearest neigh-
bor search ontheindex around F(q) respectingthe
filter distance function d;

2 RangeDeter mination: For theprimary candidateso,
determine d,,,, = max{d,(o, q)}

First Stage

3 Final Candidates: Perform arange query on the
index to obtain { o O DB: d;(F(0), F(Q)) < dpaxt

4 Final Result: Sort thefinal candidateso accordingto
d,(0, g) , and report the top k objects

Second Stage

Figure 3. Previous multi-step algorithm for k-nearest neigh-
bor search adapted from [Kor+ 96].
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Although steps 3and 4 arecombined toasinglestepinthe
original version, we prefer the four-step version for concep-
tua clearness. Following the common terminology of multi-
step query processing, the steps 1 and 3 are filter steps since
they generate candidate setsfrom the underlying index struc-
ture, whereas 2 and 4 are refinement steps because they per-
form actual evaluations of the object similarity distancefunc-
tion using the exact representation of the objects.

The following lemma states the correctness of the algo-
rithm. Subsequently, we investigate the performance aspects
and analyze the efficiency of the procedure.

Lemma 1. Suppose that the lower-bounding property
di(0,, 0,) < d,(0,, 0,) holdsfor all objects 0,, 0, 01 O. Then
the multi-step k-nearest neighbor algorithm of figure 3 guar-
antees no false drops.

Proof. See[Kor+ 96].

3.2 Performance Shortcomings

We implemented the k-nearest neighbor algorithm from
figure 3 and performed some experiments on an image data-
basethat contains 64-dimensional color histogramsof 12,000
color images [SK 97]. For the present experiments, we em-

ployed the Karhunen-Loéve Transform (KLT) to reduce the
64-D histograms to 16-D feature vectors which are managed
by an X-tree [BKK 96]. Several other techniques for reducing
the dimensionality of high-dimensional feature vectors lead
to lower-bounding distance functions in lower-dimensional
vector spaces [SK 97] [Sei 97].

We performed a sample of 12-nearest neighbor queries
which corresponds to a request of 0.1% of the database in
each case. For a typical example, we retrieved 307 candidates
from the filter step 3 which represent 2.5% of the database,
resulting in 307 exact similarity distance evaluations in the re-
finement step 4. In general, a single refinement evaluation is
very expensive, and causes a disk access in most cases since
the exact representation of an object may be located anywhere
on the disk within the area that contains the database. More-
over, for more complex objects than 64-D color histograms,
the CPU time for a single evaluation may substantially exceed
the 1/0O time of a single disk access.
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Figure 5. Object and feature similarity distances for typical
k-nearest neighbor queries, ordered by the feature distance.
The primary and the optimal d,,, are marked by horizontal
lines. For the example (k= 12) on the image database, the
previous agorithm produces 307 candidates whereas 125
would be optimal.

In figure 5, we demonstrate a typical distribution of object
similarity distances and the corresponding feature distances
for the mentioned 12-nearest neighbor query, ranked by the
feature distance values. In the example, step 2 evaldgtes
to approximately 0.164, and in the diagram, this value is de-
picted as therimary d,,,,, . While using this primarg,, as
the similarity query range, the filter step 3 obtains 307 candi-
dates. The resulNy(k)  of tHenearest neighbor query is
also retrieved by a corresponding similarity range query us-
ing the range, = max{ d(o, )| o U NNg(k)} . If we would
know the value o, already in advance, we would better use
€, as similarity range in step 3 without producing any false
drops. Therefore, we cad|  tlptimal d,,,,, and depictitin
the diagram. In the example, its value is 0.141.



Notethat by arangequery that usestheoptimal d,,,, range
&, only 125 candidates are retrieved which is approximately
40% of 307, the number of candidates that were actually re-
trieved from the filter step 3. To illustrate the situation in
more detail, we consider an additional example of areduced
synthetic data set in figure 6 on which a 10-nearest neighbor
query has been performed. In step 1, a primary candidate set
is obtained from the index which contains the 10 nearest
neighbors of the query object according to the feature dis-
tance. From these candidates, the primary valueof d,, isde-
termined in step 2 which approximately is 0.54 in our exam-
ple. Therange query in step 3 yields afina candidate set of
32 candidates, from which the top 10 neighbors according to
the object distance are determined. The final similarity dis-
tance g, hasan approximate value of 0.34. A similarity range
query that is bound by g, = 0.34 retrieves a candidate set
that containsonly 18 candidateswhichislittle morethan half
of the 32 actual candidatesfrom step 3.
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Figure 6. Object and feature similarity distances for k-near-
est neighbor queries on a synthetic example. Again, the pri-
mary and the optimal d,, are marked by horizonta lines.
For k=10, the previous agorithm produces 32 candidates
whereas 18 would suffice.

Obvioudly, this behavior of the algorithm is quite unsatis-
factory, and we are seriously interested in a better solution
that produces a smaller number of candidates for which the
exact object distance hasto be evaluated. The moretime con-
suming asingle exact evaluation is, the moreimportant isthe
reduction of the number of candidates. Asalready mentioned
in the introduction, we observed evaluation times of up to
1.6 secondsfor quadratic forms, and for the max-morphol og-
ical distance of images, 12.69 seconds are required for asin-
gle evaluation on the average [Kor+ 96]. From these mea-
sured values, it becomes obvious that the exact distance
eval uations represent the most important cost factor for com-
plex similarity search. Therefore, as many exact distance

evaluations should be avoided as possible which means that
the number of candidates whose exact similarity distances
have to be evaluated should be minimized.

4 OPTIMAL MULTI-STEP ALGORITHM

We just identified the number of candidates produced by
thefilter step asthe major cost factor of multi-step similarity
search, particularly for complex similarity distancefunctions.
Inthefollowing, we provideaformalization of thisoptimality
criterion. Whereas the previousk-nearest neighbor algorithm
suffers from generating too many candidates resulting in a
bad performance, we present a novel algorithm that actually
produces the minimum number of candidates thus minimiz-
ing the number of time-consuming exact similarity distance
evaluations.

4.1 Fundamental Optimality Criterion

By the notion of r-optimality, we formalize the fundamen-
tal efficiency aspect of multi-step k-nearest neighbor algo-
rithms that the number of candidates should be minimal:

Definition 4 (r-optimality). A multi-step k-nearest neigh-
bor algorithm is called r-optimal if it does not produce more
candidatesin the filter step than necessary.

The question emerges how the r-optimality of an algo-
rithm can beensured. Prior to thisproblem, however, we have
to clear how the r-optimality of an algorithm is recognized.
How much candidates are actually necessary? By the follow-
ing lemma, we provide acriterion that answers this question:

Lemma 2. Assume a multi-step k-nearest neighbor algo-
rithm for the object similarity distance function d, such that
the filter distance function d; fulfills the lower-bounding
property, i.e. di{o, g)<d,(o,q) for al objects o,q0O.
Such an algorithm is correct and r-optimal if and only if it
exactly retrieves the candidate set {o| d{(o0, g) <¢,} from
thefilter step where g, = max{d,(0, q), 0 I NN(K)} .

Proof. For an arbitrary query range €, consider the candi-
date set { 0| d{(0, g) < €} which isobtained in thefilter step
by performing an g-range query on the underlying access
method. We show that for correctness and r-optimality of the
overall algorithm, € = g, hasto befulfilled.

(i) Assume that € <¢, . Then, there may exist an object
oODB for which the estimation chain holds:
€ <dgo, ) =d,(o, q) < g,. The second inequality indicates
that this situation is compatible with the lower-bounding
property of d, and d; for the particular object o, and the last
inequality impliesthat o L1 NN(k) . However, dueto thefirst
inequality of the chain, the object o will not be retrieved by
the e-range query, and therefore, it is afal se drop which con-
tradicts the correctness of the algorithm.

(if) Assume that € > ¢, . Then, there may exist an object
o[ DB forwhich g, <d(0,q) <€,i.e oisretrieved by the



€-range query as acandidate that will be exactly evaluated in
the refinement step. However, due to the lower-bounding
property of d, and d;, €, <d;(0, ) < d,(0, q), i.e. thesimi-
larity distance of oto the query object q exceeds €, , the max-
imum distance of NN, (K) . Thus, the object o does not rank
among the k nearest neighbors of g which contradicts the
r-optimality of the algorithm.

Atal, only € = g, remains without contradiction as ap-
propriate query range for the filter step, and the proposition
holds. ¢

Aswe have seen in the preceding examples, the previous
k-nearest neighbor al gorithmfailsto ber-optimal sinceit uses
theprimary d,,,, of step 2instead of theoptimal d,, = €.
In general, the primary d,,,,, Of step 2 overestimates the op-
timal query range €, , i.e. £, <d, . and effects alot of un-
necessary candidatesin step 3 as we already observed in the
experiments. The essential problem isthat the value of €, is
not known in advance of step 3. Only at the end of step 4, the
actual value of g, isavailable.

4.2 Optimal Multi-Step Algorithm

The preceding observation leads usto the basic idea of our
new agorithm: The value of d,, is decreased keeping step
with the ongoing exact evaluation of the object similarity dis-
tance for the candidates. At the end of the step by step refine-
ment, d,,, reachesthe optimal query range €, and prevents
the method from producing more candidates than necessary
thus fulfilling the r-optimality criterion. Figure 7 provides a
pseudocode description of the procedure whereasin figure 8,
the agorithm isillustrated schematically.

k-NearestNeighbor Search (g, k)  // optimal algorithm

1 initialize ranking = index.increm_ranking (F(q) , d;)
2 initialize result = new sorted_list [Rey, objectl]

3 initidize d, 5 =

4 whileo = ranking.getnext and d;(0, g) < d 5 do

5 if dy(0, ) =d,, thenresult.insert (d (o, g), 0)

6 if result.length = k then d,,,,, = result[Kk].key

7  removeall entries from result where key > d, .

8 endwhile

9 report al entries from result where key < d,

Figure 7. Optimal multi-step k-nearest neighbor algorithm.
The second condition in step 4 as well as the condition in
step 5 are optional optimizations.

The algorithm has two basic components: By the incre-
mental ranking query on the underlying access method, can-
didatesareiteratively generated in ascending order according
to their feature distance d; to the query object. We will show

query object q
uery parameter k

h 4
Start incremental ranking on
index around F(q) accord-
ingto d, let d,p =
]

while for
P next candidate o, evaluate
d,(0, ) and put ointo resul

a adjust d

report entries o where
dy(0, 0) < diax
v

final result

Figure 8. Illustration of the new optimal multi-step query
processor for k-nearest neighbor search

max

optimal k-nn Query Processor

that this property ensures the r-optimality of our algorithm.
The second major component is the result list that manages
thek nearest neighborsof the query object g withinthe current
candidate set, keeping step with the candidate generation.
The current k-th distanceisheldin d,,,, whichissettoinfin-
ity until thefirst k candidates are retrieved from theindex and
evaluated. As we will show in the subsequent, d,, will be
decreased exactly down to g,. This fact plays an important
rolein the subsequent analysissince by d,,,,, , theretrieval of
candidates and the termination of the algorithm is controlled.

4.3 Analysisof the New Algorithm

In this subsection, we show the correctness and r-optimal -
ity of our algorithm. We argue about k-th distances and
k-nearest neighbors of arbitrary object sets C 0 O. For this
purpose, we sightly generalize our notation which up to now
wasfixedtoaparticular object set, thedatabase DB [0 O . Ta-
ble 1 liststhe symbols and their meanings asthey areused in
the subsequent.

Definition 5(g-ranking of C). A g-ranking of an object set
C OO isabijection r® < U — C thatismonotonouswith
respect to the distance of the objects from C to the query ob-
jectq,i.e.

Oi,j OOy i <j O dr®G), q) < d(r® (), q)



Symbol Description
0] universe of objects
d: 0Ox0 - O similarity distance function
0,={1..,n} index set
qUo query object
kdQO, query parameter
d o DS distance to the query object,

d*(0) = d(o, q)

d-monotonous bijection

-ranki eC
g-ranking r*~ of CO O (4. C. Og — C

k-th distance of objects

q, k
d"(C) forCOO from C to q

k-nearest neighbors of q
within C

C
NN,(K)© for C0 O

Table 1. Symbolsin the context of k-nearest neighbor search

Definition 6 (k-th distance of C). For any subset C 0 O
of objects, i.e. C O 0O (O) where 00 (O) denotes the power
set of O, thefunction d**: O (0) - O} returnsthek-th dis-
tance of the objectsfrom C to the query object qif C contains
at least k elements, and c otherwise:

0 o if |C| <k
O =0 .. ©
0d(r* (. q) else

Definition 7 (k-nearest neighbor set of C). For any object
set CU O, let NN,(K) denotethe set of thek-nearest neigh-
bors of the query object g within C. We define NNq(k)C in
terms of asimilarity range:

NN4(K© = {o 0 C| d(o, q) < d* ()}

In order to show the correctness and r-optimality of our
new algorithm, we start by proving the observation that d,;.,
is decreasing with an increasing number of candidates.

Lemma 3. Let aquery object g 0 O and aquery parame-
ter k be given. For any object set C 0 O and any additional
object o O C, thefollowing estimation istrue:

d*fco{o})<d* Q)
Proof. If |C| <k, then d*(C) = «, and the proposition
isobvious. For |C| = k, consider the following cases:

(i) if d(o, q)>d* k(C) , then o does not rank among the
k-nearest neighbors of q within CO{o}, i.e
NNg(K <"1 = NN, and d*S(C O {0}) = d*¥(C).

(i) if d(o, q) = d* k(C) , then o dso isak-nearest neigh-
bor of qwithin C 0 {0} , NN4(K) "1 = NNy O {0},
and d*XC O {0}) = d*50).

(i) if d(o, q) <d® k(C) , then o ranks among the k nearest
neighbors of g within C 0 {0}, i.e. 0 O NNy(K) ™1 . if
thereisasingleobject 6 O NNq(k)C that hasthe k-th distance
toq, d(6,q) = d* k(C) , then o displaces 6 from NNq(k)c,
and all remaining distancesarelower than d* k(C) whichim-
plies d**(C O {0}) < d*¥(C) . If some objectswithin C with
arank below k sharethe samedistance d**~%C) = d*%C),
then all of them remain included in NN(K)“" ",
d**co{o}) = d* C).

At all, we obtain d*“(C O { 0}) < d**(C) asproposed. ¢

and

4.4 Proof of ther-Optimality

We are now prepared to show the correctness and r-opti-
mality of our new algorithm under the supposition of thelow-
er-bounding property of filter and refinement distance func-
tions. In order to avoid a notational confusion of filter and
object distances, we append the subscript index o to d* “ and
write d,* in the following.

Theorem. When providing the filter step with afilter dis-
tancefunction d; that lower-boundsthe object similarity dis-
tance function d,, i.e. dqo, q) <d, (o, q) for al objects
0, q 0 O, the new multi-step k-nearest neighbor agorithm
(figure 7) guarantees no false drops and isr-optimal.

Proof. First, let us observe that the algorithm obtains its
candidates from the incremental ranking query on the under-
lying access method. The candidate set is growing step by
step and may be regarded as a sequence of iteratively extend-
ed subsets of the database, C, 0 C, O ... O0DB. By using
the result list, the algorithm determines the k-nearest neigh-
bor set NNOq’ k(Ci) for each C; according to the object simi-
Iarit}: distance d,, and the i-th value of d,,, is equal to
doq’ (Cy) . By induction over the increasing sets, lemma 3
justifies the estimation chain d,**(C)=d,* C,) = ...
which islower-bounded by d,*“(DB) . Thus, d,,, never be-
comes smaller than doq’ k(DB) . According to lemma 2, this
fact ensuresthat our algorithm produces no false drops, since
d, . isused asthe upper bound for the feature distance of the
candidates that are retrieved from thefilter step.

It remainsto provethat thefilter step doesnot produce un-
necessary candidates. Such a behavior would contradict the
r-optimality of the algorithm. From lemma 2, we know that
candidates are unnecessary if they have a feature distance
whichisgreater than doq‘ k(DB) .Although d,,., isiteratively
decreased while retrieving new candidates, the boundedness
by thefina value doq’ k(DB) applies at least for the last can-
didate o4 that is retrieved from the filter step, i.e.



di(0,4: ) < doq' k(DB) . Now, we exploit thefact that our fil-
ter step performs an incremental similarity ranking which ef-
fectsthat the candidates are retrieved in ascending order with
respect to their filter distance d; to the query object, i.e.
di(04, 9) £ d(0,, 0) < ... £ d{0,4 9) . Thus, no candidates
0’ are obtained from the filter step or even evauated in the
refinement step for which d(o', q) > d, ok (DB) istrue, and
theimproved multi-step k-nearest nei ghbor agorithmisr-op-
timal as proposed. ¢
Let us observe that d,,,, may incidentally reach its final
value quite early among the first few candidates. However,
thisfact may not be recognized earlier than all candidates are
evaluated. On the other hand, it may happen that the actual
valueof d, ak (DB) |sonlyreachedforthelastcandldate This
case occurs e.g. if dy(o, q) = d{o,q) = d, ak (DB), and it
cannot be excluded until all candidates are evaluated that
have afeature distance below d,*“(DB).

5 PERFORMANCE EVALUATION

From the analysis in the preceding subsections, we know
the theoretical optimality of our new algorithm. In this sec-
tion, we demonstrate the actual and significant improvement
of our method in comparison with the previous algorithm.

The algorithms were implemented in C++, and the experi-
mentswererunonan HP C160 under HP-UX 10. For thelow-
and medium-dimensional feature spaces, we used the X-tree
[BKK 96] asan appropriate index structure. Clearly, the num-
ber of candidates as the main cost factor does not depend on
theindex architecture, and acomparableimprovement behav-
ior isto be expected for multi-disk index structures such asthe
paralel X-tree[Ber+ 97]. Presently, we avoid to mix the con-
ceptsand defer the parallel case to future work.

5.1 Color Image Database (64-D)

Our first exampleisadatabase of 12,100 col or imagesrep-
resented by 64-D color histograms [SK 97]. A 12-D X-tree
manages the histogram vectors which are reduced to 12 di-
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Figure 9. Improvement of filter selectivity (top) and overall
runtime (bottom) for a database of 12,100 color images that
are represented by 64-D color histograms.

5.2 LeapsintheFilter Selectivity

In figure 10, we demonstrate an effect which cannot be
recognized from averaged evaluations of query samples since
it becomes only evident for single queries. Recall that the pre-
vious algorithm performs a range query on the index using
d. asquery range. The valueay,  is determined as the
maximum object similarity distance of tkenearest neigh-
bors of the query object with respect to the feature distance.
Thesek nearest neighbors correspond to the kistall can-
didates that were retrieved by the similarity ranking query in
the optimal algorithm. Observe that in most cases, the prima-
ry d, has the same value for a wide rangle ahd the cor-
responding number of candidates increases kuitha stair-
case fashion. In figure 10, quexyproduces such steps where

mensions by the Karhunen-Loeve Transform, resulting in anthe number of candidates is 3 for 1: 306 fork O {2,3} ;

index that contains 240 pages. 699 for kO {4, ...,7} ; 1,408 fork 0 {8, 9} , and 6,255
We performed a sample of 2RMearest neighbor queries fromk= 10 up tok > 20. Fork< 20 , query produces only

forkO{2, 4, ...,12} thus retrieving up to 1% of the images two stepsof8llfot<k<3 and 3,584 candidatekfeid

from the database. Figure 9 depicts the average number of

candidates that are produced by the filter step (top diagram)5 3 Color Image Database (112-D)

as well as the overall runtime (bottom diagram). Note that e.g.

for k = 8, the previous algorithm already retrieves 10% ofthe  For our final example, we use a database of 112,700 color

database (1,257 candidates) whereas in the optimal algoimages which are represented as 112-D color histograms and

rithm, only 1.4% of all database objects (172 candidates) arendexed by a 12-D X-tree containing 2,387 pages. Again, we

read from disk and evaluated exactly. The selectivity im- performed samples ok-nearest neighbor queries for

provement factor in our example is approximately 7.2 and k0 {2, 4, ..., 12} thus retrieving up to 0.01% of the objects

does not vary much. The overall runtime is improved by a fac- from the database. The top diagram in figure 11 depicts the

tor of 5.5 in the average. number of candidates generated by the previous and the opti-
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Figure 10. Leaps in the filter selectivity: For two query ob-
jectsaand b, the number of candidates out of 12,100 objects
depending on the query parameter k is depicted for the pre-
vious and the optimal agorithm. For the previous algorithm,
leaps can be observed.

mal agorithm. The bottom diagram demonstrates the affect
of the selectivity improvement onto the overall runtime.
Whereastheimprovement factor of thefilter selectivity isap-
proximately 17, the overall runtime is improved by a factor

Our optimal algorithm does not only reduce the number of
candidateswhose exact representation are read from disk and
whose object similarity distance to the query object isevalu-
ated exactly, but also reduces the number of page accessesin
theindex. Thisbehavior resultsfromthefact that the previous
algorithm performsarange query over theprimary d,,,, val-
uethat overlapsalarger portion of the data space than the op-
timal query range doq‘ k(DB) to which the optimal multi-step
algorithm restrictsits search in theindex. At k = 8 for exam-
ple, the previous algorithm accesses 50% of the index pages
(1,200 of 2,387) whereas the optimal agorithm reads only
22% of theindex pages (533 of 2,387). Theimprovement fac-
tor isgreater than 2.0 and does not vary significantly with the
increasing query parameter k in our experiments.

5.4 Pixel-Based Shape Similarity (1,024-D)

The next experiments are performed on a 1,024-D data-
base of 10,000 grayscaleimages as an examplefor the adapt-
able pixel-based shape similarity [AKS 98] [Sei 97]. In the
example, we used neighborhood influence weights for the
neighborhood area (9,1) around each pixel. Theresulting dis-
tancefunctionisaquadratic form according to themodel, and
we measured an average evaluation time of approximately
100 millisecondsfor asingleimage distance. By applying the

of 8.5 in the average. The experiments substantiate the gen-
eral observationthat the more complex aobject distancefunc-
tion, the stronger istheimpact of thefilter selectivity onto the
overall runtime.

Karhunen-Loéve Transform (KLT) in order to reduce the di-
mensionality [SK 97], various indexes were created for the
reduced dimensions 16, 32, 48, and 64. Figure 12 depicts the
performance results for a sample of Ie@earest neighbor
queries K= 5). Whereas the number of candidates monoto-
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Figure11. Improvement of filter selectivity (top) and overall
runtime (bottom) for a112-D image database of 112,700 col-
or images.

Figure 12. Filter selectivity and overal runtime for a
1,024-D image database of 10,000 grayscale images.



nously decreases with increasing dimension of theindex, the
overall runtimeis minimum for the 48-D index in our exam-
ple. The reason is the quadratic nature of the filter distance
functionintheindex and thewell-known curse of dimension-
ality for high-dimensional index structures. Neverthel ess, the
new optimal algorithm outperforms the previous two-stage
algorithm by afactor of 2.3 for the number of candidates and
afactor of 1.6 to 2.3 for the overall runtime.

5.5 Uniformly Distributed Data (20-D)

For the next experiments, we synthetically created adata-
base of 100,000 objects uniformly distributed in the 20-D
space. Anindex of dimension 15wasused, and we performed
asampleof 200 k-nearest neighbor queriesfor k = 10. Assim-
ilarity distance function, we employed artificially generated
quadratic forms that represent the Euclidean distance
(sim-id), aweighted Euclidean distance (ssm-1-0) and amore
general quadratic form (sim-2-2). Figure 13 demonstrates
that we obtained averageimprovement factorsof 72, 120, and
64 for the number of candidates. These reductions lead to an
acceleration of the total runtime by factors of 26, 48, and 23
on the average for the sample queries.
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Figure 13. Improvement of filter selectivity (top) and over-
all runtime (bottom) for k-nearest queries (k = 10) on a20-D
dataset of 100,000 uniformly distributed objects.

6 CONCLUSIONS

We developed a new multi-step algorithm for k-nearest
neighbor search which clearly outperforms the state-of-the-
art agorithm. In addition to the significant performance gain,
we have theoretically shown that our algorithm is optimal
with respect to the number of candidates that are retrieved

from the underlying index. The number of candidatesisiden-
tified to be an important parameter for the overall runtime ef-
ficiency since the exact evaluation of complex, high-dimen-
sional and adaptable similarity distance functions is the
dominating cost factor of multi-step similarity query process-
ing. Along with the CPU time, nearly every candidate causes
a random disc access in the refinement step since the exact
representations of the objects are in genera spread over the
database. For the filter step, the impact of a smaller number
of candidates is that a smaller number of index pages has to
be accessed.

Our new algorithm optimally supports multi-step k-near-
est neighbor search. The performanceisnolonger affected by
hot spots of d, among the first k of the d; -candidates, but
only depends on the quality of thefilter step: The higher the
values of a feature distance function, the better is the exact
value of the object distance function estimated, and thelessis
the expected number of candidates that are obtained from the
filter step. The best filter selectivity isachieved by using the
greatest of all possiblelower-bounding feature distance func-
tions. On top of the theoretical analysisthat proves the r-op-
timality of our new algorithm, experimental eval uationsdem-
onstrate the significant performance gain of the novel
technique over the previous solution.
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